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Abstract

Recently, a new numerical method has been proposed to compute rotation numbers of
analytic circle diffeomorphisms, as well as derivatives with respect to parameters, that takes
advantage of the existence of an analytic conjugation to a rigid rotation. This method can be
directly applied to the study of invariant curves of planar twist maps by simply projecting
the iterates of the curve onto a circle. In this work we extendthe methodology to deal with
general planar maps. Our approach consists in computing suitable averages of the iterates
of the map that allow to obtain a new curve for which the directprojection onto a circle is
well posed. Furthermore, since our construction does not use the invariance of the quasi-
periodic curve under the map, it can be applied to more general contexts. We illustrate the
method with several examples.
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1 Introduction

In this paper we present numerical algorithms to deal with quasi-periodic invariant curves of
planar maps by adapting a method presented in [29] to computerotation numbers of analytic
circle diffeomorphisms. The developed ideas do not requirethe curve to be invariant under any
map so they can be applied to more general objects that we refer to asquasi-periodic signals
(see Definition 2.2).

The method of [29] is built assuming that the circle map is analytically1 conjugate to a rigid
rotation and, basically, it consists in computing suitableaverages of the iterates of the map
followed by Richardson extrapolation. Since this construction takes advantage of the geometry
and the dynamics of the problem, the method turns out to be highly accurate and very efficient
in multiple applications. In a few words, if we computeN iterates of the map, then we can
approximate the rotation number with an error of orderO(1/Np+1) wherep is the selected order
of averaging (compared withO(1/N) obtained using the definition). This methodology has
been extended in [23] to deal with derivatives of the rotation number with respect to parameters.
In this case, it is required to compute and average the corresponding derivatives of the iterates

1The methods of [23, 29] also work in the class ofCr circle diffeomorphisms,r being sufficiently large, but we
restrict the discussion to the analytic case in order to simplify the exposition.
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of the circle map. We want to point out that this variational information cannot be obtained in
such a direct way by means of other existing methods to compute rotation numbers (we refer to
the works [3, 4, 8, 15, 22, 36]).

As a matter of motivation, let us assume first thatF is a map on the real annulusT × I,
whereI is a real interval andT = R/Z, and letX : T× I → R denote the canonical projection
X(x, y) = x. If F is a twist2 map, the Birkhoff Graph Theorem (see [12]) ensures that every
invariant curveΓ is a graph over its projection on the circle by means ofX, and its dynam-
ics induces a circle map by projecting the iterates. Hence, it is straightforward to apply the
method of [29] in order to approximate the rotation number ofΓ, since for any(x0, y0) ∈ Γ
we can compute the orbitxn = X(F n(x0, y0)) —this is the only data that the method requires.
Furthermore, ifF has a differentiable family of invariant curves or a Cantorian family differ-
entiable in the sense of Whitney, we can approximate derivatives of the rotation number with
respect to initial conditions and parameters. This allows to implement a Newton scheme for
the computation and continuation of invariant curves of twist maps (as it is discussed in detail
in [23]).

If the map does not satisfy the twist condition or it is not written in suitable coordinates,
its invariant curves are not necessarily graphs over the projection on a circle. In this situation,
invariant curves can fold in a very wild way (see Section 3.3 and references given therein for
examples of such curves). Nevertheless, if we can select a suitable circle so that the folded
curve “rotates” around it, then the projection of the iterates of the map does not define a circle
map but a “circle correspondence” and we can compute the rotation number of the curve from
the “lift” of this correspondence to the real line —see Section 2.1 for details. Moreover, albeit
we do not have a justification of this fact, we realize that theextrapolation methods of [23, 29]
work quite well when applied to the iterates of this “lift”.

In some cases —for example, if the rotation number is large compared with the size of the
folds— we can compute numerically this “lift” from the iterates of the map. However, if the
curve is extremely folded additional work is required in order to face the problem in a systematic
way. Hence, we propose a numerical method to construct a circle map —preserving the rotation
number— from a general invariant curve on the plane. The method consists in averaging the
iterates of an orbit of the curve in such a way that the new iterates belong to another curve, no
longer invariant under the map, but having the same rotationnumber. Concretely, if we know an
approximation of the rotation number with errorε, we construct a sequence of (averaged) curves
that approaches a circle up to terms of orderO(ε). We refer to this construction asunfolding
of the curvesince if ε is small enough, then this construction provides us with a circle map.
Taking into account the discussion in the previous paragraph, in order to apply the methods
of [23, 29] it is not necessary to unfold completely the curve, but only to “kill” its main folds
so we can compute the “lift” of the correspondence generatedby the projection of the iterates
of the new (less-folded) curve. In order to justify this unfolding procedure we require the curve
to be analytic (or at least differentiable enough) and the rotation number to be Diophantine.

2The mapF satisfies thetwist conditionif ∂(X ◦ F )/∂y does not vanishes.
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Sometimes the requested approximation of the rotation number is given by the context of the
problem —for example, if we look for invariant curves of fixedrotation number— or it can be
obtained by means of any method of frequency analysis (see for example [15, 22]). Therefore,
we obtain a very efficient toolkit for the study of invariant curves of planar maps and their
numerical continuation.

