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Abstract

In this paper we study the motion of a charged particle in the presence of a magnetic
field created by three different systems of wires: an infiniterectilinear filament, a circular
wire and the union of both. In the first case we prove that the equations of motion are Li-
ouville integrable and we provide a complete description ofthe trajectories, which turn out
to be of helicoidal type. In the case of the circular wire we study some restricted motions
and we show that there is a trapping region similar to the Van Allen inner radiation belt
in the Earth magnetosphere. We prove the existence of quasi-periodic orbits using Moser’s
twist theorem, and the existence of scattering trajectories using differential inequalities. We
also provide numerical evidence of Hamiltonian chaos and chaotic scattering by computing
several Poincaré sections, Lyapunov exponents, fractal basins and their fractal dimensions.
A similar study is done for the third system, although quasi-periodic orbits are proved to
exist only under certain (perturbative) assumption. From the viewpoint of the applications
we propose a magnetic trap based on these configurations. Furthermore, the circular wire
system can be interpreted as a simplified model of the levitated magnetic dipole, one of
the recent proposals to confine a hot plasma for fusion power generation, and hence our
work provides a verification of confinement and quasi-periodicity, beyond the adiabatic ap-
proximation, for this plasma system. Apart from contributing to the rigorous theory of the
motion of charges in magnetic fields, this paper illustratesthat very simple magnetic con-
figurations can give rise to complicated, even chaotic trajectories, thus posing the question
of how the complexity of magnetic lines affects the complexity of particle motions.
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1 Introduction

The study of the motion of a charged particle in a magnetic field has long been of interest in
several areas of physics, as condensed matter theory [15, 33], accelerator physics [26], magneto-
biology [19], magnetohydrodynamics [7], plasma physics [32, 35] and stellar astrophysics [31].
In general it is not possible to integrate analytically the equations of motion, and hence most
of the literature makes use of numerical tools [43] or adiabatic approximations like the guiding
centre [30, 40]. Regretfully, if we want to obtain global results (for all time) or the field is far
from being uniform, the guiding centre approximation is of little help, as illustrated with some
planar examples in [41]. Therefore, other techniques to study the qualitative properties of the
motion must be introduced.

In spite of the importance of the previously mentioned contexts, there are not many rigor-
ous results on the motion of charges in concrete magnetic fields. Of course, trajectories can
be obtained explicitly in the special case of a uniform field [22], but this situation is rather
exceptional. Even in the case of perturbations of uniform magnetic fields it is very hard to
prove the existence of helicoidal trajectories, which has only been achieved for some particular
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cases [12]. On the other hand, the Hamiltonian nature of the equations of motion (Newton-
Lorentz equations) allows us to apply some techniques from Hamiltonian systems, as KAM
theory or Moser’s twist theorem. For example, the proof of the existence of quasi-periodic so-
lutions in the presence of the magnetic field created by a dipole (Störmer problem) and other
magnetic fields with rotational symmetry was first achieved by Braun in a remarkable paper [9],
using Moser’s twist theorem. Some refinements of this idea were applied to other axisymmetric
magnetic fields in [13, 39] to cover some cases for which Braun’s approach does not work.

Let us also mention that there is abundant literature on the motion of charged particles
subjected to magnetic fields in closed Riemannian manifolds, e.g. [11] and references therein.
These works are important in the context of differential geometry and dynamical systems, but
they will not be helpful to us because we shall consider the physically realistic situation of
motions in Euclidean space, paying attention to the sourcesof the fields.

In this paper we are interested in magnetic fields created by steady flows of electricity along
several wires. This is a standard way of producing magnetic fields in physics and electrical
engineering [24], and has the advantage that the field can be easily described in mathematical
terms using the Biot-Savart law [22]. The topological structure (from the dynamical systems
viewpoint) of magnetic fields created by current filaments can be very complicated. Some
recent results on the existence of first integrals and chaos can be consulted in [2, 3, 17]. In
this work we shall not study the magnetic lines (a static situation), but the motion of a charged
particle in the presence of a magnetic field (a dynamical situation). Contrary to what happens in
some plasma or force-free systems, where it is a good approximation to consider that particles
follow magnetic lines [27, 32, 35], this is not the case here,and in fact we shall see that the
particle trajectories and the lines of the field are usually completely different. In general the
motion is described by a three degrees of freedom (3DOF) Hamiltonian system, which makes
very complicated to understand the connection between the structure of the magnetic field and
the trajectories of a charged particle.

Since the study of the motion for general configurations of wires is a formidable task, we
shall focus on the following specific examples: motion in thepresence of a rectilinear wire, a
circular wire and the union of both. These are the simplest cases to consider, but we shall see
that they exhibit very interesting dynamical properties, such as the existence of periodic and
quasi-periodic solutions, scattering trajectories of helicoidal type and chaos. It is surprising to
discover that, to the best of our knowledge, there is no detailed study of these systems in the
literature, with the exception of the straight line wire forwhich a complete description was only
given quite recently [42] (for partial results see [29]).

Let us summarise the main contributions of this work. On the one hand we study in de-
tail and obtain new results, both analytically and numerically, on some elementary but realistic
magnetic systems, thus filling a gap in the literature. Moreover, the circular wire can be inter-
preted as a simplified model of the levitated magnetic dipolesystem [23], one of the most recent
proposals to confine a hot plasma for fusion power generation. Therefore, all our results on the
motion of a charge in the magnetic field of a ring wire translate into this context, specifically
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they provide a rigorous verification of the existence of confinement and quasi-periodic orbits for
this kind of systems, beyond numerics and adiabatic approximation (the usual tools to analyse
plasma confinement). On the other hand, concerning the relationship between the complexity
of magnetic fields and the complexity of the motion, we provide numerical evidence that chaos
can arise even for very simple and ordered magnetic configurations.

The contents of this paper are organised as follows. In Section 2 we introduce some no-
tation and preliminaries. The motion in the presence of a rectilinear filament is considered in
Section 3, where it is proved that all trajectories are of helicoidal type and asymptotically move
in the same direction. This result was already obtained in [42], but we provide a more concise
proof for the sake of completeness. In Section 4 we study the motion in the magnetic field of a
circular wire. The main results that we obtain are the existence of a trapping region with quasi-
periodic solutions (similar to the Van Allen inner radiation belt in the Earth magnetosphere [9])
and the presence of trajectories of certain type which escape to infinity. An application in the
context of magnetic traps is also included. The coupled system (rectilinear and circular wires)
is analysed in Section 5, where we show the existence of a trapping region and quasi-periodic
trajectories under certain assumptions. In Section 6 we perform an extensive numerical study
of these systems, computing several Poincaré sections andLyapunov exponents to illustrate the
presence of chaos. The chaotic scattering is also analysed by computing the fractal basins and
their fractal dimensions, thus showing the complex behaviour of the solutions which escape to
infinity. A final section is included to state some open problems and future lines of research.

2 Notation and preliminaries

We consider the ambient spaceR3 endowed with the standard inner product·, vector product∧
and Euclidean norm| · |. In this paper an electric wire will be represented by a smooth curve
L ⊂ R3 and a constantJ which stands for the current intensity. Ifl : τ ∈ [a, b] ⊂ R 7−→ l(τ) ∈
R3 is a parametrisation of the curveL, then the magnetic fieldB created by the wire(L, J) at
the pointq ∈ R3 is given by the Biot-Savart law,

B(q) =
µ0J

4π

∫ b

a

l′(τ) ∧ (q − l(τ))

|q − l(τ)|3 dτ, (1)

whereµ0 denotes the magnetic permeability constant. It is standardthat the vector fieldB
does not depend on the parametrisation ofL. According to the superposition principle the
magnetic field created byn wires (L1, J1), . . . , (Ln, Jn) is given by the sumB =

∑n
i=1 Bi of

the individual magnetic fieldsBi. For the sake of simplicity we will setµ0/4π = 1 all along
this paper.

It is well known thatB is a divergence free vector field, analytic in the complementof the
current distribution. Following the standard terminologyof electromagnetism, we callmagnetic
linesto the integral curves ofB andmagnetic surfaceto a surface which is covered by magnetic
lines.
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The equations of motion of a (non-relativistic) unit-mass,unit-charge particle in the pres-
ence of a magnetic fieldB are given by the Newton-Lorentz law:

q̈ = q̇ ∧ B(q), (2)

where the dot overq denotes, as usual, the time derivative. This equation can bewritten equiv-
alently in a Hamiltonian way whenever there is a globally defined vector potentialA such that
B = rotA. If this is the case, the Hamiltonian function isH(q, p) := 1

2
(p − A(q))2. In all the

examples considered in this paper the vector potentialA is globally defined (in the complement
of the wires) because

∫

S
B · νdΣ = 0 for any closed surfaceS ⊂ R3\⋃Li, whereν is the

outward unit normal toS anddΣ is the standard area measure ofS.
A particle trajectoryq(t) is called ofscattering typeif limt→∞ |q(t)| = ∞. A particular kind

of scattering trajectoryq(t) is calledhelicoidal if there is a unit vectorn and constantsA > 0
andB such thatq||(t) := n · q(t) verifiesq||(t) ≥ At+B for all t ≥ 0, andq⊥(t) := q(t)− q||(t)
is periodic. This definition was introduced in [12] with the more restrictive assumption that
q̇||(t) is constant. As this hypothesis is not generally fulfilled wehave decided to drop it. It is
clear that the image ofq(t) in R3 for t ≥ 0 resembles a “deformed helix” with axis in then
direction.

We will denote by(r, φ, z) ∈ R
+ × S

1 × R the standard cylindrical coordinates inR3,
and by{∂r, ∂φ, ∂z} its associated orthogonal basis of vector fields. HereR+ stands for[0,∞).
Remember that|∂r| = |∂z| = 1 and|∂φ| = r. We will make extensive use of this coordinate
system in what follows.

As usualK(k) andE(k), k ∈ [0, 1), are thecomplete elliptic integrals[1] defined by:

K(k) :=

∫ π
2

0

dθ
√

1 − k sin2(θ)
, E(k) :=

∫ π
2

0

√

1 − k sin2(θ) dθ .

Let us summarise some properties of the complete elliptic integrals which will be used in
forthcoming sections:

1. K(0) = E(0) = π/2.

2. limk→1− K(k) = ∞, limk→1− E(k) = 1.

3. dK(k)
dk

= E(k)
2k(1−k)

− K(k)
2k

, dE(k)
dk

= E(k)−K(k)
2k

.

4. K(k) = π
2
(1 + k

4
+ 9k2

64
+ O(k3)), E(k) = π

2
(1 − k

4
− 3k2

64
− O(k3)), for k ≃ 0.

3 Motion in the magnetic field of an infinite rectilinear wire

Let R be an infinite rectilinear filament carrying a current of intensityJR. The Cartesian coor-
dinates can be chosen in such a way thatR is given by thez-axis, and the current is flowing in
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the positive direction, so thatJR > 0. The magnetic field created by this wire is given by the
following expression [22]:

BR =
2JR
r2

∂φ .

It is clear that this vector field has the symmetriesS1 = ∂z (translation) andS2 = ∂φ

(rotation), and hence the integral curves ofBR are circles around thez-axis.
We are interested in the motion of a unit-charge, unit-mass particle subjected to the mag-

netic fieldBR. The interest of this problem lies in the fact that it is a physically meaningful
3DOF Hamiltonian system which can be integrated by quadratures, a rather unusual property.
Surprisingly, the only reference that we have found where this system is studied in detail is
quite recent [42]. For the sake of completeness we will provide a more explicit proof of the
main results in [42], emphasising the integrability of the motion. This system is also studied in
[29], but only partial results concerning the motion in ther coordinate are obtained.

Let us see that the Euclidean symmetries give rise to two independent first integrals of the
motion, thus allowing us to obtain a complete qualitative description of the particle trajectories.
There is no loss of generality in assuming that2JR = 1, otherwise the equations are reduced to
this case just doing the time-scalingt̃ := 2JRt. Then, Newton-Lorentz Eqs. (2) in cylindrical
coordinates read as:

r̈ − rφ̇2 = − ż

r
, (3)

r2φ̈ + 2rṙφ̇ = 0 , (4)

z̈ =
ṙ

r
. (5)

As usual, the kinetic energyE := 1
2
(ṙ2 + r2φ̇2 + ż2) is a conserved quantity of this system.

Furthermore, integrating Eqs. (4) and (5) we get two additional first integrals of the motion, the
generalized angular and linear momenta:

L := r2φ̇ , (6)

P := ż − ln r . (7)

Therefore the motion is restricted to the level sets{E = E0, L = L0, P = P0} for constants
E0, L0, P0 ∈ R determined by the initial conditions. Writing the first integrals in phase space
coordinates(r, φ, z, pr, pφ, pz) we haveE = 1

2
p2

r + 1
2r2 p

2
φ + 1

2
(pz + ln r)2, L = pφ andP = pz.

It is readily checked that these functions are in involutionand almost everywhere independent,
so the system is Liouville integrable. Let us now integrate it by quadratures.

Using Eqs. (6) and (7) we can eliminate the dependence on the coordinatesφ and z in
Eq. (3), thus reducing the motion to an equation in ther coordinate:
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1

2
ṙ2 + U(r) = E0 , (8)

where the effective potentialU(r) is

U(r) :=
L2

0

2r2
+

(P0 + ln r)2

2
.

