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Abstract. In this paper, we develop numerical algorithms that use small requirements
of storage and operations for the computation of invariant tori in Hamiltonian systems
(exact symplectic maps and Hamiltonian vector fields). The algorithms are based on
the parameterization method and follow closely the proof of the KAM theorem given in
[LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied
by the invariant tori by using a Newton method. Using some geometric identities, it is
possible to perform a Newton step using little storage and few operations.

In this paper we focus on the numerical issues of the algorithms (speed, storage and
stability) and we refer to the mentioned papers for the rigorous results. We show how
to compute efficiently both maximal invariant tori and whiskered tori, together with the
associated invariant stable and unstable manifolds of whiskered tori.

Moreover, we present fast algorithms for the iteration of the quasi-periodic cocy-
cles and the computation of the invariant bundles, which is a preliminary step for the
computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other
contexts, this section may be of independent interest.

The numerical methods presented here allow to compute in a unified way primary
and secondary invariant KAM tori. Secondary tori are invariant tori which can be
contracted to a periodic orbit.

We present some preliminary results that ensure that the methods are indeed im-
plementable and fast. We postpone to a future paper optimized implementations and
results on the breakdown of invariant tori.
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1. Introduction

The goal of this paper is to describe efficient algorithms to compute invariant manifolds

in Hamiltonian systems. The invariant manifolds we are considering are invariant tori

such that the motion on them is conjugate to a rigid rotation and their whiskers.

The tori we consider here can have stable and unstable directions. The standard theory

[Fen72, HPS77] enssures the existence of invariant manifolds tangent to these spaces. We

also consider the computation of these stable and unstable manifolds.

By invariant torus, we mean an invariant manifold topologically equivalent to a power

of T with quasi-periodic dynamics on it and a dimension equal to the number of inde-

pendent frequencies, which we will be assumed to be Diophantine. Invariant tori have

been an important object of study since they provide landmarks that organize the long

term behavior of the dynamical system. There are several variants of these tori; in this

paper we will consider both maximal tori and whiskered tori.

Tori of maximal dimension are quasi-periodic solutions of n frequencies in Hamilton-

ian systems with n-degrees of freedom. It is well known that for n ≤ 2, they provide

long term stability. In contrast, whiskered tori are tori with ℓ independent frequencies

in systems with n-degrees of freedom. Symplectic geometry asserts that, in the normal

direction there is at least an ℓ dimensional family of neutral directions (the variational

equations on them grow only polynomially). Whiskered tori are such that there are

n − ℓ directions which, under the linearized equation contract exponentially in the fu-

ture (stable directions) or in the past (unstable directions). It is well known that these

infinitesimal stable (resp. unstable) directions lead to stable (resp. unstable) manifolds

consisting on the points that converge exponentially fast in the future (resp. in the

past) to the torus. The persistence of these manifolds under a perturbation has been

widely studied (see [Fen72, Fen74, Fen77, HPS77, Pes04]). Note that the whiskered

tori are not normally hyperbolic manifolds since there are, at least, ℓ neutral direc-

tions. The persistence of whiskered tori with a Diophantine rotation has been studied in

[Gra74, Zeh75, LY05, FLS07].

The whiskered tori and their invariant manifolds organize the long term behavior and

provide routes which lead to large scale instability. Indeed, the well known paper [Arn64]

showed that, in some particular example, one can use the heteroclinic intersections among

these manifolds to produce large scale motions. In [Arn63] this is conjectured as a generic

mechanism. The transitions between different kinds of whiskered invariant tori have been

the basis of many of the theoretical models of Arnol’d diffusion [DLS06, DH08].
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Invariant objects including tori play also an important role in several areas of applied

sciences, such as astrodynamics and theoretical chemistry. In the monographs [Sim99,

GJSM01b, GJSM01a], it is shown that computing these invariant objects in realistic

models of the Solar System provides orbits of practical importance for the design of

space missions.

The numerical method we use is based on the parameterization methods introduced

in [CFL03b, CFL03c] and the algorithms we present are very similar to the proofs in

[FLS07].

The main idea of the method consists in deriving a functional equation satisfied by the

parameterization of the invariant manifold and then implement a Newton method to solve

it. The parameterization method is well suited for the numerical implementation because

it uses functions of the same number of variables as the dimension of the objects that we

want to compute, independently of the number of dimensions of the phase space. The

main goal of the present paper is to design very efficient numerical algorithms to perform

the required Newton step. What we mean by efficiency is that, if the functional equation

is discretized using N Fourier coefficients, one Newton step requires only storage of O(N)

and takes only O(N log N) operations. Note that a straightforward implementation of

the Newton method (usually refered to as the large matrix method) requires to store

an N × N matrix and solve the linear equation, which requires O(N3) operations. We

include a comparison with the standard Newton method in Section 4.1.

For the case of quasi-periodic systems, algorithms with the same features were discussed

in [HL06c, HL06b, HL07] and, for some Lagrangian systems (some of which do not admit

a Hamiltonian interpretation) in [CL08]. There are other algorithms in the literature.

The papers [JO05, JO08] present and implement calculations of reducible tori. This

includes tori with normally elliptic directions. The use of reducibility indeed leads to

very fast Newton steps, but it still requires the storage of a large matrix. As seen in the

examples in [HL07, HL06a], reducibility may fail in a codimension 1 set (in a Cantor set of

codimension surfaces). There are other methods which yield fast computations, notably,

the “fractional iteration method” [Sim00]. We think that it would be very interesting to

formalize and justify the fractional iteration method.

One key ingredient in our calculations—and in all subsequent calculations—is the phe-

nomenon of “automatic reducibility.” This phenomenon, which also lies at the basis of the

rigorous proofs [LGJV05, Lla01b, FLS07], uses the observation that the preservation of

the symplectic structure implies that the Newton equations can be reduced—by explicit
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changes of variables—to upper triangular difference equations with diagonal constant

coefficients. These equations can be solved very efficiently in Fourier coefficients. The

changes of variables are algebraic expressions involving derivatives of the parameteriza-

tion. We note that derivatives can be fastly computed in Fourier representation whereas

the algebraic expressions can be fastly computed in real space representation. Therefore,

the algorithm to produce a Newton step consists of a small number of steps, each of

which is diagonal either in real space or in Fourier space. Of course, the FFT algorithm

allows us to switch from real space to Fourier space in O(N log N) computations.

We also note that the algorithms mirror very closely the proofs of the KAM theorem.

In [LGJV05] and [FLS07] we can find proofs that the algorithms considered here con-

verge to a true solution of the problem provided that the initial approximation solves

the invariance equation with good enough accuracy and satisfies some appropriate non-

degeneracy conditions. Furthermore, the true solution is close to the approximate one,

the distance from the true solution to the unperturbed one being bounded by the error.

In numerical analysis this is typically known as a posteriori estimates [dlLR91].

It is important to remark that the algorithms that we will present can compute in a

unified way both primary and secondary tori. We recall here that secondary tori are

invariant tori which are contractible to a torus of lower dimension, whereas this is not

the case for primary tori. The tori which appear in integrable systems in action-angle

variables are always primary. In quasi-integrable systems, the tori which appear through

Lindstedt series or other perturbative expansions starting from those of the integrable

system are always primary. Secondary tori, however, are generated by resonances. In

numerical explorations, secondary tori are very prominent features that have been called

“islands”. In [HL00], one can find arguments showing that these solutions are very

abundant in systems of coupled oscillators. As an example of the importance of secondary

tori we will mention that in the recent paper [DLS06] they constituted the essential object

to overcome the “large gap problem” and prove the existence of diffusion. In [DH08],

one can find a detailed and deep analysis of these objects.

In this paper, we will mainly discuss algorithms for systems with dynamics described

by diffeomorphisms. For systems described through vector fields, we note that, taking

time−1 maps, we can reduce the problem with vector fields to a problem with diffeo-

morphisms. However, in some practical applications, it is convenient to have a direct
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treatment of the system described by vector fields. For this reason, we include algo-

rithms that are specially designed for flows, in parallel with the algorithms designed for

maps.

The paper is organized as follows. In Section 2 we summarize the notions of mechanics

and symplectic geometry we will use. In Section 3 we formulate the invariance equations

for the objects of interest (invariant tori, invariant bundles and invariant manifolds)

and we will present some generalities about the numerical algorithms. In Section 5 we

specify the fast algorithm to compute maximal tori –both primary and secondary– and

we compare it with a straightforward Newton method (Section 4).

In Section 6 we present fast algorithms for the iteration of cocycles over rotations and

for the calculation of their invariant bundles. The main idea is to use a renormalization

algorithm which allows to pass from a cocycle to a longer cocycle. Since quasi-periodic

cocycles appear in many other applications, we think that this algorithm may be of

independent interest.

The calculation of invariant bundles for cocycles is a preliminary step for the calculation

of whiskered invariant tori. Indeed, these algorithms require the computation of the

projections over the linear subspaces of the linear cocycle. In Section 8.2 we present an

alternative procedure to compute the projections based on a Newton method. Algorithms

for whiskered tori are discussed in Section 8.

In Section 9 we discuss fast algorithms to compute rank-1 (un)stable manifolds of

whiskered tori. Again, the key point is that taking advantage of the geometry of the

problem we can devise algorithms which implement a Newton step without having to

store—and much less invert—a large matrix. We first discuss the so-called order by

order method, which serves as a comparison with more efficient methods based on the

reducibility. We present algorithms that compute at the same time the torus and the

whiskers and algorithms that given a torus and the linear space compute the invariant

manifold tangent to it. It is clearly possible to extend the method to compute stable

and unstable manifolds in general dimensions (or even non-resonant bundles) by a mod-

ification of the method. To avoid increasing even more the length of this paper and

since interesting examples happen in high dimension, which is hard to do numerically,

we postpone this to a future paper.

One remarkable feature of the method discussed here is that it does not require the

system to be close to integrable. We only need a good initial guess for the Newton

method. Typically, one uses a continuation method starting from an integrable case,
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where the solutions are trivial and can be computed analytically. However, in the case of

secondary KAM tori, which do not exist in the integrable case, one requires other types

of methods. In Section 11 we include a discussion of the different possibilities.

Finally, in Section 12 we include examples of the numerical implementation we have

carried out. In Section 12.1 we computed maximal invariant tori, both primary and sec-

ondary, for the standard maps and in Section 12.2 we computed maximal and hyperbolic

invariant tori for the Froeschlé map. We also provide details of storage and running

times.

2. Setup and conventions

We will be working with systems defined on an Euclidean phase space endowed with

a symplectic structure. The phase space under consideration will be

M⊂ R
2d−ℓ × T

ℓ.

We do not assume that the coordinates in the phase space are action-angle variables.

Indeed, there are several systems (even quasi-integrable ones) which are very smooth in

Cartesian coordinates but less smooth in action-angle variables (e.g., neighborhoods of

elliptic fixed points [FGB98, GFB98], hydrogen atoms in crossed electric and magnetic

fields [RC95, RC97] several problems in celestial mechanics [CC07])

We will assume that the Euclidean manifold M is endowed with an exact symplectic

structure Ω = dα (for some one-form α) and we have

Ωz(u, v) = 〈u, J(z)v〉,

where 〈·, ·〉 denotes the inner product on the tangent space of M and J(z) is a skew-

symmetric matrix.

An important particular case is when J induces an almost-complex structure, i.e.

J2 = − Id . (2.1)

Most of our calculations do not need this assumption. One important case, where the

identity (2.1) is not satisfied, is when J is a symplectic structure on surfaces of section

chosen arbitrarily in the energy surface.

As previously mentioned, we will be considering systems described either by diffeo-

morphisms or by vector-fields. In the first case, we will consider maps F : U ⊂M 7→M
which are not only symplectic (i.e. F ∗Ω = Ω) but exact symplectic, that is

F ∗α = α + dP,
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for some smooth function P , called the primitive function.

In the case of vector fields, we will assume that the system is described by a globally

Hamiltonian vector-field X, that is

X = J∇H

where H is a globally defined function onM.

As far as quasi-periodic motions are concerned, we will always assume that the fre-

quencies ω ∈ R
ℓ are Diophantine (as it is standard in the KAM theory). We recall here

that the notion of Diophantine is different for flows and for diffeomorphisms. Therefore,

we define

Daff(ν, τ) =
{
ω ∈ R

ℓ
∣∣ |ω · k|−1 ≤ ν|k|τ ∀ k ∈ Z

ℓ − {0}
}

, ν ≥ ℓ− 1

D(ν, τ) =
{
ω ∈ R

ℓ
∣∣ |ω · k − n|−1 ≤ ν|k|τ ∀ k ∈ Z

ℓ − {0}, n ∈ Z
}

, ν > ℓ
(2.2)

which correspond to the sets of Diophantine frequencies for flows and maps, respectively.

It is well known that for non-Diophantine frequencies substantially complicated be-

havior can appear [Her92, FKW01]. Observing convincingly these Liouvillian behaviors

seems a very ambitious challenge for numerical exploration.

3. Equations for invariance

In this section, we discuss the functional equations for the objects of interest, that is,

invariant tori and the associated whiskers. These functional equations, which describe the

invariance of the objects under consideration, are the cornerstone of the algorithms. We

will consider at the same time the equations for maps and the equations for vector-fields.

3.1. Functional equations for invariant tori. At least at the formal level, it is natural

to search quasi-periodic solutions with frequency ω (independent over the integers) under

the form of Fourier series

x(t) =
∑

k∈Zℓ

x̂ke
2πik·ωt

x(n) =
∑

k∈Zℓ

x̂ke
2πik·ωn ,

(3.1)

where ω ∈ R
ℓ, t ∈ R and n ∈ Z.

Note that we allow some components of x to be angles. In that case, it suffices to take

some of the components of (3.1) modulo 1.
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It is then natural to describe a quasi-periodic function using the so-called “hull” func-

tion K : T
ℓ →M defined by

K(θ) =
∑

k∈Zℓ

x̂ke
2πik·θ,

so that we can write

x(t) = K(ωt),

x(n) = K(nω).

The geometric interpretation of the hull function is that it gives an embedding from T
ℓ

into the phase space. In our applications, the embedding will actually be an immersion.

It is clear that quasi-periodic functions will be orbits for a vector field X or a map F

if and only if the hull function K satisfies:

∂ωK −X ◦K = 0,

F ◦K −K ◦ Tω = 0,
(3.2)

where

• ∂ω stands for the derivative along direction ω, i.e.

∂ω =
ℓ∑

k=1

ωk∂θk
. (3.3)

• Tω denotes a rigid rotation

Tω(θ) = θ + ω. (3.4)

A modification of the invariance equations (3.2) which we will be important for our

purpose consists in considering

∂ωK −X ◦K − J(K0)
−1(DX ◦K0)λ = 0,

F ◦K −K ◦ Tω − (J(K0)
−1DK0) ◦ Tωλ = 0,

(3.5)

where the unknowns are now K : T
ℓ →M (as before) and λ ∈ R

ℓ. Here, K0 denotes a

given approximate (in a suitable sense which will be given below) solution of the equations

(3.2).

It has been shown in [FLS07] that, for exact symplectic maps, if (K,λ) satisfy the

equation (3.5) with K0 close to K, then at the end of the iteration of the Newton

method, we have λ = 0 and K is a solution of the invariance equation (3.2). Of course,

for approximate solutions of the invariance equation (3.2), there is no reason why λ

should vanish. The vanishing of λ depends on global considerations that are discussed

in Section 3.1.1.
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The advantage of equation (3.5) is that it makes easier to implement a Newton method

in the cases that, for the approximate solutions, certain cancelations do not apply. This is

particularly important for the case of secondary tori that we will discuss in Section 3.1.2.

The equations (3.2) and (3.5) will be the centerpiece of our treatment. We will dis-

cretize them using Fourier series and study numerical methods to solve the discretized

equations.

It is important to remark that there are a posteriori rigorous results for equations (3.2).

That is, there are theorems that ensure that given a function which satisfies (3.2) rather

approximately and which, at the same time, satisfies some non-degeneracy conditions,

then there is a true solution nearby. These results, stated in [LGJV05, FLS07] and whose

proof is the basis for the algorithms we discuss, give us some extra quantities to monitor

so that we can be confident that the numerical solutions computed are not spurious

effects induced by the truncation.

Remark 1. Notice that for whiskered tori the dimension of the torus ℓ is smaller than half

the dimension of the phase space d. In the case of maximal tori, we have ℓ = d. Hence,

the algorithm suggested here has the advantage that that it looks for a function K which

is always a function of ℓ variables (and allows to compute invariant objects of dimension

ℓ). This is important because the cost of handling functions grows exponentially fast

with the number of variables. Indeed, to discretize a function of ℓ variables into R
n in a

grid of side h, one needs to store (1/h)ℓ · n values.

Remark 2. Recall that, taking time−1 maps, one can reduce the problem of vector fields

to the problem of diffeomorphisms. Furthermore, since autonomous Hamiltonian systems

preserve energy, we can take a surface of section and deal with the return map. This

reduces by 1 the number of variables needed to compute invariant tori.

Remark 3. Equations (3.2) do not have unique solutions. Observe that if K is a solution,

for any σ ∈ R
ℓ, K ◦ Tσ is also a solution. In [LGJV05] and [FLS07], it is shown that, in

many circumstances, this is the only non uniqueness phenomenon in a sufficiently small

neighborhood of K. Hence, it is easy to get rid of it by imposing some normalization.

See Section 4.2.

3.1.1. Some global topological considerations. In our context, both the domain T
ℓ and the

range of K have topology. As a consequence, there will be some topological considerations

in the way that the torus T
ℓ gets embedded in the phase space. Particularly, the angle

variables of T
ℓ can get wrapped around in different ways in the phase space.
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A concise way of characterizing the topology of the embedding is to consider the lift

of K to the universal cover, i.e.

K̂ : R
ℓ → R

2d−ℓ × R
ℓ,

in such a way that K is obtained from K̂ by identifying variables in the domain and in

the range that differ by an integer.

It is therefore clear that ∀ e ∈ Z
ℓ

K̂p(θ + e) = K̂p(θ),

K̂q(θ + e) = K̂q(θ) + I(e),
(3.6)

where K̂p, K̂q denote the projections of the lift on each of the components ofM and I(e)

is an integer. It is easy to see that I(e) is a linear function of e, namely

I(e)i=1,...,ℓ =

( ℓ∑

j=1

Iijej

)

i=1,...,ℓ

with Iij ∈ Z.

We note that if a function K̂q satisfies

K̂q(θ + e) = K̂q(θ) + I(e) ,

the function

K̃q(θ) ≡ K̂q(θ)− I(θ) (3.7)

is e−periodic. The numerical methods will always be based on studying the periodic

functions K̃q, but we will not emphasize this unless it can lead to confusion.

Of course, the integer valued matrix I = {Iij}ij remains constant if we modify the

embedding slightly. Hence, it remains constant under continuous deformation. For ex-

ample, in the integrable case with ℓ = d, invariant tori satisfy K̂q(θ) = θ, so that we

have I = Id and, therefore, all the invariant tori which can be continued from tori of the

integrable system will also have I = Id.

3.1.2. Secondary tori. One can produce other ℓ-dimensional tori for which the range of

I is of dimension less then ℓ. It is easy to see that if rank(I) < ℓ we can contract K(Tℓ)

to a diffeomorphic copy of T
rank(I). Even in the case of maximal tori ℓ = d, one can have

contractible directions. The most famous example are the “islands” generated in twist

maps around resonances. These tori are known as secondary tori and they do not exist

in the integrable system. They are generated by the perturbation and therefore they

cannot be obtained by continuation, as standard KAM theory.
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Perturbative proofs of existence of secondary tori are done in [LW04] and in [DLS06].

The properties of these tori are studied in great detail in [DH08]. They were shown to

have an important role in Arnol’d diffusion [DLdlS03, DLS06, GL06, DH08] to overcome

the so-called large gap problem. In [Dua94] one can find rigorous results showing that

these islands have to be rather abundant (in different precise meanings). In particular,

for standard-like maps they can appear at arbitrarily large values of the parameter.

