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Abstract

In this study we investigate the bound states of the Hamiltonian describing a

quantum particle living on three dimensional straight strip of width d. We im-

pose the Neumann boundary condition on a disc window of radius a and Dirichlet

boundary conditions on the remained part of the boundary of the strip. We prove

that such system exhibits discrete eigenvalues below the essential spectrum for any

a > 0. We give also a numeric estimation of the number of discrete eigenvalue as

a function of
a

d
. When a tends to the infinity, the asymptotic of the eigenvalue is

given.

AMS Classification: 81Q10 (47B80, 81Q15)

Keywords: Quantum Waveguide, Shrödinger operator, bound states, Dirichlet Lapl-

cians.

1 Itroduction

The study of quantum waves on quantum waveguide has gained much interest and has

been intensively studied during the last years for their important physical consequences.

The main reason is that they represent an interesting physical effect with important

applications in nanophysical devices, but also in flat electromagnetic waveguide. See the

monograph [10] and the references therein.

Exner et al. have done seminal works in this field. They obtained results in different

contexts, we quote [2, 6, 8, 9]. Also in [12, 13, 14] research has been conducted in this

area; the first is about the discrete case and the two others for deals with the random

quantum waveguide.
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It should be noticed that the spectral properties essentially depends on the geometry

of the waveguide, in particular, the existence of a bound states induced by curvature

[3, 6, 7, 8] or by coupling of straight waveguides through windows [8, 10] were shown.

The waveguide with Neumann boundary condition were also investigated in several pa-

pers [15, 17]. A possible next generalization are waveguides with combined Dirichlet and

Neumann boundary conditions on different parts of the boundary. The presence of differ-

ent boundary conditions also gives rise to nontrivial properties like the existence of bound

states.The rest of the paper is organized as follows, in Section 2, we define the model and

recall some known results. In section 3, we present the main result of this note followed

by a discussion. Section 4 is devoted for numerical experiments.

2 The model

The system we are going to study is given in Fig 1. We consider a Schrödinger particle

whose motion is confined to a pair of parallel plans of width d. For simplicity, we assume

that they are placed at z = 0 and z = d. We shall denote this configuration space by Ω

Ω = R2 × [0, d].

Let γ(a) be a disc of radius a, without loss of generality we assume that the center of

γ(a) is the point (0, 0, 0);

γ(a) = {(x, y, 0) ∈ R3; x2 + y2 ≤ a2}. (2.1)

We set Γ = ∂Ω�γ(a). We consider Dirichlet boundary condition on Γ and Neumann

boundary condition in γ(a).

2.1 The Hamiltonian

Let us define the self-adjoint operator on L2(Ω) corresponding to the particle Hamiltonian

H . This is will be done by the mean of quadratic forms. Precisely, let q0 be the quadratic

form

q0(f, g) =

∫

Ω

∇f · ∇gd3x, with domain Q(q0) = {f ∈ H1(Ω); f⌈Γ = 0}, (2.2)

where H1(Ω) = {f ∈ L2(Ω)|∇f ∈ L2(Ω)} is the standard Sobolev space and we denote by

f⌈Γ, the trace of the function f on Γ. It follows that q0 is a densely defined, symmetric,
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Figure 1: The waveguide with a disc window and two different boundaries conditions

positive and closed quadratic form. We denote the unique self-adjoint operator associated

to q0 by H and its domain by D(Ω). It is the hamiltonian describing our system. From

[18] (page 276), we infer that the domain D(Ω) of H is

D(Ω) =
{

f ∈ H1(Ω); −∆f ∈ L2(Ω), f⌈Γ = 0,
∂f

∂z
⌈γ(a) = 0

}

and

Hf = −∆f, ∀f ∈ D(Ω).

2.2 Some known facts

Let us start this subsection by recalling that in the particular case when a = 0, we get

H0, the Dirichlet Laplacian, and a = +∞ we get H∞, the Dirichlet-Neumann Laplacian.

Since

H = (−∆R2) ⊗ I ⊕ I ⊗ (−∆[0,d]), on L2(R2) ⊗ L2([0, d]),
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( see [18]) we get that the spectrum of H0 is [( π
2d

)2,+∞[. Consequently, we have
[

(
π

d
)2,+∞

[

⊂ σ(H) ⊂
[

(
π

2d
)2,+∞

[

.

Using the property that the essential spectra is preserved under compact perturbation,

we deduce that the essential spectrum of H is

σess(H) =
[

(
π

d
)2,+∞

]

.

An immediate consequence is the discrete spectrum lies in
[

( π
2d

)2, (π
d
)2

]

.