It is easy to check thatlimr→0+ U(r) = limr→∞ U(r) = ∞, and thatU(r) has a unique
global minimumrm and a unique inflection pointri > rm. This implies that all the solutions
r(t) to Eq. (8) are periodic. The period of each solution depends on the constantsE0, L0 and
P0, and is defined by a smooth functionT0 := T (E0, L0, P0), which can be extended smoothly
to the constant solutionsr(t) = rm.

Since the coordinater is always bounded we get that a solution to Eqs. (3), (4) and (5) is
bounded if and only if the coordinatez is. If r(t) is a solution to Eq. (8), we can integrate
Eqs. (6) and (7) to yield

φ(t) = φ0 +

∫ t

0

L0dt

r2(t)
,

z(t) = z0 + P0t +

∫ t

0

ln r(t)dt .

As r(t) is a periodic function of periodT0, it is standard that the following identity holds

∫ t

0

ln r(t)dt = µ0t + G(t) ,

whereµ0 := 1
T0

∫ T0

0
ln r(t)dt andG(t) is a periodic function of (not necessarily minimal) period

T0. Note thatµ0 is a smooth function ofE0, L0, P0 becauseT0 andr(t) depend smoothly on the
constants of motion. Accordingly, the solutionz(t) is bounded if and only if the equation

P0 + µ0 = 0

holds in the space of parameters(E0, L0, P0).

Lemma 3.1. For any values of the constants of motion(E0, L0, P0), with E0 6= 0, we have that

P0 + µ0 > 0

.

Proof. First let us observe that this inequality is straightforward if r(t) is a constant solution of

Eq. (8), given byr(t) = rm andE0 =
L2

0

2r2
m

+
L4

0

2r4
m

. In this case, asE0 6= 0 implies thatL0 6= 0,
we have that

P0 + µ0 = P0 + ln rm =
L2

0

r2
m

> 0 .
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Otherwise, lett− andt+ be the time values where the solutionr(t) reaches its minimum and
maximum respectively, assuming that0 ≤ t− < t+ < T0. Then, using thatr(t) satisfies the

Newtonian equation̈r =
L2

0

r3 − P0+ln r
r

associated to Eq. (8), we writeP0 + µ0 as

2

T0

∫ t+

t−

[ L2
0

r(t)2
− r(t)r̈(t)

]

dt .

Integrating by parts the second summand of the integral above, and taking into account that
ṙ(t−) = ṙ(t+) = 0 we finally conclude that

P0 + µ0 =
2

T0

∫ t+

t−

[ L2
0

r(t)2
+ ṙ(t)2

]

dt > 0 ,

as we wanted to prove.

This lemma implies that the coordinatez(t) grows linearly int when t → ∞ and hence
all the particle trajectories move in the positivez-axis direction after some transient of time no
bigger thanT0. Consequently, if the angular momentumL0 6= 0, for every initial condition
there existst∗ ≤ T0 such that fort ≥ t∗ the trajectory of the corresponding charged particle
moving under the action ofBR is helicoidal: periodic in ther-coordinate, linearly increasing in
thez-coordinate (unbounded) and turning around thez-axis. Let us remark that the motion in
the coordinate space is confined to the region enclosed by twocylinders of radiir(t−) andr(t+)
respectively, which depend on the constantsE0, L0, P0. If L0 = 0 the solution has no angular
velocity, i.e.φ̇ = 0, and the motion takes place on a half-planeφ = φ0 determined by the initial
condition. In this case, the initial conditionr0 = e−P0 corresponds to an equilibrium solution,
i.e. E0 = 0.

Helicoidal motions witḧz = 0 were also obtained in [12] studying perturbations of uniform
magnetic fields. The main difference is that the helicoidal trajectories in systemR are oscillat-
ing becausėz does not need to be positive for allt ≥ 0 (the constantP0 + µ0 is perturbed by
a periodic function which changes its sign). In Fig. 1 we haverepresented some trajectories in
R3 to illustrate the different possible behaviours.

4 Motion in the magnetic field of a circular wire

The flow of electric current along a closed filament is one of the simplest ways to generate a
magnetic field. In this section we provide a detailed analytical study of the motion of charges
in the magnetic field of a circular wire, a system which has been very poorly studied in the
literature in spite of its importance for applications. Forexample, let us mention that this system
provides a toy model for the so called levitated magnetic dipole [23], a device to confine a hot
plasma for fusion power generation. All our results can thenbe interpreted in this context.

First, in Section 4.1 we describe the magnetic field and the equations of motion, showing
the existence of an additional first integral. Some 1-dimensional and 2-dimensional restricted
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Figure 1: Particle trajectories of helicoidal type around an infinite rectilinear wire. The initial
conditions arer0 = 1, z0 = 0, φ0 = 0, ṙ0 = 0.1, φ̇0 = 0.1. For clarity, the direction of the
current is marked with an arrow in all pictures.

motions are studied in Section 4.2. In Section 4.3 we prove the existence of trapping regions
of toroidal shape, which are similar to the plasma confinement regions in a levitated magnetic
dipole, and the presence of quasi-periodic solutions in these domains. The technique of proof
is adapted from [9] and consists in applying Moser’s twist theorem after some manipulations of
the Hamiltonian. These trapping regions have similar properties to the Van Allen inner radiation
belt in the Earth magnetosphere, which suggests the application of this system to construct a
magnetic trap, a possibility which is discussed in Section 4.4. Finally, in Section 4.5 we prove
the existence of trajectories escaping to infinity.

4.1 Preliminary results

Without loss of generality one can assume thatC is a circular filament defined by the coordinates
(r = 1, z = 0) and carrying a current of intensityJC > 0 in the direction of the vector field
∂φ. The magnetic field created by this wire can be explicitly written in terms of the complete
elliptic integralsK(k) andE(k), cf. Section 2, as follows:

BC =
JC∂zI(r, z)

r
∂r −

JC∂rI(r, z)

r
∂z , (9)

whereI(r, z) is defined as

I(r, z) := −
√

(1 + r)2 + z2
[

(2 − k2)K(k2) − 2E(k2)
]

, (10)

k2 :=
4r

(1 + r)2 + z2
. (11)
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This formula for the magnetic field of a circular wire is obtained taking into account that
the vector potentialA = Aφ(r, z)∂φ is related toI(r, z) asI(r, z) = −r2Aφ(r, z), where the
expression ofAφ(r, z) is the one shown in [22]. Note thatBC is an analytic vector field inR3\C.

It is easy to check that the angleφ and the functionI(r, z) are first integrals ofBC . In the
following lemma we provide a topological characterizationof the level sets ofI(r, z).

Lemma 4.1. The level setsI−1(c) ⊂ R
+ × R are diffeomorphic toS1 around the point

(r = 1, z = 0) for c ∈ (−∞, 0) and the only degenerate level isI−1(0) = {r = 0}. The
corresponding surfaces inR3 are revolution tori.

Proof. First, we observe thatBC 6= 0 at every point, which implies via Eq. (9) that∇I 6= 0 in
R+\{0} × R. In addition, we note thatk2 ∈ [0, 1] for any(r, z) ∈ R+ × R and that∇I = 0 on
the line{r = 0}.

From Property 2 in Section 2 andk2(C) = 1 it follows that limC I(r, z) = −∞, thus
implying that the level sets ofI nearC are closed curves. Usinglim∞ k2 = limr→0 k2 = 0
and the Taylor series(2 − k2)K(k2) − 2E(k2) = π/16k4 + O(5) aroundk = 0 (use the
expansions given in Property 4 of Section 2) we getlimr→∞ I(r, z) = limr→0 I(r, z) = 0. Let
us now prove thatI(R+\{0} × R) < 0. On account of Eq. (10) it is enough to show that
(2 − k)K(k) − 2E(k) > 0 for k > 0. Indeed, from the definitions ofK(k) andE(k), cf.
Section 2, we obtain

(2 − k)K(k) − 2E(k) = −k

∫ π/2

0

cos(2θ)dθ
√

1 − k sin2 θ
=

− k

(

∫ π/4

0

cos(2θ)dθ
√

1 − k sin2 θ
+

∫ π/4

0

cos(π − 2θ)dθ√
1 − k cos2 θ

)

.

Since cos(2θ)√
1−k sin2 θ

< − cos(π−2θ)√
1−k cos2 θ

for θ ∈ [0, π/4) the claim follows, thus establishing that

all the regular level sets ofI(r, z) are compact, so they are closed curves. It is clear that if we
consider also the angular variableφ these sets become revolution tori.

A straightforward consequence of Lemma 4.1 is that the integral curves ofBC are circles
aroundC except for thez-axis, which is a magnetic line oriented in the positive direction.

Next we describe the equations of motion for a charged particle moving under the action of
BC. Unless otherwise stated, we shall assume in all this section thatJC = 1 because we can
always reduce to this case by doing the scaling of timet̃ := JCt. Accordingly, the Newton-
Lorentz equations of motion of a unit-mass, unit-charge particle subjected to the magnetic field
BC, written in terms ofI(r, z), are the following:
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r̈ − rφ̇2 = −φ̇∂rI(r, z) ,

r2φ̈ + 2rṙφ̇ = ż∂zI(r, z) + ṙ∂rI(r, z) , (12)

z̈ = −φ̇∂zI(r, z) .

The kinetic energyE := 1
2
(ṙ2 + r2φ̇2 + ż2) is a conserved quantity of this system of equa-

tions. Furthermore there is a second first integral (generalized angular momentum) which can
be obtained integrating Eq. (12):

L := r2φ̇ − I(r, z) .

The initial conditions provide a valueL0 for this constant of motion, and therefore, proceed-
ing in the standard way, we can reduce the equations of motionto a two degrees of freedom
(2DOF) Hamiltonian system defined on the half-plane(r, z) ∈ R

+ × R, whose Hamiltonian
function is:

H(r, z, pr, pz) :=
1

2
(p2

r + p2
z) + V (r, z) , (13)

with

V (r, z) :=
(L0 + I(r, z))2

2r2
(14)

playing the role of an effective potential energy of the problem. The motion in the physical space
R3 is obtained from solutions(r(t), z(t)) of this 2DOF Hamiltonian system just integrating the
first order differential equation:

φ̇ =
L0 + I(r(t), z(t))

r(t)2
.

Hamilton’s equations of motion associated to the Hamiltonian function (13) read as follows:

ṙ = pr , ṗr =
(L0 + I(r, z))2

r3
− (L0 + I(r, z))∂rI(r, z)

r2
,

ż = pz , ṗz = −(L0 + I(r, z))∂zI(r, z)

r2
.

Our goal in the following sections is to provide a rigorous qualitative study of these equa-
tions, in particular to prove the existence of periodic, quasi-periodic and scattering motions. In
spite of the simplicity of this system it contains some features of non integrability and chaos, as
will be illustrated with numerical studies in Section 6.



J. Aguirre, A. Luque and D. Peralta-Salas 13

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3

V
(r

,0
)

L0 = 0

L0 > 0

L0 < 0

r

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8

 1

 10

 100

 1000

L0

rM

Eescape

(b)

Figure 2: (a): Sections atz = 0 of the potentialV (r, z) with L0 = −1, 0, 4. (b): We plot the position of the

saddle pointrM (logarithmic scale in the right axis), obtained from Eq. (17), and its corresponding escape energy

Eescape = V (rM , 0) (left axis), as a function ofL0.

4.2 Some particular motions: trajectories on the invariantplane

A simple computation shows that the restriction ofBC (cf. Eq. (9)) to thez-axis looks as

BC |r=0 =
2π

(1 + z2)3/2
∂z,

which readily implies that a particle with initial condition on thez-axis and initial velocityż0

tangent to this axis, has the equation of motionz̈ = 0, and so it moves freely along thez-axis.
In the standard terminology of mechanics it is said that thez-axis is an invariant set of the
Newton-Lorentz equations of motion [16].

On the other hand, it is also ready to check thatBC|z=0 is orthogonal to the plane{z =
0}. Indeed an easy computation using that∂zk(r, 0) = 0 implies that∂zI(r, 0) = 0, and the
result follows from Eq. (9). Hence, we have that{z = 0} ⊂ R

3 is also an invariant set of
the motion. In the phase space(r, z, pr, pz) this is equivalent to the invariance of the plane
{z = 0, pz = 0} under the Hamiltonian vector field defined by Eq. (13). In thissection we shall
focus on studying the motion on this invariant plane, which will provide a first understanding
of Hamilton’s equations associated to Eq. (13).

The reduced motion on{z = 0, pz = 0} is described by the following 1DOF Hamiltonian
system:

H(r, pr) =
1

2
p2

r + W (r) , (15)
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with W (r) := V (r, 0) = [L0+I(r,0)]2

2r2 , and hence the qualitative study of the solutions to the
corresponding Hamilton’s equations can be made through theanalysis of the effective potential.
The following lemma provides a full description ofW (r) in terms of the parameterL0.

Lemma 4.2. The functionW (r) is analytic in(0, 1) ∪ (1,∞) and satisfies these properties:

1. W (r) ≥ 0 for anyL0.

2. limr→1± W (r) = ∞ andlimr→∞ W (r) = 0 for anyL0.

3. limr→0+ W (r) = ∞ if L0 6= 0 and limr→0+ W (r) = 0 for L0 = 0.