In [HL00], there are heuristic arguments and numerical simulations arguing that in sys-

tems of coupled oscillators, the tori with contractible directions are much more abundant

than the invariant tori which can be continued from the integrable limit.

In view of these reasons, we will pay special attention to the computation of these

secondary tori in the numerical examples presented in Section 12.

One of the novelties of the method described here is that we can deal in a unified way

both primary and secondary KAM tori. We want to emphasize on some features of the

method presented here, which are crucial for the computation of secondary tori:

• The method does not require neither the system to be close to integrable nor to

be written in action-angle variables.

• The modification of the invariance equations (3.2) allows to adjust some global

averages required to solve the Newton equations (see Section 5 and also [FLS07]).

• The periodicity of the function K̃ can be adjusted by the matrix I introduced in

(3.6). Hence, the rank of the matrix I has to be chosen according to the number

of contractible directions.

3.2. Equations for the invariant whiskers. Invariant tori with ℓ < d may have as-

sociated invariant bundles and whiskers. We are interested in computing the invariant

manifolds which contain the torus and are tangent to the invariant bundles of the lin-

earization around the torus. This includes the stable and unstable manifolds but also

invariant manifolds associated to other invariant bundles of the linearization, such as the

slow manifolds, associated to the less contracting directions.

Using the parameterization method, it is natural to develop algorithms for invariant

manifolds tangent to invariant sub-bundles that satisfy a non-resonance condition. See

[CFL03b]. This includes as particular cases, the stable/unstable manifolds, the strong

stable and strong unstable ones as well as some other slow manifolds satisfying some

non-resonance conditions.

Nevertheless, to avoid lenghthening the paper and since these examples happen only

in higher dimensional problems that are harder to implement, we restrict in this paper
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just to the one-dimensional manifolds (see Section 9). We think that, considering this

particular case, we can state in a more clear and simpler way the main idea behind the

algorithms. We hope to come back to the study of higher dimensional manifolds in future

work.

We once again use a parameterization. This amounts to find a solution u of the

equations of motion under the form

u(t) = W (ωt, seλt)

in the continuous time case and

u(n) = W (ωn, λns)

in the discrete time case, where W : T
ℓ× (V ⊂ R

d−ℓ)→M and λ ∈ R. The function W

has then to satisfy the following invariance equations

F (W (θ, s)) = W (θ + ω, λs),

∂ωW (θ, s) + λs
∂

∂s
W (θ, s) = (X ◦W )(θ, s),

(3.8)

for the case of maps and flows, respectively. See (3.3) for the definition of the operator

∂ω.

Note that equations (3.8) imply that in variables (θ, s) the motion on the torus consists

of a rigid rotation of frequency ω whereas the motion on the whiskers consists of a

contraction (or an expansion) by a constant λ (eλ in the case of flows). In case of

contraction, this amounts to assume that |λ| < 1 for maps and λ < 0 for flows. The

expanding case is assumed to have |λ| > 1 for maps and λ > 0 for flows. Note that if

W (θ, s) satisfies (3.8) then W (θ, 0) is a solution of (3.2). We also note that the solutions

of equations (3.8) are not unique. Indeed, if W (θ, s) is a solution, for any σ ∈ T
ℓ, b ∈ R,

we have that W̃ (θ, s) = W (θ + σ, sb) is also a solution. This phenomenon turns out to

be the only non-uniqueness of the problem and it can be removed by supplementing the

invariance equation with a normalization condition.

Some suitable normalization conditions that make the solutions unique are
∫

Tℓ

K0(θ)− θ = 0,

DF (K0(θ))DW (θ, 0) = λDW (θ, 0),

||DW (·, 0)|| = ρ

(3.9)

where ρ > 0 is any arbitratrily chosen number and ‖.‖ stands for a suitable norm.
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The fact that the solutions of (3.2) supplemented by (3.9) are locally unique is proved

rigorously in [FLS07]. We will see that these normalizations allow to uniquely determine

the Taylor expansions (in s) of the function W whenever the first term W1 is fixed.

The first equation in (3.9) amounts to choosing the origin of coordinates in the pa-

rameterization of the torus and, therefore eliminates the ambiguity corresponding to σ.

(Check how does (3.9) change when we choose σ).

The other equations fix the scale in the variables s. See that, setting a b amounts to

multiplying W1 by b. Hence, setting the norm of DW sets the b.

From the mathematical point of view, all choices of ρ are equivalent. Nevertheless,

from the numerical point of view, it is highly advantageous to choose ||DW1|| so that

the numerical coefficients of the expansion (in s) of W have norms that neither grow

nor decrease fast. This makes the computation more immune to round off error since

round-off error becomes more important when we add numbers of very different sizes.

3.3. Fourier-Taylor discretization.

3.3.1. Fourier series discretization. Since the invariant tori are parameterized by a func-

tion K which is periodic in the angle variable θ, it is natural to discretize K using Fourier

modes and retaining a finite number of them,

K(θ) =
∑

k∈Zℓ,k∈ON

cke
2iπk·θ, (3.10)

where

ON =
{
k ∈ Z

ℓ | |k| ≤ N
}

.

Since we will deal with real-valued functions, we have ck = c̄−k and one can just consider

the following cosine and sine Fourier series,

K(θ) = a0 +
∑

k∈Zℓ,k∈ON

ak cos(2πk · θ) + bk sin(2πk · θ). (3.11)

From a practical point of view, in order to store K, we can either keep the values of

the function in a grid of 2N points or keep the N +1 Fourier modes of the Fourier series.

The main practical shortcoming of Fourier series discretization is that they are not

adaptative and that for discontinuous functions, they converge very slowly and not uni-

formly. These shortcomings are however not very serious for our applications.

Since the tori are invariant under rigid rotations, they tend to be very homogeneous,

so that adaptativity is not a great advantage. The fact that the Fourier series converge

slowly for functions with discontinuities is a slight problem. It is known that, when KAM
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tori have enough Cr regularity, they are actually analytic [LGJV05, FLS07]. Neverthe-

less, when the system is written as a perturbation (of size ε) of an integrable one, for

certain values of the parameter ε, the equation (3.2) admits solutions—corresponding

to Aubry-Mather sets—which are discontinuous (the theory is much more developed

for twist maps). As we increase ε, the problem switches from having analytic solu-

tions to having discontinuous solutions (this is the so-called breakdown of analyticity

[Aub83, ALD83, Gre79, McK82, CFL04, OP08]). For values of parameters which are

close to the analyticity breakdown, the Fourier discretization tends to behave in a rather

surprising way and leads to spurious solutions (solutions of the truncated equations which

are not close to truncations of true solutions of the equations. They can be identified

using the a posteriori KAM theorems, but one has to design algorithms so that they are

avoided).

We also note that the evaluation of F ◦ K is also very fast if we discretize on a grid

(we just need to evaluate the function F for each of the points on the grid). Hence, our

iterative step will consist in the application of several operations, all of which being fast

either in Fourier mode representation or in a grid representation.

Of course, using the Fast Fourier Transform, we can pass from a grid representation to

Fourier coefficients in O(N log N) operations. There are extremely efficient implemen-

tations of the FFT algorithm that take into account not only operation counts but also

several other characteristics (memory access, cache, etc.) of modern computers.

3.3.2. Cohomology equations and Fourier discretization. An important advantage of the

Fourier discretization is that the cohomology equations, which play a very important

role in KAM theory and in our treatment, are straightforward to solve. This section

provides a sketch of the resolution of the cohomology equations. Since in this paper we

are only dealing with algorithms and not with estimates, we will not identify what are

the regularity requirements in the hypothesis nor the regularity conclusions. Since this

is a rather standard part of the KAM argument, there are very detailed estimates in the

literature (notably [Rüs75]).

In iterating the Newton algorithm to construct KAM tori, one faces with the so-called

small divisor problem: let η be a periodic (on T
ℓ) function. We want to find a function

ϕ, which is also periodic, solving (the first equation is a small divisor equation for flows
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and the second one for maps)

∂ωϕ = η,

ϕ− ϕ ◦ Tω = η.
(3.12)

As it is well known, equations (3.12) have a solution provided that η̂0 ≡
∫

Tℓ η = 0. The

Fourier coefficients ϕ̂k of the solution ϕ are then given by

ϕ̂k =
η̂k

2πiω · k ,

ϕ̂k =
η̂k

1− e2πik·ω
,

(3.13)

where η̂k are the Fourier coefficients of the function η. Notice that the solution ϕ is

unique up to the addition of a constant (the average ϕ̂0 of ϕ is arbitrary). Equations

(3.12) and their solutions (3.13) are very standard in KAM theory (see the exposition

in [Lla01b]). Very detailed estimates can be found in [Rüs75], when ω is Diophantine

(which is our case).

3.3.3. Algebraic operations and elementary transcendental functions with Fourier series.

Algebraic operations (sum, product, division) and elementary transcendental functions

(sin, cos, exp, log, power, . . .) of Fourier series can be computed either by manipulation

of the Fourier coefficients or by using FFT.

For example, the product h = f · g of two Fourier series can be computed either by

the Cauchy formula

hk =
k∑

i=0

fk−igi, (3.14)

or by applying the inverse FFT to the coefficients of f and g, computing the product

function on each point of the grid in real space and then applying the FFT. The first

method clearly takes O(N2) operations while the second only O(N ln N).

A modification of the FFT algorithm which leads to some improvement consists in

considering Fourier series of length 2N , compute the inverse FFT on 2N points, perform

the product and then take the FTT back. Note that, at this point, except for round-off

errors, this algorithm is exact for trigonometric polynomials of degree 2N . The final step

is to truncate again to a polynomial of degree N .

The analysis of algorithms of multiplication from the point of view of theoretical com-

puter science have been undertaken in [Knu97], but to our knowledge, there are few

studies of the effects of truncation. An empirical study of roundoff and related numerical

stability for the case of functions of one variable was undertaken in [CL08].
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In the case of functions of several variables, the issues of numerical stability remain,

but we also note that, from the point of view of efficiency, the way that the multiple

loops involved in the evaluation of (3.14) are organized becomes crucial. These consider-

ations depend on details of the computer architecture and are poorly understood. Some

empirical studies can be found in [Har08].

3.3.4. Fourier-Taylor series. For the computation of whiskers of invariant tori, we will

use Fourier-Taylor expansions of the form

W (θ, s) =
∞∑

n=0

Wn(θ)sn, (3.15)

where Wn are 1-periodic functions in θ which we will approximate using Fourier series

(3.10).

In order to manipulate this type of series we will use the so called automatic differen-

tiation algorithms (see [Knu97]). For the basic algebraic operations and the elementary

transcendental functions (exp, sin, cos, log, power, etc.), they provide an expression for

the Taylor coefficients of the result in terms of the coefficients of each of the terms.

4. Numerical algorithms to solve the invariance equation for invariant

tori

In this section, we will design a Newton method to solve equations (3.2) and discuss

several algorithms to deal with the linearized equations.

We define the following concept of approximate solution.

Definition 1. We say that K is an approximate solution of equations (3.2) if

∂ωK −X ◦K = E,

F ◦K −K ◦ Tω = E
(4.1)

where E is small.

For equations (3.5), the modified equations are

∂ωK −X ◦K − (J ◦K0)
−1(DX ◦K0)λ = E,

F ◦K −K ◦ Tω − ((J ◦K0)
−1DK0) ◦ Tωλ = E

(4.2)

where K0 is a given embedding satisfying some non-degeneracy conditions.

The Newton method consists in computing ∆ in such a way that setting K ← K + ∆

and expanding the LHS of (4.1) in ∆ up to order ‖∆‖2, it cancels the error term E.
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Remark 4. Throughout the paper, we are going to denote ‖.‖ some norms in functional

spaces without specifying however what they are exactly. We refer the reader to the

papers [FLS07, CFL03a] where the whole theory is developped and the convergence of

the algorithms is proved.

Performing a straightforward calculation, we obtain that the Newton procedure con-

sists in finding ∆ satisfying

∂ω∆− (DX ◦K)∆ = −E,

(DF ◦K)∆−∆ ◦ Tω = −E.
(4.3)

For the modified invariance equations (3.5), given an approximate solution K, the

Newton method consists in looking for (∆, δ) in such a way that K + ∆ and λ + δ

eliminate the first order error. The linearized equations in this case are

∂ω∆− (DX ◦K)∆− (J ◦K0)
−1(DX ◦K0)δ = −E,

DF ◦K∆−∆ ◦ Tω − ((J ◦K0)
−1DK0) ◦ Tωδ = −E,

(4.4)

where one can take K0 = K.

The role of the parameter δ is now clear. It allows us to adjust some global averages

that we need to be able to solve equations (4.4) (see Section 3.3.2).

As it is well known, the Newton method converges quadratically in ‖E‖ and the error

Ẽ at step K + ∆ is such that

‖Ẽ‖ ≤ C‖E‖2

where E is the error at the previous step.

The main problem of the Newton method is that it needs a good initial guess to start

the iteration. We will discuss several possibilities in Section 11. Of course, any reasonable

algorithm can be used as an input to the Newton method. Indeed, our problems have

enough structure so that one can use Lindstedt series, variational methods, approximation

by periodic orbits, frequency methods, besides the customary continuation methods.

4.1. The large matrix method. The most straightforward method to implement the

Newton method is

Algorithm 1 (Large Matrix Algorithm). Discretize equations (3.2) using truncated

Fourier series up to order N and apply the Newton method to the discretization.

A slight variation is
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Algorithm 2 (Variant of the Large Matrix Algorithm). Discretize equations (3.2) on a

grid of 2N points and compute E. Discretize (4.3) using truncated Fourier series up to

order N , solve the equation using a linear solver and apply the solution.

The difference between algorithms 1 and 2 is that the first one requires that the ap-

proximate derivative we are inverting is the derivative of the discretization.

We note that this extra symmetry is implementable using symbolic manipulation meth-

ods. Either of these algorithms requires a storage of a full N ×N matrix. The solution

of N linear equations requires O(N3) operations. There are several variations which are

worth noting.

(1) It is sometimes convenient to use

K ← K + h∆

with 0 < h < 1. This, of course, converges more slowly for very small h.

(2) As we mentioned before in Remark 3, the solutions of the equations are not unique.

One can cope with this by imposing some normalizations. A general solution is to

use the singular value decomposition (SVD) (see [GVL96]). The pseudo-inverse

method then gives increment ∆’s which reduce the residual as much as possible,

which is all that is needed by the Newton method. We also note that, in contrast

to Gaussian elimination which is numerically unstable (the numerical instability

can be partially mitigated by pivoting), the SVD computation is numerically

stable. In terms of speed, the SVD method is only a factor ≈ 4 slower than

Gaussian elimination. For the cases that we will consider in this paper, we think

that the SVD is vastly superior to Gaussian elimination.

(3) Since the most expensive part of the above scheme is the generation of the de-

rivative matrix and its inversion, it is interesting to mention an improved scheme

[Hal75] (see also the exposition in [Mos73, p.151 ff.] and the geometric analysis

in [McG90]. This gives the following algorithm

Algorithm 3 (Hald algorithm). (a) Let K0 be a given approximate solution with

frequency ω. Compute Γ0 defined by

Γ0 = DF(K0)
−1

where

F(K) = F ◦K −K ◦ Tω.
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(b) Recursively set

Kk+1 = Ki − ΓkF(Kk)

Γk+1 = Γk + Γk(1−DF(Kk+1))Γk .
(4.5)

In practical implementations Γk is not computed explicitly. We just realize that

Γ0 is obtained by applying an LU or an SVD decomposition to the full matrix

DF(K0) and then applying back substitution or the pseudo-inverse algorithm.

Note that these calculations are only O(N2). Similarly, note that the applica-

tion of DF(Kk+1) to a vector can also be done using the explicit formulas and it

does not require to generate a full matrix.

Applying the recursive relation (4.5), it is not difficult to reduce Γk to several

applications of Γ0 and multiplications by DF(Kk).

For example, applying the iteration twice we obtain

K1 = K0 − Γ0F(K0),

K2 = K1 − Γ0F(K1)− Γ0(1−DF(K1))Γ0F(K1).
(4.6)

Hence two steps of the Newton method can be computed with a number of

operations similar to one of one step.

Even if it is not difficult to apply this to higher order expressions, we have

found it difficult to obtain improvements. Note that adding quantities of similar

sizes to obtain cancelations is very dependent to round-off error.

Remark 5. Another method that has quadratic convergence is the Broyden method

[PTVF92, Bro65]. We do not know if the method remains quadratically convergent when

we consider it in infinite dimensions and we do not know whether it leads to practical

algorithms.

4.2. The Newton method and uniqueness. As we have mentioned in Remark 3, the

solutions of (3.2) are not unique. Therefore, the implementations of the Newton method

have to be implemented with great care to avoid non-invertible matrices (or to use SVD).

As we mentioned in Section 3.1.1, we will be looking for K̃(θ) = K̂(θ)−I(θ) introduced

in (3.7). Note that for Kσ = K ◦ Tσ we have

K̃σ = K̃ ◦ Tσ − Iσ.

Hence, if {νi}Li=1 is a basis for Range(I) (L being the dimension), one can impose the

conditions ∫

Tℓ

K̃ · νi = 0 for i = 1, . . . , L (4.7)
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and we only need to deal with periodic functions which satisfy (4.7).

In the case that the dimension of the range of I is ℓ—the dimension of the torus—

this leads to a unique solution (in the non-degenerate cases, according to the results of

[LGJV05]) and we can expect that the matrices appearing in the discretization of the

Newton method are invertible.

Two important examples of this situation are primary Lagrangian tori and some

whiskered tori. In the case of secondary tori, as we will see, it is advantageous to use the

extra variable λ to make progress in the Newton method.

5. Fast Newton methods for Lagrangian tori

In this section we follow the proof in [LGJV05] to design a Newton method for maximal

tori (ℓ = d). We present an algorithm so that the Newton step does not need to store

any N×N matrix and only requires O(N log N) operations. We first discuss it for maps.

5.1. The Newton method for Lagrangian tori in exact symplectic maps. The

key observation is that the Newton equations (4.3) and (4.4) are closely related to the

dynamics and that, therefore, we can use geometric identities to find a linear change of

variables that reduces the Newton equations to upper diagonal difference equations with

constant coefficients. This phenomenon is often called “automatic reducibility”. The

idea is stated in the following proposition:

Proposition 4 (Automatic reducibility). Given an approximation K of the invariance

equation as in (4.1), denote

α(θ) = DK(θ)

N(θ) =
(
[α(θ)]T α(θ)

)−1

β(θ) = α(θ)N(θ)

γ(θ) = (J ◦K(θ))−1β(θ)

(5.1)

and form the following matrix

M(θ) = [α(θ) | γ(θ)], (5.2)

where by [· | ·] we denote the 2d × 2d matrix obtained by juxtaposing the two 2d × d

matrices that are in the arguments.
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Then, we have

(DF ◦K(θ))M(θ) = M(θ + ω)

(
Id A(θ)
0 Id

)
+ Ê(θ) (5.3)

where

A(θ) = β(θ + ω)T [(DF ◦K(θ))γ(θ)− γ(θ + ω)], (5.4)

and ‖Ê‖ ≤ ‖DE‖ in the case of (4.3) or ‖Ê‖ ≤ ‖DE‖+ |λ| in the case of (4.4).

Remark 6. If the symplectic structure induces an almost-complex one (i.e. J2 = − Id),

we have that

β(θ + ω)T γ(θ + ω) = 0,

since the torus is isotropic (in this case Lagrangian). Then A(θ) has a simpler expression

given by

A(θ) = β(θ + ω)T (DF ◦K)(θ)γ(θ).

Once again, we omit the definition of the norms used in the bounds for Ê. For these

precisions, we refer to the paper [LGJV05], where the convergence of the algorithm is

established.

