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Abstract

In this paper we study the motion of a charged patrticle in tlesgnce of a magnetic
field created by three different systems of wires: an infireilinear filament, a circular
wire and the union of both. In the first case we prove that theatons of motion are Li-
ouville integrable and we provide a complete descriptiotheftrajectories, which turn out
to be of helicoidal type. In the case of the circular wire wadgtsome restricted motions
and we show that there is a trapping region similar to the VdenAinner radiation belt
in the Earth magnetosphere. We prove the existence of geaisidic orbits using Moser's
twist theorem, and the existence of scattering trajecargng differential inequalities. We
also provide numerical evidence of Hamiltonian chaos ardth scattering by computing
several Poincaré sections, Lyapunov exponents, fraaghb and their fractal dimensions.
A similar study is done for the third system, although gussiodic orbits are proved to
exist only under certain (perturbative) assumption. Frobeniewpoint of the applications
we propose a magnetic trap based on these configurationtheFuore, the circular wire
system can be interpreted as a simplified model of the ledtatagnetic dipole, one of
the recent proposals to confine a hot plasma for fusion poeeergtion, and hence our
work provides a verification of confinement and quasi-pécidg beyond the adiabatic ap-
proximation, for this plasma system. Apart from contribgtio the rigorous theory of the
motion of charges in magnetic fields, this paper illustraies very simple magnetic con-
figurations can give rise to complicated, even chaotic ¢tajées, thus posing the question
of how the complexity of magnetic lines affects the comieri particle motions.
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1 Introduction

The study of the motion of a charged particle in a magnetid fils long been of interest in
several areas of physics, as condensed matter theory [[Lac88lerator physics [26], magneto-
biology [19], magnetohydrodynamics [7], plasma physi& 5] and stellar astrophysics [31].
In general it is not possible to integrate analytically tigg&ions of motion, and hence most
of the literature makes use of numerical tools [43] or adiatapproximations like the guiding
centre [30, 40]. Regretfully, if we want to obtain globaluks (for all time) or the field is far
from being uniform, the guiding centre approximation isitifd help, as illustrated with some
planar examples in [41]. Therefore, other techniques tdysthe qualitative properties of the
motion must be introduced.

In spite of the importance of the previously mentioned cxistethere are not many rigor-
ous results on the motion of charges in concrete magnetdasfieDf course, trajectories can
be obtained explicitly in the special case of a uniform fi€2@][ but this situation is rather
exceptional. Even in the case of perturbations of uniforngmesic fields it is very hard to
prove the existence of helicoidal trajectories, which halg been achieved for some particular



cases [12]. On the other hand, the Hamiltonian nature of tjuatens of motion (Newton-
Lorentz equations) allows us to apply some techniques framilionian systems, as KAM
theory or Moser’s twist theorem. For example, the proof efeélistence of quasi-periodic so-
lutions in the presence of the magnetic field created by al@i®tormer problem) and other
magnetic fields with rotational symmetry was first achieve@kaun in a remarkable paper [9],
using Moser’s twist theorem. Some refinements of this ide&applied to other axisymmetric
magnetic fields in [13, 39] to cover some cases for which Beaaipproach does not work.

Let us also mention that there is abundant literature on tbheom of charged particles
subjected to magnetic fields in closed Riemannian manifelds [11] and references therein.
These works are important in the context of differentialrgetry and dynamical systems, but
they will not be helpful to us because we shall consider thegsiglally realistic situation of
motions in Euclidean space, paying attention to the sowtte fields.

In this paper we are interested in magnetic fields createddaylg flows of electricity along
several wires. This is a standard way of producing magnetidgiin physics and electrical
engineering [24], and has the advantage that the field caadly eescribed in mathematical
terms using the Biot-Savart law [22]. The topological stawe (from the dynamical systems
viewpoint) of magnetic fields created by current filaments ba very complicated. Some
recent results on the existence of first integrals and chanse consulted in [2, 3, 17]. In
this work we shall not study the magnetic lines (a staticagitun), but the motion of a charged
particle in the presence of a magnetic field (a dynamicahsan). Contrary to what happens in
some plasma or force-free systems, where it is a good appatixin to consider that particles
follow magnetic lines [27, 32, 35], this is not the case harg] in fact we shall see that the
particle trajectories and the lines of the field are usuatiynpletely different. In general the
motion is described by a three degrees of freedom (3DOF) Haman system, which makes
very complicated to understand the connection betweentthetsre of the magnetic field and
the trajectories of a charged patrticle.

Since the study of the motion for general configurations aewis a formidable task, we
shall focus on the following specific examples: motion in finesence of a rectilinear wire, a
circular wire and the union of both. These are the simplest€#o consider, but we shall see
that they exhibit very interesting dynamical propertiagsisas the existence of periodic and
quasi-periodic solutions, scattering trajectories ofduitial type and chaos. It is surprising to
discover that, to the best of our knowledge, there is no kgetatudy of these systems in the
literature, with the exception of the straight line wire f@nich a complete description was only
given quite recently [42] (for partial results see [29]).

Let us summarise the main contributions of this work. On the band we study in de-
tail and obtain new results, both analytically and numésican some elementary but realistic
magnetic systems, thus filling a gap in the literature. Meeecthe circular wire can be inter-
preted as a simplified model of the levitated magnetic dipptem [23], one of the most recent
proposals to confine a hot plasma for fusion power generafibarefore, all our results on the
motion of a charge in the magnetic field of a ring wire traresiato this context, specifically
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they provide a rigorous verification of the existence of auerinent and quasi-periodic orbits for
this kind of systems, beyond numerics and adiabatic appraton (the usual tools to analyse
plasma confinement). On the other hand, concerning theawedtip between the complexity
of magnetic fields and the complexity of the motion, we previdimerical evidence that chaos
can arise even for very simple and ordered magnetic configns

The contents of this paper are organised as follows. In &s&iwe introduce some no-
tation and preliminaries. The motion in the presence of alireear filament is considered in
Section 3, where it is proved that all trajectories are oidoéial type and asymptotically move
in the same direction. This result was already obtained 2, [dut we provide a more concise
proof for the sake of completeness. In Section 4 we study thigomin the magnetic field of a
circular wire. The main results that we obtain are the eristeof a trapping region with quasi-
periodic solutions (similar to the Van Allen inner radiatibelt in the Earth magnetosphere [9])
and the presence of trajectories of certain type which estamfinity. An application in the
context of magnetic traps is also included. The coupledesygtectilinear and circular wires)
is analysed in Section 5, where we show the existence of pitrgpegion and quasi-periodic
trajectories under certain assumptions. In Section 6 wiperan extensive numerical study
of these systems, computing several Poincaré sectionksyapdinov exponents to illustrate the
presence of chaos. The chaotic scattering is also analysednbputing the fractal basins and
their fractal dimensions, thus showing the complex behawd the solutions which escape to
infinity. A final section is included to state some open proigeand future lines of research.

2 Notation and preliminaries

We consider the ambient spaé endowed with the standard inner prodyatector product\
and Euclidean norm- |. In this paper an electric wire will be represented by a simcatve
L C R? and a constanf which stands for the current intensity./If 7 € [a,b] C R — I(7) €
R3 is a parametrisation of the cunfe then the magnetic field created by the wir¢L, J) at
the pointg € R? is given by the Biot-Savart law,

pod [ 1) A (g = 1))
B =5 [ i

where 1o denotes the magnetic permeability constant. It is stantteatdthe vector fieldB
does not depend on the parametrisation.of According to the superposition principle the
magnetic field created by wires (L,, J;), ..., (L,, J,,) is given by the sunB = """ | B; of
the individual magnetic field®;. For the sake of simplicity we will set,/47 = 1 all along
this paper.

It is well known thatB is a divergence free vector field, analytic in the complenoénihe
current distribution. Following the standard terminolagelectromagnetism, we catiagnetic
linesto the integral curves aB andmagnetic surfac® a surface which is covered by magnetic
lines.

(1)



The equations of motion of a (non-relativistic) unit-massit-charge particle in the pres-
ence of a magnetic fiel& are given by the Newton-Lorentz law:

q:qAB(Q>7 (2)

where the dot ovey denotes, as usual, the time derivative. This equation cavritten equiv-
alently in a Hamiltonian way whenever there is a globallymksdi vector potentiall such that
B = rot A. If this is the case, the Hamiltonian functionfig(q, p) := 5(p — A(q))?. In all the
examples considered in this paper the vector potedtialglobally defined (in the complement
of the wires) becaus¢, B - vdx = 0 for any closed surfacé C R*\J L;, wherev is the
outward unit normal t& anddX is the standard area measuresof

A particle trajectory;(t) is called ofscattering typéf lim; .. |¢(t)| = co. A particular kind
of scattering trajectory(t) is calledhelicoidalif there is a unit vector. and constantst > 0
andB such thay(t) := n-q(t) verifiesq(t) > At+ Bforall ¢t > 0, andg, (¢) := q(t) — ¢(¢)
is periodic. This definition was introduced in [12] with theora restrictive assumption that
q(t) is constant. As this hypothesis is not generally fulfilled wewe decided to drop it. It is
clear that the image af(¢) in R? for ¢ > 0 resembles a “deformed helix” with axis in the
direction.

We will denote by(r, ¢,2) € Rt x S! x R the standard cylindrical coordinates ¥,
and by{0,, d,, 0.} its associated orthogonal basis of vector fields. Herestands for0, co).
Remember thad,| = [0,| = 1 and|d;| = r. We will make extensive use of this coordinate
system in what follows.

As usualK (k) andE(k), k € [0, 1), are thecomplete elliptic integral§l] defined by:

K(k) ::/Og \/FCIZTM), E(k) ::/Og\/l—k:siDQ(Q)dH.

Let us summarise some properties of the complete elliptegals which will be used in
forthcoming sections:

1. K(0) = E(0) = n/2.
2. limy_1- K(k) = o0, limy,_1- E(k) = 1.

3 dEK(k) _ _B(k) K(k) dE(k) _ E(k)-K(k)

dk — 2k(1—k) 2k dk 2%k

4 K(k)=2(1+5 4% L O4?), E(k)=2(1-% -3 _0O®Fk?), fork=~0.

3 Motion in the magnetic field of an infinite rectilinear wire

Let R be an infinite rectilinear filament carrying a current of img#ty /. The Cartesian coor-
dinates can be chosen in such a way Ras given by thez-axis, and the current is flowing in
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the positive direction, so that; > 0. The magnetic field created by this wire is given by the
following expression [22]:

2Jr
BR = 7(‘% .

It is clear that this vector field has the symmetrigs = 0, (translation) andS, = 0,
(rotation), and hence the integral curves®{ are circles around the-axis.

We are interested in the motion of a unit-charge, unit-massgbe subjected to the mag-
netic field Bz. The interest of this problem lies in the fact that it is a pbgdy meaningful
3DOF Hamiltonian system which can be integrated by quacdkaia rather unusual property.
Surprisingly, the only reference that we have found where $listem is studied in detail is
quite recent [42]. For the sake of completeness we will gle\a more explicit proof of the
main results in [42], emphasising the integrability of thetion. This system is also studied in
[29], but only partial results concerning the motion in theoordinate are obtained.

Let us see that the Euclidean symmetries give rise to twopeadeent first integrals of the
motion, thus allowing us to obtain a complete qualitativealgtion of the particle trajectories.
There is no loss of generality in assuming thd, = 1, otherwise the equations are reduced to
this case just doing the time-scaling= 2.Jzt. Then, Newton-Lorentz Egs. (2) in cylindrical
coordinates read as:

Z

i —rd? = - 3)
2+ 2rid =0, (4)
5=" (5)

r

As usual, the kinetic energy := (7% + r2¢? + %) is a conserved quantity of this system.
Furthermore, integrating Eqgs. (4) and (5) we get two adddidirst integrals of the motion, the
generalized angular and linear momenta:

Li=r%, (6)
P:=zZz—Inr. (7

Therefore the motion is restricted to the level Sets= Ey, L = Ly, P = P, } for constants
Ey, Lo, Py € R determined by the initial conditions. Writing the first igtals in phase space
coordinatesr, ¢, z, p,, ps, p-) We haveE = 1p? + sL5p2 + 5(p. +1Inr)?, L = psy andP = p..

It is readily checked that these functions are in involutol almost everywhere independent,
so the system is Liouville integrable. Let us now integrats/iquadratures.