4. If L0 > 0, W (r) has two local minima at0 < rm1
< 1 and rm2

> 1 of value0 and
one local maximum atrM > rm2

. W (r) has neither local maxima nor minima ifL0 = 0
(except atr = 0), and whenL0 < 0 it has only one local minimum atrm < 1 of positive
value and no local maxima. This structure is illustrated in Fig. 2(a) for some particular
cases.

5. The escape energy is defined whenL0 > 0 as Eescape := W (rM) = V (rM , 0). The
maximum pointrM is decreasing withL0, whileEescape is increasing, see Fig. 2(b).

Proof. Using the definition ofW (r) and Lemma 4.1 it is easy to show that Properties 1, 2 and
3 hold. To prove Property 4 we compute the derivative ofW (r), which is

W ′(r) =
(L0 + I(r, 0))(r∂rI(r, 0) − I(r, 0) − L0)

r3
,

and study its zeros. IfL0 > 0 the local minimarm1
andrm2

are given byL0 +I(r, 0) = 0, while
the local maximum verifies the equationr∂rI(r, 0) − I(r, 0) = L0. WhenL0 < 0 the function
L0 + I(r, 0) is strictly negative andr∂rI(r, 0) − I(r, 0) − L0 = 0 has one solution atrm < 1,
see the graph of the functionr∂rI(r, 0)− I(r, 0) in Fig. 3(a). In the caseL0 = 0, W ′(r) 6= 0 for
r > 0 andW (0) = W ′(0) = 0. Finally note from Fig. 3(a) that the radiusrM solving equation
rM∂rI(rM , 0) − I(rM , 0) = L0 is decreasing withL0 (the same happens withrm). Moreover
|∂rI(r, 0)| is decreasing withr provided thatr > 1 (cf. Fig. 3(b)) and hence the escape energy
Eescape = [∂rI(rM ,0)]2

2
is decreasing withrM , so increasing withL0 wheneverL0 > 0.

This lemma allows us to describe the solutions(r(t), pr(t)) of the 1DOF Hamiltonian sys-
tem (15), and integrating the equation

φ̇ =
L0 + I(r(t), 0)

r(t)2
,

one easily obtains the motion on the plane{z = 0}. Let us summarise the main features of this
motion which are obtained as a straightforward applicationof Lemma 4.2. The most relevant
consequence is the existence of periodic, quasi-periodic and scattering trajectories of particles
when moving on the invariant plane with energyH0 and initial conditionr0.
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1. If L0 > 0 andr0 < 1, then the solutionr(t) is periodic of periodT (H0) and there exist
constants0 < r1 < r2 < 1 such thatr1 ≤ r(t) ≤ r2. This implies that the motion on the
plane{z = 0} is periodic or quasi-periodic depending on whether2π/T (H0) is rational
or not.

2. If L0 > 0 andr0 > 1 we distinguish among several cases. IfH0 < Eescape andr0 < rM

the solutionr(t) is periodic, while ifr0 > rM the solution is unbounded (scattering
orbit). If H0 > Eescape the solutionr(t) is unbounded for any initial condition, that is
why W (rM) is called escape energy. In the limit caseH0 = Eescape there are 3 solutions:
an unstable constant solution atr = rM , a bounded solution which accumulates over
r = rM and a scattering trajectory. For any values ofH0 andr0 it holds thatr(t) > 1.
The unstable constant solutionr(t) = rM for H0 = Eescape gives rise to an unstable
periodic motion on{z = 0}. The other solutions provide periodic, quasi-periodic and
scattering motions on the invariant plane.

3. If L0 = 0 andr0 < 1 then the solutionr(t) is periodic for any value ofH0. On the other
hand, ifr0 > 1 the solutionr(t) is unbounded. This fact provides periodic, quasi-periodic
and unbounded motions on the invariant plane.

4. If L0 < 0 and r0 < 1, the solutionsr(t) are periodic of periodT (H0) and verify
0 < r(t) < 1 for any H0. In fact there is a stable constant solutionr(t) = rm when
H0 = W (rm) > 0, which provides a periodic motion on{z = 0}. The other periodic
solutions provide periodic motions on the plane{z = 0} if 2π/T (H0) is rational, and
quasi-periodic otherwise. Finally, ifr0 > 1 all the solutions escape to infinity, thus giving
rise to scattering trajectories on the invariant plane.

Next we show that the invariant plane{z = 0} is unstable. Indeed, taking into account that
∂zI(r, 0) = 0, cf. Section 4.1, the potentialV (r, z) in Eq. (14) admits the Taylor expansion
V (r, z) = W (r) + F (r)

2
z2 + O(z3), with

F (r) :=
1

r2
(L0 + I(r, 0))∂zzI(r, 0) .

The Newton-Lorentz equation for the variablez is hencëz = −F (r)z + O(z2), which at first
order inz is an equation of harmonic oscillator type. This implies that the normal variational
equation around a periodic solutionr(t) of Eq. (15) reads as

z̈ = A(t)z , (16)

whereA(t) := −F (r(t)) is a periodic function of periodT . Since∂zzI(r, 0) = r∂zBr(r, 0)
on account of Eq. (9), andBr(r, z) < 0 if z < 0 andBr(r, z) > 0 if z > 0, it easily follows
that∂zzI(r, 0) ≥ 0. Therefore, wheneverL0 ≤ 0, we have thatA(t) ≥ 0, and hence it is clear
that the constant solutionz = 0 to Eq. (16) is unstable. IfL0 > 0 the functionA(t) has no
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Figure 3: (a) Graph of the functionr∂rI(r, 0) − I(r, 0) with respect tor. (b) Graph of the
functions|∂rI(r, 0)| (upper plot) andI(r, 0) (lower plot). Dotted lines are plotted to show that
|∂rI(r, 0)| is different for the two values ofr that solve the equationI(r, 0) + L0 = 0. For
the sake of completeness let us observe that∂rI(r, 0) = |∂rI(r, 0)| for r > 1, and∂rI(r, 0) =
−|∂rI(r, 0)| if r < 1.

constant sign (however it can be proved that
∫ T

0
A(t)dt > 0), and we have not been able to

prove instability although this is confirmed by numerical computations.
Summarising, we conclude that (because of instabilities) the motion restricted to the invari-

ant plane{z = 0} does not provide a qualitative picture of the dynamics in a nearby region of
this plane. Accordingly, we need to look for stable invariant sets admitting a good perturbation
behaviour to prove the existence of bounded and quasi-periodic motions. This is the goal of the
next section.

4.3 Existence of quasi-periodic solutions

In this section we shall prove the existence of quasi-periodic orbits for the Hamiltonian system
defined by Eq. (13). These solutions give rise to quasi-periodic motions inR3 which are not
contained in the invariant plane{z = 0}. Our approach makes use of a technique introduced
by Braun in [9], consisting in studying the motion near a global non-isolated minimum of the
Hamiltonian. After suitable scalings and canonical transformations the problem is reduced to
a perturbation of a 2DOF integrable Hamiltonian with one small frequency, in such a way that
Moser’s twist theorem can be applied to a suitably defined area-preserving map.

First, let us describe some properties of the potentialV (r, z), cf. Eq. (14). It is obvious
that V (r, z) ≥ 0 for any (r, z) ∈ R+ × R. The computation of the following limits is also
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straightforward:

lim
r→0+

V (r, z) = ∞ if L0 6= 0 and0 if L0 = 0,

lim
r→1,z→0

V (r, z) = ∞,

lim
r→∞

V (r, z) = 0 .

On the other handlim∞ V (r, z) does not exist, which in this case just reflects thatV (r, z)
has unbounded level sets. The critical points ofV (r, z) are given by:

1. If L0 > 0, the potentialV (r, z) has a global degenerate minimum given by the closed
curve{L0 + I(r, z) = 0}. This curve encloses a region which contains the point(r =
1, z = 0), and its diameter tends to∞ asL0 tends to0. Conversely, whenL0 grows the
curve shrinks, and it collapses over the point(1, 0) in the limit. ForL0 = 0 the zero-set
of V (r, z) is thez-axis, while forL0 < 0 the potential does not have any local minimum
and it is strictly positive.

2. For everyL0 ∈ R, the potential has a non-degenerate saddle point(rM , 0) defined by the
equation

rM∂rI(rM , 0) − I(rM , 0) = L0. (17)

Note that forL0 > 0 (L0 < 0), the saddlerM obtained from Eq. (17) corresponds to
the maximumrM (minimum rm) of the reduced potentialW (r) that we computed in
Lemma 4.2. In particular,rM > 1 if L0 > 0, rM < 1 for L0 < 0 and there is no saddle
point whenL0 = 0 (rM degenerates to 0). The saddle point is very important because
the change of topology of the level sets ofV (r, z) exactly happens on the curve of value
V (rM , 0). Recall from Lemma 4.2 thatV (rM , 0) is called the escape energyEescape. In
Fig. 4 the potentialV (r, z) is plotted for three different values ofL0 to illustrate the three
different behaviours depending on the sign ofL0.

When L0 > 0 the HamiltonianH, cf. Eq. (13), has a global minimum on the curve
ΓL0

:= {I(r, z) = −L0, pr = 0, pz = 0}. The points inΓL0
are hence equilibrium positions

of the motion, and the level sets ofH nearΓL0
are compact submanifolds diffeomorphic to

S
1 × S

2. The limit energy which guarantees confinement is the escapeenergyEescape, because
it is the value for which all the connected components of{V (r, z) = c}, c ≥ Eescape, become
unbounded. Hence for valuesH0 < Eescape all the motions are bounded because they remain
on a compact energy surface, provided that the initial condition is in the bounded component of
H−1([0, Eescape)).

In the configuration spaceR3 (i.e. including the coordinateφ), the region of allowed motions
is given by{V (r, z) ≤ H0} × S1. Therefore we can define thetrapping regionas the bounded
component of the set

{V (r, z) < Eescape} × S
1 ,
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(a)L0 = 4. (b) L0 = 0. (c) L0 = −4.

Figure 4: Graph of the potentialV (r, z) for several values ofL0.

which depends onL0, and is diffeomorphic toS1 ×S
1 × (−ε, ε). This region contains the torus

{I(r, z) + L0 = 0} × S1. This is similar to the Van Allen inner radiation belt in the Earth
magnetosphere, and the possibility of using it to constructa magnetic trap will be discussed in
Section 4.4.

Let us observe that whenL0 ≤ 0 all the connected components of the region{V (r, z) ≤
H0} are non-compact for anyH0 > 0, and hence all the motions are unbounded (for a proof
see Section 4.5), except for some periodic and quasi-periodic trajectories on the invariant plane
described in Section 4.2 and possibly a null-measure set outside this plane. For this reason we
shall restrict to positive values ofL0. The following theorem shows that the trapping region
contains many quasi-periodic motions.

Theorem 4.3. For any value ofL0 > 0 there exist quasi-periodic solutions of the Hamiltonian
system defined by Eqs.(13)and (14), i.e.

H(r, z, pr, pz) =
1

2
(p2

r + p2
z) +

(L0 + I(r, z))2

2r2
, (18)

at a distanceε of ΓL0
.

First, we introduce local coordinates around the degenerate minimum curve{I(r, z)+L0 =
0}. To this end, we consider an analytic functionF : U → S

1 which is orthogonal toI, i.e.
∇F ·∇I = 0 in U . Here the domainU ⊂ R+×R is a tubular neighbourhood of{I(r, z)+L0 =
0}. It is clear that one can chooseU small enough so that(I, F ) diffeomorphically mapsU onto
(−L0 − δ,−L0 + δ)× S1 andI−1(c1) ∼= {c1}× S1, F−1(c2) ∼= (−L0 − δ,−L0 + δ)×{c2} for
anyc1 ∈ (−L0 − δ,−L0 + δ) andc2 ∈ S1. Now let us consider the generating function

G(r, z, px, py) = F (r, z)px + I(r, z)py,
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which is defined inU × R2. This yields the symplectic transformation

x = F (r, z) ,

y = I(r, z) ,

pr = ∂rF (r, z)px + ∂rI(r, z)py ,

pz = ∂zF (r, z)px + ∂zI(r, z)py ,

(19)

mappingU × R
2 onto (x, y, px, py) ∈ S

1 × (−L0 − δ,−L0 + δ) × R
2. In terms of the new

coordinates, the Hamiltonian reads as

H(x, y, px, py) =
1

2
(hF p2

x + hIp
2
y) +

(L0 + y)2

2r2(x, y)
,

wherehF (x, y) := (∇F )2(x, y) andhI(x, y) := (∇I)2(x, y). In these coordinates the curve
ΓL0

is given byS1×{−L0}×{(0, 0)}. As we discussed previously, there is a region of bounded
solutions near the curveΓL0

, which corresponds to small values of the energy. This region can
be studied introducing the scaling

x = εX ,

y + L0 = εY ,

px = εpX ,

py = εpY ,

which gives rise to the new Hamiltonian

Hε(X, Y, pX , pY ) := ε−2H(εX, εY − L0, εpX , εpY )

=
1

2

(

hF (εX, εY − L0)p
2
X + hI(εX, εY − L0)p

2
Y

)

+
Y 2

2r2(εX, εY − L0)

=
1

2
a(εX)p2

X +
1

2
b(εX)p2

Y +
1

2
c(εX)Y 2 + εg(X, Y, pX, pY ; ε).