It is interesting to pay attention to the geometric interpretation of the identity (5.3).

Note that, taking derivatives with respect to θ in (4.1), we obtain that

(DF ◦K)DK −DK ◦ Tω = DE,

which means that the vectors DK are invariant under DF ◦K (up to a certain error).

Moreover, (J ◦ K)−1DKN are the symplectic conjugate vectors of DK, so that the

preservation of the symplectic form clearly implies (5.3). The geometric interpretation

of the matrix A(θ) is a shear flow near the approximately invariant torus. See Figure 1.

In the following, we will see that the result stated in Proposition 4 allows to design a

very efficient algorithm for the Newton step.

Notice first that if we change the unknowns ∆ = MW in (4.3) and (4.4) and we use

(5.3) we obtain

M(θ + ω)

(
Id A(θ)
0 Id

)
W (θ)−M(θ + ω)W (θ + ω)

− (J(K0(θ + ω)))−1DK0(θ + ω)δ = −E(θ)

(5.5)

Of course, the term involving δ has to be omitted when considering (4.3).
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v(θ)
u(θ)

K(θ)

v(θ + ω)

u(θ + ω)

K(θ + ω)

DF (K(θ))v(θ)

Figure 1. Geometric representation of the automatic reducibility where
v = (J ◦K)−1DK.

Note that, multiplying (5.5) by M(θ + ω)−1 we are left with the system of equations

W1(θ) + A(θ)W2(θ)−B1(θ)δ −W1(θ + ω) = −Ẽ1(θ)

W2(θ)−W2(θ + ω)−B2(θ)δ = −Ẽ2(θ)
(5.6)

where

Ẽ(θ) = M(θ + ω)−1E(θ)

B(θ) = M(θ + ω)−1(J(K0(θ + ω)))−1DK0(θ + ω)

and the subindexes i = 1, 2 indicate symplectic coordinates.

Notice that when K is close to K0, we expect that B2 is close to the d-dimensional

identity matrix and B1 is small.

The next step is to solve equations (5.6) for W (and δ). Notice that equations (5.6)

are equations of the form considered in (3.12) and they can be solved very efficiently in

Fourier space.

More precisely, the second equation of (5.6) is uncoupled from the first one and allows

us to determine W2 (up to a constant) and δ. Indeed, one can choose δ so that the term

B2(θ)δ− Ẽ2 has zero average (which is a necessary condition to solve small divisor equa-

tions as described in Section 3.3.2). This allows to solve the equation for W2 according

to (3.13) with one degree of freedom which is the average of W2. We then denote

W2(θ) = W̃2(θ) + W 2

where W̃2(θ) has average zero and W 2 ∈ R.
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Once we have W̃2, we can substitute W2 in the first equation. We get W 2 imposing

that the average of

B1(θ)δ − A(θ)W̃2(θ)− A(θ)W 2(θ)− Ẽ1(θ)

is zero and then we can find W1 up to a constant according to (3.13).

We have the following algorithm:

Algorithm 5 (Newton step for maps). Consider given F , ω, K0 and an approximate

solution K (resp. K,λ). Perform the following calculations

1. (1.1) Compute F ◦K

(1.2) Compute K ◦ Tω

2. Set E = F ◦K −K ◦ Tω (resp. set E = F ◦K −K ◦ Tω − (J ◦K0)
−1DK0λ)

3. Following (5.1)

(3.1) Compute α(θ) = DK(θ)

(3.2) Compute N(θ) =
(
[α(θ)]T α(θ)

)−1

(3.3) Compute β(θ) = α(θ)N(θ)

(3.4) Compute γ(θ) = (J(K(θ)))−1β(θ)

(3.5) Compute M(θ) = [α(θ) | γ(θ)]

(3.6) Compute M(θ + ω)

(3.7) Compute M(θ + ω)−1

(3.8) Compute Ẽ(θ) = M(θ + ω)−1E(θ)

(3.9) Compute

A(θ) = β(θ + ω)T [(DF ◦K(θ))γ(θ)− γ(θ + ω)]

as indicated in (5.4)

4. (4.1) Solve for W2 satisfying

W2 −W2 ◦ Tω = −Ẽ2 −
∫

Tℓ

Ẽ2

(resp.

(4.1′) Solve for δ such that
∫

Tℓ

Ẽ2 −
[ ∫

Tℓ

B2

]
δ = 0

(4.2′) Solve for W2 satisfying

W2 −W2 ◦ Tω = −Ẽ2 + B2δ

Set W2 such that the average is 0.)
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5. (5.1) Compute A(θ)W2(θ)

(5.2) Solve for W 2 satisfying

0 =

∫

Tℓ

Ẽ1(θ) +

∫

Tℓ

A(θ)W2(θ) +

[ ∫

Tℓ

A(θ)

]
W 2

(5.3) Find W1 solving

W1 −W1 ◦ Tω = −Ẽ1 − A(W2 + W 2)

Normalize it so that
∫

Tℓ W1 = 0

(resp.

(5.1′) Compute A(θ)W2(θ)

(5.2′) Solve for W 2 satisfying

0 =

∫

Tℓ

Ẽ1(θ)−
∫

Tℓ

B1(θ)δ +

∫

Tℓ

A(θ)W2(θ) +

[ ∫

Tℓ

A(θ)

]
W 2

(5.3′) Find W1 solving

W1 −W1 ◦ Tω = −Ẽ1 − A(W2 + W 2) + B1δ

Normalize it so that
∫

Tℓ W1 = 0.)

6. The improved K is K(θ) + M(θ)W (θ)

(resp. the improved λ is λ + δ).

Notice that steps (1.2), (3.1), (3.6), (4.1) (resp. (4.2′)), (5.3) (resp. (5.3′)) in Algorithm

5 are diagonal in Fourier series, whereas the other steps are diagonal in the real space

representation. Note also that the algorithm only stores vectors which are of order N .

Remark 7. One can perform step (3.7) – the computation of M−1 – by just computing

the inverse of M(θ) for all the points in a grid. This requires less that O(N) operations

with the constant being the inversion of finite dimensional matrices.

An alternative procedure is to observe that

MT (θ)J(K(θ))M(θ) =

(
0 Id
− Id 0

)
+ O(||DE||) (5.7)

Hence, denoting J0 =

(
0 Id
− Id 0

)
, we see that

J−1
0 MT (θ)J(K(θ)) (5.8)

is an approximate inverse of M(θ), which may be easier to compute.
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Using the approximate inverse in place of the inverse leads to a numerical method that

also converges quadratically.

5.2. The Newton method for Lagrangian tori in Hamiltonian flows. As we men-

tioned in Remark 2 it is possible to reduce the treatment of differential equations to that

of maps in numerically efficient ways. Nevertheless, it is interesting to present a direct

treatment of the differential equation case of (3.2) or (3.5).

The main idea of the algorithm for flows is contained in the following Proposition:

Proposition 6. Using the same notations (5.1) as in Proposition 4 and considering the

matrix M as in (5.2), we have

∂ωM(θ)−DX ◦K(θ)M(θ) = M(θ)

(
0 S(θ)
0 0

)
+ Ê(θ) (5.9)

where

S(θ) = βT (θ)[∂ωγ(θ)−DX(K(θ))γ(θ)] (5.10)

or, equivalently,

S(θ) = βT (θ)(Id2d−β(θ)α(θ)T )(DX(K(θ)) + DX(K(θ))T )β(θ)

and, as before, ‖Ê‖ ≤ ‖DE‖ in the case of (4.3) or ‖Ê‖ ≤ ‖DE‖ + |λ| in the case of

(4.4).

As before we refer the reader to the paper [LGJV05] for the definition of the norms

and the proof of the convergence of the algorithm.

Again it is not difficult to see how to obtain the result stated in Proposition 6. Consid-

ering the approximate invariance equation (4.1) in the case of flows and taking derivatives

with respect to θ we obtain

∂ωDK − (DX ◦K)DK = DE. (5.11)

Then, if we consider the change of variables M defined in Proposition 4, it is clear that

the first n-columns of

M̃(θ) = ∂ωM(θ)−DX ◦K(θ)M(θ)

are equal to zero (up to an error which is bounded by the error in the invariance equation).

Finally by equation (5.11) and the Hamiltonian character of the vector field, (5.9) follows.

As in the case of symplectic maps we use equation (5.9) to transform the linearized

Newton equation so that it can be solved in a very efficient way. Hence, if we change the
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unknowns as ∆ = MW and we use (5.9), equations (4.3) and (4.4) for flows reduce to

M(θ)

(
0 S(θ)
0 0

)
W (θ) + M(θ)∂ωW (θ)

− J(K0(θ))
−1DX(K0(θ))δ = −E(θ)

(5.12)

and by multiplying by M(θ)−1 on both sides we are left with the system of equations

∂ωW1(θ) + S(θ)W2(θ)−B1(θ)δ = −Ẽ1(θ)

∂ωW2(θ)−B2(θ)δ = −Ẽ2(θ)
(5.13)

where

Ẽ(θ) = M(θ)−1E(θ)

B(θ) = M(θ)−1J(K0(θ))
−1DX(K0(θ))

Notice that in the case of equation (4.3) we just omit the δ.

Equations (5.13) reduce to solving an equation of the form (3.12). Hence, we determine

first δ by imposing that the RHS of the second equation has average zero. Then, the

second equation determines W2, up to a constant which is fixed by the first equation by

imposing that the average its RHS is zero. Finally, we obtain W1(θ) up to constant.

The algorithm for flows is the following:

Algorithm 7 (Newton step for flows). Consider given X = J(K0)∇H, ω, K0 and an

approximate solution K (resp. K,λ). Perform the following calculations

1. (1.1) Compute ∂ωK. (See (3.3) for the definition).

(1.2) Compute X ◦K

2. Set E = ∂ωK −X ◦K (resp. set E = ∂ωK −X ◦K − (J ◦K0)
−1(DX ◦K0)λ)

3. Following (5.1)

(3.1) Compute α(θ) = DK(θ)

(3.2) Compute β(θ) = J(K0(θ))
−1α(θ)

(3.3) Compute β(θ) = α(θ)N(θ)

(3.4) Compute γ(θ) = (J(K(θ)))−1β(θ)

(3.5) Compute M(θ) = [α(θ) | γ(θ)]

(3.6) Compute M(θ + ω)

(3.7) Compute M(θ + ω)−1

(3.8) Compute Ẽ(θ) = M(θ + ω)−1E(θ)

(3.9) Compute

S(θ) = βT (θ)(Id2d−β(θ)α(θ)T )(DX(K(θ)) + DX(K(θ))T )β(θ)
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as indicated in (5.10).

4. (4.1) Solve for W2 satisfying

∂ωW2 = −Ẽ2 −
∫

Tℓ

Ẽ2

(resp.

(4.1′) Solve for δ satisfying
∫

Tℓ

Ẽ2 −
[ ∫

Tℓ

B2

]
δ = 0

(4.2′) Solve for W2 satisfying

∂ωW2 = −Ẽ2 + B2δ

Set W2 such that its average is 0.)

5. (5.1) Compute S(θ)W2(θ)

(5.2) Solve for W 2 satisfying
∫

Tℓ

Ẽ1(θ) +

∫

Tℓ

S(θ)W2(θ) +

[ ∫

Tℓ

S(θ)

]
W 2 = 0

(5.3) Find W1 solving

∂ωW1 = −Ẽ1 − S(W2 + W 2)

Normalize it so that
∫

Tℓ W1 = 0

(resp.

(5.1′) Compute S(θ)W2(θ)

(5.2′) Solve for W 2 satisfying
∫

Tℓ

Ẽ1(θ) +

∫

Tℓ

B1(θ)δ −
∫

Tℓ

S(θ)W2(θ)−
[ ∫

Tℓ

S(θ)

]
W 2 = 0

(5.3′) Find W1 solving

∂ωW1 = −Ẽ1 − S(W2 + W 2) + B1δ

Normalize it so that
∫

Tℓ W1 = 0).

6. The improved K is K(θ) + M(θ)W (θ)

(resp. the improved λ is λ + δ).

Notice again that steps (1.1), (3.1), (4.1) (resp. (4.2′)), (5.3) (resp. (5.3′)) in Algorithm

7 are diagonal in Fourier series, whereas the other steps are diagonal in the real space

representation. As before, the algorithm only stores vectors which are of length of order

N .
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Remark 8. As in the case of maps (see Remark 7) the matrix M here satisfies (5.7).

Hence, it is possible to use the approximate inverse given by (5.8).

6. Fast iteration of cocyles over rotations.

Computation of hyperbolic bundles

It is clear from the previous sections that the linearized Newton equations of the

invariance equations are very closely tied to the long term behavior of the equations

of variation describing the propagation of infinitesimal disturbances around an invariant

object. This connection will become more apparent in our discussion on the computation

of whiskered tori (see Section 8). Indeed, the relation between structural stability and

exponential rates of growth has been one of the basic ingredients of the theory of Anosov

systems [Ano69].

In the present section, we study some algorithms related to the iteration of cocycles

over rotations. These algorithms will be ingredients of further implementations for the

computations of whiskered tori.

Since quasi-periodic cocyles appear in several other situations, the algorithms presented

here may have some independent interest and we have striven to make this section inde-

pendent of the rest of the paper.

6.1. Some standard definitions on cocycles. Given a matrix-valued function M :

T
ℓ → GL(2d, R) and a vector ω ∈ R

ℓ, we define the cocycle over the rotation Tω associated

to the matrix M by a functionM : Z× T
ℓ → GL(2d, R) given by

M(n, θ) =





M(θ + (n− 1)ω) · · ·M(θ) n ≥ 1,

Id n = 0,

M−1(θ + (n + 1)ω) · · ·M−1(θ) n ≤ 1.

(6.1)

Equivalently, a cocycle is defined by the relation

M(0, θ) = Id,

M(1, θ) = M(θ),

M(n + m, θ) =M(n, Tm
ω (θ))M(m, θ).

(6.2)

We will say that M is the generator of M. Note that if M(Tℓ) ⊂ G where G ⊂
GL(2d, R) is a group, thenM(Z, Tℓ) ⊂ G.

The main example of a cocycle in this paper is

M(θ) = (DF ◦K)(θ),
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for K a parameterization of an invariant torus satisfying (3.2). Other examples appear

in discrete Schrödinger equations [Pui02]. In the above mentioned examples, the cocycles

lie in the symplectic group and in the unitary group, respectively.

Similarly, given a matrix valued function M(θ), a continuous in time cocycle M(t, θ)

is defined to be the unique solution of

d

dt
M(t, θ) = M(θ + ωt)M(t, θ),

M(0, θ) = Id .
(6.3)

From the uniqueness part of Cauchy-Lipschitz theorem, we have the following property

M(θ, t + s) =M(θ + ωt, s)M(θ, t),

M(θ, 0) = Id .
(6.4)

Note that (6.3) and (6.4) are the exact analogues of (6.1) and (6.2) in a continuous

context. Moreover, if M(Tℓ) ⊂ G, where G is a sub-algebra of the Lie algebra of the Lie

group G, thenM(R, Tℓ) ⊂ G.

The main example for us of a continuous in time cocycle will be

M(θ) = (DX ◦K)(θ),

where K is a solution of the invariance equation (3.2) and X is a Hamiltonian vector

field. In this case, the cocycleM(θ, t) is symplectic.

6.2. Hyperbolicity of cocycles. One of the most crucial property of cocycles is hy-

perbolicity (or spectral dichotomies) as described in [MS89, SS74, SS76a, SS76b, Sac78].

Definition 2. Given 0 < λ < µ we say that a cocycle M(n, θ) (resp. M(t, θ)) has a

λ, µ− dichotomy if for every θ ∈ T
ℓ there exist a constant c > 0 and a splitting depending

on θ,

TR
2d = Es ⊕ Eu

which is characterized by:

(xθ, v) ∈ Es ⇔ |M(n, θ)v| ≤ cλn|v| , ∀n ≥ 0

(xθ, v) ∈ Eu ⇔ |M(n, θ)v| ≤ cµn|v| , ∀n ≤ 0
(6.5)

or, in the continuous time case

(xθ, v) ∈ Es ⇔ |M(t, θ)v| ≤ cλt|v| , ∀t ≥ 0

(xθ, v) ∈ Eu ⇔ |M(t, θ)v| ≤ cµt|v| , ∀t ≤ 0.
(6.6)
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The notation Es and Eu is meant to suggest that an important case is the splitting

between stable and unstable bundles. This is the case when λ < 1 < µ and the cocycle

is said to be hyperbolic. Nevertheless, the theory developed in this section assumes only

the existence of a spectral gap.

In the application to the computation of tori, M(θ) = (DF ◦ K)(θ) and xθ = K(θ).

The existence of the spectral gap means that at every point of the invariant torus K(θ)

one has a splitting so that the vectors grow with appropriate rates λ, µ under iteration of

the cocycle. In the case of the invariant torus, it can be seen that the cocycle is just the

fundamental matrix of the variational equations so that the cocycle describes the growth

of infinitesimal perturbations.

It is well known that the mappings θ → Es,u
xθ

are Cr if M(., ) ∈ Cr for r ∈ N ∪ {∞, ω}
[HL06c]. This result uses heavily that the cocycles are over a rotation.

A system can have several dichotomies, but for the purposes of this paper, the definition

2 will be enough, since we can perform the analysis presented here for each gap.

One fundamental problem for subsequent applications is the computation of the in-

variant splittings (and, of course, to ensure their existence). The computation of the

invariant bundles is closely related to the computation of iterations of the cocycle.

The first algorithm that comes to mind, is an analogue of the power method to compute

leading eigenvalues of a matrix. Given a typical vector (xθ, v) ∈ Eu, we expect that, for

n ≫ 1, M(n, θ)v will be a vector in Eu
xTn

ω (θ)
. Even if there are issues related to the θ

dependence, this may be practical if Eu is a 1-dimensional bundle.

6.3. Equivalence of cocycles, reducibility. Reducibility is a very important issue in

the theory of cocycles. We have the following definition.

Definition 3. We say that a cocycle M̃(θ) is equivalent to another cocycle M(θ) if there

exists a matrix valued function Q : T
ℓ → GL(2d, R) such that

M̃(θ) = Q(θ + ω)−1M(θ)Q(θ). (6.7)

It is easy to check that M̃ being equivalent to M is an equivalence relation.

If M̃ is equivalent to a constant cocycle (i.e. independent of θ), we say that M̃ is

“reducible.”

The important point is that, when (6.7) holds, we have

M̃(n, θ) = Q(θ + nω)−1M(n, θ)Q(θ). (6.8)
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In particular, if M is a constant matrix, we have

M̃(n, θ) = Q−1(θ + nω)MnQ(θ),

so that the iterations of reducible cocycles are very easy to compute.

We will also see that one can alter the numerical stability properties of the iterations

of cocycles by choosing appropriately Q. In that respect, it is also important to mention

the concept of “quasi-reducibility” introduced by Eliasson [Eli01].

6.4. Algorithms for fast iteration of cocycles over rotations. In its simplest form,

the algorithm for fast iteration of cocyles is:

Algorithm 8 (Iteration of cocycles 1). Given M(θ), compute

M̂(θ) = M(θ + ω)M(θ). (6.9)

Set M̂ →M , 2ω → ω and iterate the procedure.

We refer to M̂ as the renormalized cocycle and the procedure as a renormalization

procedure.

The important property is that applying k times the renormalization procedure de-

scribed in Algorithm 8 amounts to compute the cocycleM(2k, θ).

Then, if we discretize the matrix M(θ) taking N points (or N Fourier modes) and

denote by C(N) the number of operations required to perform a step of Algorithm 8, we

can compute 2k iterates at a cost of kC(N) operations.

Notice that the important point is that the cost of computing 2k iterations is propor-

tional to k. Of course, the proportionality constant depends on N . The form of this

dependence on N depends on the details on how we compute the shift and the product

of matrix valued functions.