Using Egs. (6) and (7) we can eliminate the dependence ondbelioatesy and z in
Eq. (3), thus reducing the motion to an equation initleeordinate:



%7’“2 +U(r) = Ey, (8)

where the effective potentiél(r) is
o L (Py+1Inr)?
U(r) = 52 + 5 :

It is easy to check thdim, o+ U(r) = lim,_., U(r) = oo, and thatU(r) has a unique
global minimumr,,, and a unique inflection point > r,,. This implies that all the solutions
r(t) to Eq. (8) are periodic. The period of each solution depemdthe constant&,, L, and
Py, and is defined by a smooth functi@p := T'(Ey, Lo, Fy), which can be extended smoothly
to the constant solutiongt) = r,,.

Since the coordinate is always bounded we get that a solution to Egs. (3), (4) ahas(5
bounded if and only if the coordinateis. If r(¢) is a solution to Eqg. (8), we can integrate

Egs. (6) and (7) to yield
B b Lodt
o) =+ [ 5.
2(t) = z0 + Pot + / Inr(t)dt.
0

As r(t) is a periodic function of periody, it is standard that the following identity holds

t
/ Inr(t)dt = pot + G(t),
0

wherey == TLO fOT" Inr(t)dt andG(t) is a periodic function of (not necessarily minimal) period
To. Note thatu, is a smooth function of’y, Ly, P, becauséd}, andr(t) depend smoothly on the
constants of motion. Accordingly, the solutieft) is bounded if and only if the equation

Py +po=10
holds in the space of paramet¢is,, Lo, ).
Lemma 3.1. For any values of the constants of motidt, Lo, %), with £, # 0, we have that

P0+M0>0

Proof. First let us observe that this inequality is straightforaviir-(¢) is a constant solution of
2 4
Eq. (8), given byr(t) = r,, andEy = Ly + 10 In this case, a®, # 0 implies thatL, # 0,

2r2, Tﬁn
we have that
L
Py+po=FP +1Inr, = = > 0.
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Otherwise, let_ andt, be the time values where the solutigi) reaches its minimum and
maximum respectively, assuming that< ¢t < t, < Ty. Then, using that(¢) satisfies the

Newtonian equatiofi = f—g% — fotlnr associated to Eq. (8), we writé + 4 as

T% /f [T(Lj2 — r(0)F()]dr.

Integrating by parts the second summand of the integralegglamd taking into account that
r(t-) = r(t;) = 0 we finally conclude that

Py + 2/t+[L(2) +'(t)2}dt>0
e T
0 /’LO TO . T(t)2 )

as we wanted to prove. O

This lemma implies that the coordinaté) grows linearly int whent — oo and hence
all the particle trajectories move in the positis@xis direction after some transient of time no
bigger thanTy. Consequently, if the angular momentum # 0, for every initial condition
there existg, < 7T, such that fort > t, the trajectory of the corresponding charged particle
moving under the action dBy is helicoidal: periodic in the-coordinate, linearly increasing in
the z-coordinate (unbounded) and turning around tkexis. Let us remark that the motion in
the coordinate space is confined to the region enclosed bgytivalers of radiir(¢_) andr(t)
respectively, which depend on the constald§sL,, F,. If Ly = 0 the solution has no angular
velocity, i.e.¢ = 0, and the motion takes place on a half-plane ¢, determined by the initial
condition. In this case, the initial conditiop = e¢~"* corresponds to an equilibrium solution,
i.e. Ey=0.

Helicoidal motions withZ = 0 were also obtained in [12] studying perturbations of umfor
magnetic fields. The main difference is that the helicoidgéttories in systerR are oscillat-
ing because does not need to be positive for all> 0 (the constant, + i is perturbed by
a periodic function which changes its sign). In Fig. 1 we hapmesented some trajectories in
R? to illustrate the different possible behaviours.

4 Motion in the magnetic field of a circular wire

The flow of electric current along a closed filament is one efshmplest ways to generate a
magnetic field. In this section we provide a detailed anedytstudy of the motion of charges
in the magnetic field of a circular wire, a system which hasnbesry poorly studied in the
literature in spite of its importance for applications. Egample, let us mention that this system
provides a toy model for the so called levitated magnetiol@i23], a device to confine a hot
plasma for fusion power generation. All our results can themterpreted in this context.

First, in Section 4.1 we describe the magnetic field and thmatons of motion, showing
the existence of an additional first integral. Some 1-dinweras and 2-dimensional restricted



10

@ =0 (b) % = 0.5 (©) 2= —0.5

Figure 1: Particle trajectories of helicoidal type aroundrfinite rectilinear wire. The initial
conditions are’y = 1, zo = 0, o9 = 0, 79 = 0.1, ¢9 = 0.1. For clarity, the direction of the
current is marked with an arrow in all pictures.

motions are studied in Section 4.2. In Section 4.3 we proeesttistence of trapping regions
of toroidal shape, which are similar to the plasma confingmegions in a levitated magnetic
dipole, and the presence of quasi-periodic solutions iedltmmains. The technique of proof
is adapted from [9] and consists in applying Moser’s twistitem after some manipulations of
the Hamiltonian. These trapping regions have similar prigeeto the Van Allen inner radiation

belt in the Earth magnetosphere, which suggests the apphcaf this system to construct a
magnetic trap, a possibility which is discussed in Secti@n Einally, in Section 4.5 we prove

the existence of trajectories escaping to infinity.

4.1 Preliminary results

Without loss of generality one can assume theta circular filament defined by the coordinates
(r = 1,z = 0) and carrying a current of intensit{x > 0 in the direction of the vector field
J,. The magnetic field created by this wire can be explicitlytten in terms of the complete
elliptic integralsK (k) and E(k), cf. Section 2, as follows:

By — Je0.1(r, 2) b — JeOI(r, 2) o, )
T T
where!(r, z) is defined as
I(r,2) = —/(L+ )2 + 22 [(2 KK — 2B(k%)] (10)
4r

k2= (11)

(1472422



J. Aguirre, A. Luque and D. Peralta-Salas 11

This formula for the magnetic field of a circular wire is olotad taking into account that
the vector potential = Ay(r, 2)9, is related tol (r, z) asI(r,z) = —r?A4(r, z), where the
expression ofd,(r, z) is the one shown in [22]. Note thak is an analytic vector field iiR*\C.

It is easy to check that the angleand the functior/ (r, z) are first integrals oB.. In the
following lemma we provide a topological characterizatafrthe level sets of (r, z).

Lemma 4.1. The level setd '(¢) ¢ R x R are diffeomorphic toS' around the point
(r =1,z = 0) for ¢ € (—00,0) and the only degenerate level is'(0) = {r = 0}. The
corresponding surfaces iR?® are revolution tori.

Proof. First, we observe thabB. # 0 at every point, which implies via Eq. (9) th&t/ # 0 in
RT\{0} x R. In addition, we note that*> € [0, 1] for any(r, z) € R* x R and thatV7 = 0 on
the line{r = 0}.

From Property 2 in Section 2 and(C) = 1 it follows thatlim¢ I(r,z) = —oo, thus
implying that the level sets of nearC are closed curves. Usigm. k% = lim,_ok* = 0
and the Taylor serie§€2 — k?)K (k?) — 2E(k*) = =w/16k* + O(5) aroundk = 0 (use the
expansions given in Property 4 of Section 2) welpet ... I(r, z) = lim,_ I(r,z) = 0. Let
us now prove thaf (R*\{0} x R) < 0. On account of Eq. (10) it is enough to show that
(2 — k)K(k) — 2E(k) > 0for £ > 0. Indeed, from the definitions ok (k) and E(k), cf.
Section 2, we obtain

™2 cos(26)df B
o V1—ksin?0
B k( cos(20)db /4 cos(m — 20)d«9>

Viksi?o o VI—Feostd )

(2 — k)K (k) — 2E(k) = —k

Since <=2 < <=l for ¢ € [0, x/4) the claim follows, thus establishing that

\/17]6 sin? 6 Vi-ke
all the regular level sets df(r, z) are compact, so they are closed curves. It is clear that if we
consider also the angular varialkléhese sets become revolution tori. O

A straightforward consequence of Lemma 4.1 is that the matemurves ofB. are circles
aroundC except for thez-axis, which is a magnetic line oriented in the positive clii@n.

Next we describe the equations of motion for a charged partioving under the action of
Be. Unless otherwise stated, we shall assume in all this settiat./. = 1 because we can
always reduce to this case by doing the scaling of time J.t. Accordingly, the Newton-
Lorentz equations of motion of a unit-mass, unit-chargéigarsubjected to the magnetic field
Be, written in terms ofl (r, z), are the following:
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7 — rgz.SQ = —q.b&«](r, z),
7“295 + 27‘7'“925 = 20,1(r,z) +70.1(r, z), (12)
5= —$d,I(r,z).

The kinetic energy? := 1 (72 + r2¢? + 2?) is a conserved quantity of this system of equa-
tions. Furthermore there is a second first integral (gerzedilangular momentum) which can
be obtained integrating Eq. (12):

L:=r*—1(rz).

The initial conditions provide a valui, for this constant of motion, and therefore, proceed-
ing in the standard way, we can reduce the equations of mati@ntwo degrees of freedom
(2DOF) Hamiltonian system defined on the half-plane:) € R* x R, whose Hamiltonian
function is:

1
H(r,z,pp,p:) = 5(pr +p2) + V(r,2), (13)
2

with

(Lo + I(r, 2))?
2r2

playing the role of an effective potential energy of the peal. The motion in the physical space

R3 is obtained from solution&-(¢), z(¢)) of this 2DOF Hamiltonian system just integrating the

first order differential equation:

V(r, z) = (14)

. Lo+ 1I(r(t), 2(t))
¢ = r(t)? '

Hamilton’s equations of motion associated to the Hamilariunction (13) read as follows:

) ) (Lo + I(r,2))*  (Lo+ I(r,2))0,1(r, z)
r= p’l” ) p?“ = 7”3 - 7”2 )

(Lo+ I(r,2))0.1(r, 2)

r2

zZ= Dz, pz = - .

Our goal in the following sections is to provide a rigorouslifative study of these equa-
tions, in particular to prove the existence of periodic,siyeriodic and scattering motions. In
spite of the simplicity of this system it contains some feasof non integrability and chaos, as
will be illustrated with numerical studies in Section 6.
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Figure 2:(a): Sections at = 0 of the potentialV’ (r, z) with Ly = —1,0,4. (b): We plot the position of the
saddle point,; (logarithmic scale in the right axis), obtained from Eq.)Jahd its corresponding escape energy
Eescape = V (rar,0) (left axis), as a function aL.

4.2 Some particular motions: trajectories on the invariantplane
A simple computation shows that the restriction/f (cf. Eq. (9)) to thez-axis looks as

2m
BC|r:0 - maza
which readily implies that a particle with initial condificon thez-axis and initial velocityz,
tangent to this axis, has the equation of motios 0, and so it moves freely along theaxis.
In the standard terminology of mechanics it is said that#ais is an invariant set of the
Newton-Lorentz equations of motion [16].

On the other hand, it is also ready to check tRat.—, is orthogonal to the plangz =
0}. Indeed an easy computation using that(r,0) = 0 implies thato,(r,0) = 0, and the
result follows from Eq. (9). Hence, we have tHat = 0} C R? is also an invariant set of
the motion. In the phase space z, p., p.) this is equivalent to the invariance of the plane
{z = 0, p. = 0} under the Hamiltonian vector field defined by Eq. (13). In #&stion we shall
focus on studying the motion on this invariant plane, whidh provide a first understanding
of Hamilton’s equations associated to Eq. (13).

The reduced motion ofiz = 0,p, = 0} is described by the following 1DOF Hamiltonian
system:

H(r,p,) = %pf + W(r), (15)
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with W (r) == V(r,0) = Ltl0OF "and hence the qualitative study of the solutions to the

corresponding Hamilton’s equations can be made throughrthlysis of the effective potential.
The following lemma provides a full description Bf () in terms of the parameté.

Lemma 4.2. The function¥/(r) is analytic in(0, 1) U (1, co) and satisfies these properties:
1. W(r) > 0for any Ly.
2. lim, 1+ W(r) = oo andlim, ., W(r) = 0 for any L.
3. lim, o+ W(r) = oo if Ly # 0 andlim, o+ W (r) = 0 for Ly = 0.

4. If Ly > 0, W(r) has two local minima a6 < r,,, < 1 andr,, > 1 of value0 and
one local maximum aty; > r,,,. W(r) has neither local maxima nor minimaif, = 0
(except at = 0), and whenl, < 0 it has only one local minimum af,, < 1 of positive
value and no local maxima. This structure is illustrated ig.R2(a) for some particular
cases.