To obtain the last expression we have expanded the functionshF (x, y), hI(x, y) andr−2(x, y)
aroundy = −L0, i.e. hF (x, y) = a(x) + O(y + L0), hI(x, y) = b(x) + O(y + L0) and
r−2(x, y) = c(x) + O(y + L0). In the scaled variables the remaining terms are of the form
O(y + L0) = εO(Y ; ε), and putting all together we get the functionεg(X, Y, px, pY ; ε). Let us
observe that the functionsa, b, c : S

1 → R do not vanish because(∇I)2, (∇F )2 andr−2 are
never zero on the curve{I(r, z) + L0 = 0}.

Neglecting the perturbative termεg, the HamiltonianHε is of harmonic oscillator type in
the variables(Y, pY ). This suggests to introduce the following generating function

S(X, Y, px̃, pỹ) = v(εX)1/4Y pỹ + Xpx̃, v(εX) :=
c(εX)

b(εX)
,
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in order to write this harmonic oscillator in a canonical form. The resulting symplectic trans-
formation, which is given by

X = x̃ ,

Y = v(εx̃)−1/4ỹ ,

pX = px̃ +
ε

4

v′(εx̃)

v(εx̃)
ỹpỹ ,

pY = v(εx̃)1/4pỹ ,

allows us to write the Hamiltonian in the form

H̃ε(x̃, ỹ, px̃, pỹ) =
1

2
a(εx̃)p2

x̃ +
1

2
b̃(εx̃)

(

p2
ỹ + ỹ2

)

+ εg̃(x̃, ỹ, px̃, pỹ; ε),

whereb̃(εx̃) :=
√

b(εx̃)c(εx̃).
If we introduce the “action” variableR1 = 1

2
(p2

ỹ + ỹ2) associated to the harmonic oscillator
we end up with the Hamiltonian

H̃ε(x̃, θ1, px̃, R1) =
1

2
a(εx̃)p2

x̃ + b̃(εx̃)R1 + εg̃(x̃, θ1, px̃, R1; ε).

In order to apply Moser’s twist theorem it is convenient to change the parametrisation of
time. The way of doing this, preserving the Hamiltonian character, is to define a new Hamilto-
nian function

Fε,h(x̃, θ1, px̃, R1) :=
H̃ε(x̃, θ1, px̃, R1) − h

b̃(εx̃)
.

It is clear that the Hamiltonian vector field associated toFε,h on the level{Fε,h = 0} is
proportional to that ofH̃ε on the level{H̃ε = h}, the proportionality factor being̃b(εx̃)−1.
So we can study the solutions of the HamiltonianH̃ε by fixing a constanth and studying the
Hamiltonian

Fε,h = R1 +
a(εx̃)

2b̃(εx̃)
p2

x̃ −
h

b̃(εx̃)
+ εg̃1(x̃, θ1, px̃, R1; ε) ,

whereg̃1 := g̃/b̃. Neglecting the perturbative term̃g1, the HamiltonianFε,h is integrable, and
hence it is relevant to study the solutions of the 1DOF Hamiltonian system

F 0
ε,h :=

a(εx̃)

2b̃(εx̃)
p2

x̃ −
h

b̃(εx̃)
(20)

on the cylinder(x̃, px̃) ∈ S1 × R.

Lemma 4.4. The functioñb(εx̃) : S1 → R is not identically constant for any value ofL0 > 0,
and hence it reaches a maximum and a minimum value onS1.



J. Aguirre, A. Luque and D. Peralta-Salas 21

Proof. By definition we have that̃b(εx̃) is written in the original coordinates(r, z) as

b̃ =
|∇I(r, z)|

r

∣

∣

{I(r,z)+L0=0} = |BC|
∣

∣

{I(r,z)+L0=0} ,

where Eq. (9) has been used to get the last equality. Therefore, b̃ turns out to be the Euclidean
norm of the magnetic fieldBC on the magnetic line{I(r, z)+L0 = 0}. To prove that|BC| is not
constant on any magnetic line, it is enough to consider the intersection of{I(r, z) + L0 = 0}
with the r-axis, which defines two values ofr for eachL0 > 0, denoted in Lemma 4.2 by
rm1

< rm2
. It is clear from Fig. 3(b) that|∂rI(rm1

, 0)| > |∂rI(rm2
, 0)|, which implies that

|BC(rm1
, 0)| > |BC(rm2

, 0)|, and hence|BC| cannot be constant on the line{I(r, z) = L0}, thus
proving the stated result.

A straightforward computation shows that the critical points of the HamiltonianF 0
ε,h on the

cylinder (x̃, px̃) are given by(x̃, 0), with x̃ satisfying the equatioñb′(εx̃) = 0. On account of
Lemma 4.4, there are, at least, two solutions to this equation: the one which corresponds to the
global minimumx̃m of b̃(εx̃) on S1, and the one corresponding to the global maximumx̃M of
b̃(εx̃).

It is easy to check that forh > 0 the point(x̃m, 0) is a local minimum ofF 0
ε,h, while the

point (x̃M , 0) is a saddle point, and conversely ifh < 0. Let us fix, without loss of generality,
a positive value for the constanth. From this analysis we conclude that the phase portrait of
the Hamiltonian vector field defined byF 0

ε,h has a critical point of centre type at(x̃m, 0), and
the boundary of the corresponding periodic region is a saddle loop formed by the stable and
unstable components of the critical point(x̃M , 0).

This allows us to define an action variableR2 associated to the coordinates(x̃, px̃) in a
periodic region ofF 0

ε,h, which yields the following expression for the HamiltonianFε,h

Fε,h = R1 + f(εR2) + εg̃2(θ1, θ2, R1, εR2; ε) ,

which verifies the condition
f ′′(εR2) 6= 0. (21)

This is because the frequency of the periodic solutions in the centre region ofF 0
ε,h is given by

εf ′(εR2). To see that this function is not a constant just note that theperiod tends to infinity
when approaching the boundary of the centre domain (the saddle loop).

The corresponding equations of motion are

θ̇1 = 1 + ε∂R1
g̃2 ,

θ̇2 = εf ′(εR2) + ε2∂εR2
g̃2 ,

Ṙ1 = ε∂θ1
g̃2 ,

Ṙ2 = ε∂θ2
g̃2 .
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Now we consider the Poincaré section defined by{θ1 = 0} on the submanifold{Fε,h = 0}.
First, we eliminate the variableR1 from equationFε,h(θ2, θ1, R1, εR2; ε) = 0 and, usingθ1 as
independent variable instead oft, the equations of motion give rise to

dθ2

dθ1
= εf ′(εR2) + ε2A1(θ2, θ1, εR2; ε) ,

dR2

dθ1
= εA2(θ2, θ1, εR2; ε) ,

so we compute the return map by solving this non-autonomous system of differential equations
for θ2 andR2. A formal integration of these equations fromθ1 = 0 to θ1 = 2π defines the return
map on the chosen Poincaré section. This is a symplectic mapwhich in coordinatesα := θ2

andJ := εR2 reads as

Mε :

(

α
J

)

7−→
(

α + εf ′(J) + O(ε2)
J + O(ε2)

)

.

This map is a perturbation of orderε2 of a twist map with small rotation number of order
ε. Since the non-degeneracy (or twist) conditionf ′′(J) 6= 0 is fulfilled (recall the argument
following Eq. (21)), this is enough to apply Moser’s twist theorem toMε because the pertur-
bation is small compared to the twistεf ′(J), cf. [9, 36]. Therefore, taking into account all the
previous discussion, we finally conclude the existence of quasi-periodic solutions provided that
ε is sufficiently small, as we desired to prove. In fact, from the previous analysis it is standard
(using Poincaré-Birkhoff fixed point theorem for perturbations of twist maps) to conclude the
following.

Corollary 4.5. For any value ofL0 > 0 there exist periodic solutions of the Hamiltonian system
defined by Eq.(18)at a distanceε of ΓL0

.

4.4 A technical application: magnetic traps

As discussed at the beginning of Section 4.3, the saddle point given by Eq. (17) defines a
trapping region for the motion of a charged particle in the magnetic field created by a loop wire.
This domain depends on the value ofL0, and it is given by a tubular neighbourhood of the torus
{I(r, z) + L0 = 0}× S1 ⊂ R3. The limit energy for which we have confinement isEescape. Let
us now show how this escape energy can be modified by changing the current intensityJC, so
that some scattering trajectories can become bounded.

The use of a circular wire to construct magnetic traps has a long tradition. In the typical
constructions, another field (electric or magnetic) is superposed to the magnetic field of the
wire to trap neutral atoms [34, 44]. The interaction is by means of the magnetic moment of the
atom, and the trapping region is a narrow cylinder along thez-axis. Similar trapping regions
have been obtained for charged particles with magnetic moment, where a magnetic bottle can
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be constructed near the centre of the circular wire, cf. [10,Section VI-D], [21]. The magnetic
trap that we shall describe below is completely different tothese ones, and as far as we know, it
is new. It is based on the trapping region that we proved to exist in Section 4.3, and the magnetic
bottle that we create this way is a toroidal annulus around the wire.

All along this section we assume thatL0 > 0. Let us consider a charged particle with initial
condition(r0, z0, φ0, ṙ0, ż0, φ̇0) moving under the action ofBC. The current intensity is relevant
for our analysis, so we shall write it explicitly in all the formulae. Then, the particle motion can
be described as a solution of the Hamiltonian system

H(r, z, pr, pz) =
1

2
(p2

r + p2
z) + V (r, z), V (r, z) =

(L0 + JCI(r, z))2

2r2
, (22)

whereL0 = r2
0φ̇0 − JCI(r0, z0) andH0 is determined by the initial condition.

Assume that at certain timet1 the position of the charge is(r1, φ1, z1) ∈ T , and the velocity
is (ṙ1, φ̇1, ż1). The domainT is the trapping region defined in Section 4.3, that is

T := bounded component of{(r, z) ∈ R
+ × R : V (r, z) < Eescape} × S

1 .

The charge reaches this position if we send the particle withenergyH0 > Eescape in the
direction of the trapping region. However, note that the charge is not trapped and eventually
escapes to infinity, possibly after some transient of time inthe region of confinement. Now the
idea is to change the current intensity in order to modify theescape energy, thus getting the
desired trap. For the sake of simplicity we will assume a sudden and small change of intensity,
neglecting the creation of an electromagnetic field in the process and radiative phenomena.

If at t1 > 0 we change the current intensity fromJC to J̃C, we get that the constantL0

changes as
L̃0 = r2

1φ̇1 − J̃CI(r1, z1) = L0 + (JC − J̃C)I(r1, z1) , (23)

and the new Hamiltonian turns out to be

H̃(r, z, pr, pz) =
1

2
(p2

r + p2
z) +

(L̃0 + J̃CI(r, z))2

2r2
.

Let us observe that the energy of the particle is the same, since (using Eq. (23))

H̃0 − H0 =
(L̃0 + J̃CI(r1, z1))

2 − (L0 + JCI(r1, z1))
2

2r2
1

= 0.

Therefore, if we prove thatEescape is increasing withJ̃C we can choosẽJC > JC so thatH0 <
Ẽescape, thus trapping the particle.

The simplest situation is whenJC = 0. In this case there is no magnetic field, the motion
is free, withL0 = r2

1φ̇1 andEescape = 0 soT = ∅. When intensity current̃JC > 0 is added
we immediately obtain that̃Eescape > 0, and hence we get a trap for particles with energy
H0 < Ẽescape provided that(r1, z1) belongs to the bounded component of{Ṽ (r, z) < H0}. As
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the change of intensity is small, the currentJ̃C is close to zero, and hence the new trapping region
is very narrow because the saddle point(r̃M , 0) is near the singularity(1, 0). Accordingly, it is
more advantageous to consider thatJC > 0 before the change of intensity, which allows us to
obtain bigger trapping regions.

Under this assumption, let us show that an increment of the current intensity implies that
Ẽescape > Eescape. It is convenient to define the set

TI := {(r, z) ∈ R
+ × R : I(r, z) < I(rM , 0)} × S

1 ,

where(rM , 0) is the position of the saddle of the potentialV (r, z). Using the properties of
the functionsI(r, z) andV (r, z) it is not difficult to check thatT ⊂ TI , and hence the point
where the current intensity is changed verifies(r1, φ1, z1) ∈ TI . The key observation to obtain
a magnetic trap is the following:

Proposition 4.6. GivenJC > 0, let us assume that the Hamiltonian(22) has a solution that at
certain timet1 > 0 satisfies(r1, φ1, z1) ∈ T with energyH0 > Eescape. Then, if we increase the
current intensity up tõJC > JC, we obtain thatẼescape > Eescape and(r1, φ1, z1) ∈ T̃ , where

T̃ := bounded component of{(r, z) ∈ R
+ × R : Ṽ (r, z) < Ẽescape} × S

1 .

Proof. First, let us observe that the position of the saddle point ofṼ (r, z) is (r̃M , 0) satisfying
Eq. (17), which now reads as

J̃C r̃M∂rI(r̃M , 0) − J̃CI(r̃M , 0) = L̃0 ,

and introducing this expression intõV (r̃M , 0) we obtain that the new escape energy is

Ẽescape =
J̃2
C
2

[

∂rI(r̃M , 0)
]2

.