There are several alternatives to perform the transformation (6.9). The main difficulty

arises from the fact that, if we have points on a equally spaced grid, then θ + ω will not

be in the same grid. We have at least three alternatives:

(1) Keep the discretization by points in a grid and compute M(θ+ω) by interpolating

with nearby points.

(2) Keep the discretization by points in a grid but note that the shift is diagonal

in Fourier space. Of course, the multiplication of the matrix is diagonal in real

space.

(3) Keep the discretization in Fourier space but use the Cauchy formula for the prod-

uct.
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The cost factor of each of these alternatives is, respectively,

C1(N) = O(N),

C2(N) = O(N log N),

C3(N) = O(N2).

(6.10)

Besides their cost, the above algorithms may have different stability and roundoff prop-

erties. We are not aware of any study of these stability or round-off properties. The

properties of interpolation depend on the dimension.

In each of the cases, the main idea of the method is to precompute some blocks of the

iteration, store them and use them in future iteration. One can clearly choose different

strategies to group the blocks. Possibly, different methods can lead to different numerical

(in)stabilities. At this moment, we lack a definitive theory of stability which would allow

us to choose the blocks.

Next, we will present an alternative consisting of using the QR decomposition for the

iterates. As described, for instance in [Ose68, ER85, DVV02], the QR algorithm seems

to be rather stable to compute iterates. One advantage is that, in the case of several

gaps, it can compute all the eigenvalues in a stable way.

Algorithm 9 (Computation of cocycles with QR). Given M(θ) and a QR decomposition

of M(θ),

M(θ) = Q(θ)R(θ),

perform the following operations:

• Compute S(θ) = R(θ + ω)Q(θ)

• Compute pointwise a QR decomposition of S, S(θ) = Q̄(θ)R̄(θ).

• Compute Q̃(θ) = Q(θ + ω)Q̄(θ)

R̃(θ) = R̄(θ)R(θ + ω)

M̃(θ) = Q̃(θ)R̃(θ)

• Set M ← M̃

R← R̃

Q← Q̃

2ω ← ω

and iterate the procedure.

Since the QR decomposition is a fast algorithm, the total cost of the implementation

depends on the issues previously discussed (see costs in (6.10)). Instead of using QR

decomposition, one can also perform a SV D decomposition (which is somewhat slower).
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In the case of one-dimensional maps, one can be more precise in the description of the

method. Indeed, if the frequency ω has a continued fraction expansion

ω = [a1, a2, . . . , an, . . .],

it is well known that the denominators qn of the convergents of ω (i.e. pn/qn = [a1, . . . , an])

satisfy

qn = anqn−1 + qn−2,

q1 = a1,

q0 = 1.

As a consequence, we can consider the following algorithm for this particular case:

Algorithm 10 (Iteration of cocycles 1D). Given ω = [a1, . . . , an, . . .] and the cocycle

over Tω generated by M(θ), define

ω0 = 0, ω1 = ω, M0(θ) = Id, M1(θ) = M(θ + (a1 − 1)ω) · · ·M(θ).

Then, for n ≥ 2

M (n)(θ) = M (n−1)(θ + (an − 1)ωn−1) · · ·M (n−1)(θ)M (n−2)(θ)

is a cocycle over

ωn−1 = anω
n−1 + ωn−2

and we have

M(qn, θ) =M(n)(1, θ).

The advantage of this method is that the effective rotation is decreasing to zero so

that the cocycle is becoming in some ways similar to the iteration of a constant ma-

trix. This method is somehow reminiscent of some algorithms that have appeared in the

mathematical literature [Ryc92, Kri99b, Kri99a].

6.5. The “straddle the saddle” phenomenon and preconditioning. The iteration

of cocycles has several pitfalls compared with the iteration of matrices. The main com-

plication from the numerical point of view is that the (un)stable bundle does depend on

the base point.

In this section we describe a geometric phenomenon that causes some instability in the

iteration of cocycles. This instability –which is genuine– becomes catastrophic when we

apply some of the fast iteration methods described in Section 6.4. The phenomenon we

will discuss was already observed in [HL06a].
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Since we have the inductive relation,

M(n, θ) =M(n− 1, θ + ω)M(θ),

we see that we can think of computing M(n, θ) by applying M(n − 1, θ + ω) to the

column vectors of M(θ).

The jth-column of M , which we will denote by mj(θ), can be thought geometrically

as an embedding from T
ℓ to R

2d and is given by M(θ)ej where ej is the jth vector of the

canonical basis of R
2d. If the stable space ofM(n− 1, θ + ω) has codimension ℓ or less,

there could be points θ∗ ∈ T
ℓ such that mj(θ

∗) ∈ Es
xθ∗

and such that for every θ 6= θ∗ we

have mj(θ) /∈ Es
xθ

.

Clearly, the quantity

M(n− 1, θ∗ + ω)mj(θ
∗)

decreases exponentially. Nevertheless, for all θ in a neighborhood of θ∗ such that θ 6= θ∗

M(n− 1, θ + ω)mj(θ)

will grow exponentially. The direction along which the growth takes place depends on

the projection of mj(θ) on Eu
xθ+ω

.

For example, in the case d = 2, ℓ = 1 and the stable and unstable directions are one

dimensional, the unstable components will have different signs and the vectors M(n −
1, θ + ω)mj(θ) will align in opposite directions. An illustration of this phenomenon

happens in Figure 2.
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Figure 2. The straddle the saddle phenomenon. We plot one of the
components of the cocycle M(2k, θ) for the values k = 0, 3, 4. The case
k = 0 was scaled by a factor 200.
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The transversal intersection of the range of mj(θ) with Es is indeed a true phenomenon,

and it is a true instability.

Unfortunately, if mj(θ) is very discontinuous as a function of θ, the discretization in

Fourier series or the interpolation by splines will be extremely inaccurate so that the

Algorithm 8 fails to be relevant.

This phenomenon is easy to detect when it happens because the derivatives grow

exponentially fast in some localized spots.

One important case where the straddle the saddle is unavoidable is when the invariant

bundles are non-orientable. This happens near resonances (see [HL07]). In [HL07], it

is shown that, by doubling the angle the case of resonances can be studied comfortably

because then, non-orientability is the only obstruction to the triviality of the bundle.

6.5.1. Eliminating the “straddle the saddle” in the one-dimensional case. Fortunately,

once the phenomenon is detected, it can be eliminated. The main idea is that one can

find an equivalent cocycle which does not have the problem (or presents it in a smaller

extent).

In more geometric terms we observe that, even if the stable and unstable bundles are

geometrically natural objects, the decomposition of a matrix into columns is coordinate

dependent. Hence, if we choose some coordinate system which is reasonably close to the

stable and unstable manifolds and we denote by Q the change of coordinates, then the

cocycle

M̃(θ) = Q(θ + ω)−1M(θ)Q(θ),

is close to a constant. Remark that this is true only in the one-dimensional case. The

picture is by far more involved when the bundles have higher rank.

This may seem somewhat circular, but the circularity can be broken using continuation

methods. Given a cocycle which is close to constant, fast iteration methods work and

they allow us to compute the splitting. Then if we have computed Q for some M , we

can use it to precondition the computation of neighboring M .

The algorithms for the computation of bundles will be discussed next.

6.6. Computation of rank-1 stable and unstable bundles using iteration of

cocycles. The algorithms described in the previous section provide a fast way to iterate

the cocycle. We will see that this iteration method, which is similar to the power method,

gives the dominant eigenvalue λmax(θ) and the corresponding eigenvector m(θ).
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The methods based on iteration rely strongly on the fact that the cocycle has one

dominating eigenvalue which is simple. This is the case in the numerical examples we

considered in Section 12.

Consider that we have performed k iterations of the cocycle (of course we perform

scalings at each step) and we have computedM(n, θ), with n = 2k. Then, one can easily

read the dominant rank-1 bundle from the QR decomposition of the cocycle M(n, θ),

just taking the column of Q associated to the largest value in the diagonal of the upper

triangular matrix R. One obtains a vector m(θ+2kω) (and therefore m(θ) by performing

a shift of angle −2kω) of modulus 1 spanning the unstable manifold. Since,

M(θ)m(θ) = λmax(θ)m(θ + ω),

we have then

λmax(θ) = ([M(θ)m(θ + ω)]T [M(θ)m(θ + ω)])1/2.

As it is standard in the power method, we perform scalings at each step dividing all

the entries in the matrix M(θ) by the maximum value among the entries of the matrix.

Hence, for the simplest case that there is one dominant eigenvalue, the method pro-

duces a section m (spanning the unstable subbundle) and a real function λmax, which

represents the dynamics on the rank 1 unstable subbundle, such that

M(θ)m(θ) = λmax(θ)m(θ + ω).

Following [HL06b], under certain non-resonant conditions which are satisfied in the

case of the stable and unstable subspaces, one can reduce the 1-dimensional cocycle

associated to M and ω to a constant. Hence, we look for a positive function p(θ) and a

constant µ such that

λmax(θ)p(θ) = µp(θ + ω). (6.11)

If λmax(θ) > 0, we take logarithms on both sides of the equation (6.11). This leads to

log λmax(θ) + log p(θ) = log µ + log p(θ + ω),

and taking log µ to be the average of log λmax(θ) the problem reduces to solve for log p(θ)

an equation of the form (3.12). The case λmax(θ) < 0 is analogous. Of course, p(θ) and

µ can be obtained just exponentiating.
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7. Fast algorithms to solve difference equations with non constant

coefficients

In this section we present fast algorithms to solve for ∆(θ) the cohomology equation

with non constant coefficients

A(θ)∆(θ)−∆(θ + ω)B(θ) = η(θ) (7.1)

for given A(θ), B(θ) and η(θ) satisfying either ‖A‖ < 1, ‖B−1‖ < 1 or ‖A−1‖ < 1,

‖B‖ < 1.

This type of equation appears in the computation of the projections using a Newton

method (see equations (8.30)-(8.31)) as well as in the computation of whiskered tori

(this is the resulting equation of the projection of the linearized equation of the Newton

method onto the hyperbolic subspaces, see (8.4) and (8.6)).

The algorithms we present here use the contraction properties and they are of iterative

nature. Interestingly here, for the 1-dimensional case, we present an amazingly fast

algorithm which does not use the contraction properties but Fourier transforms and

solves the equation exactly. The main shortcoming is that it involves small divisors,

whereas it is not the case for the iterative methods. From the point of view of analysis,

the present method leads to estimates which are uniform as the contraction rate goes to

1. See [Her83].

7.0.1. Fast algorithm for the 1-D cohomology equation. In this section we present an

efficient algorithm for the one-dimensional version of equation (7.1). It is an adaptation

of Herman’s “tricks” in [Her83].

Consider the following equation,

A(θ)

B(θ)
∆(θ)−∆(θ + ω) =

η(θ)

B(θ)
(7.2)

which is obtained from (7.1) multiplying by B−1(θ) (recall that in this case B(θ) is just

a number).

We will solve (7.2) in two steps:

1. Find C(θ) and λ ∈ R such that

A(θ)

B(θ)
= λ

C(θ)

C(θ + ω)
(7.3)

2. Applying (7.3) in (7.2) and multiplying by C(θ + ω) we obtain

λC(θ)∆(θ)− C(θ + ω)∆(θ + ω) = η̃(θ) (7.4)
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where η̃(θ) = C(θ + ω)B−1(θ)η(θ).

If we change the unknowns in (7.4) by W (θ) = C(θ)∆(θ), we are left with the equation

λW (θ)−W (θ + ω) = η̃(θ). (7.5)

Of course, if |λ| 6= 1, equation (7.5) can be solved in Fourier space. That is, we can

obtain the Fourier coefficients of W as:

Ŵk =
̂̃ηk

λ− e2πikω
,

and the solution is unique. Notice that whenever |λ| = 1, equation (7.5) involves small

divisors, which is not the case for the iterative methods that will be discussed in the

following section.

Finally, once we have W (θ) we get

∆(θ) = C−1(θ)W (θ).

Step 1 can be achieved by taking logarithms of (7.3). Assume that A(θ)/B(θ) > 0,

otherwise we change the sign. Then, we get

log A(θ)− log B(θ) = log λ + log C(θ)− log C(θ + ω).

Taking log λ to be the average of log A(θ)− log B(θ), the problem reduces to solve for

log C(θ) an equation of the form (3.12). Then C(θ) and λ can be obtained by exponen-

tiation. Notice that log C(θ) is determined up to a constant. We will fix it by assuming

that it has average 0.

Hence, we have the following algorithm:

Algorithm 11 (Solution of difference equations with non constant coefficient (1D)).

Given A(θ), B(θ) and η(θ). Perform the following instructions:

1. (1.1) Compute L(θ) = log(A(θ))− log(B(θ))

(1.2) Compute L =
∫

Tℓ L

2. Solve for LC satisfying

LC(θ)− LC ◦ Tω(θ) = L(θ)− L

as well as having zero average.

3. (3.1) Compute C(θ) = exp(LC(θ))

(3.2) Compute λ = exp(L)

4. Compute η̃(θ) = C(θ + ω)B−1(θ)η(θ)
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5. Solve for W satisfying

λW (θ)−W (θ + ω) = η̃(θ)

6. The solution of (7.1) is ∆(θ) = C−1(θ)W (θ)

7.0.2. Fast iterative algorithms for the cohomology equation. In this section we will present

a fast algorithm to solve equation (7.1) using iterative methods. The main idea is the

same as the one described in Section 6 for the fast iteration of cocycles.

We will consider the case ‖A−1‖ < 1 and ‖B‖ < 1. Then, multiplying (7.1) by A−1(θ)

on the LHS, we obtain

∆(θ) = A−1(θ)∆(θ + ω)B(θ) + A−1(θ)η(θ). (7.6)

Next, we compute ∆(θ + ω) by shifting (7.6) and substituting again in (7.6), so that we

get

∆(θ) = A−1(θ)η(θ)

+ A−1(θ)A−1(θ + ω)η(θ + ω)B(θ)

+ A−1(θ)A−1(θ + ω)∆(θ + 2ω)B(θ + ω)B(θ).

Notice that if we define

η̄(θ) = A−1(θ)η(θ)

and

A−1
1 (θ) = A−1(θ)A−1(θ + ω),

B1(θ) = B(θ + ω)B(θ),

η1(θ) = η̄(θ) + A−1(θ)η̄(θ + ω)B(θ),

we have that

∆(θ) = η1(θ) + A−1
1 (θ)∆(θ + 2ω)B1(θ)

which has the same structure as (7.6) and we can repeat the same scheme. This leads to

an iterative procedure to compute A(θ), converging superexponentially in the number of

iterations. Thus, define

A−1
n+1(θ) = A−1

n (θ)A−1
n (θ + 2nω),

Bn+1(θ) = Bn(θ + 2nω)Bn(θ),

ηn+1(θ) = ηn(θ) + A−1
n (θ)ηn(θ + 2nω)Bn(θ),
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for n ≥ 0, with

A−1
0 (θ) = A−1(θ),

B0(θ) = B(θ),

η0(θ) = η̄(θ).

Then,

∆(θ) = ηn+1(θ) + A−1
n+1(θ)∆(θ + 2n+1ω)Bn+1(θ), ∀ n ≥ 0

and

∆(θ) = lim
n→+∞

ηn+1(θ).

The convergence of the algorithm is guaranteed by the contraction of A−1 and B. The

cost of computing 2n terms in the sum is proportional to n since it involves only n steps

of the algorithm.

The iterative algorithm is the following:

Algorithm 12 (Solution of difference equations with non constant coefficient). Given

A(θ), B(θ) and η(θ) perform the following operations:

1. Compute ∆(θ) = A−1(θ)η(θ)

2. Compute

(2.1) ∆̃(θ) = A−1(θ)∆(θ + ω)B(θ) + ∆(θ)

(2.2) Ã−1(θ) = A−1(θ)A−1(θ + ω)

(2.3) B̃(θ) = B(θ + ω)B(θ)

3. Set ∆̃→ ∆

Ã→ A

B̃ → B

2ω → ω

4. Iterate points 2− 3

The case when ‖A‖ < 1 and ‖B−1‖ < 1 can be done similarly. In this case, we multiply

(7.1) by B−1(θ) on the LHS so that we obtain

∆(θ + ω) = A(θ)∆(θ)B−1(θ)− η(θ)B−1(θ).

Before applying the iterative scheme we shift by −ω. In this way, we have

∆(θ) = A(θ′)∆(θ′)B−1(θ′)− η(θ′)B−1(θ′)

where θ′ = T−ωθ.
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Define

η̄(θ′) = η(θ′)B−1(θ′)

and

An+1(θ
′) = An(θ′)An(θ′ − 2nω),

Bn+1(θ
′) = B−1

n (θ′ − 2nω)B−1
n (θ′),

ηn+1(θ
′) = ηn(θ′) + An(θ′)ηn(θ′ − 2nω)B−1

n (θ′),

for n ≥ 0 with

A0(θ
′) = A(θ′),

B0(θ
′) = B−1(θ′),

η0(θ
′) = η̄(θ′),

then

∆(θ) = An+1(θ
′)∆(θ′ − 2n+1ω)B−1

n+1(θ
′)− ηn+1(θ

′)

and

∆(θ) = − lim
n→+∞

ηn(θ′).

Again the convergence is superexponential in n.

The iterative algorithm in this case is

Algorithm 13. Given A(θ), B(θ) and η(θ), perform the following operations:

1. Compute ∆(θ) = −η(θ)B−1(θ)

2. Compute

(2.1) ∆̃(θ) = A(θ)∆(θ − ω)B−1(θ) + ∆(θ)

(2.2) Ã(θ) = A(θ)A(θ − ω)

(2.3) B̃−1(θ) = B−1(θ − ω)B−1(θ)

3. Set

∆̃→ ∆

Ã→ A

B̃ → B

2ω → ω

4. Iterate parts 2–3

This algorithm gives ∆(θ + ω). Shifting it by −ω we get ∆(θ).
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8. Fast Newton methods for whiskered isotropic tori

In this section we follow [FLS07] and develop an efficient Newton method to solve the

invariance equations (3.2) and (3.5) for the case of whiskered tori, that is invariant tori

with associated stable and unstable manifolds. We focus on the case of maps (the case

for vector fields is similar).

As in the case of maximal KAM tori, we will assume that the motion on the torus

is a rigid rotation with a Diophantine frequency ω ∈ R
ℓ. As we have already shown,

the invariance implies that the vectors in the range of DK are invariant under DF .

The preservation of the symplectic structure, implies that the vectors in the range of

(J ◦K)−1DK grow at most polynomially under iteration. We note also that tori with an

irrational rotation are co-isotropic, (DK)T (J ◦K)−1DK = 0, i.e. Range DK∩Range (J ◦
K)−1DK = {0} and therefore dim Range DK ⊕ Range (J ◦ K)−1DK = 2ℓ. Therefore,

at any point of the invariant torus of dimension ℓ with motion conjugate to a rotation,

we can find a 2ℓ-dimensional space of vectors that grow at most polynomially under

iteration.

The tori that we will consider are as hyperbolic as possible, given the previous argu-

ment. We will consider tori that have a hyperbolic splitting

TK(θ)M = Ec
K(θ) ⊕ Es

K(θ) ⊕ Eu
K(θ) (8.1)

such that there exist 0 < µ1, µ2 < 1, µ3 > 1 satisfying µ1µ3 < 1, µ2µ3 < 1 and C > 0

such that for all n ≥ 1 and θ ∈ T
ℓ

v ∈ Es
K(θ) ⇐⇒ |M(n, θ)v| ≤ Cµn

1 |v| ∀n ≥ 1

v ∈ Eu
K(θ) ⇐⇒ |M(n, θ)v| ≤ Cµn

2 |v| ∀n ≤ 1

v ∈ Ec
K(θ) ⇐⇒ |M(n, θ)v| ≤ Cµn

3 |v| ∀n ∈ Z

(8.2)

where M(n, θ) is the cocycle with generator M(θ) = DF (K(θ)) and frequency ω (see

Definition 6.1) and we will assume that dim Ec
K(θ) = 2ℓ, dim Es

K(θ) = dim Eu
K(θ) = d− ℓ.