5. The escape energy is defined whgn> 0 as Eecape == W(ry) = V(ra,0). The
maximum point,, is decreasing withl,, while E..p. IS increasing, see Fig. 2(b).

Proof. Using the definition ofV/(r) and Lemma 4.1 it is easy to show that Properties 1, 2 and
3 hold. To prove Property 4 we compute the derivativéldfr), which is

Lo+ 1(r,0))(rd.1(r,0) — I(r,0) — Lo)

r3

W'(r) = (

Y

and study its zeros. If, > 0 the local minimar,,, andr,,,, are given byL,+ I(r,0) = 0, while

the local maximum verifies the equatiod, I (r,0) — I(r,0) = L,. WhenL, < 0 the function

Lo + I(r,0) is strictly negative andd, I (r,0) — I(r,0) — Ly = 0 has one solution at,, < 1,
see the graph of the functiow, I (r,0) — I(r,0) in Fig. 3(a). In the casé, = 0, W’(r) # 0 for

r > 0andW(0) = W’(0) = 0. Finally note from Fig. 3(a) that the radiug; solving equation
ra0-I(rar, 0) — I(ra, 0) = Lo is decreasing withl, (the same happens witt),). Moreover
|0,1(r,0)| is decreasing with provided that- > 1 (cf. Fig. 3(b)) and hence the escape energy

Fescape = M is decreasing with,,, so increasing witlhL, wheneverZ, > 0. O

This lemma allows us to describe the solutidn&), p,(¢)) of the 1DOF Hamiltonian sys-
tem (15), and integrating the equation

T L() + I(T(t), 0)
¢ = r(t)? ’

one easily obtains the motion on the plgne= 0}. Let us summarise the main features of this
motion which are obtained as a straightforward applicatibhemma 4.2. The most relevant

consequence is the existence of periodic, quasi-periodicsaattering trajectories of particles

when moving on the invariant plane with enery and initial conditionr.
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1. If Ly > 0 andr, < 1, then the solutiom(¢) is periodic of periodl'(H,) and there exist
constant$) < r; < ry < 1 such that; < r(t) < r,. This implies that the motion on the
plane{z = 0} is periodic or quasi-periodic depending on whetbefT'(H,) is rational
or not.

2. If Ly > 0 andry > 1 we distinguish among several casesHlf < FEegcape andry < rpy
the solutionr(¢) is periodic, while ifr, > r), the solution is unbounded (scattering
orbit). If Hy > Eescape the solutionr(t) is unbounded for any initial condition, that is
why W (7)) is called escape energy. In the limit ca8g = Eescape there are 3 solutions:
an unstable constant solutionat= r,;, a bounded solution which accumulates over
r = ry and a scattering trajectory. For any valuesthfandr it holds thatr(t) > 1.
The unstable constant solutiotit) = 7 for Hy = Eescape gives rise to an unstable
periodic motion on{z = 0}. The other solutions provide periodic, quasi-periodic and
scattering motions on the invariant plane.

3. If Ly = 0 andry < 1 then the solutiom(t) is periodic for any value off,. On the other
hand, ifr, > 1 the solutiorn(¢) is unbounded. This fact provides periodic, quasi-periodic
and unbounded motions on the invariant plane.

4. If Ly < 0 andry, < 1, the solutionsr(t) are periodic of period’'(H,) and verify
0 < r(t) < 1for any Hy. In fact there is a stable constant solutign) = r,, when
Hy = W(r,,) > 0, which provides a periodic motion ofx = 0}. The other periodic
solutions provide periodic motions on the plafre = 0} if 27 /T (H,) is rational, and
quasi-periodic otherwise. Finally,if > 1 all the solutions escape to infinity, thus giving
rise to scattering trajectories on the invariant plane.

Next we show that the invariant plage = 0} is unstable. Indeed, taking into account that
0.1(r,0) = 0, cf. Section 4.1, the potenti& (r, z) in Eqg. (14) admits the Taylor expansion
V(r,z) = W(r) + 2222 1+ 0(2%), with

1
F(r):= r_2(LO + 1(r,0))0.,1(r,0).
The Newton-Lorentz equation for the variablés hencez = —F(r)z + O(z?), which at first
order inz is an equation of harmonic oscillator type. This impliest tifie normal variational
equation around a periodic solutioft) of Eq. (15) reads as

Z=A(t)z, (16)

where A(t) := —F(r(t)) is a periodic function of period’. Sinced..I(r,0) = r0,B,(r,0)
on account of Eq. (9), an®,.(r,z) < 0if z < 0andB,(r,z) > 0if z > 0, it easily follows
thato,.I(r,0) > 0. Therefore, whenevet, < 0, we have thati(¢) > 0, and hence it is clear
that the constant solution = 0 to Eqg. (16) is unstable. If, > 0 the functionA(¢) has no
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Figure 3: (a) Graph of the functior), /(r,0) — I(r,0) with respect tor. (b) Graph of the
functions|o,1(r,0)| (upper plot) and (r, 0) (lower plot). Dotted lines are plotted to show that
|0,1(r,0)| is different for the two values of that solve the equatiof(r,0) + Lo = 0. For
the sake of completeness let us observe #hatr,0) = |0,1(r,0)| for » > 1, ando,I(r,0) =
—|0 L(r, 0)] if r < 1.

constant sign (however it can be proved tﬁgtA(t)dt > (), and we have not been able to
prove instability although this is confirmed by numericahquutations.

Summarising, we conclude that (because of instabilitlesotion restricted to the invari-
ant plane{z = 0} does not provide a qualitative picture of the dynamics inalmgregion of
this plane. Accordingly, we need to look for stable invarisets admitting a good perturbation
behaviour to prove the existence of bounded and quasigiemaotions. This is the goal of the
next section.

4.3 Existence of quasi-periodic solutions

In this section we shall prove the existence of quasi-p@riotits for the Hamiltonian system
defined by Eqg. (13). These solutions give rise to quasi-garimotions inR? which are not
contained in the invariant planfe = 0}. Our approach makes use of a technique introduced
by Braun in [9], consisting in studying the motion near a gloton-isolated minimum of the
Hamiltonian. After suitable scalings and canonical transfations the problem is reduced to
a perturbation of a 2DOF integrable Hamiltonian with one lsfrequency, in such a way that
Moser’s twist theorem can be applied to a suitably defined-preserving map.

First, let us describe some properties of the poterfial, ), cf. Eq. (14). It is obvious
thatV'(r,z) > 0 for any (r,z) € Rt x R. The computation of the following limits is also
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straightforward:
lim+ V(r,z) =00 if Ly # 0 and0 if Ly =0,
r—0
rﬂlir?HOV(r, z) = 00,
lim V(r,z) =0.

r—00

On the other hantim,, V'(r, z) does not exist, which in this case just reflects thét, =)
has unbounded level sets. The critical point$/¢f, z) are given by:

1. If Ly > 0, the potentialV/(r, z) has a global degenerate minimum given by the closed
curve{Ly + I(r,z) = 0}. This curve encloses a region which contains the point
1,z = 0), and its diameter tends t® as L, tends to0. Conversely, wherl, grows the
curve shrinks, and it collapses over the pdint0) in the limit. ForL, = 0 the zero-set
of V(r, z) is thez-axis, while forL, < 0 the potential does not have any local minimum
and it is strictly positive.

2. ForeveryL, € R, the potential has a non-degenerate saddle point0) defined by the
equation
TMarI(TM, O) — I(TM, O) = Lo- (17)

Note that forL, > 0 (Lo < 0), the saddle,; obtained from Eq. (17) corresponds to
the maximumr,, (minimum r,,) of the reduced potentidl/(r) that we computed in
Lemma 4.2. In particulat;y, > 1if Ly > 0,7y < 1 for Ly < 0 and there is no saddle
point whenZ, = 0 (r;; degenerates to 0). The saddle point is very important becaus
the change of topology of the level setslofr, z) exactly happens on the curve of value
V(rum,0). Recall from Lemma 4.2 that (r,,, 0) is called the escape ener@s.pe. In

Fig. 4 the potential/ (r, z) is plotted for three different values éf, to illustrate the three
different behaviours depending on the sign gf

When L, > 0 the HamiltonianH, cf. Eqg. (13), has a global minimum on the curve
I'r, == {I(r,z) = —Ly,p, = 0,p, = 0}. The points inl';, are hence equilibrium positions
of the motion, and the level sets &f nearl';, are compact submanifolds diffeomorphic to
St x S%. The limit energy which guarantees confinement is the eseBPEY Fescape because
it is the value for which all the connected component§¥{r, z) = c}, ¢ > FEescape DECOME
unbounded. Hence for valué) < Eecape all the motions are bounded because they remain
on a compact energy surface, provided that the initial d@mdis in the bounded component of
Hil([oa Eescape))-

In the configuration spad®® (i.e. including the coordinatg), the region of allowed motions
is given by{V (r, z) < Hy} x S*. Therefore we can define thepping regionas the bounded
component of the set

{V(r,2) < Eoseape } X S*,
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Figure 4: Graph of the potenti&l(r, =) for several values of.

which depends o, and is diffeomorphic t&' x S' x (—¢, ¢). This region contains the torus
{I(r,z) + Ly = 0} x S'. This is similar to the Van Allen inner radiation belt in theufh
magnetosphere, and the possibility of using it to cons@uontgnetic trap will be discussed in
Section 4.4.

Let us observe that wheh, < 0 all the connected components of the reg{dn(r, z) <
H,} are non-compact for an¥f, > 0, and hence all the motions are unbounded (for a proof
see Section 4.5), except for some periodic and quasi-peti@jectories on the invariant plane
described in Section 4.2 and possibly a null-measure sstdauthis plane. For this reason we
shall restrict to positive values df,. The following theorem shows that the trapping region
contains many quasi-periodic motions.

Theorem 4.3. For any value ofl,, > 0 there exist quasi-periodic solutions of the Hamiltonian
system defined by Eq4.3) and(14), i.e.

(Lo + I(r,2))?
22 ’

1
H(T,Z,pr,pz) = i(pq% +p§) +

(18)
at a distances of I';,.

First, we introduce local coordinates around the degeaenatimum curve((r, z) + Lo =
0}. To this end, we consider an analytic functibh: U — S! which is orthogonal td, i.e.
VF-VI=0inU. Here the domaity C R* xR is a tubular neighbourhood &1 (r, z) + L, =
0}. Itis clear that one can choo&esmall enough so th&f, F') diffeomorphically map#/ onto
(=Lo—0,—Lo+0d) xStandI(c;) 2 {c;} xS, F~(co) & (= Lo — 6, — Lo+ 8) x {co} for
anyc; € (—Ly —d,—Lo + ) andc, € S'. Now let us consider the generating function

G(r,2,p2,py) = F(r,2)pe + I(1, 2)py,
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which is defined iV x R2. This yields the symplectic transformation

x=F(rz),
y=1(rz2),
pr = 0 F(r,2)ps + 0, 1(r, 2)py
p. = 0. F(r, 2)ps + 0.1(r, 2)py ,

(19)

mappinglU x R? onto (z,y, p.,p,) € S* x (—Ly — 6, —Lo + &) x R% In terms of the new
coordinates, the Hamiltonian reads as

(Lo +y)?

1
H(x,y, peypy) = g(thi + hapy) + 2r2(z,y)

wherehr(z,y) := (VF)*(z,y) andh;(z,y) := (VI)*(z,y). In these coordinates the curve
', isgiven byS! x {—Ly} x {(0,0)}. As we discussed previously, there is a region of bounded
solutions near the curve;,,, which corresponds to small values of the energy. This regam

be studied introducing the scaling

r=cX,
y+ Lo=¢Y,
Pz = €PX
Py = Py,

which gives rise to the new Hamiltonian

HE(X7 Y7 pX>pY) = 672H(€Xa ey — LO> EPXx, 8pY)
Y2
2r2(eX,eY — Ly)

1

=3 <hF(5X, eY — Lo)px + hr(eX,eY — Lo)pi) +
1 , 1 , 1 ,

= éa(eX)pX + ib(eX)pY + 50(5X)Y +e9(X,Y,px,py;€).

To obtain the last expression we have expanded the fundtiens y), h;(x,y) andr—2(x, y)
aroundy = —Ly, i.e. hp(x,y) = a(x) + O(y + Ly), hi(z,y) = b(x) + O(y + L) and
r~2(z,y) = ¢(x) + O(y + Lo). In the scaled variables the remaining terms are of the form
O(y + Lo) = eO(Y;¢), and putting all together we get the functiof( X, Y, p., py;¢). Let us
observe that the functions b, ¢ : S' — R do not vanish becaugd/1)?, (VF)? andr—2 are
never zero on the curd (r, z) + Lo = 0}.