We divide the proof in two cases:

Case 1: Assume thatL0 +JCI(r1, z1) ≤ 0. It is easy to check, by computing its derivative, that
the quantity

L̃0

J̃C
= r̃M∂rI(r̃M , 0) − I(r̃M , 0) =

L0 + (JC − J̃C)I(r1, z1)

J̃C
(24)

is increasing withJ̃C provided thatL0 + JCI(r1, z1) < 0, therefore ifJ̃C > JC, the radius
becomes̃rM < rM (cf. Fig. 3(a)). On account of Fig. 3(b) we get that∂rI(r̃M , 0) >
∂rI(rM , 0), thus concluding that̃Eescape > Eescape. WhenL0 +JCI(r1, z1) = 0, it follows

that r̃M = rM andẼescape = J̃C

JC
Eescape > Eescape. Roughly speaking, the trapping region

becomes deeper (in the sense that allows higher energies) than the initial one but, on the
contrary, it is narrower (becauser̃M ≤ rM ).
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(a) Particle of energyH0 = 0.7 and ini-
tial conditionsr0 = 3, z0 = 0.1, ṙ0 =
−0.678502, ż0 = 0 andL0 = 4, under a cur-
rentJC = 1.

1 1,5 2 2,5 3
r

(b) Under the same conditions of (a), the

intensity is increased tõJC = 1.05 when
JCI(r1, z1) + L0 = 0.

Figure 5: Numerical verification of the use of the circular wire as a magnetic trap. (a) The
particle enters the scattering region created by the circular wire and it is scattered after a short
transient time becauseH0 > Eescape = 0.635247. (b) SinceẼescape = 0.700371 > H0 = 0.7,
the particle is trapped indefinitely in a torus-like neighbourhood of the wire (the dashed line
shows the trajectory underJC = 1, and the solid line shows the trajectory after the incrementof
current intensity tõJC = 1.05). Note: As a reference, the intersection of the wire with the(r, z)
half-plane is plotted in both pictures.

Case 2: Assume thatL0 + JCI(r1, z1) > 0. In this case the quantity defined by Eq. (24) is
decreasing withJ̃C, and hencẽrM > rM andI(r̃M , 0) > I(rM , 0). A straightforward
computation shows that

dẼescape

dJ̃C
=

J̃C∂rI(r̃M , 0)

r̃M

(

I(r̃M , 0) − I(r1, z1)
)

,

which is positive becauseI(r1, z1) < I(rM , 0) (by assumption(r1, φ1, z1) ∈ T ⊂ TI)
and∂rI(r̃M , 0) > 0 for r̃M > 1 (see Fig. 3(b)). ThereforẽEescape > Eescape if J̃C > JC,
as we desired to prove. In this case the trapping region is notonly deeper but it becomes
wider sincẽrM > rM .

Finally, it is clear thatV (r1, z1) = Ṽ (r1, z1) so(r1, φ1, z1) ∈ T̃ .

In physical terms we have that by increasing the current intensity (and hence the field
strength|BC|) we can trap charges which are in the regionT and which otherwise would escape
to infinity (see Fig. 5 for a numerical example of this phenomenon). The reason is that the
escape energy also increases, and so the level line{Ṽ (r, z) = H0}, which was previously open,
now becomes closed.

Finally, to be sure that we obtain an optimal confinement (in the sense that̃Eescape is max-
imum and that we trap as many particles as possible), we should change the current intensity
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when(r1, z1) is such thatJ̃CI(r1, z1)+ L̃0 is near0, that is, when the particles are near the min-
imum of the potential̃V (r, z). This is consistent with the case 1 whereJCI(r1, z1) + L0 ≤ 0,
because it easily follows that{J̃CI(r1, z1) + L̃0 = 0} ⊂ {JCI(r1, z1) + L0 ≤ 0}.

This method becomes quite effective when we have a stream of charges which is directed
over the ring wire. In this case a high fraction of particles will be trapped after increasing
the intensity, with more chance of being confined when the energy H0 ≃ Eescape. Let us
observe that charges are trapped for all timet > t1, and hence this phenomenon goes beyond
the adiabatic approximation. We also want to remark that this trapping region is not associated
to a minimum of|BC|, which is the standard procedure in the literature of magnetic traps [10,
34, 44], but to a magnetic line. Accordingly, the confinementregion is not a cylinder around
certain point but a torus-like domain.

4.5 Existence of scattering trajectories

We have proved in Section 4.2, by reducing the problem to a 1DOF Hamiltonian system, that
there are solutions which escape to infinity on the invariantplane{z = 0}. On the other hand,
the level sets of the potentialV (r, z), cf. Section 4.3, suggest that there are many unbounded
solutions which are not contained in the invariant plane. A first observation is that the solutions
to Eqs. (13) and (14) are defined for allt, so they cannot escape to infinity in finite time.
This is easily proved using the conservation of energy and that |∇V (r, z)| is bounded for each
trajectory.

The goal of this section is to prove the existence of scattering motions away from the invari-
ant plane forL0 > 0. The caseL0 ≤ 0 is elementary and will be discussed at the end of this
section. The main idea consists in studying the equation forthe radial coordinateρ :=

√
r2 + z2

in the(r, z) half-plane. Then, using some inequalities, we can show thatthe solutionρ(t) tends
to infinity whent → ∞ for suitable initial conditions.

Let us consider the Newton-Lorentz equations associated tothe effective potentialV (r, z),
cf. Eq. (14). The following inequality is standard:

ρ̈ ≥ rr̈ + zz̈

ρ
= −r∂rV (r, z) + z∂zV (r, z)

ρ
,

and using the definition ofV (r, z), a straightforward computation yields the expression

ρ̈ ≥ −(L0 + I(r, z))(r∂rI(r, z) + z∂zI(r, z) − L0 − I(r, z))

r2(r2 + z2)1/2
.

As stated in Lemma 4.1, ifL0 > 0 the set{L0 + I(r, z) = 0} is a closed curve bounding a
region which contains the point(r = 1, z = 0). It is clear thatL0 + I(r, z) > 0 if ρ > C(L0)
for some large enough constant which depends onL0. Therefore, whenρ > C(L0) the sign of
the right hand side of the above inequality is determined by the sign ofr∂rI(r, z)+z∂zI(r, z)−
L0 − I(r, z).
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Lemma 4.7. For anyL0 > 0, there exists a positive constantQ(L0) for which the inequality
r∂rI(r, z) + z∂zI(r, z) − L0 − I(r, z) < 0 holds ifρ =

√
r2 + z2 > Q(L0).

Proof. It is enough to show thatlimρ→∞(r∂rI(r, z)+ z∂zI(r, z)− I(r, z)) = 0, because in that
case you can choose a large enough constantQ(L0) for whichr∂rI(r, z)+z∂zI(r, z)−I(r, z) <
L0 if ρ > Q(L0). As limρ→∞ k2 = 0, cf. Eq. (11), the definition (10) ofI(r, z) implies, doing a
Taylor expansion aroundk = 0, the following equation:

I(r, z) =
−πr2

((1 + r)2 + z2)3/2
+ ε(r, z) ,

wherelimρ→∞
((1+r)2+z2)3/2ε(r,z)

r2 = 0. Taking derivatives with respect tor andz we obtain, after
some computations, the formula

r∂rI(r, z) + z∂zI(r, z) − I(r, z) =
−πr2(1 − 2r2 − r − 2z2)

((1 + r)2 + z2)5/2
+ ε̃(r, z) ,

whose limit asρ → ∞ is zero, thus proving the desired result.

Taking into account Lemma 4.7 and the previous discussion weconclude that

ρ̈ > 0

provided thatρ > max{C(L0), Q(L0)} := κ(L0). If we have an initial condition for which
ρ0 > κ(L0) and ρ̇0 > 0 it is easy to check that the solutionρ(t) is increasing witht and in
fact limt→∞ ρ(t) = ∞, otherwise there would be a change of concavity in the graph(t, ρ(t))
contradicting the fact thaẗρ > 0 if ρ > κ(L0). This proves the existence of scattering solutions.

This result shows that (at least) one of the coordinates either r or z is unbounded when
t → ∞. In fact we can show that there are solutions which escape to infinity in ther coordinate.
Indeed, let us consider the Newton-Lorentz equation for ther variable, cf. Eqs. (13) and (14),
which is

r̈ =
(L0 + I(r, z))(L0 − (r∂rI(r, z) − I(r, z)))

r3
,

with initial conditions r0 and ṙ0 > 0. The same argument as in Lemma 4.7 shows that
limr→∞(r∂rI(r, z) − I(r, z)) = 0, and hence proceeding as in the previous discussion we
can prove thaẗr(t) > 0 for all t ≥ 0, provided thatr0 > κ(L0) for some constantκ which
depends onL0 (this does not depend on the sign ofL0). Accordingly there are solutions for
which limt→∞ r(t) = ∞. This is in strong contrast with the motion in the magnetic field of
a rectilinear wire, cf. Section 3, where all the trajectories of the charge are periodic in ther
coordinate.

This escape in ther coordinate is less general than the scattering solutions proved to exist
when working with the variableρ. For example, there are unbounded solutions withr0 < 1 and
ṙ0 ≤ 0, provided thatz0 and ż0 are large enough to makeρ0 > κ(L0) and ρ̇0 > 0. Therefore
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we can guarantee escape in all possible directions. Let us observe that the relevant parameter
for these arguments is not the energyH0 but the values ofρ0 andρ̇0. In particular, the energy
is very small for an unbounded solution with larger0 and smallṙ0 > 0, ż0 > 0, but this is
not contradictory because, as explained in Section 4.3, thepotentialV (r, z) has level curves of
small values which are open.

WhenL0 ≤ 0 it is not difficult to prove that almost all the solutions withz2
0 + ż2

0 6= 0 escape
to infinity (the casez0 = ż0 = 0 corresponds to trajectories which are contained in the invariant
plane{z = 0}, see Section 4.2 for a detailed analysis). Indeed, the Newton-Lorentz equation
for thez coordinate, cf. Eqs. (13) and (14), reads as

z̈ = −(L0 + I(r, z))∂zI(r, z)

r2
.

The sign of this equation can be controlled because, on the one hand−r−2(L0+I(r, z)) > 0
and on the other hand∂zI(r, z) is proportional to the radial component of the magnetic fieldBC,
cf. Eq. (9), and hence the geometry of the magnetic lines implies that∂zI(r, z) > 0 if z > 0
and∂zI(r, z) < 0 if z < 0. Therefore, whenz0 > 0 and ż0 ≥ 0 we have thaẗz(t) > 0,
which readily implies thatlimt→∞ z(t) = ∞. Analogously, whenz0 < 0 andż0 ≤ 0 we have
that z̈(t) < 0, thus yielding thatlimt→∞ z(t) = −∞. Otherwise, since the invariant plane is
unstable (see the discussion at the end of Section 4.2) all the solutions cross the plane{z = 0}
changing their concavity and hence they escape in the positive or negative direction of thez-
axis depending on the sign ofż0, with the exception of the solutions which belong to the stable
component associated to the invariant plane. These exceptional solutions, which define a null-
measure set in the(z0, ż0) plane, verify thatlimt→∞ z(t) = 0, so we cannot conclude whether
the corresponding trajectories are bounded or not just studying the Newton-Lorentz equation
for thez coordinate.

5 Motion in the magnetic field of a coupled system

In this section we study the motion of a charge in the magneticfield created by a circular wire
centred at thez-axis, carrying a current of intensityJC > 0 in the direction of the vector field∂φ,
and an infinite rectilinear filamentR with current intensityJR > 0. We shall restrict ourselves
to the case in which the circular wireC lies on the plane{z = 0} andR is defined by a current
flowing in the positive direction of thez-axis, in order that the axial symmetry be preserved. In
what follows we shall denote this system byC + R.

As far as we know, there are no rigorous results in the literature concerning this configu-
ration, which turns out to be much more difficult to analyse (global aspects specially) than the
single loop wire studied in Section 4. Specifically, we shallbe able to prove the existence of
quasi-periodic trajectories only whenJR/JC ≪ 1. It remains open to provide an analytical
study of the case in whichJC andJR are comparable, which is numerically analysed in Sec-
tion 6. Finally, we will also prove that, independently of the values ofJR andJC, there are
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not scattering solutions for which the quotient|z(t)|/r(t) is bounded, and therefore the escape
in thez coordinate is dominant over the escape in ther direction, as in the case of the single
rectilinear wire (wherer(t) is in fact periodic).

We callBC+R the magnetic field created by this system, which is given by

BC+R =
JC∂zI(r, z)

r
∂r +

2JR
r2

∂φ − JC∂rI(r, z)

r
∂z ,

whereI(r, z) is defined in Eq. (10). Observe thatBC+R is analytic inR3\(C ∪ R) and that
I(r, z) is a first integral of this vector field, thus implying that allthe magnetic lines ofBC+R
lie on magnetic surfaces which are revolution tori, cf. Lemma 4.1. Moreover, it is not difficult
to check, cf. [17], that the integral curves of this field are periodic or quasi-periodic depending
on the magnetic surface (in contrast with those ofBC that are all periodic).