We associate to the splitting (8.1) the projections Πc
K(θ), Πs

K(θ) and Πu
K(θ) over the

invariant spaces Ec
K(θ), Es

K(θ) and Eu
K(θ).

It is important to note that since F is symplectic (i.e. F ∗Ω = Ω), for all n ≥ 1 and

n ≤ −1

Ω(u, v) = Ω(DF nu,DF nv)



44 GEMMA HUGUET, RAFAEL DE LA LLAVE AND YANNICK SIRE

so that, if u, v have rates of growth, by taking limits in the appropriate direction we

obtain that Ω is zero. That is, we get

Ω(Es, Es) = 0, Ω(Eu, Eu) = 0,

Ω(Ec, Es) = 0, Ω(Ec, Eu) = 0.

Therefore, we have

(J(K(θ)))−1Ec
K(θ) = Ec

K(θ),

(J(K(θ)))−1Es
K(θ) = Eu

K(θ),

(J(K(θ)))−1Eu
K(θ) = Es

K(θ).

Remark 9. As we will see, the only property we will essentially use is that there is a

spectral gap. Similar arguments will apply in other frameworks.

In Section 6 we have given a method to compute the rank-1 bundles by iterating the

cocycle. Of course, once we have computed the vector spanning the rank-1 (un)stable

bundle it is very easy to obtain the projections. In Section 8.2 we discuss an alternative

to compute the projections by means of a Newton method. In that case we do not need

to assume that the bundle is 1-dimensional.

8.1. General strategy of the Newton method. Recall that we want to design a

Newton method to solve the invariance equation (3.2) and (3.5). We are left with solving

the linearized equations (4.3) and (4.4). The main difference with respect to maximal

tori is that we first will project them on the invariant subspaces Ec, Eu and Es, and then

solve an equation for each subspace.

Thus, let us denote

∆s,c,u(θ) = Πs,c,u
K(θ)∆(θ),

Es,c,u(θ) = Πs,c,u
K(θ+ω)E(θ),

(8.3)

such that ∆(θ) = ∆s(θ) + ∆c(θ) + ∆u(θ). Then, by the invariant properties of the

splitting, the linearized equations for the Newton method (4.3) and (4.4) split in

DF (K(θ))∆c(θ)−∆c ◦ Tω(θ) = −Ec(θ),

DF (K(θ))∆s(θ)−∆s ◦ Tω(θ) = −Es(θ),

DF (K(θ))∆u(θ)−∆u ◦ Tω(θ) = −Eu(θ)

(8.4)
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and

DF (K(θ))∆c(θ)−∆c ◦ Tω(θ) + Πc
K(θ+ω)(J ◦K0(θ + ω))−1DK0(θ + ω)δ = −Ec(θ),

DF (K(θ))∆s(θ)−∆s ◦ Tω(θ) + Πs
K(θ+ω)(J ◦K0(θ + ω))−1DK0(θ + ω)δ = −Es(θ),

DF (K(θ))∆u(θ)−∆u ◦ Tω(θ) + Πu
K(θ+ω)(J ◦K0(θ + ω))−1DK0(θ + ω)δ = −Eu(θ).

(8.5)

We solve for ∆c and δ the equation on the center subspace using the algorithm described

in Section 5. Notice that once δ is obtained the equations (8.5) for the hyperbolic spaces

reduce to the equations (8.4). More precisely,

DF (K(θ))∆s,u(θ)−∆s,u ◦ Tω(θ) = −Ẽs,u(θ) (8.6)

where

Ẽs,u = Es,u(θ) + Πs,u
K(θ+ω)(J ◦K0(θ + ω))−1DK0(θ + ω)δ.

Equations (8.4) and (8.5) for the stable and unstable spaces can be solved iteratively

using the contraction properties of the cocycles on the hyperbolic spaces given in (8.2).

Indeed, a solution for equations (8.6) is given explicitly by

∆s(θ) = Ẽs◦T−ω(θ)+
∞∑

k=1

(DF ◦K◦T−ω(θ)×· · ·×DF ◦K◦T−kω(θ))(Ẽs◦T−(k+1)ω(θ)) (8.7)

for the stable equation, and

∆u(θ) = −
∞∑

k=0

(DF−1 ◦K(θ)× · · · ×DF−1 ◦K ◦ Tkω(θ))(Ẽu ◦ Tkω(θ)) (8.8)

for the unstable direction. Of course, the contraction of the cocycles guarantees the

uniform convergence of these series.

Instead of using formulae (8.7)-(8.8) to compute the projections on the stable and un-

stable bundles, we prefer to use the algorithms designed in Section 6.6 or in the following

Section 8.2.

Hence, the algorithm for whiskered tori that we summarize here will be a combination

of several algorithms:

Algorithm 14. Consider given F , ω, K0 and an approximate solution K (resp. K,λ),

perform the following operations:

(1) Compute the projections associated to the cocycle M(θ) = DF ◦K(θ) and ω using

the algorithms described either in Section 6.6 or 8.2.

(2) Project the linearized equation on the center subspace and use the algorithm 5 to

obtain ∆s and δ.
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(3) Project the linearized equation to the hyperbolic space and use the algorithms de-

scribed in Section 7 to obtain ∆s,u.

(4) Set K + ∆s + ∆u + ∆c → K and λ + δ → λ and iterate.

Next, we will explain in detail each of the previous steps.

8.2. A Newton method to compute the projections. In this section we will discuss

a Newton method to compute the projections Πc
K(θ), Πs

K(θ) and Πu
K(θ) associated to the

linear spaces Ec
K(θ), Es

K(θ) and Eu
K(θ) where K is an (approximate) invariant torus. More

precisely, we will design a Newton method to compute Πs
K(θ) and Πcu

K(θ) = Πc
K(θ) + Πu

K(θ).

Similar arguments allow to design a Newton method to compute Πu
K(θ) and Πcs

K(θ) =

Πc
K(θ) + Πs

K(θ). Then, of course, Πc
K(θ) is given by

Πc
K(θ) = Πcs

K(θ)Π
cu
K(θ) = Πcu

K(θ)Π
cs
K(θ) .

Let us discuss first a Newton method to compute Πs
K(θ) and Πcu

K(θ). To simplify notation,

from now on, we will omit the dependence in K(θ).

We will look for maps Πs : T
ℓ → GL(2d, R) and Πcu : T

ℓ → GL(2d, R) satisfying the

following equations:

Πcu(θ + ω)M(θ)Πs(θ) = 0, (8.9)

Πs(θ + ω)M(θ)Πcu(θ) = 0, (8.10)

Πs(θ) + Πcu(θ) = Id, (8.11)

[Πs(θ)]2 = Πs(θ), (8.12)

[Πcu(θ)]2 = Πcu(θ), (8.13)

Πs(θ)Πcu(θ) = 0, (8.14)

Πcu(θ)Πs(θ) = 0. (8.15)

where M(θ) = DF (K(θ)).

Notice that the system of equations (8.9)–(8.15) is redundant. It is easy to see that

equations (8.13), (8.14) and (8.15) follow from equations (8.11) and (8.12). Therefore,

the system of equations that needs to be solved is reduced to equations (8.9)–(8.12).
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We are going to design a Newton method to solve equations (8.9)–(8.10) and use

equations (8.11)–(8.12) as constraints. In this context, by approximate solution of equa-

tions (8.9)–(8.10), we mean a solution (Πs, Πcu) of the following system

Πcu(θ + ω)M(θ)Πs(θ) = Ecu(θ), (8.16)

Πs(θ + ω)M(θ)Πcu(θ) = Es(θ), (8.17)

Πs(θ) + Πcu(θ) = Id, (8.18)

[Πs(θ)]2 = Πs(θ). (8.19)

Notice that the error in equation (8.16) has components only on the center and unstable

“approximated” subspaces and we denote it by Ecu. The same happens with the equa-

tion (8.17) but on the “approximated” stable subspace. We assume that Ecu and Es are

both small.

As standard in the Newton method, we will look for increments ∆s and ∆cu in such

a way that setting Πs ← Πs + ∆s and Πcu ← Πcu + ∆cu, the new projections solve

equations (8.9) and (8.10) up to order ‖E‖2 where ‖E‖ = ‖Es‖ + ‖Ecu‖ for some norm

|.|.
The functions ∆s and ∆cu solve the following equations

∆cu(θ + ω)M(θ)Πs(θ) + Πcu(θ + ω)M(θ)∆s(θ) = −Ecu(θ)

∆s(θ + ω)M(θ)Πcu(θ) + Πs(θ + ω)M(θ)∆cu(θ) = −Es(θ)
(8.20)

with the constraints

∆s(θ) + ∆cu(θ) = 0 (8.21)

Πs(θ)∆s(θ) + ∆s(θ)Πs(θ) = ∆s(θ) . (8.22)

Notice that by (8.21) we only need to compute ∆s since ∆cu = −∆s. We now work

out equations (8.20), (8.21) and (8.22) so that we can find ∆s.

Denote

∆s
s = Πs∆s,

∆s
cu = Πcu∆s,

(8.23)

so that

∆s = ∆s
s + ∆s

cu. (8.24)

Then equation (8.22) reads

∆s
s(θ) + ∆s(θ)Πs(θ) = ∆s

s(θ) + ∆s
cu(θ), (8.25)
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or equivalently,

∆s(θ)Πs(θ) = ∆s
cu(θ) . (8.26)

Notice that by (8.18), (8.26) and (8.24) we have that

∆s(θ)Πcu(θ) = ∆s(θ)−∆s(θ)Πs(θ) = ∆s(θ)−∆s
cu(θ) = ∆s

s(θ). (8.27)

Now, using (8.21), equations (8.20) transform to

−∆s(θ + ω)M(θ)Πs(θ) + Πcu(θ + ω)M(θ)∆s(θ) = −Ecu(θ),

∆s(θ + ω)M(θ)Πcu(θ)− Πs(θ + ω)M(θ)∆s(θ) = −Es(θ).
(8.28)

Denoting

Ns(θ) = Πs(θ + ω)M(θ)Πs(θ),

Ncu(θ) = Πcu(θ + ω)M(θ)Πcu(θ),

and using that Πcu(θ+ω)M(θ)Πs(θ) and Πs(θ+ω)M(θ)Πcu(θ) are small by (8.16)–(8.17)

and Πs(θ) + Πcu(θ) = Id by (8.18), it is enough for the Newton method to solve for ∆s

via the following equations

−∆s(θ + ω)Πs(θ + ω)Ns(θ) + Ncu(θ)Π
cu(θ)∆s(θ) = −Ecu(θ),

∆s(θ + ω)Πcu(θ + ω)Ncu(θ)−Ns(θ)Π
s(θ)∆s(θ) = −Es(θ).

(8.29)

Finally, by expressions (8.26) and (8.27) and taking into account the notations introduced

in (8.23), equations (8.29) read out

−∆s
cu(θ + ω)Ns(θ) + Ncu(θ)∆

s
cu(θ) = −Ecu(θ), (8.30)

∆s
s(θ + ω)Ncu(θ)−Ns(θ)∆

s
s(θ) = −Es(θ). (8.31)

Equations (8.30)-(8.31) are of the form (7.1) for A(θ) = Ncu(θ), B(θ) = Ns(θ) and

η(θ) = −Ecu(θ) in the case of equation (8.30) and A(θ) = Ns(θ), B(θ) = Ncu(θ) and

η(θ) = +Es(θ) in the case of equation (8.31). Notice that ‖Ns‖ < 1 and ‖N−1
cu ‖ < 1.

Hence, they can be solved iteratively using the fast iterative algorithms described in

Section 7.

The explicit expressions for ∆s
cu and ∆s

s are

∆s
cu(θ) = −

[
N−1

cu (θ)Ecu(θ) +
∞∑

n=1

N−1
cu (θ)× · · ·×

N−1
cu (θ + nω)Ecu(θ + nω)Ns(θ + (n− 1)ω)× · · · ×Ns(θ)

] (8.32)



FAST NUMERICAL ALGORITHMS 49

and

∆s
s(θ) = Es(θ − ω)N−1

cu (θ − ω) +
∞∑

n=1

Ns(θ − ω)× · · · ×

Ns(θ − (n + 1)ω)Es(θ − (n + 1)ω)N−1
cu (θ − (n + 1)ω)× · · · ×N−1

cu (θ − ω).
(8.33)

Remark 10. Notice that by the way Ncu(θ) is defined, it is a matrix which does not have

full rank. Therefore, we denote N−1
cu (θ) to refer to the “pseudoinverse” matrix.

Finally, let us check that ∆s = ∆s
cu+∆s

s also satisfies the constraints. In order to check

that constraint (8.22), which is equivalent to (8.26) is satisfied we will use the expressions

(8.32) and (8.33). Notice first that

Ns(θ)Π
s(θ) = Ns(θ) (8.34)

and

N−1
cu (θ − ω)Πs(θ) = 0 . (8.35)

Moreover, from (8.16) and using (8.19) one can see that

Ecu(θ)Πs(θ) = Πcu(θ + ω)M(θ)[Πs(θ)]2 = Ecu(θ) . (8.36)

Then, from expressions (8.32) and (8.33) and the above expression (8.34), (8.35) and

(8.36), it is clear that

∆s(θ)Πs(θ) = ∆s
s(θ)Π

s(θ) + ∆s
cu(θ)Π

s(θ) = 0 + ∆s
cu,

hence, constraint (8.26) is satisfied.

Now, using equation (8.21) we get ∆cu(θ) = −(∆s
s(θ) + ∆s

cu(θ)) and the improved

projections are

Π̃s(θ) = Πs(θ) + ∆s
s(θ) + ∆s

cu(θ)

Π̃cu(θ) = Πcu(θ) + ∆cu(θ).

The new error for equations (8.9) and (8.10) is now ‖Ẽ‖ ≤ C‖E‖2 where ‖E‖ =

‖Ecu‖ + ‖Es‖. Of course equation (8.11) is clearly satisfied but (8.12) is satisfied up to

an error which is quadratic in ‖E‖. However it is easy to get an exact solution for (8.12)

and the correction is quadratic in ∆s (and therefore in ∆cu). To do so, we just take the

SVD decomposition of Π̃s and we set the values in the singular value decomposition to

be either 1 or 0.
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In this way we obtain new projections Πs
new and Πcu

new = Id−Πs
new satisfying

‖Πs
new − Π̃s‖ < ‖∆s‖2

‖Πcu
new − Π̃cu‖ < ‖∆cu‖2,

so that the error for equations (8.9) and (8.10) is still quadratic in ‖E‖. Moreover, they

satisfy equations (8.12) and, of course, (8.11) exactly.

Hence, setting Πs ← Πs
new and Πcu ← Πcu

new we can repeat the procedure described in

this section and perform another Newton step.

Consequently, the algorithm of the Newton method to compute the projections is:

Algorithm 15 (Computation of the projections by a Newton method). Consider given

F,K, ω and an approximate solution (Πs, Πcu) of equations (8.9)-(8.10). Perform the

following calculations:

1. Compute M(θ) = DF ◦K(θ)

2. (2.1) Compute Ecu(θ) = Πcu(θ + ω)M(θ)Πs(θ)

(2.2) Compute Es(θ) = Πs(θ + ω)M(θ)Πcu(θ)

3. (3.1) Compute Ns(θ) = Πs(θ + ω)M(θ)Πs(θ)

(3.2) Compute Ncu(θ) = Πcu(θ + ω)M(θ)Πcu(θ)

4. (4.1) Solve for ∆s
s satisfying

Ns(θ)∆
s
s(θ)−∆s

s(θ + ω)Ncu(θ) = Es(θ)

(4.2) Solve for ∆s
cu satisfying

Ncu(θ)∆
s
cu(θ)−∆s

cu(θ + ω)Ns(θ) = −Ecu(θ)

5. (5.1)Compute Π̃s(θ) = Πs(θ) + ∆s
s(θ) + ∆s

cu(θ).

(5.2) Compute the SVD decomposition of Π̃s(θ): Π̃s(θ) = U(θ)Σ(θ)V T (θ).

(5.3) Set the values in Σ(θ) equal to the closer integer (which will be either 0 or

1).

(5.4) Recompute Π̄s(θ) = U(θ)Σ(θ)V T (θ).

6. Set Π̄s → Πs

Id−Π̄s → Πcu

and iterate the procedure.

Notice that the algorithm requires to store a full matrix and that the matrix multi-

plication is diagonal in real space representation, whereas the phase shift is diagonal in

Fourier space. A discussion on how to perform step 4 efficiently was given in Section 7.
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9. Computation of rank-1 whiskers of an invariant torus

In this section, we present algorithms to compute the whiskers associated to an invari-

ant torus, that is the invariant manifolds that contain the torus and are tangent to the

invariant bundles.

For the sake of simplicity and in order to state in a clear way the main idea behind the

methods we will discuss the case when the invariant whiskers are one-dimensional (i.e.

d − ℓ = 1). However, this idea can be extended to compute invariant manifolds of any

rank. We plan to come back to this issue in the future.

As already mentioned, we will look for the whiskers by finding a parameterization for

them, so we will search for a function W : T
ℓ×(U ⊂ R

d−ℓ)→M and a scalar λ satisfying

equation (3.8).

We will consider three different methods to solve equation (3.8). We will first discuss

the order by order method, which has the main disadvantage that one needs to store and

invert a full matrix. The other two methods are based on the philosophy of quasi-Newton

methods. Using the phenomenon of “automatic reducibility”, we are able to design a

very efficient Newton method. The first method allows to compute simultaneously the

invariant tori and the whiskers, whereas the second one assumes that the invariant tori

and the tangent bundles are already known.

We considered only the case of maps because the same ideas work for the case of

vector fields. Similar algorithms were developed and implemented in [HL06b, HL07] for

the slightly simpler case of quasi-periodic maps.

9.1. The order by order method. In this section we follow [CFL05] and refer to it

for the proof of the convergence of the series.

We will find a solution (W,λ) of the invariance equation (3.8) discretizing it in Fourier-

Taylor series. Hence, we will look for W as a power series

W (θ, s) =
∞∑

n=0

Wn(θ)sn, (9.1)

and match similar coefficients in sn on both sides of equation (3.8).

For n = 0, one obtains

F (W0(θ)) = W0(θ + ω), (9.2)

which is equation (3.2) for the invariant torus. Therefore, we have W0(θ) = K(θ), where

K is a parametrization of the invariant torus.
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For n = 1, we obtain

DF ◦K(θ)W1(θ) = W1(θ + ω)λ, (9.3)

which tells us that W1(θ) is an eigenfunction with eigenvalue λ of the operator M(1, θ)

defined in equation (6.1).

Equation (9.3) states that the bundle spanned by W1 is invariant for the linearization

of F , and the dynamics on it is reduced to a contraction/expansion by a constant λ.

Therefore, one can compute W1 and λ using the algorithms given in Section 6.6.

Remark 11. Notice that if W1(θ) is a solution of equation (9.3), then bW1(θ), for any

b ∈ R, is also a solution. Even though all the choices of W1(θ) are mathematically

equivalent, the choice affects the numerical properties of the algorithm. As we mentioned

in Section 3.2, W (θ, bs) is also a solution. The choice of the factor W1 is the same as the

choice of the scale in s because, as we will see, all the subsequent orders are determined.

It is convenient to choose b so that all the coefficients remain of order 1 to avoid round-off

errors.

For n ≥ 2, we obtain

DF ◦K(θ)Wn(θ) = Wn(θ + ω)λn + Rn(W0, . . . ,Wn−1), (9.4)

where Rn is an explicit polynomial in W0, . . . ,Wn−1 whose coefficients are derivatives of

F evaluated at W0.