Neglecting the perturbative teray, the HamiltonianH. is of harmonic oscillator type in
the variablegY’ py). This suggests to introduce the following generating fiamct

_ c(eX)

S(X,}/,pi,pg) = U(éX)1/4ng + Xps, U(éX) : b(EX) )
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in order to write this harmonic oscillator in a canonicalnforThe resulting symplectic trans-
formation, which is given by

X =7,

Y =w(ed) g,

px = D5+ Ev’(gx) i
X C 4w(er) Y

py = v(ed)py,

allows us to write the Hamiltonian in the form

o 1 1. i o
H.(%, 7, pz: py) = 5a(e2)p; + 5b(e7) (pf; + yQ) +£9(Z, 9, ps, Py €),

whereb(cz) := /b(ei)c(e).
If we introduce the “action” variabl&; =
we end up with the Hamiltonian

5(p2 + %) associated to the harmonic oscillator

~ 1 ~
HE(‘%> elapfca Rl) = éa(g‘%)p?c + b(g'ﬁ)Rl + 8?](1’, 917p§:> Rla 5)‘

In order to apply Moser’s twist theorem it is convenient t@iege the parametrisation of
time. The way of doing this, preserving the Hamiltonian elcter, is to define a new Hamilto-
nian function

H.(%,01,pz, R1) — h
Fs,h(i'76.l>p§:aRl) = (‘T’ 1~7p~ Rl) :
b(e)
It is clear that the Hamiltonian vector field associated'tg on the leve F_ = 0} is
proportional to that offf. on the level{ H. = h}, the proportionality factor being(cz)~".
So we can study the solutions of the Hamiltonidn by fixing a constant and studying the

Hamiltonian

alex) h .
FE =R+ — T = +ée ZL’,@,@;,R;?E,
h 1 Qb(gj)p b(e7) 91(7,01,p 1;€)
whereg, := §/b. Neglecting the perturbative terfn, the HamiltonianF. ;, is integrable, and
hence it is relevant to study the solutions of the 1DOF Hamiln system

a(ex h
O o Y N (20)
2b(e) b(e)
on the cylinderz, p;) € S' x R.
Lemma 4.4. The functiorﬁ(zs;}’:) : St — R is not identically constant for any value 6f > 0,
and hence it reaches a maximum and a minimum valu&' on
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Proof. By definition we have thai(<) is written in the original coordinate, z) as

[VI(r,

z)|
, ‘{I(T,Z)JFLO:O} = [Bc

b= H{I(r,z)—i—LOZO} )

where Eq. (9) has been used to get the last equality. Theréfaurns out to be the Euclidean
norm of the magnetic field. on the magnetic lin¢(r, z) + Lo = 0}. To prove thatB.| is not
constant on any magnetic line, it is enough to consider ttexsaction of{ I(r, z) + Lo = 0}
with the r-axis, which defines two values offor eachZ, > 0, denoted in Lemma 4.2 by
Tm, < Tmy. Itis clear from Fig. 3(b) thato,.(r,,,0)| > [0.1(rm,,0)|, which implies that

| Be(7my, 0)| > |Be(rm,, 0)|, and hencéBe| cannot be constant on the lifié(r, z) = Ly}, thus
proving the stated result. ]

A straightforward computation shows that the critical geiof the Hamiltoniar¥?, on the
cylinder (i, p;) are given by(i, 0), with i satisfying the equatiobl (c#) = 0. On account of
Lemma 4.4, there are, at least, two solutions to this equatiee one which corresponds to the
global minimumz,,, of E(zsfé) onS!, and the one corresponding to the global maximiynof
b(ex).

It is easy to check that fok > 0 the point(z,,, 0) is a local minimum off?,, while the
point (Z,,,0) is a saddle point, and converselyhif< 0. Let us fix, without loss of generality,
a positive value for the constant From this analysis we conclude that the phase portrait of
the Hamiltonian vector field defined b‘?gh has a critical point of centre type ét,,,0), and
the boundary of the corresponding periodic region is a safidip formed by the stable and
unstable components of the critical poiat,, 0).

This allows us to define an action variablg associated to the coordinatés p;) in a
periodic region o’ngh, which yields the following expression for the Hamiltoni&yy,

F. =Ry + f(eR2) +€§2(61, 602, Ri,eRy;€) ,

which verifies the condition
1"(eRs) # 0. (22)

This is because the frequency of the periodic solutionsencémtre region oth is given by
ef'(eRy). To see that this function is not a constant just note thap#red tends to infinity
when approaching the boundary of the centre domain (thdessmtnp).

The corresponding equations of motion are

01 =1+ e, G2,

02 = cf'(eRa) + €%0-p, 02 ,
R1 = €0y, Ga,

Ry = €05, 35 -
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Now we consider the Poincaré section defined fhyy= 0} on the submanifold 7., = 0}.
First, we eliminate the variabl&, from equationF; ; (62, 61, Ry, cR2;¢) = 0 and, usingd; as
independent variable insteadothe equations of motion give rise to

df

d_«92 = ef'(cRs) 4 €2A1 (0,01, Ry €)
1

dR

Wi = 8142(02, 91, 5R2; 5) )

so we compute the return map by solving this non-autonomyaier® of differential equations
for 6, andR,. A formal integration of these equations frégin= 0 to 6; = 27 defines the return
map on the chosen Poincaré section. This is a symplecticwhagh in coordinatesy := 6,
andJ := R, reads as

e a+ef'(J)+ O(e?)
Ma‘((])'—>< J + 0(e?) )

This map is a perturbation of ordet of a twist map with small rotation number of order
e. Since the non-degeneracy (or twist) condititf{./) # 0 is fulfilled (recall the argument
following Eg. (21)), this is enough to apply Moser’s twisetirem to)M. because the pertur-
bation is small compared to the twist’(/), cf. [9, 36]. Therefore, taking into account all the
previous discussion, we finally conclude the existence akgperiodic solutions provided that
e is sufficiently small, as we desired to prove. In fact, frora firevious analysis it is standard

(using Poincaré-Birkhoff fixed point theorem for pertuibas of twist maps) to conclude the
following.

Corollary 4.5. For any value of_, > 0 there exist periodic solutions of the Hamiltonian system
defined by Eq(18) at a distance: of Iy, .

4.4 Atechnical application: magnetic traps

As discussed at the beginning of Section 4.3, the saddle goien by Eq. (17) defines a
trapping region for the motion of a charged patrticle in thgn®ic field created by a loop wire.
This domain depends on the valuelgf and it is given by a tubular neighbourhood of the torus
{I(r,z)+ Ly = 0} x S' C R?. The limit energy for which we have confinementis.,.. Let
us now show how this escape energy can be modified by chartggngutrent intensity/., so
that some scattering trajectories can become bounded.

The use of a circular wire to construct magnetic traps hasg taadition. In the typical
constructions, another field (electric or magnetic) is sppged to the magnetic field of the
wire to trap neutral atoms [34, 44]. The interaction is by nseaf the magnetic moment of the
atom, and the trapping region is a narrow cylinder along:tagis. Similar trapping regions
have been obtained for charged particles with magnetic mgmdnere a magnetic bottle can
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be constructed near the centre of the circular wire, cf. 8&xtion VI-D], [21]. The magnetic
trap that we shall describe below is completely differeribh&se ones, and as far as we know, it
is new. Itis based on the trapping region that we proved tst @xSection 4.3, and the magnetic
bottle that we create this way is a toroidal annulus arouadhine.

All along this section we assume thiag > 0. Let us consider a charged particle with initial
condition(ro, zo, ¢o, 70, 20, 9250) moving under the action dB.. The current intensity is relevant
for our analysis, so we shall write it explicitly in all therfaulae. Then, the particle motion can
be described as a solution of the Hamiltonian system

(Lo + JeI(r,2))?

212 ’

1
5(1)3 +p)+V(rz),  V(rz)=

H(r, z,pr, pz) = (22)
whereL, = r§¢50 — Jel(ro, 20) @and Hy is determined by the initial condition.

Assume that at certain time the position of the charge {81, ¢1, 21) € 7, and the velocity
is (71, ¢1, 21). The domairZ is the trapping region defined in Section 4.3, that is

T := bounded component i, z) € RT x R: V(r, 2) < Fegcape} X S'.

The charge reaches this position if we send the particle enérgyHy > Eescape IN the
direction of the trapping region. However, note that thergbas not trapped and eventually
escapes to infinity, possibly after some transient of tim@region of confinement. Now the
idea is to change the current intensity in order to modify éseape energy, thus getting the
desired trap. For the sake of simplicity we will assume a sadzhd small change of intensity,
neglecting the creation of an electromagnetic field in tloe@ss and radiative phenomena.

If at t;, > 0 we change the current intensity frofg to J;, we get that the constart,
changes as ) . ) )

Lozrfqbl—ch(rl,zl) :L0+(JC—Jc)](T1,Zl), (23)

and the new Hamiltonian turns out to be

1, 5 5 (Lo+Jel(r,2))?

5 Py +p2) + 53 :

Let us observe that the energy of the particle is the sameg $using Eq. (23))

f{(ra Zuprapz) -

(EO + jc[(?"l, 21))2 — (Lo + Jcl(rl, Zl))2

ﬁo — HO - 27“2
1

= 0.

Therefore, if we prove that...,. is increasing with/. we can choosd; > J¢ so thatH, <
Eescape, thus trapping the particle.

The simplest situation is whefr = 0. In this case there is no magnetic field, the motion
is free, with Ly = r?¢; and Eeseape = 0507 = (). When intensity currenf; > 0 is added
we |mmed|ately obtain thalb..pe > 0, and hence we get a trap for partlcles with energy
Hy < Eegeape Provided thatry, z;) belongs to the bounded component{df(r, z) < Hy}. As
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the change of intensity is small, the currdpis close to zero, and hence the new trapping region
is very narrow because the saddle pdint, 0) is near the singularityl, 0). Accordingly, it is
more advantageous to consider thiat> 0 before the change of intensity, which allows us to
obtain bigger trapping regions.

Under this assumption, let us show that an increment of theguintensity implies that
Eescape > Fescape- It 1S convenient to define the set

Tr={(r,2) ERY xR : I(r,2) < I(rp,0)} x S,

where (7,7, 0) is the position of the saddle of the potentié(r, z). Using the properties of
the functions/(r, z) andV'(r, z) it is not difficult to check thaZ C 7;, and hence the point
where the current intensity is changed verifies ¢1, z1) € 7;. The key observation to obtain
a magnetic trap is the following:

Proposition 4.6. GivenJ. > 0, let us assume that the Hamiltonié2?) has a solution that at
certain timet; > 0 SatISerS(rl, ¢1,21) € T with energyHy > Eescape- Then, if we increase the
current intensity up to/c > J¢, we obtain tha’rEescape > Fescape @NA (11, ¢1, 21) € T, where

T := bounded component §fr, 2) € Rt x R: V(r, 2) < Fucape} X S'.

Proof. First, let us observe that the position of the saddle point @f 2) is (7, 0) satisfying
Eq. (17), which now reads as

JoP a0, 1 (7ar,0) — JeI(7ar,0) = Ly,
and introducing this expression int&(7,;, 0) we obtain that the new escape energy is

. J2 2
Eescape - 76 [ar](fMa 0)i| .
We divide the proof in two cases:

Case 1: Assume thaf., + Jo1(rq1, z1) < 0. Itis easy to check, by computing its derivative, that
the quantity

L L 7 I
== TarOn I (Tar, 0) — I(7p7,0) = o+ (Je :]C) (r1, 21)
Je Je

(24)

is increasing with/; provided thatL, + JoI(r1, z1) < 0, therefore ifJe > Je, the radius
becomes,, < 7y (cf. Fig. 3(a)). On account of Fig. 3(b) we get th@at (7, 0) >
9,1 (rar,0), thus concluding thakescape > Fescape: WhenLo+Jo1(r1, z,) = 0, it follows
thatry, = rys andEescape = ﬁ—gEescape > Fescape- ROUghly speaking, the trapping region
becomes deeper (in the sense that allows higher energasjha initial one but, on the
contrary, it is narrower (becausg, < ).



J. Aguirre, A. Luque and D. Peralta-Salas

0,4

0,21- L

N 0; . ;
_0’2; ;
04 - - T 3
T T
(a) Particle of energyH, = 0.7 and ini- (b) Under the same conditions of (a), the
tial conditionsry = 3, zp = 0.1, 7o = intensity is increased tde = 1.05 when
—0.678502, 290 = 0 andLy = 4, under a cur- JeI(r1,z1) + Lo = 0.
rentJe = 1.