The Newton-Lorentz equations of motion of a unit-mass, unit-charge particle subjected to
BC+R read as

r̈ − rφ̇2 = −JCφ̇∂rI(r, z) − 2JRż

r
, (25)

r2φ̈ + 2rṙφ̇ = JC ż∂zI(r, z) + JC ṙ∂rI(r, z) , (26)

z̈ = −JCφ̇∂zI(r, z) +
2JRṙ

r
. (27)

This system of equations has two first integrals: the kineticenergyE := 1
2
(ṙ2 + r2φ̇2 + ż2),

and the generalized angular momentumL := r2φ̇ − JCI(r, z). These conserved quantities
allow us to reduce the equations of motion to a 2DOF Hamiltonian system on the half-plane
(r, z) ∈ R+ × R, given by:

HC+R(r, z, pr, pz) :=
1

2

(

pr −
2JRz

r

)2

+
1

2
p2

z + V (r, z) , (28)

with

V (r, z) :=
(L0 + JCI(r, z))2

2r2
. (29)

Note that this Hamiltonian is not written in natural form dueto the new termz/r. However,
let us observe that iḟr = ż = 0 we have thatHC+R = V (r, z), soV still plays the role of an
effective potential (its saddle being a barrier between bounded and unbounded motions). The
associated Hamilton’s equations of motion do not possess simple restricted solutions ifJR 6= 0
or JC 6= 0 (as those discussed in Section 4.2 for systemC), but we can also define atrapping
regionwheneverJC 6= 0.

Indeed, the potential does not depend onJR, and hence the properties of the motion which
can be derived from the qualitative properties ofV (r, z) are the same as for the single circular
wire. Let us summarise them in the following list. For more details see Section 4.3.
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1. Provided thatL0 > 0, the Hamiltonian defined by Eq. (28) has a global minimum on the
curveΓL0

:= {JCI(r, z) + L0 = 0, pr = 2JRz
r

, pz = 0} and the level sets ofH nearΓL0

are compact submanifolds.

2. The saddle point(rM , 0) and the escape energyEescape := V (rM , 0) are independent of
the value ofJR. In particular, their dependence onL0 is the same as for systemC, e.g.
see Fig. 2(b) for the caseJC = 1.

3. The region of allowed motions is given by{V (r, z) ≤ H0} × S1. For L0 > 0 there
is a trapping regionwhich is defined by the bounded component of the set{V (r, z) <
Eescape} × S1. WhenL0 ≤ 0 all the connected components of{V (r, z) ≤ H0} are
non-compact, and hence most of the motions are unbounded.

WhenJR = 0 we showed in Section 4.3 the existence of many periodic and quasi-periodic
solutions of (13) near the minimumΓL0

. The main difference with the general caseJR 6= 0
is that the reduced Hamiltonian (28) still has a magnetic term 2JRz

r
. This occurs because the

magnetic fieldBC+R has an angular componentBφ = 2JR

r2 . If one applies Braun’s technique
it is easy to realize that the extra term cannot be consideredas a small perturbation after the
symplectic change (19) and the scaling used in the proof of Theorem 4.3, unlessJR/JC ≪ 1.
It is worth mentioning that the caseBφ 6= 0 was treated by Castilho in [13], where a criterion
for the existence of quasi-periodic solutions was obtained. Regretfully, one of the assumptions
is that the level sets ofBφ in the(r, z) half-plane must be compact curves, a property which is
not fulfilled in our problem. Following Braun’s approach, wecan state the following result:

Proposition 5.1. SetJC = 1 andJR = δ/2. For any value ofL0 > 0 there exist periodic and
quasi-periodic solutions of the Hamiltonian system definedby Eqs.(28) and (29) at a distance
ε of ΓL0

, provided thatδ is of order at mostε3.

Proof. The Hamiltonian (28) can be written as

HC+R(r, z, pr, pz) =
1

2
p2

r +
1

2
p2

z + V (r, z) + δP0(r, z, pr, pz) ,

whereP0(r, z, pr, pz) := δz2

2r2 − zpr

r
. Note that the term ofHC+R which does not depend onδ

is the HamiltonianH of the single circular wire, cf. Eq. (13). Let us now change coordinates
and introduce the scale parameterε as in Section 4.3. The transformation is(r, z, pr, pz) →
(X, Y, pX , pY ), and a new HamiltonianHε

C+R := ε−2HC+R is defined, thus obtaining

Hε
C+R =

1

2
a(εX)p2

X +
1

2
b(εX)p2

Y +
1

2
c(εX)Y 2 + εg(X, Y, pX, pY ; ε)+

δ

ε2
P (X, Y, pX, pY ; ε) .

In this equation the termsa, b, c, g are the functions defined in Section 4.3, andP is just the
transformed ofP0 under the change of coordinates. As the parameterδ is independent of the
scaleε, we can setδ = ε3, which just means that when we study solutions which areε-close to
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ΓL0
, the intensity current ofR is assumed to beε3-small. In this case the Hamiltonian takes the

form

Hε
C+R =

1

2
a(εX)p2

X +
1

2
b(εX)p2

Y +
1

2
c(εX)Y 2 + ε(g + P )(X, Y, pX, pY ; ε) ,

and hence the perturbation term is now of orderε. Proceeding as in the proof of Theorem 4.3
we can rewrite the non-perturbative term of this Hamiltonian (which is exactly the same as in
Section 4.3) and compute its Poincaré map for a suitably chosen Poincaré section. This map
turns out to be of twist type (with one small frequency), and Moser’s twist theorem can be
applied, thus concluding the existence of quasi-periodic solutions. Periodic solutions follow
from Poincaré-Birkhoff theorem, as in Corollary 4.5. Details are analogous to those given in
Section 4.3.

According to numerical experiments (that are provided in Section 6), if we takeJC ≃ JR
there are still many quasi-periodic solutions nearΓL0

. However, we have not been able to
perform a change of coordinates that writes the Hamiltonianin a neighbourhood of the curve of
fixed points in a suitable way to apply Moser’s twist theorem.

It is clear that systemC + R can be used to construct magnetic traps, as in the case of
the single circular wire, for details consult Section 4.4. The mechanism is exactly the same:
we increase the current intensityJC and accordingly the escape energy also increases, thus
confining some particles in the new trapping region. Observethat this phenomenon does not
depend on the value ofJR. Outside the confinement region all solutions are of scattering type,
as will be numerically illustrated in Section 6.

Let us finally prove that|z(t)|/r(t) cannot remain bounded for scattering solutions of the
Hamiltonian system (28). This property is quite intuitive because asr increases the contribution
of the magnetic field of the infinite filament (of orderr−1) is much bigger than the contribution
of the magnetic field of the circular wire (of orderr−3). Roughly speaking, whenr is big
enough the dynamics is dominated by the rectilinear current, and thereforer(t)/z(t) cannot
grow indefinitely as proved in Section 3. Actually, numerical computations show that ther
coordinate is always bounded. This is an important difference with the case of the single circular
wire, which has many scattering trajectories escaping to infinity on the invariant plane{z = 0}
in ther direction, as we proved in Section 4.2. In the next section weshall study in more detail
the scattering properties of systemC + R using numerics.

Proposition 5.2. Assume thatL0 > 0. For any scattering solution of the Hamiltonian system
defined by Eqs.(28)and(29)we have that|z(t)|

r(t)
is not uniformly bounded int, provided thatH0

is large enough.

Proof. The Newton-Lorentz equations associated to this system read as

r̈ = −2JRż

r
+

(L0 + JCI(r, z))2

r3
− JC(L0 + I(r, z))∂rI(r, z)

r2
, (30)

z̈ =
2JRṙ

r
− JC(L0 + I(r, z))∂zI(r, z)

r2
. (31)
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Let us fixL0 > 0 andH0 > 0, and assume that there is a scattering solution(r(t), z(t)) to
these equations such that|z(t)|

r(t)
≤ C0 for some positive constantC0 and for allt ≥ 0. Note that,

on account of the conservation of energy,V (r(t), z(t)) ≤ H0 and hencer(t) ≥ C1 for all t,
thus implying thatlimt→∞ r(t) = ∞ and|z(t)| is uniformly bounded int or it tends to infinity
no faster thanr(t).

Now setq := (r, z) and observe that

d2

dt2

( |q|2
2

)

= q̇ · q̇ + q · q̈ . (32)

Using thatlimt→∞ V (r(t), z(t)) = 0 because of the asymptotic properties of the potential we
have that for everyδ0 > 0 there existsT > 0 big enough such thatV (r(t), z(t)) ≤ δ0 for t ≥ T .
Therefore

q̇ · q̇ = (pr − 2JCz/r)
2 + p2

z = 2H0 − V (q) ≥ 2H0 − δ1 , (33)

with δ1 := 2δ0. On the other hand,q · q̈ ≥ −|q||q̈|, and using the expressions (30) and (31) for
r̈ andz̈ we get

q · q̈ ≥ −|q|
√

4J2
R|q̇|2
r2

+ O(|q|−3) = −2JR|q||q̇|
r

+ O(|q|−1/2) ≥ −C2|q̇| + δ2 , (34)

where we have taken into account that|q|
r
≤ 1 + |z|

r
is bounded uniformly int by assumption,

and that|q| is as big as we want ift ≥ T . Introducing Eqs. (33) and (34) into Eq. (32) we obtain

d2

dt2

( |q|2
2

)

≥ 2H0 − C2|q̇| + δ3 .

This inequality can be written in a different way just notingthat

|q̇| =
√

ṙ2 + ż2 ≤
√

2H0 + δ4 ,

provided thatt ≥ T . This allows us to conclude that

d2

dt2

( |q|2
2

)

≥ 2H0 − C2

√

2H0 + δ5 ,

and therefore, provided thatH0 is sufficiently large, we get

d2

dt2

( |q|2
2

)

≥ C3 ,

for some positive constantC3. Integrating this equation twice we finally obtain a lower bound
for the growth of|q(t)|, which is linear int, that is

|q(t)| ≥ C4t (35)
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if t ≥ T . This is the key property to prove that the assumption|z(t)|
r(t)

≤ L0 cannot hold. Indeed,
let us integrate Eq. (31):

ż(t) = P0 + 2JR ln r(t) −
∫ t

0

JC(L0 + I(r(t), z(t)))∂zI(r(t), z(t))

r(t)2
dt ,

with P0 := ż0−2JR ln r0. The integral in this equation can be bounded from above whent ≥ T
by

∫ t

T

JC(L0 + I(r(t), z(t)))∂zI(r(t), z(t))

r(t)2
dt ≤ C5

∫ t

T

|z(t)|dt

[r(t)2 + z(t)2]5/2
,

where we have used the asymptotic expansion of∂zI(r, z), cf. the proof of Lemma 4.7, and
the fact thatlimt→∞ I(r(t), z(t)) = 0. Noticing that d|z(t)|

dt
≤ |ż| ≤

√
2H0 it follows that

|z(t)| ≤ C6t, and taking into account the estimate (35) we can write

ż(t) ≥ P0 + 2JR ln r(t) + C7 −
C5C6

C5
4

∫ t

T

dt

t4
,

where the constantC7, positive or negative, is just a transient quantity which represents the
value of the integral till timet = T . Being the last integral convergent whent → ∞, the fact
that limt→∞ r(t) = ∞ implies thatlimt→∞ ż(t) = ∞. But this contradicts the conservation of
the energy and hence the claim of the proposition follows.

6 Numerical studies

In this section we explore numerically the systemsC andC + R in order to obtain more infor-
mation on the global dynamics in both problems. Due to the axial symmetry, it is enough to
consider the reduced motions on the(r, z) half-plane given by Eqs. (13) and (14) for systemC
and Eqs. (28) and (29) for systemC + R.

As discussed in Sections 4.3 and 5, in these systems we can define a trapping region with
bounded dynamics, which corresponds to initial conditionswith energy below a threshold value
Eescape. In Section 6.1 we describe the dynamics in the interior of this region by computing
Poincaré sections and Lyapunov exponents. Beyond the threshold, i.e. when the energy permits
to escape from the saddle, we obtain an open Hamiltonian system that is analysed in Section 6.2
by computing fractal basins of scattering trajectories andtheir fractal dimensions.

All computations have been performed using a C++ compiler whereas evaluation of com-
plete elliptic integrals has been provided by the routinesgsl_sf_ellint_Kcomp andgsl_
sf_ellint_Ecomp of GSL-GNU (see [18]). To integrate the different systems ofequations
we have used a 8/9th order Runge-Kutta Prince-Dormand method provided bygsl_odeiv_
step_rk8pd. All along this section we will assume that2JR = JC = 1.
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6.1 Bounded motions: invariant tori and chaos

The standard approach for monitoring the dynamics of a 2DOF Hamiltonian system is to com-
pute a reduced Poincaré section. To this end, let us introduce some notation that will be useful
later on. Given a fixed value ofL0 > 0 we consider thePoincaŕe sectionΣL0,H0

given by the
hyperplane{z = 0} and the energyH0, which we parametrise by means of(r, pr). Let us
denote byPL0,H0

: ΣL0,H0
7→ ΣL0,H0

the Poincaré map at energyH0 defined in the usual way.
In Fig. 6 we show several sections for the systemsC and C + R. For each picture we

have computed10000 iterates ofPL0,H0
for 100 different initial conditions (in the plots many

iterates are skipped in order to reduce the size of the figure). In these computations we ask
for tolerances10−15 both in the local integration error and in the intersection with the section.
The final integration time for each orbit ranges from2 · 104 up to 1.2 · 105 time units. For
L0 = 4, we observe that at low energy —see Fig. 6(a)-(b)— some invariant tori in systemC
breakdown due to the presence of the straight line wire in systemC +R. However, for a higher
energy —see Fig. 6(c)-(d)— the difference in the behaviour of these systems is not so evident.
For this reason, in order to describe the complexity of the motions, we resort to quantitative
computations based on Lyapunov exponents.