Equation (9.4) can be solved provided that λ is such that λn is not in the spectrum of

the operatorM(1, θ). This condition is clearly satisfied in the case of (un)stable bundles

which are one-dimensional but it can also be satisfied by other bundles.

Equation (9.4) can be solved using the large matrix method explained in Section 4.1.

Hence, we will discretize equation (9.4) using Fourier series and reduce the problem to

solving a linear system in Fourier space, where the unknowns are the Fourier coefficients

of the matrix Wn.

Notice that once W0(θ) and W1(θ) are fixed, the solution Wn(θ) for n ≥ 2 of equation

(9.4) is uniquely determined.

Finally, if the non resonance condition is satisfied, we know from [CFL05] that the

series constructed here converges to a true analytic solution of the problem.

Notice that the inductive equations for Wn do not involve any small divisors.

9.2. A Newton method to compute simultaneously the invariant torus and the

whiskers. Instead of solving equation (3.8) step by step as we discussed in the previous
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section, we can use a Newton method. We start with an initial approximation (W,λ)

(resp. (W,λ, µ)) satisfying

F (W (θ, s))−W (θ + ω, λs) = E(θ, s)

F (W (θ, s))−W (θ + ω, λs)− J(K0(θ + ω)−1DK0(θ + ω)µ = E(θ, s)
(9.5)

and we look for an improved solution

W ← W + ∆

λ← λ + δ

µ← µ + δµ

by solving the linearized equation

[DF ◦W (θ, s)]∆(θ, s)−∆(θ + ω, λs)− s∂sW (θ + ω, λs)δ

− ((J ◦K0)
−1DK0) ◦ Tω(θ)δµ = −E(θ, s).

(9.6)

Remark 12. As in the previous cases, the role of the parameter µ is to adjust some

averages to solve the equations for the case n = 0.

We will try to solve equation (9.6) by discretizing it in Fourier-Taylor series. Notice

that equation (9.6) is not diagonal when discretized in Fourier-Taylor series because of

the term DF ◦ W . However, there is a way to make it diagonal using the geometric

identities which are a direct generalization of those used for the automatic reducibility

of Lagrangian tori in Section 5.1.

We first give the idea of the automatic reducibility when W is such that

(F ◦W )(θ, s) = W (θ + ω, λs). (9.7)

Taking derivatives with respect to θ and s, we see that

DF ◦W (θ, s)DθW (θ, s) = DθW (θ + ω, λs),

DF ◦W (θ, s)∂sW (θ, s) = λ∂sW (θ + ω, λs).

From there we read that the quantity DθW (θ, s) remains invariant under DF ◦W (θ, s),

whereas the vector ∂sW (θ, s) is multiplied by a factor λ.

The vectors (J ◦W )−1DθWN and (J ◦W )−1∂sWÑ , where N and Ñ are normalization

matrices( see (9.8)) are the symplectic conjugate vectors of DθW and ∂sW , respectively.
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The preservation of the symplectic structure implies that

(DF ◦W (θ, s))(J(W (θ, s)))−1DθW (θ, s)N(θ, s) =

(J(W (θ + ω, λs)))−1DθW (θ + ω, λs)N(θ + ω, λs) + A(θ, s)DθW (θ + ω, λs),

(DF ◦W (θ, s))(J(W (θ, s)))−1∂sW (θ, s)Ñ(θ, s) =

1

λ
(J(W (θ + ω, λs)))−1∂sW (θ + ω, λs)Ñ(θ + ω, λs) + B(θ, s)∂sW (θ + ω, λs).

where A(θ, s) and B(θ, s) are some matrices, which will be computed as before.

We can, therefore, see that in the basis DθW ,(J ◦W )−1DθWN , ∂sW , (J ◦W )−1∂sWÑ ,

the matrix DF ◦W is upper triangular with constant coefficients on the diagonal.

Following the proofs in [LGJV05] for instance, one can prove the following proposition

which generalizes Proposition 4.

Proposition 16. Denote

α(θ, s) = DθW (θ, s)

β(θ, s) = ∂sW (θ, s)

P (θ, s) = α(θ, s)N(θ, s)

Q(θ, s) = β(θ, s)Ñ(θ, s)

N(θ, s) = (α(θ, s)T α(θ, s))−1

Ñ(θ, s) = (β(θ, s)T β(θ, s))−1

γ(θ, s) = (J ◦W (θ, s))−1P (θ, s)

η(θ, s) = (J ◦W (θ, s))−1Q(θ, s)

(9.8)

and form the following matrix

M(θ, s) = [α(θ, s) | γ(θ, s) | β(θ, s) | η(θ, s)] (9.9)

where we denote by [· | · | · | ·] the 2d× 2d matrix obtained by juxtaposing the two 2d× ℓ

matrices and the two 2d× (d− ℓ) matrices that are in the arguments.

Then

(DF ◦W )(θ, s)M(θ, s) = M(θ + ω, λs)R(θ, s) + O(E),
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where

R(θ, s) =




Id A(θ, s)

0 Id

©

©

λ B(θ, s)

0 1/λ




(9.10)

with

A(θ, s) = P (θ, s)T [(DF ◦W )(θ, s)γ(θ, s)− γ(θ + ω, λs)],

B(θ, s) = Q(θ, s)T [(DF ◦W )(θ, s)η(θ, s)− 1

λ
η(θ + ω, λs)],

and E is the error in (9.5).

Remark 13. If the symplectic structure induces an almost-complex one (i.e. J2 = − Id),

we have that

A(θ, s) = P (θ, s)T (DF ◦W )(θ, s)γ(θ, s),

B(θ, s) = Q(θ, s)T (DF ◦W )(θ, s)η(θ, s).

Now if we change the unknowns ∆ = MV in (9.6) and multiply by M−1(θ +ω, λs) the

LHS, by Proposition 16, we are left with the following system of equations

R(θ, s)V (θ, s)− V (θ + ω, λs)− C(θ, s)δu = −Ẽ(θ, s) + sH(θ, s)δ, (9.11)

where R(θ, s) is given in (9.10) and

C(θ, s) = M−1(θ + ω, λs)(J(K0(θ + ω)))−1DK0(θ + ω),

Ẽ(θ, s) = M−1(θ + ω, λs)E(θ, s),

H(θ, s) = M−1(θ + ω, λs)∂sW (θ + ω, λs).

We expand the terms in (9.11) in power series up to some order L and match coefficients

of the same order on both sides of the equation. We use subindexes to denote coordinates

and superindexes to denote the order. Hence, for order s0 we have

V 0
1 (θ)− V 0

1 (θ + ω) + A0(θ)V 0
2 (θ)− C0

1(θ)δµ = −Ẽ0
1(θ), (9.12)

V 0
2 (θ)− V 0

2 (θ + ω)− C0
2(θ)δµ = −Ẽ0

2(θ), (9.13)

λV 0
3 (θ)− V 0

3 (θ + ω) + B0(θ)V 0
4 (θ)− C0

3(θ)δµ = −Ẽ0
3(θ), (9.14)

1

λ
V 0

4 (θ)− V 0
4 (θ + ω)− C0

4(θ)δµ = −Ẽ0
4(θ). (9.15)

Notice that (9.12) and (9.13) can be solved using Algorithm 5 described in Section 5.

Hence, we determine V 0
1 , V 0

2 and δµ. Once we know δµ, we can solve uniquely for V 0
3 and
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V 0
4 in equations (9.14) and (9.15). These equations do not have any small divisors nor

obstructions since |λ| 6= 1.

For order s1 we have

V 1
1 (θ)− λV 1

1 (θ + ω) + A0(θ)V 1
2 (θ) + A1(θ)V 0

2 (θ), (9.16)

= −Ẽ1
1(θ) + δH0

1 (θ) + δµC
1
1(θ)

V 1
2 (θ)− λV 1

2 (θ + ω) = −Ẽ1
2(θ) + δH0

2 (θ) + δµC
1
2(θ), (9.17)

λV 1
3 (θ)− λV 1

3 (θ + ω) + B0(θ)V 1
4 (θ) + B1(θ)V 0

4 (θ) (9.18)

= −Ẽ1
3(θ) + δH0

3 (θ) + δµC
1
3(θ),

1

λ
V 1

4 (θ)− λV 1
4 (θ + ω) = −Ẽ1

4(θ) + δH0
4 (θ) + δµC

1
4(θ). (9.19)

Notice that once we choose δ, equations (9.16) and (9.17) are uniquely solvable for V 1
1

and V 1
2 . Recall that δµ is known because it has been computed in the case of order 0

equations.

Similarly, equation (9.19) do not involve small divisors nor obstructions. However,

equation (9.18) does have obstructions and small divisors. In order to overcome this

problem, we denote by F and G the solutions of

1

λ
F (θ)− λF (θ + ω) = H0

4 (θ),

1

λ
G(θ)− λG(θ + ω) = D1

4(θ)

where

D1
4(θ) = −Ẽ1

4(θ) + δµC
1
4(θ).

This gives

V 1
4 (θ) = δF (θ) + G(θ).

Taking the average of equation (9.18), we have that

D1
3 + δH0

3 −B0Fδ −B0G−B1V 0
4 = 0,

so we can solve for δ provided that H0
3 −B0F 6= 0.
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The other orders do not have any problem. For sn, with n ≥ 2, we have

V n
1 (θ)− λnV n

1 (θ + ω) +
n∑

k=0

An−k(θ)V k
2 (θ) = −Ẽn

1 (θ) + δHn−1
1 (θ) + δµC

n
1 (θ),

V n
2 (θ)− λnV n

2 (θ + ω) = −Ẽn
2 (θ) + δHn−1

2 (θ) + δµC
n
2 (θ),

λV n
3 (θ)− λnV n

3 (θ + ω) +
n∑

k=0

Bn−k(θ)V k
4 (θ) = −Ẽn

3 (θ) + δHn−1
3 (θ) + δµC

n
3 (θ),

1

λ
V n

4 (θ)− λnV n
4 (θ + ω) = −Ẽn

4 (θ) + δHn−1
4 (θ) + δµC

n
4 (θ),

(9.20)

and equations (9.20) can be solved uniquely for V n
1 , V n

2 , V n
3 and V n

4 , for n = 2, . . . , L,

where L is the degree for the Taylor expansion. Hence, we have obtained δ, δµ ∈ R and

V (θ, s) =
L∑

n=0

V n(θ)sn,

so that the improved solution is

W ← W + MV,

λ← λ + δ,

µ← µ + δµ.

Remark 14. For L = 1, the algorithm allows us to compute simultaneously the invariant

torus and the associated linear subspaces.

The algorithm for the simultaneous computation of the whiskers and the invariant

torus is

Algorithm 17 (Computation of tori and whiskers simultaneously). Consider given F , ω,

K0 and a fixed order L. Given an approximate solution (W,λ, µ), perform the following

calculations

1. Compute E(θ, s) = F ◦W (θ, s)−W (θ + ω, λs)− ((J ◦K0)
−1DK0)(θ + ω)µ

2. Compute

(2.1) α(θ, s) = DθW (θ, s)

(2.2) β(θ, s) = ∂sW (θ, s)

(2.3) N(θ, s) = [α(θ, s)T α(θ, s)]−1

(2.4) Ñ(θ, s) = [β(θ, s)T β(θ, s)]−1

(2.5) P (θ, s) = α(θ, s)N(θ, s)

(2.6) Q(θ, s) = β(θ, s)Ñ(θ, s)
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(2.7) γ(θ, s) = (J ◦W (θ, s))−1P (θ, s)

(2.8) η(θ, s) = (J ◦W (θ, s))−1Q(θ, s)

(2.9) M(θ, s) = [α(θ, s) | γ(θ, s) | β(θ, s) | η(θ, s)]

(2.10) [M(θ, s)]−1

3. Compute

(3.1) C(θ, s) = M−1(θ + ω, λs)(J(K0(θ + ω)))−1DK0(θ + ω)

(3.2) Ẽ(θ, s) = M−1(θ + ω, λs)E(θ, s)

(3.3) H(θ, s) = M−1(θ + ω, λs)α(θ + ω, λs)

4. Compute

(4.1) A(θ, s) = P (θ, s)T [(DF ◦W )(θ, s)γ(θ, s)− γ(θ + ω, λs)]

(4.2) B(θ, s) = Q(θ, s)T [(DF ◦W )(θ, s)η(θ, s)− 1
λ
η(θ + ω, λs)]

5.(5.1) Solve for δµ satisfying
∫

Tℓ

Ẽ0
2 −

[ ∫

Tℓ

C0
2

]
δµ = 0

(5.2) Solve for V 0
2 satisfying

V 0
2 − V 0

2 ◦ Tω = −Ẽ0
2 + C0

2δµ

Set V 0
2 such that the average is 0.

6.(6.1) Compute A0(θ)V 0
2 (θ)

(6.2) Solve for V̄ 0
2 satisfying

∫

Tℓ

Ẽ0
1 −

∫

Tℓ

C0
1(θ)δµ +

∫

Tℓ

A0V 0
2 +

[ ∫

Tℓ

A0

]
V̄ 0

2 = 0

(6.3) Set V 0
2 = V 0

2 + V̄ 0
2

(6.4) Solve for V 0
1 satisfying

V 0
1 − V 0

1 ◦ Tω = −Ẽ0
1 − A0V 0

2 + C0
1δµ

(6.5) Normalize so that
∫

Tℓ V 0
1 = 0

7. Solve for V 0
4 satisfying

1

λ
V 0

4 − V 0
4 ◦ Tω = −Ẽ0

4 + C0
4δµ

8. Solve for V 0
3 satisfying

λV 0
3 − V 0

3 ◦ Tω = −Ẽ0
3 + C0

3δµ −B0V 0
4

9.(9.1) Solve for F satisfying

1

λ
F − λF ◦ Tω = H0

4
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(9.2) Solve for G satisfying

1

λ
G− λG ◦ Tω = −Ẽ1

4 + δµC
1
4

(9.3) Solve for δ satisfying
(
−Ẽ1

3 + δµC1
3 −B0G−B1V 0

4

)
+ δ(H0

3 −B0F ) = 0

(9.4) Set V 1
4 = δF + G

10. (10.1) Solve for V 1
3 satisfying

λV 1
3 − λV 1

3 ◦ Tω = −Ẽ1
3 + δH0

3 + δµC
1
3 −B0V 1

4 −B1V 0
4

(10.2) Normalize so that
∫

Tℓ V 1
3 = 0

(10.3) Solve for V 1
2 satisfying

V 1
2 − λV 1

2 ◦ Tω = −Ẽ1
2 + δH0

2 + δµC
1
2

(10.4) Solve for V 1
1 satisfying

V 1
1 − λV 1

1 ◦ Tω = −Ẽ1
1 + δH0

1 + δµC
1
1 − A0V 1

2 − A1V 0
2

11. For n = 2 . . . L do

(11.1) Solve for V n
2 satisfying

V n
2 − λnV n

2 ◦ Tω = −Ẽn
2 (θ) + δHn−1

2 + δµC
n
2

(11.2) Compute

Ãn =
n∑

k=0

An−kV k
2

(11.3) Solve for V n
1 satisfying

V n
1 − λnV n

1 ◦ Tω = −Ẽn
1 + δHn−1

1 + δµC
n
1 − Ãn

(11.4) Solve for V n
4 satisfying

1

λ
V n

4 − λnV n
4 ◦ Tω = −Ẽn

4 + δHn−1
4 + δµC

n
4

(11.5) Compute

B̃n =
n∑

k=0

Bn−kV k
4

(11.6) Solve for V n
3 satisfying

λV n
3 − λnV n

3 ◦ Tω = −Ẽn
3 + δHn−1

3 + δµC
n
3 − B̃n
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12. Compute

V (θ, s) =
L∑

n=0

V n(θ)sn

13. Set W ← W + MV

λ← λ + δ

µ← µ + δµ

9.3. A Newton method to compute the whiskers. Assuming that we have com-

puted exactly an invariant torus K(θ) with the associated stable direction V s(θ) (resp.

unstable direction V u(θ)) and the rate of contraction (resp. expansion) λ, we can use a

Newton method to compute the whiskers.

We consider the invariance equation (3.8), and we assume that we have an initial

approximation W for the whiskers, expressed as a power series

W (θ, s) =
∞∑

n=0

W n(θ)sn

and such that

W 0(θ) = K(θ) and W 1(θ) = V s(θ)

(the unstable case is analogous).

Then, it is clear that the error E for the initial approximation W is such that

E(θ, s) =
∑

n≥2

En(θ)sn,

since this is exact for the terms of order 0 and 1.

For a given function G : T
ℓ × R→M, we denote

G(θ, s) = G[<L](θ, s) + G[≥L](θ, s) (9.21)

where

G[<L](θ, s) =
L−1∑

n=0

Gn(θ)sn

and

G[≥L](θ, s) =
∞∑

n=L

Gn(θ)sn.

Using this notation, the linearized equation for the Newton method is

[DF ◦W (θ, s)]∆[≥2](θ, s)−∆[≥2](θ + ω, λs) = −E[≥2](θ, s).
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Similarly as we did in the previous section, we can perform the change of coordinates

given by the matrix M(θ, s) in (9.9) and reduce the problem to solving for V (θ, s) the

following equation, which is diagonal in Fourier-Taylor series,

R(θ, s)V [≥2](θ, s)− V [≥2](θ + ω, λs) = −Ẽ[≥2](θ, s),

with R(θ, s) given in (9.10) and Ẽ(θ, s) = M(θ + ω, λs)−1E(θ, s).

Notice that in this case, we do not have to solve the system of equations for order 0

and 1 and we can go straight to order n ≥ 2. We use subindexes to denote coordinates

and superindexes to denote the order. Hence, for order n ≥ 2 we need to solve the system

of equations

V n
1 (θ)− λnV n

1 (θ + ω) +
n∑

k=2

An−k(θ)V k
2 (θ) = −Ẽn

1 (θ),

V n
2 (θ)− λnV n

2 (θ + ω) = −Ẽn
2 (θ),

λV n
3 (θ)− λnV n

3 (θ + ω) +
n∑

k=2

Bn−k(θ)V k
4 (θ) = −Ẽn

3 ,

1

λ
V n

4 (θ)− λnV n
4 (θ + ω) = −Ẽn

4 .

(9.22)

Notice that the solution of (9.22) for n = 2, 3 provides an exact solution of the invari-

ance equation up to order 4. That is, if we set

V [<4](θ, s) = V 2(θ, s) + V 3(θ, s)

where V 2 and V 3 are obtained by solving equations (9.22), then the improved solution

W̄ is given by

W̄ (θ, s) = W (θ, s) + M(θ, s)V [<4](θ, s),

where M(θ, s) was introduced in (9.9). The function W approximates the solution of the

invariance equations with an error Ē such that

Ē(θ, s) = Ē[≥4](θ, s).

This process can be iterated and at each step we solve the invariance equation exactly

up to an order which is the double of the one we had for the initial approximation. Thus,

if we assume that the initial guess W is such that the error in (9.5) satisfies

E = E[≥L],
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then the modified linearized equation for the Newton method is such that

R(θ, s)V [≥L](θ, s)− V [≥L](θ + ω, λs) = −Ẽ[≥L](θ, s),

with R(θ, s) given in (9.10). If we solve the system of equations (9.22) for n = L . . . (2L−
1) then the improved W̄ is

W̄ (θ, s) = W (θ, s) + M(θ, s)V [<2L](θ, s),

with M(θ, s) as in (9.9), and the new error Ē satisfies Ē(θ, s) = Ē[≥2L](θ, s).