Figure 5: Numerical verification of the use of the circularavas a magnetic trap. (a) The
particle enters the scattering region created by the @rauire and it is scattered after a short
transient time becauséy > Fescape = 0.635247. (b) SinceEescape = 0.700371 > Hy = 0.7,
the particle is trapped indefinitely in a torus-like neighldwmod of the wire (the dashed line
shows the trajectory undédg = 1, and the solid line shows the trajectory after the incrensént
current intensity to/, = 1.05). Note: As a reference, the intersection of the wire with(the)
half-plane is plotted in both pictures.

Case 2: Assume thatl,y + JeI(r1,21) > 0. In this case the quantity defined by Eq. (24) is
decreasing with/c, and hence,; > ry, and [(7y,0) > I(ry,0). A straightforward
computation shows that

dEescape o jCar[(f]Wa O)
djc fM

<[(7’"’M, 0) — I(r, 21)) ,

which is positive becaus&(r, z;) < I(ry,0) (by assumption(ry, ¢1,21) € 7 C T;)
ando, I(7y,0) > 0 for 7y, > 1 (see Fig. 3(b)). Thereforeeupe > Fescape it Jo > Je,
as we desired to prove. In this case the trapping region ismgtdeeper but it becomes
wider sincer,; > ryy;.

Finally, itis clear thal/ (ry, z;) = V (11, 21) SO(r1, ¢1,21) € 7. O

In physical terms we have that by increasing the currennsitg (and hence the field
strength B¢|) we can trap charges which are in the regfoand which otherwise would escape
to infinity (see Fig. 5 for a numerical example of this phenoor®. The reason is that the
escape energy also increases, and so the leve]litie, z) = H,}, which was previously open,
now becomes closed.

Finally, to be sure that we obtain an optimal confinementh{ggense tha”Eescape IS max-
imum and that we trap as many patrticles as possible), we dlotainge the current intensity
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when(ry, z;) is such thatfcl(rl, z1)+ Ly is near0, that is, when the particles are near the min-
imum of the potential/ (r, z). This is consistent with the case 1 whekd (1, ;) + Lo < 0,
because it easily follows that/p 1 (ry, ) + Lo = 0} € {JoI(ry, 21) + Lo < 0}.

This method becomes quite effective when we have a streamaofes which is directed
over the ring wire. In this case a high fraction of particled tve trapped after increasing
the intensity, with more chance of being confined when thegyn&, ~ FEecape. Let us
observe that charges are trapped for all time ¢,, and hence this phenomenon goes beyond
the adiabatic approximation. We also want to remark thatttlapping region is not associated
to a minimum of| B¢|, which is the standard procedure in the literature of magnegtps [10,
34, 44], but to a magnetic line. Accordingly, the confinemmgfion is not a cylinder around
certain point but a torus-like domain.

4.5 Existence of scattering trajectories

We have proved in Section 4.2, by reducing the problem to aR.Bi@miltonian system, that
there are solutions which escape to infinity on the invandame{> = 0}. On the other hand,
the level sets of the potenti&l(r, z), cf. Section 4.3, suggest that there are many unbounded
solutions which are not contained in the invariant planer# bbservation is that the solutions
to Egs. (13) and (14) are defined for aJlso they cannot escape to infinity in finite time.
This is easily proved using the conservation of energy aat|¥hV/(r, z)| is bounded for each
trajectory.

The goal of this section is to prove the existence of scatgariotions away from the invari-
ant plane forL, > 0. The casd., < 0 is elementary and will be discussed at the end of this
section. The main idea consists in studying the equatiothéoradial coordinate := /2 + 22
in the (r, z) half-plane. Then, using some inequalities, we can showttigasolutionp(t) tends
to infinity whent — oo for suitable initial conditions.

Let us consider the Newton-Lorentz equations associat#ukteffective potential’(r, z),
cf. Eq. (14). The following inequality is standard:

5> rit+z:  rdV(r,z) +20.,V(r,2)
- p - p 7

and using the definition df (r, z), a straightforward computation yields the expression

. (Lo + I(r,2))(ro.1(r, z) + 20.1(r,z) — Lo — I(1, 2))
p=— r2(r2 + 22)1/2 :

As stated in Lemma 4.1, i, > 0 the set{ L, + I(r, z) = 0} is a closed curve bounding a
region which contains the poiit = 1,z = 0). Itis clear thatly + I(r,z) > 0if p > C(Ly)
for some large enough constant which depend&rnTherefore, whep > C(Ly) the sign of
the right hand side of the above inequality is determinedbystgn ofr0,.1(r, z) + 20,1 (r, z) —
Lo —I(r, 2).
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Lemma 4.7. For any L, > 0, there exists a positive constaft L,) for which the inequality
ro.I(r,z) + 20,1(r,z) — Ly — I(r, z) < 0 holds ifp = V72 + 22 > Q(Ly).

Proof. Itis enough to show thdim, ... (r0,1(r, z) + 20.1(r, z) — I(r, 2)) = 0, because in that
case you can choose a large enough con§éang) for whichro, I(r, z)+20,1(r, z)—1(r, z) <
Lo if p > Q(Lo). Aslim, ., k* = 0, cf. Eq. (11), the definition (10) af(r, z) implies, doing a
Taylor expansion arounkl = 0, the following equation:

—7r?

(1 +7)2 4 22)3/2

I(r,z) = +e(r, 2),

wherelim, . ((H’“)Q*jz)g/%(’”z) = 0. Taking derivatives with respect toandz we obtain, after

some computations, the formula

—mr?(1 — 2r% —r — 22?)
(1 +7)2 4 22)5/2

whose limit as — oo is zero, thus proving the desired result. O

+&(r, 2),

roI(r,z) + 20,1(r,z) — I(r, z) =

Taking into account Lemma 4.7 and the previous discussiooomelude that
p>0

provided thatp > max{C(Ly),Q(Lo)} := k(Lo). If we have an initial condition for which
po > k(Lg) andp, > 0 it is easy to check that the solutigrit) is increasing with and in
factlim, .., p(t) = oo, otherwise there would be a change of concavity in the gfapht))
contradicting the fact that > 0 if p > x(Ly). This proves the existence of scattering solutions.

This result shows that (at least) one of the coordinate®eitlor 2 is unbounded when
t — oo. In fact we can show that there are solutions which escapditoty in ther coordinate.
Indeed, let us consider the Newton-Lorentz equation for-thariable, cf. Egs. (13) and (14),
which is

(Lo+ I(r,2))(Lo — (ro.I(r,z) — I(r, 2)))
r3

with initial conditionsry andr, > 0. The same argument as in Lemma 4.7 shows that
lim, . (ro.I(r,z) — I(r,z)) = 0, and hence proceeding as in the previous discussion we
can prove that(t) > 0 for all ¢t > 0, provided that, > x(L,) for some constant which
depends or, (this does not depend on the signiaf). Accordingly there are solutions for
which lim,; ., r(t) = oo. This is in strong contrast with the motion in the magnetitdfief
a rectilinear wire, cf. Section 3, where all the trajectsrad the charge are periodic in the
coordinate.

This escape in the coordinate is less general than the scattering solutiomgegrto exist
when working with the variablg. For example, there are unbounded solutions wjth 1 and
7o < 0, provided that, andz, are large enough to makg > x(Ly) andp, > 0. Therefore

)
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we can guarantee escape in all possible directions. Let ssradthat the relevant parameter
for these arguments is not the ener@y but the values of, andp,. In particular, the energy
is very small for an unbounded solution with largeand smallr, > 0, 2, > 0, but this is
not contradictory because, as explained in Section 4.3dkentialV/(r, z) has level curves of
small values which are open.

When L, < 0 itis not difficult to prove that almost all the solutions with+ 2 # 0 escape
to infinity (the case, = 2, = 0 corresponds to trajectories which are contained in theiara
plane{z = 0}, see Section 4.2 for a detailed analysis). Indeed, the Newboentz equation
for the z coordinate, cf. Egs. (13) and (14), reads as

(Lo + I(r,2))0,1(r, 2) '

r2

The sign of this equation can be controlled because, on taéand—r—2(Lo+I(r,z)) > 0
and on the other han@l / (r, z) is proportional to the radial component of the magnetic figld
cf. Eq. (9), and hence the geometry of the magnetic linesi@aphato./(r,z) > 0if z > 0
ando.I(r,z) < 01if z < 0. Therefore, when, > 0 andZ, > 0 we have that(t) > 0,
which readily implies thatim, .., z(t) = co. Analogously, wher, < 0 andz, < 0 we have
thatz(¢) < 0, thus yielding thatim; ., z(t) = —oco. Otherwise, since the invariant plane is
unstable (see the discussion at the end of Section 4.2)eadidlutions cross the plafge = 0}
changing their concavity and hence they escape in the pesitinegative direction of the-
axis depending on the sign &f, with the exception of the solutions which belong to the letab
component associated to the invariant plane. These eroapsolutions, which define a null-
measure set in they, 2y) plane, verify thatim, .., z(t) = 0, so we cannot conclude whether
the corresponding trajectories are bounded or not justysigdhe Newton-Lorentz equation
for the z coordinate.

5 Motion in the magnetic field of a coupled system

In this section we study the motion of a charge in the magffielid created by a circular wire
centred at the-axis, carrying a current of intensiti > 0 in the direction of the vector field,,

and an infinite rectilinear filamerR with current intensity/z > 0. We shall restrict ourselves
to the case in which the circular wicklies on the plandz = 0} andR is defined by a current
flowing in the positive direction of the-axis, in order that the axial symmetry be preserved. In
what follows we shall denote this system®y- R.

As far as we know, there are no rigorous results in the liteeatoncerning this configu-
ration, which turns out to be much more difficult to analyselfgl aspects specially) than the
single loop wire studied in Section 4. Specifically, we shallable to prove the existence of
quasi-periodic trajectories only whef; /J: < 1. It remains open to provide an analytical
study of the case in whicti. and Jz are comparable, which is numerically analysed in Sec-
tion 6. Finally, we will also prove that, independently ottkalues of/; andJ., there are
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not scattering solutions for which the quotiéntt)|/r(¢) is bounded, and therefore the escape
in the z coordinate is dominant over the escape insthdirection, as in the case of the single
rectilinear wire (where (¢) is in fact periodic).

We call B¢, r the magnetic field created by this system, which is given by

Beir — Je0.1(r, z) o+ QJQR% B JeOI(r, 2) 3
r r T

where(r, z) is defined in Eq. (10). Observe that, % is analytic inR*\(C U R) and that
I(r, z) is a first integral of this vector field, thus implying that #ie magnetic lines oB¢,
lie on magnetic surfaces which are revolution tori, cf. Leanl. Moreover, it is not difficult
to check, cf. [17], that the integral curves of this field aegipdic or quasi-periodic depending
on the magnetic surface (in contrast with thoségfthat are all periodic).

The Newton-Lorentz equations of motion of a unit-mass,-ahédrge particle subjected to
Be.x read as

2.Jr %

T — T¢2 = _JC¢ar[(Ta Z) - ’ (25)
.
2 + 2 = Jo20,1(r, 2) + Jerd, I(r, 2) (26)
. 2 -
f= Jedond(r2) + 2L (27)

This system of equations has two first integrals: the kirgtiergyE := 1 (% +12¢* + 22),
and the generalized angular momentim= 2¢ — Jel(r,z). These conserved quantities
allow us to reduce the equations of motion to a 2DOF Hami#torgystem on the half-plane
(r,z) € Rt x R, given by:

2JrzN\2 1
HC+R(Ta Z>prapz) = <pr - ;3 ) + _pg + V(Ta Z) ) (28)

1
2 2

with

(Lo + JeI(r, 2))?
2r2 '
Note that this Hamiltonian is not written in natural form doghe new term/r. However,
let us observe that if = 2 = 0 we have thati..r = V (r, z), soV still plays the role of an
effective potential (its saddle being a barrier betweembed and unbounded motions). The
associated Hamilton’s equations of motion do not possesgsisirestricted solutions ify # 0
or Je # 0 (as those discussed in Section 4.2 for systgbut we can also definetsapping
regionwhenever/: # 0.
Indeed, the potential does not depend/gn and hence the properties of the motion which
can be derived from the qualitative propertieddf-, =) are the same as for the single circular
wire. Let us summarise them in the following list. For mor¢aile see Section 4.3.