Lyapunov exponentsgive information about how fast nearby orbits separate (they measure
the hyperbolicity in the vicinity of an orbit) so they are regarded as indicators of the existence
of sensitive dependence with respect to initial conditions, and hence, to some amount of unpre-
dictability and chaos. It is well known that their computation requires to approximate a limit
whose convergence is very difficult to ensure in practice. For example, a given trajectory can
start close to an invariant torus (which has zero maximal Lyapunov exponent) and then, perhaps
after a big time interval, drift to a chaotic region. For thisreason, they have to be understood
as local indicators of the dynamics both in space coordinates and time. Therefore, in order to
obtain a global picture of the dynamics inside the region of bounded motions, we perform an
extensive computation of Lyapunov exponents sampling big regions of phase space, in order to
estimate thefraction of stability(fraction of volume occupied by invariant tori). To this end, we
follow valuable ideas given in [37]. It is worth mentioning that the first computations related to
the volume of tori appeared more than 40 years ago in the pioneering work of Hénon and Heiles
[20].

For convenience, let us recall the basic ideas regarding thecomputation of the maximal
Lyapunov exponent. Given ann-dimensional systeṁx = X(x), a pointx0 ∈ Rn and a vector
v0 ∈ Rn, the maximal Lyapunov exponent is given by

Λ = lim
t→∞

1

t
log

|v(t, v0)|
|v0|

,

wherev(t, v0) is the solution of the variational equation around the trajectory satisfyingx(0) =
x0, i.e. v̇ = DX(x)v, with v(0) = v0. Obviously,Λ does not depend on the pointx0 but on
its orbit. To approximate the above limit we selectv0 = (1, 0, . . . , 0) and integrate the equation
up to time∆t to computēv1 := v(∆t, v0), λ1 := log |v̄1| andv1 := v̄1/|v̄1|. Then, we compute
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Figure 6:Poincaré sections for systemsC andC + R usingL0 = 4. In this caseEescape = 0.635247.

recursively

λm = λm−1 + log(|v̄m|), Λm =
λm

m∆t
,

wherev̄m := v(∆t, vm−1) andvm := v̄m/|v̄m|, so it turns out thatΛ = limm→∞ Λm. As a
criterion for convergence we check the following

max {|Λm−2s − Λm−s|, |Λm−s − Λm|, |Λm−2s − Λm|} ≤ δ

and then we take the average of these three values. The computations presented in this paper
have been obtained using∆t = 5, s = 50 andδ = 10−4.

If we want to compute Lyapunov exponents in a big region of phase space we can save many
computations using the fact that points on the same orbit have the same exponent. To this end,
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we discretize a Poincaré sectionΣL0,H0
by means of a grid of pixels and compute the maximal

Lyapunov exponent for initial conditions falling on these pixels, taking into account that we
can associate the same exponent to those pixels where the same orbits falls. Let us remark
that some of these pixels may contain points of different dynamical properties, but if they are
small enough, we will reflect statistically the dominant character of every pixel. For the sake of
reproducibility of our computations, we describe next the implementation of the previous ideas:

1. We fix a value ofL0 > 0 and compute the saddle pointrM from Eq. (17) and also the
escape energyEescape = V (rM , 0).

2. We fix an energyH0 < Eescape and we set a rectangle such that

ΣL0,H0
⊂ [rmin, rmax] × [pmin

r , pmax
r ].

rmin, rmax are the the minimum and maximum values ofr which solve the equation
V (r, 0) = H0 for r < rM , and we setpmin

r = −
√

2H0 andpmax
r =

√
2H0. Then, we

discretize this rectangle by means of a grid ofN × N pixels.

3. We define the matrixgrid[N][N] of integer numbers where we will store a0 if the
pixel has not been studied,1 if the pixel has been used as an initial condition for comput-
ing a Lyapunov exponent and2 if the orbit of a previously studied initial condition fell
into this pixel. We set the value-1 if the pixel is not allowed (according to the energy).
The relation between a pixel[i][j] and the corresponding initial condition(r(i)

, p
(j)
r )

onΣL0,H0
is obtained from the expressions

i =

⌊

r(i) − rmin

rmax − rmin
N

⌋

, j =

⌊

p
(j)
r − pmin

r

pmax
r − pmin

r

N

⌋

,

where⌊·⌋ stands for the integer part.

4. We define the matrixwhere_r[N][N] of integer numbers that allows us to find ther
component of the original pixel whose orbit has fallen into the pixel[i][j] (this makes
sense ifgrid[i][j]=2). In particular, if for the initial condition(r(k), p

(l)
r ) on the pixel

[k][l] there existsn ∈ N such thatP n
L0,H0

(r(k), p
(l)
r ) falls into the pixel[i][j], then

we setwhere_r[i][j]=k. Analogously, we define the matrixwhere_pr[N][N]
associated to thepr component.

5. We proceed by scanning all the pixels in the discretization ofΣL0,H0
by skipping all points

whose character has already been decided, i.e., such thatgrid[i][j] is different from
0. Then, while computing the exponent associated to a pixel weupdate the matrices
grid[N][N], where_r[N][N] andwhere_pr[N][N] according to the Poincaré
map.
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Figure 7: Maximal Lyapunov exponentsΛ for systemsC andC + R usingL0 = 4. In this caseEescape =

0.635247.

6. We store the computed Lyapunov exponents in the matrixlyap[N][N]. On the one
hand, if grid[i][j] contains1, we store the Lyapunov exponent computed using
the initial condition(r

(i)
, p

(j)
r ) as described above. On the other hand, ifgrid[i][j]

contains2, we storelyap[where_r[i][j]][where_pr[i][j]].

7. Finally, we defineN0 as the number of pixels such that the Lyapunov exponent is less
than0.01 and we estimate the fraction of stability asfs = N0/N1, whereN1 is the total
number of allowed pixels (note thatN1 depends on the energyH0).

Figure 7 represents the Lyapunov exponentsΛ corresponding to initial conditions(r, pr) ∈
ΣL0,H0

in a colour chart from black (whenΛ = 0) to yellow (maximum valueΛ in the dis-
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Figure 8:Fraction of stabilityfs versus energy for systemC (solid line) and systemC + R (dashed line). In the

horizontal axis we show the energy of the system scaled asH0/Eescape.

cretization ofΣL0,H0
) and using a grid of256 × 256 pixels as has been described. The four

pictures correspond to the Poincaré sections of Fig. 6, andwe can observe the good agreement
between the observed objects in Fig. 6 (invariant tori or chaotic zones) and the coloured regions
in Fig. 7.

Figure 8 plots the fraction of stabilityfs for both systemsC andC + R as a function of
the energyH0/Eescape (it is convenient to scale the energy according to the escapeenergy) for
L0 = 2 andL0 = 4. Let us make some observations:

1. High energy: forL0 = 2 andH0/Eescape > 0.014, systemC presents a smaller fraction
of stability thanC + R. When increasing the angular momentum toL0 = 4, it turns out
that for all energies after a threshold value, both systemsC andC + R show the same
chaoticity. In fact, if we performed the same computations for L0 = 6, we would observe
that both systems show a totally indistinguishable complexity for all energies. This is due
to the fact that whenL0 is increased, bounded trajectories in systemC + R move away
from the infinite rectilinear filamentR and its influence on them decreases substantially
(rM decreases withL0, cf. Fig. 2(b), and hence the trapping region becomes closerto C).

2. Low energy: contrary to what one could expect, forH0/Eescape < 0.014 we have that
for systemC + R the fraction of stability decreases whenH0 decreases. This fact must
be carefully analysed in order to avoid false conclusions. For example, forL0 = 4 and
H0/Eescape = 0.005 it turns out that theorangechaotic ring observed in Fig. 7(a)-(b)
becomes very narrow and the trajectories inside the corresponding closed region have a
typical Lyapunov exponent of0.0008 for systemC and0.013 for systemC+R. According
to our convention, those trajectories of systemC + R do not contribute tofs (because
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0.013 > 0.01), even though they have a very small Lyapunov exponent. Nevertheless,
since the Lyapunov exponents associated to the systemC + R are larger than those ofC
for smallH0/Eescape, we can state that at low energy, the former system is more complex
than the latter.

6.2 Unbounded motions: chaotic scattering

Chaotic scattering can be understood as the interaction of aparticle with a system that scatters
it in a way that, after leaving the vicinity of the system, thefinal dynamical conditions of
the particle (e.g. speed and direction) depend sensitivelyon its initial conditions [8, 5]. This
phenomenon is associated to the existence of a compact chaotic invariant set (or chaotic saddle),
i.e. a null-measure set of infinitely many unstable periodic(of every period) and aperiodic
orbits. The region where the particle bounces erratically for a certain time is usually called
scattering region.

In this section we shall study the scattering of charged particles that enter into the trapping
regions of systemsC andC + R. The tools will be the typical ones in chaotic scattering:exit
basinsto get a qualitative idea of the predictability associated to these systems, and theuncer-
tainty dimensionto quantitatively measure their fractality. Let us observethat only trajectories
with L0 > 0 show some complexity, and therefore in this section we shallfocus exclusively on
this regime.

Computation of fractal basins

Figure 9 shows the level curves of the potentialV (r, z) for L0 = 4, cf. Eq. (14). For energies
H0 < Eescape, case studied in Section 6.1, there are two regions, one withbounded orbits and
the other one with regular scattering. For energiesH0 > Eescape, one exit appears and chaotic
scattering becomes possible, so we will assume this case in what follows. Let us observe that
the Hamiltonian (28) of the coupled systemC +R is not natural because it contains a magnetic
term, but as discussed in Section 5, the functionV (r, z) can be still interpreted as an effective
potential, so that systemsC andC + R share the same exit and escape energy. This fact makes
the comparison between both systems especially fruitful.

We recall that the exit basin associated to an exitE of a dynamical system is defined as the
set of initial conditions that escape from the scattering region through the exitE . When the
exit basin boundaries are smooth, the system is said to be non-fractal, while fractal exit basin
boundaries are associated to systems exhibiting chaotic scattering.

In our case, the scattering region is the vicinity of the circular wire, and the trajectories can
escape towards infinity through only one exit (see Fig.9(c)). For systems with one exit we can
createartificial exitsin order to be able to plot the exit basins [5]. In our particular problem, we
fix L0 > 0 and we select an energyH0 > Eescape. Then, we fix a suitableRescape > rM and we
say that a trajectory(r(t), z(t)) escapes from the scattering region if there exists anescape time
tescape > 0 such thatr(tescape) = Rescape andṙ(tescape) > 0. In addition, we define the artificial
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Figure 9: Level curves of the potentialV (r, z) for L0 = 4. (a) H0 = 0.6 < Eescape, (b)
H0 = 0.635247 = Eescape, and (c)H0 = 1 > Eescape. For every value of the energy, the(r, z)
half-plane shows two inaccessible regions (IR1 andIR2). For energiesH0 ≤ Eescape there is
one region with bounded motion (BM) and one with unbounded motion (UM), and these two
regions collide forH0 = Eescape and become an open region forH0 > Eescape with one exit
where chaotic scattering is possible.

exits as follows: we assign the colour green ifz(tescape) ≥ 0 and the colour red otherwise. We
have to take into account that all orbits in systemC + R escape to infinity with positive values
of z, which means that all conditions that are plotted in red for this system will eventually turn
upwards and crossz = 0. Therefore, we have to selectRescape sufficiently close torM in order
to obtain an accurate picture of the dynamics.

Figure 10 shows the exit basins for systemC and Fig. 11 shows the exit basins for system
C +R, for several values of the energy. We have takenL0 = 4 (in this case the escape energy is
Eescape ≃ 0.635247) andRescape = 2 (the saddle is atrM ≃ 1.971505). We characterize initial
conditions by fixingz = 0, an energyH0, a value ofr and ashooting angleθ on the half-plane
(r, z) ∈ R+ ×R (whereθ = 0 points in the positive direction of ther-axis). We scan500× 500
initial conditions corresponding to(r, θ) ∈ [0.8, 2.5] × (0, 2π). The initial conditions plotted
white either do not have any trajectories associated or correspond to orbits that do not escape
from the scattering region, even if they have enough energy to do so (they are trapped in the
interior of invariant tori). Let us summarise the main properties of the exit basins:

1. In both systems it is observed that higher values of the energy make the structures less
fractal, as is typical in open Hamiltonian systems. We will analyse this fact in a quantita-
tive way when we calculate the fractal dimension of the exit basin boundaries.

2. Invariant tori are present for some values of the energy inboth systemsC andC + R.
For instance, in systemC we have detected an invariant torus forH0 ∈ (0.95, 1.21), and
therefore it can be seen plotted in white in Fig. 10(c).