The algorithm in this case is

Algorithm 18 (Computation of whiskers). Given F , ω as well as K,V s, λ and an

approximate solution W such that

F (W (θ, s))−W (θ + ω, λs) = E[≥L](θ, s)

with L ≥ 2 and W (θ, 0) = K(θ) and ∂sW (θ, 0) = V s(θ). Perform the following calcula-

tions:

1. Compute E[≥L](θ, s) = F ◦W (θ, s)−W (θ + ω, λs)

2. Compute

(2.1) α(θ, s) = DθW (θ, s)

(2.2) β(θ, s) = ∂sW (θ, s)

(2.3) N(θ, s) = [α(θ, s)T α(θ, s)]−1

(2.4) Ñ(θ, s) = [β(θ, s)T β(θ, s)]−1

(2.5) P (θ, s) = α(θ, s)N(θ, s)

(2.6) Q(θ, s) = β(θ, s)Ñ(θ, s)

(2.7) γ(θ, s) = (J ◦W (θ, s))−1P (θ, s)

(2.8) η(θ, s) = (J ◦W (θ, s))−1Q(θ, s)

(2.9) M(θ, s) = [α(θ, s) | γ(θ, s) | β(θ, s) | η(θ, s)]

(2.10) [M(θ, s)]−1

3. Compute

Ẽ[≥L](θ, s) = M−1(θ + ω, λs)E[≥L](θ, s)

4. Compute

(4.1) A(θ, s) = P (θ, s)T [(DF ◦W )(θ, s)γ(θ, s)− γ(θ + ω, λs)]

(4.2) B(θ, s) = Q(θ, s)T [(DF ◦W )(θ, s)η(θ, s)− 1
λ
η(θ + ω, λs)]

5. For n = L . . . 2L− 1 do
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(5.1) Solve for V n
2 satisfying

V n
2 − λnV n

2 ◦ Tω = −Ẽn
2 (θ)

(5.2) Compute

Ãn =
n∑

k=L

An−kV k
2

(5.3) Solve for V n
1 satisfying

V n
1 − λnV n

1 ◦ Tω = −Ẽn
1 − Ãn

(5.4) Solve for V n
4 satisfying

1

λ
V n

4 − λnV n
4 ◦ Tω = −Ẽn

4

(5.5) Compute

B̃n =
n∑

k=L

Bn−kV k
4

(5.6) Solve for V n
3 satisfying

λV n
3 − λnV n

3 ◦ Tω = −Ẽn
3 − B̃n

6. Compute

V (θ, s) =
2L−1∑

n=L

V n(θ)sn

7. Set W ← W + MV

10. Algorithms to compute rank-1 invariant whiskers for flows

This section contains a formulation of the algorithms described in the previous section

in the context of Hamiltonian vector fields. The reader interested only in the main idea

behind the algorithms or happy to use surfaces of section can skip this section. Recall

that in the case of vector fields the invariance equation reads
(

∂ω + λs
∂

∂s

)
W (θ, s) = X(W (θ, s)), (10.1)

where the unknowns are W and λ. The operator ∂ω was defined in (3.3).

As in the case of maps, we consider three different methods to solve equation (3.8).
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10.1. The order by order method. As done in Section 9.1, we look for W as a power

series

W (θ, s) =
∞∑

n=0

Wn(θ)sn,

and match similar coefficients in sn on both sides of equation (10.1).

For n = 0, one obtains

∂ωW0(θ) = (X ◦W0)(θ) (10.2)

which admits the solution W0(θ) = K(θ), where K is a parametrization of the invariant

torus.

For n = 1, we obtain

∂ωW1(θ) + W1(θ)λ = (DX ◦K(θ))W1(θ), (10.3)

from where we read that W1(θ) is an eigenfunction with eigenvalue −λ of the operator

Lω

Lω := ∂ω −DX ◦K(θ).

Again, we note that, multiplying a solution of (10.3) by a scalar b ∈ R, we also obtain

a solution. See Remark 11.

For n ≥ 2, we obtain

∂ωWn(θ) + Wn(θ)nλ = (DX ◦K(θ))Wn(θ) + Rn(W0, . . . ,Wn−1), (10.4)

where Rn is an explicit polynomial in W0, . . . ,Wn−1 whose coefficients are derivatives of

X evaluated at W0 = K.

Notice that, in this case, equation (10.4) can be solved provided that nλ is not in the

spectrum of the operator Lω (this is a non-resonance condition which is clearly satisfied

since the stable spaces are 1-dimensional). As in the case of maps, the previous equation

can be solved using the large matrix method.

10.2. A Newton method to compute simultaneously the invariant torus and

the whiskers. As in the case of maps, we can solve equation (10.1) by using a Newton

method. Hence, we start with an initial approximation (W,λ) (resp. (W,λ, µ) for the

invariance equation (10.1)), that is

X(W (θ, s))−
(

∂ω + λs
∂

∂s

)
W (θ, s) = E(θ, s),

X(W (θ, s))−
(

∂ω + λs
∂

∂s

)
W (θ, s)− (J−1DX) ◦K0µ = E(θ, s)

(10.5)
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and we will look for an improved solution

W → W + ∆

λ→ λ + δ

µ→ µ + δµ

by solving the linearized equation

(DX ◦ (W (θ, s))∆(θ, s)−
(

∂ω + λs
∂

∂s

)
∆(θ, s)− s

∂

∂s
W (θ, s)δ

− (J−1DX) ◦K0δµ = −E(θ, s).

(10.6)

Once again, we will use a reducibility argument similar to the automatic reducibility

of Lagrangian tori. This will lead to a diagonal equation. Applying the operators Dθ

and ∂s to equations (10.5), we obtain

DX(W (θ, s))DθW (θ, s)−
(

∂ω + λs
∂

∂s

)
DθW (θ, s) = O(E),

DX(W (θ, s))∂sW (θ, s)−
(

∂ω + λs
∂

∂s

)
∂sW (θ, s) = λ∂sW (θ, s) + O(E)

The vectors (J ◦W )−1DθWN and (J ◦W )−1∂sWÑ , where N and Ñ are normalization

matrices (see (9.8)), are the symplectic conjugate vectors of ∂θW and ∂sW , respectively.

By the Hamiltonian character of the vector field, we have that

(DX ◦W (θ, s))((J ◦W )−1DθWN)(θ, s)−
(

∂ω + λs
∂

∂s

)
((J ◦W )−1DθWN)(θ, s) =

S(θ, s)DθW (θ, s) + O(E)

(DX ◦W (θ, s))((J ◦W )−1∂sWÑ)(θ, s)−
(

∂ω + λs
∂

∂s

)
((J ◦W )−1∂sWÑ)(θ, s) =

− λ((J ◦W )−1∂sWÑ)(θ, s) + B(θ, s)∂sW (θ, s) + O(E)

where S(θ, s) and B(θ, s) are matrices which can be computed.

We summarize these properties in the following proposition:

Proposition 19. Using the same notations (9.8) as in Proposition 16 and considering

the matrix M(θ, s) introduced in (9.9), we have

DX ◦W (θ, s)M(θ, s)−
(

∂ω + λs
∂

∂s

)
M(θ, s) = M(θ, s)R(θ, s) + O(E)
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where

R(θ, s) =




0 S(θ, s)

0 0

©

©

λ B(θ, s)

0 −λ




(10.7)

with

S(θ, s) = P T (θ, s)[∂ωγ(θ, s)−DX(W (θ, s))γ(θ, s)]

B(θ, s) = QT (θ, s)[∂ωη(θ, s)−DX(W (θ, s))η(θ, s)]

or, equivalently,

S(θ) = P T (θ, s)(Id−P (θ, s)α(θ, s)T )(DX(W (θ, s)) + DX(W (θ, s))T )P (θ, s)

B(θ) = QT (θ, s)(Id−Q(θ, s)β(θ, s)T )(DX(W (θ, s)) + DX(W (θ, s))T )Q(θ, s)

and E is the error in (9.5).

Now if we change the unknowns ∆ = MV in (10.6) and multiply by M−1(θ, s) the

LHS, by Proposition 19, we are left with the following system of equations

R(θ, s)V (θ, s)−
(

∂ω + λs
∂

∂s

)
V (θ, s)− C(θ, s)δu = −Ẽ(θ, s) + sδH(θ, s) (10.8)

where R(θ, s) is given in (10.7) and

C(θ, s) = M−1(θ, s)(J−1DX) ◦K0(θ),

Ẽ(θ, s) = M−1(θ, s)E(θ, s),

H(θ, s) = M−1(θ, s)∂sW (θ, s).

We expand the terms in (10.8) as a power series up to some order L and match

coefficients of the same order on both sides of the equation. We use subindexes to denote

coordinates and superindexes to denote the order. Hence, for order s0 we have

− ∂ωV 0
1 (θ) + S0(θ)V 0

2 (θ)− C0
1(θ)δµ = −Ẽ0

1(θ), (10.9)

− ∂ωV 0
2 (θ)− C0

2(θ)δµ = −Ẽ0
2(θ), (10.10)

λV 0
3 (θ)− ∂ωV 0

3 (θ) + B0(θ)V 0
4 (θ)− C0

3(θ)δµ = −Ẽ0
3(θ), (10.11)

− λV 0
4 (θ)− ∂ωV 0

4 (θ)− C0
4(θ)δµ = −Ẽ0

4(θ). (10.12)

Notice that (10.9) and (10.10) can be solved using the Algorithm 7. Hence, we deter-

mine V 0
1 , V 0

2 and δµ. Once we know δµ, we can solve uniquely for V 0
3 and V 0

4 in equations

(10.11) and (10.12). These equations do not have any small divisors nor obstructions.
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For order s1 we have

− ∂ωV 1
1 (θ)− λV 1

1 (θ) + S0(θ)V 1
2 (θ) + S1(θ)V 0

2 (θ) (10.13)

= −Ẽ1
1(θ) + δH0

1 (θ) + δµC
1
1(θ),

− ∂ωV 1
2 (θ)− λV 1

2 (θ) = −Ẽ1
2(θ) + δH0

2 (θ) + δµC
1
2(θ), (10.14)

− ∂ωV 1
3 (θ) + B0(θ)V 1

4 (θ) + B1(θ)V 0
4 (θ) (10.15)

= −Ẽ1
3(θ) + δH0

3 (θ) + δµC
1
3(θ),

− ∂ωV 1
4 (θ)− 2λV 1

4 (θ) = −Ẽ1
4(θ) + δH0

4 (θ) + δµC
1
4(θ). (10.16)

Notice that once we choose δ, equations (10.13) and (10.14) are uniquely solvable for

V 1
1 and V 1

2 . Recall that δµ is known, since it has been computed in the case of order 0

equations.

Similarly, equation (10.16) can be solved without small divisors nor obstructions. How-

ever, equation (10.15) does have obstructions and small divisors. In order to overcome

this problem, we denote by F and G the solutions of

−∂ωF (θ)− 2λF (θ) = H0
4 (θ),

−∂ωG(θ)− 2λG(θ) = D1
4(θ)

where

D1
4(θ) = −Ẽ1

4(θ) + δµC
1
4(θ),

then

V 1
4 (θ) = δF (θ) + G(θ).

Taking averages of the equation for V 1
3 we get

D1
3 + δH0

3 −B0Fδ −B0G−B1V 0
4 = 0.

So we can solve for δ provided that H0
3 −B0F 6= 0.
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Now the other orders do not have any obstructions,

− ∂ωV n
1 (θ)− nλV n

1 (θ) +
n∑

k=0

Sn−k(θ)V k
2 (θ) = −Ẽn

1 (θ) + δHn−1
1 (θ) + δµC

n
1 (θ),

− ∂ωV n
2 (θ)− nλV n

2 (θ) = −Ẽn
2 (θ) + δHn−1

2 (θ) + δµC
n
2 (θ),

− ∂ωV n
3 (θ)− (n− 1)λV n

3 (θ) +
n∑

k=0

Bn−k(θ)V k
4 (θ) = −Ẽn

3 (θ) + δHn−1
3 (θ) + δµC

n
3 (θ),

− ∂ωV n
4 (θ)− (n + 1)λV n

4 (θ) = −Ẽn
4 (θ) + δHn−1

4 (θ) + δµC
n
4 (θ).

(10.17)

for n ≥ 2 and they can be solved uniquely for V n
1 , V n

2 , V n
3 and V n

4 , for n = 2, . . . , L,

where L is the degree for the Taylor expansion. Hence, we have obtained δ, δµ ∈ R and

V (θ, s) =
L∑

n=0

V n(θ)sn

and the improved solution is

W ← W + MV

λ← λ + δ

µ← µ + δµ

The algorithm for the whiskers and the invariant torus, analoguous to Algorithm 17,

is

Algorithm 20 (Computation of whiskers and tori for flows). Consider given X, ω, K0

and a fixed order L. Given an approximate solution (W,λ, µ), perform the following

calculations

1. Compute E(θ, s) = X(W (θ, s))− (∂ω + λs∂s)W (θ, s)− (J−1DX) ◦K0(θ)µ

2. Compute

(2.1) α(θ, s) = DθW (θ, s)

(2.2) β(θ, s) = ∂sW (θ, s)

(2.3) N(θ, s) = [α(θ, s)T α(θ, s)]−1

(2.4) Ñ(θ, s) = [β(θ, s)T β(θ, s)]−1

(2.5) P (θ, s) = α(θ, s)N(θ, s)

(2.6) Q(θ, s) = β(θ, s)Ñ(θ, s)

(2.7) γ(θ, s) = (J ◦W (θ, s))−1P (θ, s)

(2.8) η(θ, s) = (J ◦W (θ, s))−1Q(θ, s)
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(2.9) M(θ, s) = [α(θ, s) | γ(θ, s) | β(θ, s) | η(θ, s)]

(2.10) [M(θ, s)]−1

3. Compute

(3.1) C(θ, s) = M−1(θ, s)(J−1DX) ◦K0(θ)

(3.2) Ẽ(θ, s) = M−1(θ, s)E(θ, s)

(3.3) H(θ, s) = M−1(θ, s)β(θ, s)

4. Compute

(4.1) S(θ, s) = P T (θ, s)(Id−P (θ, s)α(θ, s)T )(DX(W (θ, s))+DX(W (θ, s))T )P (θ, s)

(4.2) B(θ, s) = QT (θ, s)(Id−Q(θ, s)β(θ, s)T )(DX(W (θ, s))+DX(W (θ, s))T )Q(θ, s)

5.(5.1) Solve for δµ satisfying
∫

Tℓ

Ẽ0
2 −

[ ∫

Tℓ

C0
2

]
δµ = 0

(5.2) Solve for V 0
2 satisfying

−∂ωV 0
2 = −Ẽ0

2 + C0
2δµ

Set V 0
2 such that the average is 0.

6.(6.1) Compute S0(θ)V 0
2 (θ)

(6.2) Solve for V̄ 0
2 satisfying

∫

Tℓ

Ẽ0
1 −

∫

Tℓ

C0
1(θ)δµ +

∫

Tℓ

S0V 0
2 +

[ ∫

Tℓ

S0

]
V̄ 0

2 = 0

(6.3) Set V 0
2 = V 0

2 + V̄ 0
2

(6.4) Solve for V 0
1 satisfying

−∂ωV 0
1 = −Ẽ0

1 − S0V 0
2 + C0

1δµ

(6.5) Normalize so that
∫

Tℓ V 0
1 = 0

7. Solve for V 0
4 satisfying

−λV 0
4 − ∂ωV 0

4 = −Ẽ0
4 + C0

4δµ

8. Solve for V 0
3 satisfying

λV 0
3 − ∂ωV 0

3 = −Ẽ0
3 + C0

3δµ −B0V 0
4

9.(9.1) Solve for F satisfying

−∂ωF − 2λF = H0
4

(9.2) Solve for G satisfying

−∂ωG− 2λG = −Ẽ1
4 + δµC

1
4
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(9.3) Solve for δ satisfying
(
−Ẽ1

3 + δµC1
3 −B0G−B1V 0

4

)
+ δ(H0

3 −B0F ) = 0

(9.4) Set V 1
4 = δF + G

10. (10.1) Solve for V 1
3 satisfying

−∂ωV 1
3 = −Ẽ1

3 + δH0
3 + δµC

1
3 −B0V 1

4 −B1V 0
4

(10.2) Normalize so that
∫

Tell
V 1

3 = 0

(10.3) Solver for V 1
2 satisfying

−∂ωV 1
2 − λV 1

2 = −Ẽ1
2 + δH0

2 + δµC
1
2

(10.4) Solve for V 1
1 satisfying

−∂ωV 1
1 − λV 1

1 = −Ẽ1
1 + δH0

1 + δµC
1
1 − S0V 1

2 − S1V 0
2

11. For n = 2 . . . L do

(11.1) Solve for V n
2 satisfying

−∂ωV n
2 − nλV n

2 = −Ẽn
2 (θ) + δHn−1

2 + δµC
n
2

(11.2) Compute

S̃n =
n∑

k=0

Sn−kV k
2

(11.3) Solve for V n
1 satisfying

−∂ωV n
1 − nλV n

1 = −Ẽn
1 + δHn−1

1 + δµC
n
1 − S̃n

(11.4) Solve for V n
4 satisfying

−∂ωV n
4 − (n + 1)λV n

4 = −Ẽn
4 + δHn−1

4 + δµC
n
4

(11.5) Compute

B̃n =
n∑

k=0

Bn−kV k
4

(11.6) Solve for V n
3 satisfying

−∂ωV n
3 − (n− 1)λV n

3 = −Ẽn
3 + δHn−1

3 + δµC
n
3 − B̃n

12. Compute

V (θ) =
L∑

n=0

V n(θ)sn

13. Set W ← W + MV

λ← λ + δ
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µ← µ + δµ

10.3. A Newton method to compute the whiskers. As in the case of maps, assum-

ing that we have computed exactly an invariant torus K(θ) with the associated stable

bundle V s (resp. unstable bundle V u) and the rate of contraction (resp. expansion) λ,

we can use a Newton method to compute the whiskers.

We consider the invariance equation (10.1) and we assume that we have an initial

approximation W for the whiskers, expressed as a power series

W (θ, s) =
∞∑

n=0

W n(θ)sn

and such that

W 0(θ) = K(θ) and W 1(θ) = V s(θ)

(the case unstable is analogous).

Then, it is clear that the error E for the initial approximation W is such that

E(θ, s) =
∑

n≥2

En(θ)sn

because the approximation is exact for the terms of order 0 and 1.

Using the notation introduced in (9.21), the linearized equation for the Newton method

is

[DX ◦W (θ, s)]∆[≥2](θ, s)− (∂ω + λs∂s)∆[≥2](θ, s) = −E[≥2](θ, s).

Proceeding as in the previous section we can perform the change of coordinates given

by the matrix M(θ, s) in (9.9) and reduce the problem to solving for V (θ, s) the following

equation, which is diagonal in Fourier-Taylor series,

R(θ, s)V [≥2](θ, s)− (∂ω + λs∂s)V [≥2](θ, s) = −Ẽ[≥2](θ, s),

with R(θ, s) given in (10.7) and Ẽ(θ, s) = M(θ, s)−1E(θ, s).

Notice that in this case, we do not have to solve the system of equations for order 0 and

1 and we can go straight to order n ≥ 2. We use subindexes to denote coordinates and

superindexes to denote the order. Hence, for order n ≥ 2, we need to solve the system
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of equations

− ∂ωV n
1 (θ)− nλV n

1 (θ) +
n∑

k=2

Sn−k(θ)V k
2 (θ) = −Ẽn

1 (θ),

− ∂ωV n
2 (θ)− nλV n

2 (θ) = −Ẽn
2 (θ),

− ∂ωV n
3 (θ)− (n− 1)λV n

3 (θ) +
n∑

k=2

Bn−k(θ)V k
4 (θ) = −Ẽn

3 ,

− ∂ωV n
4 (θ)− (n + 1)λV n

1 (θ) = −Ẽn
4 .