Vir,z) = (29)
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1. Provided that,, > 0, the Hamiltonian defined by Eq. (28) has a global minimum @n th
curvel's, := {Jel(r,z) + Lo = 0,p, = 2% p. = 0} and the level sets off nearl’;,
are compact submanifolds.

2. The saddle pointry,, 0) and the escape ener@¥scape := V (ra, 0) are independent of
the value ofJz. In particular, their dependence @g is the same as for systefh) e.g.
see Fig. 2(b) for the casg = 1.

3. The region of allowed motions is given Y (r,2) < Hy} x S'. For L, > 0 there
is atrapping regionwhich is defined by the bounded component of the{$étr, z) <
Fescape} x St. When L, < 0 all the connected components oF (r,z) < H,} are
non-compact, and hence most of the motions are unbounded.

WhenJr = 0 we showed in Section 4.3 the existence of many periodic aadigperiodic
solutions of (13) near the minimuin;,. The main difference with the general cagge # 0
is that the reduced Hamiltonian (28) still has a magnetimté%f—z. This occurs because the
magnetic fieldB.,» has an angular componeft, = 2{—;2 If one applies Braun’s technique
it is easy to realize that the extra term cannot be considasesl small perturbation after the
symplectic change (19) and the scaling used in the proof ebfidm 4.3, unlesdr /J. < 1.
It is worth mentioning that the cadgé; # 0 was treated by Castilho in [13], where a criterion
for the existence of quasi-periodic solutions was obtairfgegretfully, one of the assumptions
is that the level sets dB in the (r, ) half-plane must be compact curves, a property which is
not fulfilled in our problem. Following Braun’s approach, aen state the following result:

Proposition 5.1. SetJ. = 1 and Jr = 4/2. For any value ofl, > 0 there exist periodic and
quasi-periodic solutions of the Hamiltonian system defig&qs.(28) and (29) at a distance
e of 'z, provided thav is of order at most?.

Proof. The Hamiltonian (28) can be written as

1 1
HCJrR(r; Zaprapz) = §p72~ + 5?3 + V(T, Z) + 5PO(Ta Z>prapz) )

where Py(r, z, pr, p.) = % — 22, Note that the term offc,r which does not depend an
is the HamiltonianH of the single circular wire, cf. Eq. (13). Let us now changerdinates
and introduce the scale parameteas in Section 4.3. The transformation(is z, p,, p.) —

(X.,Y,px,py), and a new Hamiltonial/s,  := e *Hc . is defined, thus obtaining

1 1 1 B
Heip = 5@(6X)p?x + Qb(c‘X)p?y + §C(€X)Y2 +e9(X,Y,px,py;e) + ?P(X, Y, px,pyv;e).

In this equation the terms b, ¢, g are the functions defined in Section 4.3, @ just the
transformed ofF, under the change of coordinates. As the parameterindependent of the
scales, we can sef = &3, which just means that when we study solutions whichzackse to
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'z, the intensity current oR is assumed to be*-small. In this case the Hamiltonian takes the
form

1 1 1
He i = §a(5X)P§( + 55(5)()19%/ + 50(5X)Y2 +e(g+ P)(X,Y,px,pvie),

and hence the perturbation term is now of oreleProceeding as in the proof of Theorem 4.3
we can rewrite the non-perturbative term of this Hamiltonfahich is exactly the same as in
Section 4.3) and compute its Poincaré map for a suitablgemdoincaré section. This map
turns out to be of twist type (with one small frequency), andskl’s twist theorem can be
applied, thus concluding the existence of quasi-periodiat®ns. Periodic solutions follow
from Poincaré-Birkhoff theorem, as in Corollary 4.5. Dktare analogous to those given in
Section 4.3. O

According to numerical experiments (that are provided ioti®a 6), if we takeJ, ~ Jxr
there are still many quasi-periodic solutions né€af. However, we have not been able to
perform a change of coordinates that writes the Hamiltomanneighbourhood of the curve of
fixed points in a suitable way to apply Moser’s twist theorem.

It is clear that systend + R can be used to construct magnetic traps, as in the case of
the single circular wire, for details consult Section 4.sheTmechanism is exactly the same:
we increase the current intensitif and accordingly the escape energy also increases, thus
confining some particles in the new trapping region. Obséraethis phenomenon does not
depend on the value of;. Outside the confinement region all solutions are of saatidype,
as will be numerically illustrated in Section 6.

Let us finally prove thatz(¢)|/r(t) cannot remain bounded for scattering solutions of the
Hamiltonian system (28). This property is quite intuitivechuse asincreases the contribution
of the magnetic field of the infinite filament (of order!) is much bigger than the contribution
of the magnetic field of the circular wire (of order?). Roughly speaking, when is big
enough the dynamics is dominated by the rectilinear curi@md therefore-(¢)/z(¢t) cannot
grow indefinitely as proved in Section 3. Actually, numekicamputations show that the
coordinate is always bounded. This is an important diffeeemith the case of the single circular
wire, which has many scattering trajectories escapingfioiiy on the invariant plangz = 0}
in ther direction, as we proved in Section 4.2. In the next sectioskadl study in more detail
the scattering properties of systéh- R using numerics.

Proposition 5.2. Assume thal,, > 0. For any scattering solution of the Hamiltonian system
defined by Eqg28) and (29) we have thaf% is not uniformly bounded ity provided thatH,
is large enough.

Proof. The Newton-Lorentz equations associated to this systethaga
_2JRZ N (Lo + Jel(r,2))*  Je(Lo + 1(r,2))0:1(r, 2)

2 )

_ 3 (30)
r T T

5 2Jrt Je(Lo + 1(r, 2))0:1(r, z)

5 .

(31)

r r
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Let us fix L, > 0 andH, > 0, and assume that there is a scattering solutidt), z(¢)) to
these equations such tHé% < C, for some positive constant, and for allt > 0. Note that,
on account of the conservation of enerd¥(r(t), z(t)) < H, and hence(t) > C for all ¢,
thus implying thalim;_., 7(t) = oo and|z(t)| is uniformly bounded irt or it tends to infinity
no faster tham(t).

Now setq := (r, z) and observe that

d* /]ql? . .
@<7>—q-q+q~q- (32)
Using thatlim; .., V(r(t), 2(t)) = 0 because of the asymptotic properties of the potential we
have that for every, > 0 there existd” > 0 big enough such that(r(¢), z(t)) < é, fort > T.
Therefore

G 4= (pr—2Jez/r)’ +p:=2Hy— V(q) > 2Hy — 01, (33)

with 6; := 2d,. On the other hand; - ¢ > —|q||g|, and using the expressions (30) and (31) for
7 andZ we get

. 4J%1q)? 2Jrlqllq _ .
-2 —laly 2RI | ogq-e) = 2RI oy > v s, e

where we have taken into account tﬂfétg 1+ @ is bounded uniformly irt by assumption,
and thatq| is as big as we want if > 7'. Introducing Egs. (33) and (34) into Eq. (32) we obtain

d2 2 )
@<M) > 2Hy — Chld| + 05

2
This inequality can be written in a different way just notthgt

| = V72 + 22 < \/2H, + 04,

provided that > 7. This allows us to conclude that

4 lqf?
—( ) > 9Hy — Cyr/2Hy + 05,

a2\ 2
and therefore, provided théf, is sufficiently large, we get
d* (lq?
— (=) >
dt2< 2 ) 2 Cs,

for some positive constalidf;. Integrating this equation twice we finally obtain a loweuhd
for the growth of|¢(¢)|, which is linear int, that is

lq(t)| = Cat (35)
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if t > T. This is the key property to prove that the assumpﬁ%‘ < Ly cannot hold. Indeed,
let us integrate Eq. (31):

i(t) = Py + 2Jr Inr(t) — /t Je(Lo + I(r(t), z(0)2:1(r(t). (1)

0 r(t)?

with P, := o —2.Jr Inry. The integral in this equation can be bounded from above whef
by

CJe(Lo + I(r(8), 2(£))0(r (), 2(1)) C (o)t
/T () = C5/T (02 + (022

where we have used the asymptotic expansiof. éfr, z), cf. the proof of Lemma 4.7, and
the fact thatlim; ., I(r(¢), 2(t)) = 0. Noticing that% < 2] < V/2H, it follows that
|z(t)| < Cgt, and taking into account the estimate (35) we can write

t
Z(t) Z P0+2JR1DT(t)+C7—C5—§V6\/ @,
1 Jr vt
where the constant’, positive or negative, is just a transient quantity whicpresents the
value of the integral till time = T'. Being the last integral convergent when- oo, the fact
thatlim, ... 7(t) = oo implies thatlim, .., 2(¢) = oo. But this contradicts the conservation of
the energy and hence the claim of the proposition follows. O

6 Numerical studies

In this section we explore numerically the systetraendC + R in order to obtain more infor-
mation on the global dynamics in both problems. Due to thalasgyimmetry, it is enough to
consider the reduced motions on thez) half-plane given by Eqgs. (13) and (14) for systém
and Egs. (28) and (29) for systeimt- R.

As discussed in Sections 4.3 and 5, in these systems we caie defiiapping region with
bounded dynamics, which corresponds to initial conditieitk energy below a threshold value
Fescape- 1N Section 6.1 we describe the dynamics in the interior &f thgion by computing
Poincaré sections and Lyapunov exponents. Beyond thehbie i.e. when the energy permits
to escape from the saddle, we obtain an open Hamiltoniaemsyéiat is analysed in Section 6.2
by computing fractal basins of scattering trajectories thed fractal dimensions.

All computations have been performed using a C++ compilezredis evaluation of com-
plete elliptic integrals has been provided by the routgels_sf _el | i nt _Kconp andgs! _
sf _ellint_Econp of GSL-GNU (see [18]). To integrate the different systemsa@diations
we have used a 8/9th order Runge-Kutta Prince-Dormand mgttavided bygs!| _odei v_
st ep_r k8pd. All along this section we will assume thafz = J. = 1.
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6.1 Bounded motions: invariant tori and chaos

The standard approach for monitoring the dynamics of a 2D@filionian system is to com-
pute a reduced Poincaré section. To this end, let us intedame notation that will be useful
later on. Given a fixed value df, > 0 we consider théoinca® section®;, 5, given by the
hyperplane{z = 0} and the energyd,, which we parametrise by means @fp,). Let us
denote byPr, m, : 1,1, — 21,1, the Poincaré map at enerdg, defined in the usual way.

In Fig. 6 we show several sections for the systegmandC + R. For each picture we
have computed0000 iterates ofP;, , for 100 different initial conditions (in the plots many
iterates are skipped in order to reduce the size of the figurejhese computations we ask
for tolerances 0~'° both in the local integration error and in the intersectidthwhe section.
The final integration time for each orbit ranges fr@m 10* up to 1.2 - 10° time units. For
Lo = 4, we observe that at low energy —see Fig. 6(a)-(b)— some iemv&atori in systenC
breakdown due to the presence of the straight line wire itegys + R. However, for a higher
energy —see Fig. 6(c)-(d)— the difference in the behavidihese systems is not so evident.
For this reason, in order to describe the complexity of theéions, we resort to quantitative
computations based on Lyapunov exponents.

Lyapunov exponentive information about how fast nearby orbits separatey(theasure
the hyperbolicity in the vicinity of an orbit) so they are egded as indicators of the existence
of sensitive dependence with respect to initial conditi@amsl hence, to some amount of unpre-
dictability and chaos. It is well known that their compubatirequires to approximate a limit
whose convergence is very difficult to ensure in practice. @xample, a given trajectory can
start close to an invariant torus (which has zero maximaply@v exponent) and then, perhaps
after a big time interval, drift to a chaotic region. For thesison, they have to be understood
as local indicators of the dynamics both in space coordsnatel time. Therefore, in order to
obtain a global picture of the dynamics inside the regionafritled motions, we perform an
extensive computation of Lyapunov exponents samplingdayipns of phase space, in order to
estimate théraction of stability(fraction of volume occupied by invariant tori). To this eme
follow valuable ideas given in [37]. It is worth mentionirtwgt the first computations related to
the volume of tori appeared more than 40 years ago in the piorgework of HEnon and Heiles
[20].