3. SystemC is reversible1 with respect to the classical involution

Θ(r, z, pr, pz) = (r, z,−pr,−pz) ,

1Let us recall that a systeṁx = X(x) is reversible if there exists an involutionx = Θ(y) (i.e., a change of
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Figure 10: Fractal exit basins for several energies for systemC andL0 = 4. Exit 1 (r = Rescape,
ṙ > 0, z ≥ 0) is plotted green, exit 2 (r = Rescape, ṙ > 0, z < 0) is plotted red and initial
conditions that do not give rise to orbits (vertical stripesaroundr = 0.8 andr = 1) or do not
escape are plotted white (see zones in (c) that correspond toinvariant tori).

and this explains the symmetry with respect toθ = π of the basins of systemC (see
Fig. 10). On the other hand, systemC + R is not reversible with respect to the previous
involution so we cannot derive the same symmetry for its fractal boundaries. Neverthe-
less, it is reversible with respect to the involutionΘ(r, z, pr, pz) = (r,−z,−pr , pz), thus
implying that a similar symmetry can be obtained using othercoordinates.

variables satisfyingΘ2 = id andΘ 6= id) such thatẏ = DΘ−1(y)X(Θ(y)) = −X(y). One of the dynamical
consequences of reversibility is that ifx(t) is a solution, then so isΘ(x(−t)).
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Figure 11: Fractal exit basins for several energies for system C + R andL0 = 4. Exit 1 is
plotted green, exit 2 is plotted red and initial conditions that do not give rise to orbits (vertical
stripes aroundr = 0.8 andr = 1) are plotted white.

4. Other important difference between both systems is obtained comparing Fig. 10(a) and
Fig. 11(a). In systemC, no matter how far away we are from the scattering region (i.e.
how large isr0), for z0 = 0 and initial shooting angleθ0 ≈ π, the particle can always
cross the exit of the system in the inner direction, spend some time bouncing erratically in
the scattering region and then escape towards infinity suffering chaotic scattering. On the
contrary, in Fig. 11(a) we can observe that forz = 0 andr > 2.35 fractality disappears
and the scattering is not chaotic anymore. In fact, what happens is that ifr0 is big enough,
the particle will turn upwards and escape toz → ∞ without even entering the scattering
region.
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Computation of fractal dimension

The fractal dimension is the object that measures the complexity of a fractal basin boundary.
While there are several definitions of fractal dimension, the most convenient for chaotic scat-
tering problems is the uncertainty dimension [25], which isknown to coincide with the box-
counting dimension in typical dynamical systems.

The uncertainty dimension of an exit basin boundary for a dynamical systeṁx = X(x),
x ∈ RN , is defined as follows. Given an initial conditionx0, we label it ascertain if the neigh-
bouring initial conditions escape through the same exit, and we label it asuncertainotherwise.
Moreover, given a toleranceε in the determination of initial conditions, we considerf(ε) as
the fraction of uncertain initial conditions. Then, it can be shown [25] that the dependence of
f(ε) on ε is of typef(ε) ∝ εα, whereα := N − D is theuncertainty exponentandD defines
the uncertainty dimension. The uncertainty exponentα takes values between 0 (the boundary
is totally fractal) and 1 (the boundary is a smooth curve). Note that this definition is consistent
when we restrict to a submanifoldS ⊂ RN of dimensionN0 < N (which is quite helpful for
saving computational time): if we select initial conditions onS, the uncertainty dimensionD is
obtained fromD = D0+N −N0, whereD0 is the fractal dimension of the intersection between
the fractal boundary andS, and is obtained fromα = N0 − D0.

In our computations, we fixr0 = 1.6, z0 = 0 and we take different values ofθ0 ∈ (π, 2π)
(this values are suggested from Fig. 10 and 11). Therefore wehave thatN0 = 1 andN = 3.
Using this 1-dimensional submanifold we can obtain an uncertainty dimensionD0 that ranges
from 0 to 1, and the uncertainty dimension of the systemD verifiesD ∈ [2, 3]. In particular,
to approximate the uncertainty dimensionD0 we select an equispaced grid ofM anglesθi. The
angleθi, for i ∈ {2, . . . , M}, is certain if it escapes through the same exit asθi−1, and uncertain
otherwise (by conventionθ1 is taken as certain). Note that in order to compute the exit point
r(tescape) = Rescape we use a Newton method in a similar spirit to when computing a Poincaré
map. We repeat these computations forM = 100, 120, . . . , (1.2)n · 100 < 106 and we compute
α from fitting linearly the expressionlog(f) versus− log(M). For example, in Fig. 12(b) we
show one of the performed fits in order to stress that our computations are very accurate.

Figure 12(a) shows the fractal dimension obtained for system C (white squares) and system
C + R (black squares) as a function of the energyH0 > Eescape, takingL0 = 4. Let us first
focus on systemC to explain in some detail the main results of our numerical analysis.

1. We can see that it satisfiesD → N = 3 whenH0 → Eescape. This is not surprising,
as it was conjectured in [28] and fully explained in [4] that the fractal dimension of any
open Hamiltonian system tends to that of phase space when theenergy tends to the escape
energy. In this limit, the size of the unique exit tends to zero, and the fractal basins become
so fractalized that the boundary tends to fill up the whole phase space.

2. When the energy grows, the fractal dimensionD decreases, as is usual in this kind of
systems, and in the rangeH0 ∈ (Eescape, 1.195) the fractal dimension falls from3 to
2.1. The fractality of systemC strongly depends on the existence of itsLyapunov orbit:
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an unstable periodic orbit that acts as the frontier of the scattering region, i.e. when
a trajectory crosses it outwards the particle cannot enter the system again and escapes
to infinity [14, 38]. At H0 = 1.195 the Lyapunov orbit disappears and also its stable
manifold, which in practice represents most of the fractal boundaries shown in Fig.10(a-
c). Many systems similar to this one become smooth when theirLyapunov orbit vanishes,
but for H0 > 1.195 systemC still shows very small fractalized regions that make the
dimension beD ≈ 2.1 for all values of the energy. This unexpected behaviour is due
to the fact that for all energies there is another relevant unstable periodic orbit (of initial
conditionsr0 < 1, z0 = 0, θ0 = 0) on the invariant plane studied in Section 4.2. This
orbit makes the trajectories that get close to it spend very long times in its vicinity before
escaping to infinity.

3. Figure 13 shows some computations that clarify what we just explained in the previous
item. In Fig. 13(a) we represent the escape timetescape for a wide range of trajectories
of systemC and H0 = 1.18 (solid line and a zoom in the inset figure),H0 = 1.20
(dashed line) andH0 = 1.22 (dotted-dashed line). ForH0 = 1.18 the system shows
the expected pattern with multiple maxima that is a clear trace of fractality due to the
existence of a chaotic saddle embedded in the system. Fig. 13(b) shows a typical chaotic
trajectory in this regime: the particle spends some time following the Lyapunov orbit
(plotted in the inset), then surrounds the invariant torus for some additional time and
finally escapes from the system (note that, as already mentioned, the invariant torus exists
for H0 ∈ (0.95, 1.21)). For H0 = 1.20 (dashed line) the Lyapunov orbit and all its
fractality associated have disappeared, but the invarianttorus remains; for this reason the
escape time still shows a sharp maximum due to the trajectories that remain stuck to the
torus for a long time before escaping. Finally, forH0 = 1.22 (dotted-dashed line) the
invariant torus has also disappeared and the escape time becomes totally smooth.

4. As we observed, however, the system shows certain complexity even for high values of
the energy. Figure 13(c) shows the escape timetescape for energyH0 = 2.5, for which
D = 2.1 and the footprint of some fractal behaviour can still be detected (see Fig. 10(d)
for the corresponding exit basins). Figure 13(d) shows one example of a trajectory for this
high value of the energy, and the inset shows the unstable periodic orbit responsible for all
this uncertainty. Summarising, we conclude that there is not a chaotic saddle associated
to this periodic orbit, and therefore this peculiar phenomenon detected forH0 > 1.195
should be understood as aspurious fractality, more than the genuine fractal behaviour
associated to chaotic scattering.

Let us finish with a few comments concerning systemC + R. First of all let us note that
it exhibits a dependence of the fractal dimension on the energy very similar to that of system
C (see Fig. 12(a)). The reason is that forL0 = 4 the influence of the rectilinear filamentR
on the scattering region is relatively weak in comparison tothat of the circular wireC. Lower
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Figure 12: Computation of fractal dimensionD for systemsC andC +R, whenL0 = 4. In this
caseEescape = 0.635247.

values ofL0 show very different fractality between both systems, as happened with the fraction
of stability when we studied bounded motions, cf. Fig. 8(a).

The destruction of fractality due to the disappearance of the fractal basins, however, is
reached a bit sooner, forH0 = 1.182, which means that systemC is slightly more complex than
systemC+R in this range of energies. Furthermore, the lack of the symmetry (r, θ) → (r, π+θ)
makes the situation more difficult to analyse, as we cannot detect in systemC + R neither the
Lyapunov orbit nor the unstable periodic orbit on the invariant plane that existed in systemC.
We believe that other periodic orbits playing similar rolescould exist for systemC +R, but we
have not been able to characterize them and to find the values of H0 for which they appear. A
satisfactory solution of this problem should involve an extension of the concept of Lyapunov
orbit, which to the best of our knowledge has only been definedfor natural Hamiltonian sys-
tems [14].

7 Conclusions and final remarks

In this paper we have studied the motion of a charged particlein the presence of a static, nonuni-
form magnetic field in three concrete examples: a straight line filament, a circular wire and a
coupled system of both wires. In the first case, we have provided a complete analytical descrip-
tion of the motion, in particular, we have proved the existence of helicoidal trajectories. The
case of the loop wire has been analysed both analytically andnumerically, thus filling a gap in
the literature. In particular we have proved the existence of periodic, quasi-periodic and scat-
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to H0 = 1.18 and clearly shows its fractal nature. (b) Trajectory of a charge for H0 = 1.18
corresponding to a maximum in (a). Inset: Lyapunov orbit forH0 = 1.18. (c) Escape time
tescape for initial conditions (r0 variable,z0 = 0, θ0 = 0.8π) andH0 = 2.5. (d) Trajectory of
a charge forH0 = 2.5 corresponding to one maximum in (c). Inset: Unstable periodic orbit
responsible for spurious fractality at high energies.

tering trajectories, and, from the numerical viewpoint, wehave provided evidences of chaotic
scattering and Hamiltonian chaos. All these results can be interpreted in the context of plasma
confinement since the circular wire is a toy model of the levitated magnetic dipole system. A
similar study has been done for the coupled system, with the difference that the proof of exis-
tence of periodic and quasi-periodic motions has only been achieved assuming that the current
intensity of the circular wire is much bigger than the current intensity of the infinite filament.
Finally, we have explained how to construct a magnetic trap using the circular wire, which is
based on our theoretical study of the confined motions in thissystem.

In spite of being a classical topic which is extremely important for applications, very few
rigorous and global results on the motion of charges in magnetic fields are known. Specifically,
for magnetic fields created by wires the guiding centre approximation does not provide reliable
information for all times. This is illustrated with the examples of this paper, where the particle
trajectories, the magnetic lines and the integral curves of∇|B| have very little to do with each
other. We would like to call the reader’s attention to the following open problems.
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Problem 7.1. In Section 6, numerical evidence of Hamiltonian chaos, i.e.the presence of
homoclinic tangles and positive Lyapunov exponents, is provided in the cases of the loop wire
and the coupled system. It would be desirable to obtain a proof of this fact, which would be, to
the best of our knowledge, the first rigorous verification of the existence of chaos for the motion
of a charge in a magnetic field. A related question is to prove that there is not a third analytic
first integral both for systemsC andC + R.

Problem 7.2. We have proved in Section 3 that the equations of motion of a charge in an
infinite rectilinear wire are Liouville integrable. We are not aware of other configurations of
wires which give rise to integrable motions, so the problem that we pose is to prove that this is
the only case which is Liouville integrable, at least in terms of analytic first integrals.

Given an arbitrary current distribution, it is extremely difficult to obtain rigorous results
on the motion of a charge in the magnetic field produced by thisconfiguration. If the system
has some Euclidean symmetry, as the examples discussed in this work, magnetic lines are not
complicated, in particular they are not chaotic because they are organised according to a family
of magnetic surfaces. Nevertheless, in this case the equations of motion possess a second first
integral, which allows us to simplify the theoretical study, but the solutions can be very com-
plicated, in fact chaotic, as numerically shown in Section 6. In particular, in this work we have
compared a magnetic field having only periodic lines (systemC) with a magnetic field having
periodic and quasi-periodic lines (systemC + R) without obtaining significant differences in
the motion of charged particles. In fact, systemC seems to be more chaotic than systemC + R
for some ranges of energy and some values ofL0. These observations raise the major questions:

Problem 7.3. How complexity in magnetic lines is related to complexity inthe motion? How
the motion is related to the current filaments? Magnetic fields created by wires can be highly
chaotic, cf. [3]. The more chaotic the field, the more chaoticthe motion? How do regions
ergodically filled by magnetic lines affect the trajectories of a charge? If we slightly perturb
the circular wire we generally lose the axial symmetry, so wehave to study a 3DOF Hamil-
tonian system. It is likely that many quasi-periodic motions are preserved provided that the
perturbation is small enough, so we wonder whether this 3DOFsystem can exhibit Arnold’s
diffusion.

We think that it is interesting to devote efforts to advance in these directions and we believe
that a good understanding of this problem would give rise to interesting applications in different
areas of research.
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