2.3 Preliminary: Cylindrical coordinates

Let us notice that the system has a cylindrical symmetry, therefore, it is natural to

consider the cylindrical coordinates system (r, θ, z). Indeed, we have that

L2(Ω, dxdydz) = L2(]0,+∞[×[0, 2π[×[0, d], rdrdθdz),

We note by 〈̇,̇〉r, the scaler product in L2(Ω, dxdydz) =

L2(]0,+∞[×[0, 2π[×[0, d], rdrdθdz) given by

〈f, g〉r =

∫

]0,+∞[×[0,2π[×[0,d]

fgrdrdθdz.

We denote the gradient in cylindrical coordinates by ∇r. While the Laplacian operator

in cylindrical coordinates is given by

∆r,θ,z =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
+

d2

dz2
. (2.3)

Therefore, the eigenvalue equation is given by

−∆r,θ,zf(r, θ, z) = Ef(r, θ, z). (2.4)

Since the operator is positive, we set E = k2. The equation (2.4) is solved by separating

variables and considering f(r, θ, z) = ϕ(r) · ψ(θ)χ(z). Plugging the last expression in

equation (2.4) and first separate χ by putting all the z dependence in one term so that χ′′

χ

can only be constant. The constant is taken as −s2 for convenience. Second, we separate

the term ψ”
ψ

which has all the θ dependance. Using the fact that the problem has an

axial symmetry and the solution has to be 2π periodic and single value in θ, we obtain
ψ”
ψ

should be a constant −n2 for n ∈ Z. Finally, we get the following equation for ϕ

ϕ′′(r) +
1

r
ϕ′(r) + [k2 − s2 −

n2

r2
]ϕ(r) = 0. (2.5)
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We notice that the equation (2.5), is the Bessel equation and its solutions could be ex-

pressed in terms of Bessel functions. More explicit solutions could be given by considering

boundary conditions.

3 The result

The main result of this note is the following Theorem.

Theorem 3.1 The operator H has at least one isolated eigenvalue in
[

( π
2d

)2, (π
d
)2

]

for

any a > 0.

Moreover for a big enough, if λ(a) is an eigenvalue of H less then
π2

d2
, then we have.

λ(a) =
( π

2d

)2

+ o

(

1

a2

)

. (3.6)

Proof. Let us start by proving the first claim of the Theorem. To do so, we define

the quadratic form Q0,

Q0(f, g) = 〈∇f,∇g〉r =

∫

]0,+∞[×[0,2π[×[0,d]

(∂rf∂rg +
1

r2
∂θf∂θg + ∂zf∂zg)rdrdθdz, (3.7)

with domain

D0(Ω) =
{

f ∈ L2(Ω, rdrdθdz);∇rf ∈ L2(Ω, rdrdθdz); f⌈Γ = 0
}

.

Consider the functional q defined by

q[Φ] = Q0[Φ] − (
π

d
)2‖Φ‖2

L2(Ω,rdrdθdz). (3.8)

Since the essential spectrum of H starts at (
π

d
)2, if we construct a trial function Φ ∈ D0(Ω)

such that q[Φ] has a negative value then the task is achieved. Using the quadratic form

domain, Φ must be continuous inside Ω but not necessarily smooth. Let χ be the first

transverse mode, i.e.

χ(z) =

{ √

2
d
sin(π

d
z) if z ∈ (0, d)

0 otherwise.
(3.9)

For Φ(r, θ, z) = ϕ(r)χ(z), we compute

q[Φ] = 〈∇rϕχ,∇rϕχ〉 − (
π

d
)2‖ϕχ‖2

L2(Ω,rdrdθdz),

=

∫

]0,+∞[×[0,2π[×[0,d]

(

|χ(z)|2|ϕ′(r)|2 + |ϕ(r)||χ′(z)|2
)

rdrdθdz − (
π

d
)2‖ϕχ‖2

L2(Ω,rdrdθ)

= 2π‖ϕ′‖2
L2([0,+∞[,rdr)
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Now let us consider an interval J = [0, b] for a positive b > a and a function ϕ ∈

S ([0,+∞[) such that ϕ(r) = 1 for r ∈ J. We also define a family {ϕτ : τ > 0} by

ϕτ (r) =

{

ϕ(r) if r ∈ (0, b)
ϕ(b+ τ(ln r − ln b)) if r ≥ b.