(10.18)

Notice that now the solution of (10.18) for n = 2, 3 provides an exact solution of the

invariance equation up to order 4. That is, if we set

V [<4](θ, s) = V 2(θ, s) + V 3(θ, s)

where V 2 and V 3 are obtained by solving equations (10.18), then the improved solution

W̄ given by

W̄ (θ, s) = W (θ, s) + M(θ, s)V [<4](θ, s),

where M(θ, s) was introduced in (9.9), satisfies that it approximates the solution of the

invariance equations with an error Ē such that

Ē(θ, s) = Ē[≥4](θ, s).

This process can be iterated and at each step we solve the invariance equation exactly

up to an order which is the double of the one we had for the initial approximation. Thus,

if we assume that the initial guess W is such that the error in (10.5) satisfies that

E = E[≥L],

then the modified linearized equation for the Newton method is such that

R(θ, s)V [≥L](θ, s)− (∂ω + λs∂s)V
[≥L](θ, s) = −Ẽ[≥L](θ, s),

withR(θ, s) given in (10.7). If we solve the system of equations (10.18) for n = L . . . (2L−
1) then the improved W̄ is

W̄ (θ, s) = W (θ, s) + M(θ, s)V [<2L](θ, s),

with M(θ, s) as in (9.9), and the new error Ē satisfies Ē(θ, s) = Ē[≥2L](θ, s).

The algorithm in this case is
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Algorithm 21 (Computation of whiskers for vector-fields). Given X, ω as well as

K,V s, λ and an approximate solution W such that

X ◦W (θ, s)− (∂ω + λs∂s)W (θ, s) = E[≥L](θ, s)

with L ≥ 2 and W (θ, 0) = K(θ) and ∂sW (θ, 0) = V s(θ), perform the following calcula-

tions:

1. Compute E[≥L](θ, s) = X ◦W (θ, s)− (∂ω + λs∂s)W (θ, s)

2. Compute

(2.1) α(θ, s) = DθW (θ, s)

(2.2) β(θ, s) = ∂sW (θ, s)

(2.3) N(θ, s) = [α(θ, s)T α(θ, s)]−1

(2.4) Ñ(θ, s) = [β(θ, s)T β(θ, s)]−1

(2.5) P (θ, s) = α(θ, s)N(θ, s)

(2.6) Q(θ, s) = β(θ, s)Ñ(θ, s)

(2.7) γ(θ, s) = (J ◦W (θ, s))−1P (θ, s)

(2.8) η(θ, s) = (J ◦W (θ, s))−1Q(θ, s)

(2.9) M(θ, s) = [α(θ, s) | γ(θ, s) | β(θ, s) | η(θ, s)]

(2.10) [M(θ, s)]−1

3. Compute

Ẽ[≥L](θ, s) = M−1(θ, s)E[≥L](θ, s)

4. Compute

(4.1) S(θ, s) = P T (θ, s)(Id−P (θ, s)α(θ, s)T )(DX(W (θ, s))+DX(W (θ, s))T )P (θ, s)

(4.2) B(θ, s) = QT (θ, s)(Id−Q(θ, s)β(θ, s)T )(DX(W (θ, s))+DX(W (θ, s))T )Q(θ, s)

5. For n = L . . . 2L− 1 do

(5.1) Solve for V n
2 satisfying

−∂ωV n
2 (θ)− nλV n

2 (θ) = −Ẽn
2 (θ)

(5.2) Compute

S̃n =
n∑

k=L

Sn−kV k
2

(5.3) Solve for V n
1 satisfying

−∂ωV n
1 (θ)− nλV n

1 (θ) = −Ẽn
1 − S̃n

(5.4) Solve for V n
4 satisfying

−∂ωV n
4 (θ)− (n + 1)λV n

4 (θ) = −Ẽn
4
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(5.5) Compute

B̃n =
n∑

k=L

Bn−kV k
4

(5.6) Solve for V n
3 satisfying

−∂ωV n
3 (θ)− (n− 1)λV n

3 (θ) = −Ẽn
3 − B̃n

6. Compute

V (θ, s) =
2L−1∑

n=L

V n(θ)sn

7. Set W ← W + MV

11. Initial guesses of the iterative methods

All the methods we have discussed so far are based on considering an initial approxi-

mation for the invariant object we are looking for and then using a Newton method to

improve this approximation. It remains to discuss how to obtain a good initial guess .

We will only discuss the case of maps, the case of vector fields being analogous.

A very standard method, specially when one studies a family of maps {Fε}ε indexed

by a parameter ε, is to use a continuation method. Typically, one starts with a value of

the parameter (say ε0) for which the map Fε0 can be studied analytically or a solution is

known and then use this solution as an initial guess for the Newton method to compute

the solution for the map Fε for |ε − ε0| small enough. An improvement of this method

could be to extrapolate an initial guess for Fε from the previous computed solutions for

different values of ε.

A very classical example is the case of maps which are a perturbation of an integrable

one, for which the dynamics is very simple and well known. Nevertheless, we recall that

the methods presented in this paper do not require the map to be close to the integrable

case. Therefore, one needs to develop other methods to compute an initial approximation.

An alternative to get an initial approximation for the computation of primary invariant

tori is to use the Percival variational principle ([Per79]). It is easy to see that primary

invariant tori correspond to critical points of a certain functional. Under some convexity

assumptions, one can prove that primary tori are minimizers. In this case, one can find

minimizers of this functional using minimization algorithms such as conjugate gradient

methods. One problem of this method is that the precision for the solution will be CE1/2,

where E is the error for the computation of the functional (roundoff and truncation).
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Nevertheless, one can use the minimizer obtained this way as an initial guess for the

Newton method.

None of the methods above mentioned work for secondary tori. To obtain an initial

guess to compute secondary tori can be done via averaging methods (see [DH08, DLS06]).

Another possibility consists of computing the rotation number for several points and look

for a point p that rotates with a frequency which is close to the Diophantine frequency

of the invariant torus we are looking for. Of course, taking some iterates {F (n)(p)}Nn=0 of

this point we can obtain an initial guess for the Newton method.

However, we already mentioned in the previous sections that in one step of the Newton

method we need to perform some operations in Fourier space. Hence, we need to apply

the FFT algorithm and this requires to have the values on an equidistant grid which is

not the case when one considers iterates of a point p by a map F . In order to get rid of

this problem, one can use cubic interpolation and calculate the values of the interpolating

function at the points {θi}Ni=0, taking into account the periodicity of θ. This is the method

we used in the numerical implementation we carried out. See Section 12.1.3 for a more

detailed description. An algorithm that can perform Fourier Transforms on grids of non

equally spaced points is the USFFT.

12. Numerical Examples

In this section we will discuss some implementation details as well as some efficiency

properties and we will show some preliminary examples of the results obtained.

The algorithms have been implemented in C language and have been run under the

Linux environment. For the computation of the FFT we used the fftw3 library (see

http://www.fftw.org/) and we also used some of the functions available in the LAPACK

and BLAS routines (see http://www.netlib.org/lapack/).

12.1. Computation of primary and secondary KAM tori for the standard map.

The first example that we consider is the very well known standard map introduced by

Chirikov [Chi79]. It is a 2D-symplectic map from the cylinder R × T to itself and it is

given by

p̄ = p− εV ′(q),

q̄ = q + p̄ (mod 1),
(12.1)
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where ε is a positive parameter and V is a 1-periodic smooth function called the potential,

which is given by

V (q) =
1

(2π)2
cos(2πq). (12.2)

We refer to (p, q) as the action-angle variables.

12.1.1. Computation of primary invariant tori. We start from the integrable case ε =

0 where we have a 1-parameter family of 1-dimensional invariant tori indexed by the

frequency of rotation. The celebrated KAM Theorem (see [Lla01a] for a survey) ensures

that those invariant tori present in the unperturbed system with a Diophantine frequency

will persist under the perturbation for ε < ε0 where ε0 is a certain critical value at which

they break down (phenomenon usual refered as breakdown of analyticity).

In the example of the standard map, we first considered the invariant curve with a

frequency of rotation equal to the golden mean, that is ωg = (
√

5 − 1)/2, which is

conjectured to be the most robust curve. The Greene’s method ([Gre79]) estimates that

for this curve the critical value ε0 is close to 0.971635406.

We follow a continuation method, starting from the integrable case ε = 0 and then

increasing the parameter ε by steps of size 0.01 up to where our Newton method fails to

converge, which turned out to be ε = 0.96. For the computations we have used N = 211

Fourier coefficients and each step of the continuation method takes 0.0305 seconds in

average in a Intel(R) Core(TM)2, 2.15 GHz. The errors in the functional equation (3.2)

are smaller than 10−10. We show some of the curves obtained in Figure 3.
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Figure 3. The invariant curve associated to the golden mean frequency
ωg for the standard map for different values of ε. Notice that they are
shifted to have 0 offset.



FAST NUMERICAL ALGORITHMS 77

We computed also invariant tori corresponding to frequencies of the form

ωα =
1

α + ωg

, α ∈ N. (12.3)

More precisely, we applied our method to the cases α = 5 and α = 50 and we managed

to continue the invariant curve up to ε = 0.73 and ε = 0.068, respectively, with similar

time running estimates as in the previous case. In Figure 4 we display some of these

curves for different values of ε.
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Figure 4. The invariant curves associated to the frequencies ω5 (left) and
ω50 (right) for the standard map for different values of ε. Notice that they
are shifted to have 0 offset.

12.1.2. Standard-like maps. We also considered the case of a system of the form (12.1)

but with a potential V which has an infinite number of harmonics. We chose V such that

V ′(q) = 1− 1

1− 0.9 sin(2πq)
, (12.4)

and we studied the invariant torus for this system associated to the golden mean fre-

quency.

We computed the invariant curves corresponding to the golden mean frequency using a

continuation method with smaller steps ( in this case the step size was 0.001) for different

values of ε (the program stopped at ε = 23 · 10−3). We used N = 211 Fourier modes and

it took 0.0406 seconds to perform one step of the continuation method. In Figure 5 we

show some of the curves computed for different values of ε.

12.1.3. Computation of secondary invariant tori. As we already mentioned, our method

can compute also secondary KAM tori. Recall that, in this case, we cannot use a con-

tinuation method starting from the integrable case ε = 0 since these tori do not exist in
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Figure 5. The invariant curves associated to the frequency ωg for the
standard-like map with a potential satisfying (12.4) for different values of
ε. Notice that they are shifted to have 0 offset.

the unperturbed case (they are created by the perturbation). In order to get an initial

approximation we will use some of the techniques described in Section 11.

Another point that we need to take into account are the periodicities of the functions

that appear in the Newton procedure, the matrix I introduced in (3.6) having rank 0.

Let us recall, first, that for ε 6= 0 the standard map has two fixed points corresponding

to (0, 0) and (0, 1/2) and, by a simple linear stability analysis, it is easy to see that

if ε is small they are hyperbolic and elliptic fixed points, respectively. Moreover, in a

neighborhood of the elliptic fixed point delimited by the stable and unstable manifolds

of the hyperbolic fixed point, there are born a family of invariant curves of different

topology of the ones that existed in the unperturbed case. There csurves are contractible

to a point and form secondary KAM tori.

In order to get an initial approximation for these tori, we will first compute the rotation

number for several points on the axis p = 0 between the hyperbolic and the elliptic fixed

points. Recall that the rotation number provides information about how much turns in

average every iterate of the standard map. We use a method by C. Simó that computes

an upper and a lower bound for the rotation number. For the sake of completeness we

include it here.

• Compute n iterates of a point x0 on the axis p = 0. For each iterate xi, i =

0, . . . , n, compute the number of turns ni and the angle θi (modulus 2π) that

form the points x0, x∗ and xi, where x∗ is the elliptic fixed point.
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• Sort the angles θi in increasing order and keep the information by arranging the

indexes i of the angles (we used the “quicksort” algorithm).

• Take two consecutive indexes i and j in the arrangement and perform the following

computation:

– If i < j ⇒ ρ >
nj−ni

j−i
.

– If i > j ⇒ ρ <
ni−nj

i−j
.

Hence, we can obtain ρmin and ρmax such that ρmin ≤ ρ ≤ ρmax. Then we can approxi-

mate the rotation number ρ, either by ρmin or ρmax with an error of order 1/n2, where n

is the number of iterates considered.

In Figure 6 we have plotted the computed rotation numbers with 2000 iterates for

ε = 0.1 and ε = 0.5. In the cases where ρmin is bigger than ρmax, the invariant curve has

been destroyed.
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Figure 6. The rotation number for different values on the p = 0 axis
under the standard map (12.1) for ε = 0.1 (left) and ε = 0.5 (right).
Notice that the hyperbolic and elliptic fixed points correspond to (0, 1)
and (1/2, 0), respectively.

We fixed a Diophantine frequency in the interval of allowed frequencies and using a

bisection method we found a point x0 on the axis p = 0 which rotates with a frequency

which is close to the Diophantine frequency. Then, we computed several iterates of

this point and interpolating using splines, we have obtained an approximation of the

parameterization of the secondary invariant torus evaluated on an equidistant grid. We

used the cubic interpolation routines spline and seval from [FMM77], taking into

account the periodicity of θ.

In particular, we computed the invariant tori corresponding to the frequencies 3/40ωg ≈
0.04635026 and 0.18ωg ≈ 0.111246 starting at ε = 0.1 and ε = 0.5, respectively. Using a
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continuation method (with a step size of 0.001) we computed the invariant tori associated

to the corresponding frequencies up to ε = 0.401 and ε = 0.853, respectively. We used

N = 29 Fourier modes and each step of the continuation method takes 0.01469 seconds

in average in an Intel(R) Core(TM)2, 2.15 GHz. In Figure 7 we show the computed

secondary tori.

Again, as in the case of primary tori, the invariant tori are computed with errors in

the functional equations (3.2) smaller than 10−10.
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Figure 7. The secondary tori associated to the frequencies 3/40ωg (left)
and 0.18ωg (right) of the standard map for some values of the parameter
ε.

12.2. 4D-symplectic maps: The Froeschlé map. In this section we will discuss

the computation of maximal and hyperbolic invariant tori for the Froeschlé map. The

Froeschlé map is a 4D symplectic map defined on T
2 × R

2, consisting of two coupled

standard maps. It was introduced by Froeshlé in [Fro72] and it is given by

p̄1 = p1 − ε(
λ1

2π
sin(2πq1) +

λ12

2π
sin(2π(q1 + q2)),

p̄2 = p2 − ε(
λ2

2π
sin(2πq2) +

λ12

2π
sin(2π(q1 + q2)),

q̄1 = q1 + p̄1 (mod 1),

q̄2 = q2 + p̄2 (mod 1),

(12.5)

where λ12 is a coupling parameter. The potential for this case is given by

V (q1, q2) = −
(

λ1

(2π)2
cos(2πq1) +

λ2

(2π)2
cos(2πq2) +

λ12

(2π)2
cos(2π(q1 + q2)

)

Notice that when λ12 = 0, the problem reduces to two uncoupled 2-dimensional stan-

dard maps.
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For the Froeschlé map, we can consider maximal invariant tori, which are 2-dimensional

invariant tori or hyperbolic invariant tori, that is 1-dimensional invariant tori with asso-

ciated stable and unstable manifolds.

12.2.1. Computation of maximal tori. We will follow the behaviour of invariant tori as-

sociated to a certain frequency ω = (ω1, ω2) as ε increases. Of course, the choice of the

frequency vector strongly influences the dynamics. In this study, we will just restrict to

one particular case in order to show the way the method works.

In order to get a 2-dimensional frequency vector which is Diophantine, one needs to

use some results in number theory. In this example, we considered one of the rotation

vectors studied in [CFL04], which is given by

ωu =

(
1

s
, s− 1

)
= (0.754877 . . . , 0.324717 . . .) (12.6)

where s = 1.8392 . . . is the real root of the polynomial of degree 3

t3 − t2 − t− 1 = 0.

In [CFL04] the authors studied also tori with other frequencies. We also refer to [HS95]

for a study of the breakdown of 2-dimensional invariant tori of the Froeschlé map.

We studied the case when λ1 = λ2 = 1 and λ12 = 0.001, starting from ε = 0. Recall

that for ε = 0, the system consists of two uncoupled integrable standard maps. Hence,

the invariant tori are given by the cross product of the invariant tori of each of the

subsystems, which are trivial (pi = cst, i = 1, 2). Using a continuation method we

computed the invariant tori associated to the frequency ωu in (12.6), for different values

of ε up to ε = 0.446. In [CFL04], the breakdown for this torus was estimated to be close

to 0.55.

Recall that we are computing and storing a function K of two variables. For the

computations we used N = 28 × 28 Fourier modes and one step of the continuation

method takes in average 4.5 seconds in an Intel(R) Core(TM)2, 2.15 GHz.

We only computed primary KAM tori, hence the matrix I in (3.6) is the identity. For

the case of secondary tori, there are different possibilities: we can take I = diag(1, 0) or

I = diag(0, 1), which correspond to invariant tori which in the case λ12 = 0 (the standard

maps are uncoupled) and λ1 6= 0 or λ2 6= 0 consist of the cartesian product of a primary

torus of one of the standard maps and a secondary torus of the other standard map.

Another possibility is to consider I = diag(0, 0), which in the case λ12 = 0 (the standard

maps are uncoupled) and λ1 6= 0 and λ2 6= 0, the invariant tori consist of the cartesian
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product of two secondary tori, each one corresponding to a secondary invariant torus of

each of the standard maps. It is clear how to obtain an initial guess to compute these

tori: we start with λ12 = 0 and we obtain the secondary invariant torus for each of the

subsystems using the method described in Sections 12.1.3. Then, we use a continuation

method increasing λ12.

In Figure 8, the angular components (q1, q2) of the invariant tori obtained are drawn

and one can see the metamorphoses with respect to the parameter ε.

While the breakdown of invariant curves is rather well understood for the case of 2-D

maps, there are very few results concerning higher dimensions. In the future, we plan to

pursue the investigations to study the breakdown of 2-D invariant tori of the Froeschlé

map for a wide range of frequencies.

12.2.2. Computation of whiskered tori. Recall that whiskered invariant tori for the Froeschlé

map are 1-D invariant tori with associated rank-1 stable and unstable manifolds. Start-

ing with λ2 = 0, λ12 = 0 and λ1 = 1 and ε small (in the computations we started with

ε = 0.01, so that the two standard maps are uncoupled), the whiskered tori are given by

the cross product of the hyperbolic fixed point of one of the coupled standard maps and

a primary invariant torus of the second one. Moreover, the stable and unstable manifolds

of the invariant torus are inherited from the ones of the hyperbolic fixed point. Therefore,

the invariant torus has constant tangent bundles, independent of θ.

In the next step, we set λ2 = 1 and λ12 = 0.1 and performed a continuation method

increasing ε by a step size 0.01. For the continuation method, the (un)stable bundle

computed previously is used as an approximation for the (un)stable bundle of the in-

creased parameter, to perform a change of coordinates to the cocycle in order to avoid

the straddle the saddle phenomenon discussed in Section 6.5. The computations used

N = 212 Fourier modes and reached up to ε = 0.87. Since these tori have rank-1 bun-

dles, we used the algorithms described in Section 6.6 and 7.0.1. In Figure 9 we display

the figures obtained. They correspond to the Froeschlé map obtained by performing the

change (p, q) = (−p,−q) in the map (12.5).
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Ergodic Theory Dynam. Systems, 19(1):61–100, 1999.
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[Rüs75] H. Rüssmann. On optimal estimates for the solutions of linear partial differential equations
of first order with constant coefficients on the torus. In Dynamical Systems, Theory and
Applications (Battelle Rencontres, Seattle, Wash., 1974), pages 598–624. Lecture Notes in
Phys., Vol. 38, Berlin, 1975. Springer.

[Ryc92] Marek Rychlik. Renormalization of cocycles and linear ODE with almost-periodic coeffi-
cients. Invent. Math., 110(1):173–206, 1992.

[Sac78] R.J. Sacker. Existence of dichotomies and invariant splittings for linear differential systems.
IV. J. Differential Equations, 27(1):106–137, 1978.
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