For convenience, let us recall the basic ideas regardingdhgutation of the maximal
Lyapunov exponent. Given anrdimensional system = X (z), a pointz, € R™ and a vector
vg € R™, the maximal Lyapunov exponent is given by

[o(t, vo)|

1
A= lim -1
i % o]

whereu(t, v) is the solution of the variational equation around the ttajey satisfyingz(0) =
xg, i.e. 0 = DX (x)v, with v(0) = vy. Obviously,A does not depend on the poiry but on
its orbit. To approximate the above limit we selegt= (1,0, ...,0) and integrate the equation
up to timeAt to computer; := v(At, vg), A\ := log|v;| andv, := ©1/|v1|. Then, we compute
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Figure 6:Poincaré sections for systei@andC + R using Ly = 4. In this cas&escape = 0.635247.

recursively
Am

mAt’
wherev,, := v(At,v,,_1) andv,, := 0,,/|0,|, SO it turns out that\ = lim,, ... A,,. As a
criterion for convergence we check the following

)\m - )\mfl + log(‘ﬁmba Am -

maX{‘Amfzs - Amfs|> |Amfs - Am‘a ‘Am72s - Am‘} S 5

and then we take the average of these three values. The catopgtpresented in this paper
have been obtained usidy = 5, s = 50 andé = 10~

If we want to compute Lyapunov exponents in a big region okglspace we can save many
computations using the fact that points on the same orb# Ha same exponent. To this end,
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we discretize a Poincaré sectitn, », by means of a grid of pixels and compute the maximal
Lyapunov exponent for initial conditions falling on thesegls, taking into account that we
can associate the same exponent to those pixels where tlreeaaits falls. Let us remark
that some of these pixels may contain points of differentaaiyical properties, but if they are
small enough, we will reflect statistically the dominantictaer of every pixel. For the sake of
reproducibility of our computations, we describe next thelementation of the previous ideas:

1. We fix a value of, > 0 and compute the saddle poiny; from Eq. (17) and also the
escape energifcscape = V (rar, 0).

2. We fix an energyl, < Eesape and we set a rectangle such that

ELO,HO C [Tmin7,r,max] % [ ;nin’pglax].
rmin pmax gre the the minimum and maximum valuesrofvhich solve the equation
V(r,0) = Hy for r < ry, and we sep™® = —/2H, andp™*> = \/2H,. Then, we
discretize this rectangle by means of a grid\ofk N pixels.

3. We define the matrigri d[ N] [ N] of integer numbers where we will storeQaif the
pixel has not been studietl,if the pixel has been used as an initial condition for comput-
ing a Lyapunov exponent arlif the orbit of a previously studied initial condition fell
into this pixel. We set the valuel if the pixel is not allowed (according to the energy).
The relation between a pixgl ] [j ] and the corresponding initial condititljn(i),p,(«j))
onXy, u, Is obtained from the expressions

() __ ,.min (4) . min
. T T . r
I = \‘ ma; mi NJ ’ I = pm prm' N ’
pmax _ pmin prax_prln

where| -| stands for the integer part.

4. We define the matriwhere_r [ N] [ N] of integer numbers that allows us to find the
component of the original pixel whose orbit has fallen ifte pixel[ i ] [ j ] (this makes
senseigrid[i][]]=2). Inparticular, if for the initial conditiomr(k>,p£l)) on the pixel
[K][1] there exists: € N such thatPy., ,,. (r®), p\") falls into the pixel[ i ] [j ], then
we setwhere_r[i][j]=k. Analogously, we define the matrishere pr[ N [ N|
associated to thg. component.

5. We proceed by scanning all the pixels in the discretimatid_;,, 1, by skipping all points
whose character has already been decided, i.e., sucgrthd{ i ] [ ] is different from
0. Then, while computing the exponent associated to a pixelupdate the matrices
grid[NJ[N],where_r[NJ[ N] andwhere_pr[ N [ N] according to the Poincaré
map.
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Figure 7: Maximal Lyapunov exponents for systemsC andC + R using Lo = 4. In this cas€Fescape =
0.635247.

6. We store the computed Lyapunov exponents in the mbatrxp[ N] [ N] . On the one
hand, ifgrid[i][]j] containsl, we store the Lyapunov exponent computed using
the initial condition(r(i),pfnj)) as described above. On the other handrif d[i ][] ]
contain2, we stord yap[where_r[i][j]][where_pr[i][j]].

7. Finally, we definelV, as the number of pixels such that the Lyapunov exponent $s les
than0.01 and we estimate the fraction of stability As= N,/N;, whereN; is the total
number of allowed pixels (note that, depends on the enerdy).

Figure 7 represents the Lyapunov exponentrresponding to initial conditions:, p,) €
Y 1..H, IN @ colour chart from black (when = 0) to yellow (maximum value\ in the dis-
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(b) Lo = 4

Figure 8:Fraction of stabilityf, versus energy for systeéh(solid line) and syster@ + R (dashed line). In the
horizontal axis we show the energy of the system scalddyg@®escape-

cretization of¥,, 5,) and using a grid oR56 x 256 pixels as has been described. The four
pictures correspond to the Poincaré sections of Fig. 6ynandan observe the good agreement
between the observed objects in Fig. 6 (invariant tori ooticzones) and the coloured regions
in Fig. 7.

Figure 8 plots the fraction of stability; for both system& andC + R as a function of
the energyH,/ Eescape (it iS cOnvenient to scale the energy according to the eseapsyy) for
Ly = 2andL, = 4. Let us make some observations:

1. High energy: forLy = 2 and Hy/ Eescape > 0.014, systemC presents a smaller fraction
of stability thanC + R. When increasing the angular momentunito= 4, it turns out
that for all energies after a threshold value, both systéraadC + R show the same
chaoticity. In fact, if we performed the same computatiandf, = 6, we would observe
that both systems show a totally indistinguishable comipldar all energies. This is due
to the fact that wherd, is increased, bounded trajectories in systém R move away
from the infinite rectilinear filameriR and its influence on them decreases substantially
(ry decreases witlh, cf. Fig. 2(b), and hence the trapping region becomes ctogér.

2. Low energy: contrary to what one could expect, ff/ Eescape < 0.014 we have that
for systemC + R the fraction of stability decreases whéfy decreases. This fact must
be carefully analysed in order to avoid false conclusiors. éxample, forL, = 4 and
Hy/Eescape = 0.005 it turns out that theorangechaotic ring observed in Fig. 7(a)-(b)
becomes very narrow and the trajectories inside the cayreBpg closed region have a
typical Lyapunov exponent 0£0008 for systenC and0.013 for systenC+7R. According
to our convention, those trajectories of systém- R do not contribute tof, (because
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0.013 > 0.01), even though they have a very small Lyapunov exponent. iesless,
since the Lyapunov exponents associated to the sySterfk are larger than those ¢f
for small Hy/ Eescape, We can state that at low energy, the former system is morglexm
than the latter.

6.2 Unbounded motions: chaotic scattering

Chaotic scattering can be understood as the interactiorpaftacle with a system that scatters
it in a way that, after leaving the vicinity of the system, tieal dynamical conditions of
the particle (e.g. speed and direction) depend sensitmeligs initial conditions [8, 5]. This
phenomenon is associated to the existence of a compactchwariant set (or chaotic saddle),
i.e. a null-measure set of infinitely many unstable periddicevery period) and aperiodic
orbits. The region where the particle bounces erraticallyaf certain time is usually called
scattering region

In this section we shall study the scattering of chargedgestthat enter into the trapping
regions of system§ andC + R. The tools will be the typical ones in chaotic scatteriegit
basinsto get a qualitative idea of the predictability associatethese systems, and thacer-
tainty dimensiorto quantitatively measure their fractality. Let us obsdahag only trajectories
with L, > 0 show some complexity, and therefore in this section we dbails exclusively on
this regime.

Computation of fractal basins

Figure 9 shows the level curves of the potenVidt, =) for L, = 4, cf. Eq. (14). For energies
Hy < Eescape, Case studied in Section 6.1, there are two regions, onebwsitinded orbits and
the other one with regular scattering. For enerdigs> Ee...pe, ONE €Xit appears and chaotic
scattering becomes possible, so we will assume this casbanhfallows. Let us observe that
the Hamiltonian (28) of the coupled systém- R is not natural because it contains a magnetic
term, but as discussed in Section 5, the funcligm, z) can be still interpreted as an effective
potential, so that systendsandC + R share the same exit and escape energy. This fact makes
the comparison between both systems especially fruitful.

We recall that the exit basin associated to an &af a dynamical system is defined as the
set of initial conditions that escape from the scatterirgjar through the exi€. When the
exit basin boundaries are smooth, the system is said to béractal, while fractal exit basin
boundaries are associated to systems exhibiting chaatitesag.

In our case, the scattering region is the vicinity of thew&c wire, and the trajectories can
escape towards infinity through only one exit (see Fig.9(€dr systems with one exit we can
createartificial exitsin order to be able to plot the exit basins [5]. In our par@&eyroblem, we
fix Ly > 0 and we select an energyy > Eescape- 1hen, we fix a suitabl@ecape > rys and we
say that a trajectoryr(t), z(¢)) escapes from the scattering region if there existssmape time
tescape > 0 SUCH that (escape) = Rescape @NA7T (tescape) > 0. In addition, we define the artificial
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Figure 9: Level curves of the potentiél(r, z) for Ly = 4. (8) Hy = 0.6 < Eescape, (D)
Hy = 0.635247 = Eescape, @and (C)Hy = 1 > Eescape. FOr every value of the energy, thie 2)
half-plane shows two inaccessible regiofi’;(andIR,). For energiesd?, < Eescape there is
one region with bounded motio®{) and one with unbounded motiol§1), and these two
regions collide forH, = FEescape and become an open region il > FEegeape With one exit
where chaotic scattering is possible.

exits as follows: we assign the colour green(ifes.ape) > 0 and the colour red otherwise. We
have to take into account that all orbits in systém R escape to infinity with positive values
of z, which means that all conditions that are plotted in red ligg system will eventually turn
upwards and cross= 0. Therefore, we have to seleBt..p. sufficiently close ta-, in order
to obtain an accurate picture of the dynamics.

Figure 10 shows the exit basins for systémand Fig. 11 shows the exit basins for system
C + R, for several values of the energy. We have takgn- 4 (in this case the escape energy is
Fescape =~ 0.635247) and Regcape = 2 (the saddle is at;, ~ 1.971505). We characterize initial
conditions by fixingz = 0, an energyH,, a value ofr and ashooting anglé on the half-plane
(r,z) € RT x R (wheref = 0 points in the positive direction of theaxis). We scain00 x 500
initial conditions corresponding to-,0) € [0.8,2.5] x (0,2x). The initial conditions plotted
white either do not have any trajectories associated oespand to orbits that do not escape
from the scattering region, even if they have enough eneyglotso (they are trapped in the
interior of invariant tori). Let us summarise the main pndi@s of the exit basins:

1. In both systems it is observed that higher values of theggnaake the structures less
fractal, as is typical in open Hamiltonian systems. We withlyse this fact in a quantita-
tive way when we calculate the fractal dimension of the eagib boundaries.

2. Invariant tori are present for some values of the enerdgyoith system& andC + R.
For instance, in syste we have detected an invariant torus fé§ < (0.95,1.21), and
therefore it can be seen plotted in white in Fig. 10(c).

3. Systent is reversiblé with respect to the classical involution

G(Ta Z7p7‘7pz> - (T7 Zy, =Pr, _pz) ’

Let us recall that a systerh = X (z) is reversible if there exists an involutian= O(y) (i.e., a change of
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(8) Hy = 0.64 = 1.01 Eegcape (b) Hy = 0.7 = 1.1 Eegeape

(€) Ho = 1 = 1.57 Eegcape (d) Hy = 2.5 = 3.94FE egcape

Figure 10: Fractal exit basins for several energies foresystand L, = 4. EXit 1 (r = Rescape:
7> 0,z > 0) is plotted green, exit 2r(= Rescape, 7 > 0, 2z < 0) is plotted red and initial
conditions that do not give rise to orbits (vertical stripesundr = 0.8 andr = 1) or do not
escape are plotted white (see zones in (c) that correspandagant tori).

and this explains the symmetry with respectte= 7 of the basins of syster@d (see
Fig. 10). On the other hand, systém+ R is not reversible with respect to the previous
involution so we cannot derive the same symmetry for itstéddooundaries. Neverthe-
less, it is reversible with respect to the involuti®fr, z, p,., p.) = (r,—z, —p., p.), thus
implying that a similar symmetry can be obtained using otwardinates.

variables satisfyin@? = id and® # id) such thaty = DO~1(y) X (O(y)) = —X(y). One of the dynamical
consequences of reversibility is thatift) is a solution, then so iI®(x(—t)).
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(8) Hy = 0.64 = 1.01 Eegcape (b) Hy = 0.7 = 1.1 Eegeape

(€) Ho = 1 = 1.57 Eegcape (d) Hy = 2.5 = 3.94FE egcape

Figure 11: Fractal exit basins for several energies foresyst + R and L, = 4. Exit 1 is
plotted green, exit 2 is plotted red and initial conditiohattdo not give rise to orbits (vertical

stripes around = 0.8 andr = 1) are plotted white.