(3.10)

Let us write

‖ϕ′

τ‖L2([0,+∞),rdr) =

∫

(0,∞)

|ϕ′

τ (r)|
2rdr,

=

∫

(b,+∞)

τ 2|ϕ′(b+ τ(ln r − ln b))|2rdr,

=

∫

(b,+∞)

τ 2

r2
|ϕ′(b+ τ(ln r − ln b))|2rdr,

= τ

∫

(b,+∞)

τ

r
|ϕ′(b+ τ(ln r − ln b))|2dr,

= τ

∫

(0,+∞)

|ϕ′(s)|2ds = τ‖ϕ′‖2
L2((0,+∞)). (3.11)

Let j be a localization function from C∞

0 (0, a) and for τ, ε > 0 we define

Φτ,ε(r, z) = ϕτ (r)[χ(z) + εj(r)2] = ϕτ (r)χ(z) + ϕτεj
2(r) = Φ1,τ,ε(r, z) + Φ2,τ,ε(r). (3.12)

q[Φ] = q[Φ1,τ,ε + Φ2,τ,ε]

= Q0[Φ1,τ,ε + Φ2,τ,ε] − (
π

d
)2‖Φ1,τ,ε + Φ2,τ,ε‖

2
L2(Ω,rdrdθdz).

= Q0[Φ1,τ,ε] − (
π

d
)2‖Φ1,τ,ε‖

2
L2(Ω,rdrdθdz) + Q0[Φ2,τ,ε] − (

π

d
)2‖Φ2,τ,ε‖

2
L2(Ω,rdrdθdz)

+ 2〈∇rΦ1,τ,ε,∇rΦ2,τ,ε〉r − (
π

d
)2〈Φ1,τ,ε,Φ2,τ,ε〉r.

Using the properties of χ, noting that the supports of ϕ and j are disjoints and taking

into account equation (3.11), we get

q[Φ] = 2πτ‖ϕ′‖L2(0,+∞)−8πdε‖j2‖2
L2(0,+∞)+2ε2π{2‖jj′‖2

(L2(0,∞),rdr)−(
π

d
)2‖j2‖2

(L2(0,∞),rdr)}.

(3.13)

Firstly, we notice that only the first term of the last equation depends on τ . Secondly,

the linear term in ε is negative and could be chosen sufficiently small so that it dominates

over the quadratic one. Fixing this ε and then choosing τ sufficiently small the right hand

side of (3.13) is negative. This ends the proof of the first claim.

The proof of the second claim is based on bracketing argument. Let us split L2(Ω, rdrdθdz)
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as follows, L2(Ω, rdrdθdz) = L2(Ω−

a , rdrdθdz) ⊕ L2(Ω+
a , rdrdθdz), with

Ω−

a = {(r, θ, z) ∈ [0, a] × [0, 2π[×[0, d]},

Ω+
a = Ω\Ω−

a .

Therefore

H−,N
a ⊕H+,N

a ≤ H ≤ H−,D
a ⊕H+,D

a .

Here we index by D and N depending on the boundary conditions considered on the

surface r = a. The min-max principle leads to

σess(H) = σess(H
+,N
a ) = σess(H

+,D
r ) =

[

(
π

d
)2,+∞

[

.

Hence if H−,D
r exhibits a discrete spectrum below

π2

d2
, then H do as well. We mention

that this is not a necessary condition. If we denote by λj(H
−,D
a ), λj(H

−,N
a ) and λj(H),

the j-th eigenvalue of H−,D
a , H−,N

a and H respectively then, again the minimax principle

yields the following

λj(H
−,N
a ) ≤ λj(H) ≤ λj(H

−,D
a ) (3.14)

and for 2 ≥ j

λj−1(H
−,D
a ) ≤ λj(H) ≤ λj(H

−,D
a ). (3.15)

H−,D
a has a sequence of eigenvalues [1, 19], given by

λk,n,l =

(

(2k + 1)π

2d

)2

+
(xn,l
a

)2

.

Where xn,l is the l-th positive zero of Bessel function of order n ( see [1, 19]) . The

condition

λk,n,l <
π2

d2
, (3.16)

yields that k = 0, so we get

λ0,n,l =
( π

2d

)2

+
(xn,l
a

)2

.

This yields that the condition (3.16) to be fulfilled, will depends on the value of
(xn,l
a

)2

.

We recall that xn,l are the positive zeros of the Bessel function Jn. So, for any λ(a),

eigenvalue of H , there exists, n, l, n′, l′ ∈ N, such that

π2

4d2
+
x2
n,l

a2
≤ λ(a) ≤

π2

4d2
+
x2
n′,l′

a2
. (3.17)
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The proof of (3.6) is completed by observing by that xn,l and xn′,l′ are independent from

a. In Figure 2, the domain of existence of λ1(H), λ2(H) and λ3(H) are represented.⊡

4 Numerical computations

This section is devoted to some numerical computations. In [11] and [16], the number of

positive zeros of Bessel functions less than λ is estimated by
λ2

π2
which is based on the

approximate formula for the roots of Bessel functions for large l is

xn,l ∼ (n+ 2l −
1

2
)
π

2
. (4.18)

taking into account (3.14), we get that for, d and a positives such that
a2

d2
< λ∗ = 1, 9276,

H has a unique discrete eigenvalue.
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Figure 3: The number of the eigenvalues of the operator HD function of λ ≡ a/d.
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Figure 4: The number of the eigenvalues of the operator HD function of d and a.
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