4. Other important difference between both systems is obtacomparing Fig. 10(a) and
Fig. 11(a). In systend, no matter how far away we are from the scattering region (i.e
how large isry), for z, = 0 and initial shooting anglé, ~ =, the particle can always
cross the exit of the system in the inner direction, spendestimme bouncing erratically in
the scattering region and then escape towards infinity suffehaotic scattering. On the
contrary, in Fig. 11(a) we can observe that fo= 0 andr > 2.35 fractality disappears
and the scattering is not chaotic anymore. In fact, what éaps that if-, is big enough,
the particle will turn upwards and escape:te~ oo without even entering the scattering

region.
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Computation of fractal dimension

The fractal dimension is the object that measures the codtylef a fractal basin boundary.
While there are several definitions of fractal dimensioe, tiost convenient for chaotic scat-
tering problems is the uncertainty dimension [25], whickm®wn to coincide with the box-
counting dimension in typical dynamical systems.

The uncertainty dimension of an exit basin boundary for aadyical systemi: = X (z),

r € RV, is defined as follows. Given an initial conditiap, we label it axertainif the neigh-
bouring initial conditions escape through the same exd,\we label it asincertainotherwise.
Moreover, given a tolerancein the determination of initial conditions, we considé) as
the fraction of uncertain initial conditions. Then, it ca@ $hown [25] that the dependence of
f(e)oneis of type f(e) x €%, wherea := N — D is theuncertainty exponergnd D defines
the uncertainty dimension. The uncertainty exponetdkes values between 0 (the boundary
is totally fractal) and 1 (the boundary is a smooth curve)teNbat this definition is consistent
when we restrict to a submanifolél ¢ RV of dimensionN, < N (which is quite helpful for
saving computational time): if we select initial conditgoon.S, the uncertainty dimensiob is
obtained fromD = Dy+ N — N,, whereD, is the fractal dimension of the intersection between
the fractal boundary andl, and is obtained from: = Ny — D,.

In our computations, we fix, = 1.6, zo = 0 and we take different values 6§ € (x, 27)
(this values are suggested from Fig. 10 and 11). Thereforeawve thatV, = 1 and N = 3.
Using this 1-dimensional submanifold we can obtain an uagdy dimensionD, that ranges
from O to 1, and the uncertainty dimension of the systemerifies D € |2, 3]. In particular,
to approximate the uncertainty dimensibp we select an equispaced grid/af angles);. The
angled;, fori € {2,..., M}, is certain if it escapes through the same exi#;as, and uncertain
otherwise (by conventiofi;, is taken as certain). Note that in order to compute the exiitpo
T"(tescape) = Rescape WE USE @ Newton method in a similar spirit to when computingiadaré
map. We repeat these computationsFér= 100, 120, ..., (1.2)" - 100 < 10® and we compute
« from fitting linearly the expressiolvg(f) versus— log(M). For example, in Fig. 12(b) we
show one of the performed fits in order to stress that our coatipns are very accurate.

Figure 12(a) shows the fractal dimension obtained for syst¢white squares) and system
C + R (black squares) as a function of the enef@ly > Fescape, taking Ly = 4. Let us first
focus on systerg to explain in some detail the main results of our numericalysis.

1. We can see that it satisfiés — N = 3 whenH, — FEesape. ThiS IS not surprising,
as it was conjectured in [28] and fully explained in [4] thia¢ fractal dimension of any
open Hamiltonian system tends to that of phase space wheméngy tends to the escape
energy. In this limit, the size of the unique exit tends tmzand the fractal basins become
so fractalized that the boundary tends to fill up the wholesplspace.

2. When the energy grows, the fractal dimensiordecreases, as is usual in this kind of
systems, and in the rangé, € (E.scape, 1.195) the fractal dimension falls from to
2.1. The fractality of systen@ strongly depends on the existence ofliy@punov orbit
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an unstable periodic orbit that acts as the frontier of thettedng region, i.e. when

a trajectory crosses it outwards the particle cannot eheeisystem again and escapes
to infinity [14, 38]. At H, = 1.195 the Lyapunov orbit disappears and also its stable
manifold, which in practice represents most of the fractalrzaries shown in Fig.10(a-
c). Many systems similar to this one become smooth whenltlyapunov orbit vanishes,
but for H, > 1.195 systemC still shows very small fractalized regions that make the
dimension beD ~ 2.1 for all values of the energy. This unexpected behaviour & du
to the fact that for all energies there is another relevastabie periodic orbit (of initial
conditionsry < 1, zg = 0, 6y = 0) on the invariant plane studied in Section 4.2. This
orbit makes the trajectories that get close to it spend \@1g times in its vicinity before
escaping to infinity.

3. Figure 13 shows some computations that clarify what wegxglained in the previous
item. In Fig. 13(a) we represent the escape ttmeg,. for a wide range of trajectories
of systemC and H, = 1.18 (solid line and a zoom in the inset figureff, = 1.20
(dashed line) and{, = 1.22 (dotted-dashed line). Fal, = 1.18 the system shows
the expected pattern with multiple maxima that is a clearetraf fractality due to the
existence of a chaotic saddle embedded in the system. Hig) 4i3ows a typical chaotic
trajectory in this regime: the particle spends some time¥ahg the Lyapunov orbit
(plotted in the inset), then surrounds the invariant tossome additional time and
finally escapes from the system (note that, as already mmadtjghe invariant torus exists
for Hy € (0.95,1.21)). For Hy, = 1.20 (dashed line) the Lyapunov orbit and all its
fractality associated have disappeared, but the invateans remains; for this reason the
escape time still shows a sharp maximum due to the trajesttinat remain stuck to the
torus for a long time before escaping. Finally, ldy = 1.22 (dotted-dashed line) the
invariant torus has also disappeared and the escape timmmbsdotally smooth.

4. As we observed, however, the system shows certain compéen for high values of
the energy. Figure 13(c) shows the escape timg,. for energyH, = 2.5, for which
D = 2.1 and the footprint of some fractal behaviour can still be deete (see Fig. 10(d)
for the corresponding exit basins). Figure 13(d) shows aaele of a trajectory for this
high value of the energy, and the inset shows the unstahledieorbit responsible for all
this uncertainty. Summarising, we conclude that there tsarzhaotic saddle associated
to this periodic orbit, and therefore this peculiar phennoredetected for, > 1.195
should be understood asspurious fractality more than the genuine fractal behaviour
associated to chaotic scattering.

Let us finish with a few comments concerning system R. First of all let us note that
it exhibits a dependence of the fractal dimension on theggnegry similar to that of system
C (see Fig. 12(a)). The reason is that fay = 4 the influence of the rectilinear filamef
on the scattering region is relatively weak in comparisothad of the circular wire’. Lower
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Figure 12: Computation of fractal dimensianfor system& andC + R, whenLy = 4. In this
caselcscape = 0.635247.

values ofL, show very different fractality between both systems, agpbapd with the fraction
of stability when we studied bounded motions, cf. Fig. 8(a).

The destruction of fractality due to the disappearance effthctal basins, however, is
reached a bit sooner, féf, = 1.182, which means that systehis slightly more complex than
systenC+R in this range of energies. Furthermore, the lack of the symnie 6) — (r, 7+6)
makes the situation more difficult to analyse, as we cannectien systenC + R neither the
Lyapunov orbit nor the unstable periodic orbit on the ingatiplane that existed in systafn
We believe that other periodic orbits playing similar rotesild exist for systend + R, but we
have not been able to characterize them and to find the vafudg for which they appear. A
satisfactory solution of this problem should involve anesmsion of the concept of Lyapunov
orbit, which to the best of our knowledge has only been deffoedhatural Hamiltonian sys-
tems [14].

7 Conclusions and final remarks

In this paper we have studied the motion of a charged paiti¢he presence of a static, nonuni-
form magnetic field in three concrete examples: a straiglet filament, a circular wire and a
coupled system of both wires. In the first case, we have peovédcomplete analytical descrip-
tion of the motion, in particular, we have proved the existenf helicoidal trajectories. The
case of the loop wire has been analysed both analyticallyhanterically, thus filling a gap in

the literature. In particular we have proved the existerfggedodic, quasi-periodic and scat-
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Figure 13: Analysis of the fractality of systethwhen H,, is varied, forL, = 4. (a) Escape
time tescape fOr initial conditions (, variable,z, = 0, 6, = 0.67) when H, = 1.18 (solid
line), Hy, = 1.20 (dashed line) andi, = 1.22 (dotted-dashed line). The inset corresponds
to Hy = 1.18 and clearly shows its fractal nature. (b) Trajectory of argh&or H, = 1.18
corresponding to a maximum in (a). Inset: Lyapunov orbit #fyr = 1.18. (c) Escape time
tescape fOI initial conditions (, variable,zy = 0, 6, = 0.87) and H, = 2.5. (d) Trajectory of

a charge forH, = 2.5 corresponding to one maximum in (c). Inset: Unstable périodbit
responsible for spurious fractality at high energies.

tering trajectories, and, from the numerical viewpoint, wée provided evidences of chaotic
scattering and Hamiltonian chaos. All these results camtegpreted in the context of plasma
confinement since the circular wire is a toy model of the e magnetic dipole system. A
similar study has been done for the coupled system, with ifferehce that the proof of exis-
tence of periodic and quasi-periodic motions has only betreaed assuming that the current
intensity of the circular wire is much bigger than the cutnetensity of the infinite filament.
Finally, we have explained how to construct a magnetic tigipgithe circular wire, which is
based on our theoretical study of the confined motions insyssem.

In spite of being a classical topic which is extremely impattfor applications, very few
rigorous and global results on the motion of charges in méghelds are known. Specifically,
for magnetic fields created by wires the guiding centre appration does not provide reliable
information for all times. This is illustrated with the explas of this paper, where the particle
trajectories, the magnetic lines and the integral curveg|@f| have very little to do with each
other. We would like to call the reader’s attention to théde@ing open problems.
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Problem 7.1. In Section 6, numerical evidence of Hamiltonian chaos, tlee presence of
homoclinic tangles and positive Lyapunov exponents, igigeal in the cases of the loop wire
and the coupled system. It would be desirable to obtain afbthis fact, which would be, to
the best of our knowledge, the first rigorous verificatiornef éxistence of chaos for the motion
of a charge in a magnetic field. A related question is to prdna there is not a third analytic
first integral both for systemsandC + R.

Problem 7.2. We have proved in Section 3 that the equations of motion ofaggehin an
infinite rectilinear wire are Liouville integrable. We arenhaware of other configurations of
wires which give rise to integrable motions, so the problkat tve pose is to prove that this is
the only case which is Liouville integrable, at least in teraf analytic first integrals.

Given an arbitrary current distribution, it is extremelyfidult to obtain rigorous results
on the motion of a charge in the magnetic field produced bydbigiguration. If the system
has some Euclidean symmetry, as the examples discussead mdik, magnetic lines are not
complicated, in particular they are not chaotic becausgdhe organised according to a family
of magnetic surfaces. Nevertheless, in this case the emsabif motion possess a second first
integral, which allows us to simplify the theoretical stubut the solutions can be very com-
plicated, in fact chaotic, as numerically shown in Sectioin@articular, in this work we have
compared a magnetic field having only periodic lines (syst@mwith a magnetic field having
periodic and quasi-periodic lines (syst&€mt R) without obtaining significant differences in
the motion of charged particles. In fact, systérseems to be more chaotic than system R
for some ranges of energy and some values,ofThese observations raise the major questions:

Problem 7.3. How complexity in magnetic lines is related to complexityhi@ motion? How
the motion is related to the current filaments? Magnetic §alckated by wires can be highly
chaotic, cf. [3]. The more chaotic the field, the more chadhie motion? How do regions
ergodically filled by magnetic lines affect the trajectarief a charge? If we slightly perturb
the circular wire we generally lose the axial symmetry, sohaee to study a 3DOF Hamil-
tonian system. It is likely that many quasi-periodic masi@mne preserved provided that the
perturbation is small enough, so we wonder whether this 3B§étem can exhibit Arnold’s
diffusion.

We think that it is interesting to devote efforts to advanctéese directions and we believe
that a good understanding of this problem would give risateresting applications in different
areas of research.
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