Let us remark that due to the importance, both theoretical and applied, of invariant curves of
maps or2-dimensional tori of flows (for example, they play a fundamental role in the design of
space missions [13, 14] and also in the study of models in Celestial Mechanics [32], Molecular
Dynamics [27, 35] or Plasma-Beam Physics [24], just to say a few), several approaches to deal
with these objects have been developed in the literature. For example, the methods in [5, 7, 19]
have been applied efficiently in a wide set of contexts. However, they require to compute
a representation —by means of a trigonometric polynomial— of the curve which solves the
invariance equation of the problem, so it is required to solve large systems of equations —as
large as the used number of Fourier modes, sayM . One possibility to face this difficulty is to
solve these full linear systems, with a costO(M3) in time andO(M2) in memory, by means of
efficient parallel algorithms as it is proposed in [19]. Another recent approach presented in [7],
based on the analytic and geometric ideas developed in [6], allows to reduce the computational
effort of the problem to a cost of orderO(M log M) in time andO(M) in memory. On the other
hand, we can compute the invariant curve by looking for a point so that the corresponding orbit
has a prefixed rotation number. Then, rather than approximating explicitly the parameterization
of the curve, we reduce the problem to finding a zero of a function. This approach can be
implemented using interpolation methods as in [33] or also using the extrapolation methods
in [23, 29]. These extrapolation methods, that are the cornerstone of the presented paper, have
a cost of orderO(N log N) in terms of the used number of iteratesN and are free in memory.
Once we know a point on the curve and its rotation number, we can compute a trigonometric
approximation of the curve “a posteriori”, using Fourier Transform (FT) on the iterates of the
curve. In addition, in Section 2.7 we develop a method for performing this FT based also on
averaging-extrapolation ideas.

Given a numerical method for the continuation of invariant curves, it is specially interest-
ing to verify if the method is valid up to thebreakdown thresholdcorresponding to thecritical
invariant curve(see [9, 16, 26]). These critical curves are specially important objects that orga-
nize the long-term behavior of a given dynamical system, because of their role as “last barriers”
or “bottlenecks” to chaos (see [12]). Actually, the critical value for the breakdown of the golden
curve for the Chirikov standard map was estimated by means ofextrapolation methods in [29]
obtaining a good agreement with the value predicted by meansof the classical Greene’s criterion
in [16]. For the non-twist case, we refer to computations in [1, 10] as examples of break-down
studies in non-twist maps. It is worth mentioning that the methods presented in this paper can
be applied also in this context.

Since our construction does not use the invariance of the curve under the map, it can be
applied to the study of quasi-periodic curves that are not necessarily embedded (that we call



A. Luque and J.Villanueva 5

quasi-periodic signals). This context is very interestingsince it allows to analyze sets of data
obtained from real experiments or observed natural phenomena. Actually, in order to check that
the methods are robust when facing experimental data, we consider the effect of Gaussian error
in the evaluation of iterates of a known quasi-periodic function.

We want to point out that our approach can be also understood as a method for the refinement
of the frequency analysis of [22]. Actually, an efficient refinement of these methods, based in
the simultaneous improvement of the frequencies and the amplitudes of the signal, is given
in [15]. Once again, the main advantage of our approach is that we do not have to compute
Fourier coefficients of the curve. This fact reduces the computational effort of solving big
linear systems of equations required to refine the representation of the signal. In addition, the
accuracy in the computation of the rotation number is not limited by the truncation error in the
representation of the signal.

Finally, we notice that the methodology of [23, 29] also works for dealing with maps of the
d-dimensional torus that admit an analytic conjugation to a rigid rotation having a Diophantine
rotation vector. Our aim is to explore the extension of the ideas presented in this paper to deal
with invariant tori and quasi-periodic signals of arbitrary number of frequencies.

The paper is organized as follows. In the first part, contained in Section 2, we develop
and justify different results, methods and algorithms to study quasi-periodic invariant curves
(or quasi-periodic signals). In the second part, presentedin Section 3, we consider several
examples in order to illustrate different features of the presented methodology. These examples
have been selected in order to sustain the presentation of the methods and to highlight both
some of the possibilities and limitations of our approach.

2 Exposition of methods

As we said in the introduction, we approach the study of quasi-periodic signals by computing
the rotation number of a circle map (or a circle correspondence) induced by the curve. The main
definitions and notation, together with a brief overview of the problem, are given in Section 2.1.
After that, we present and justify a method to unfold a quasi-periodic signal. We first assume
in Section 2.2 that the rotation number is known exactly in order to highlight the involved
ideas. Basically, we construct a sequence of curves that converges to a circle whose dynamics
corresponds to a rigid rotation. In Section 2.3 we assume that we only have an approximation
of the rotation number and we show that the previous construction allows to obtain a curve that
is C1-close to be a circle —the proximity being of the same order asthe error in the initial guess
of the rotation number.

In order to obtain the required approximation, a possibility is to resort to frequency analysis
methods. In Section 2.4 we review Laskar’s frequency analysis method in terms of the language
presented in this paper, just to stress that the same algorithms derived to unfold the curve can
be adapted to obtain the required approximation of the rotation number as alternative of the
classical methods.
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For the sake of completeness we include in Section 2.5 a briefsurvey of the methods of [23,
29] to compute the rotation number and derivatives with respect to parameters of the obtained
circle map or correspondence. This review is necessary to understand the higher order method
that we develop in Section 2.6 to improve the unfolding of curves. During the exposition it
will be clear that the ideas used in the unfolding are relatedto FT. This fact is exploited in
Section 2.7 in order to extrapolate Fourier coefficients once the rotation number is known.

2.1 Setting of the problem

For convenience, we identify the real plane with the set of complex numbers by defining
z = u + iv for any (u, v) ∈ R2. Let Γ ⊂ C be a quasi-periodic invariant curve for a map
F : U ⊂ C → C of rotation numberθ ∈ R\Q. Let us assume, for example, that the curve
“rotates” around the origin and that it is a graph of the angular variable. Then, the projection

Γ −→ T

z 7−→ x = arg(z)/2π
(1)

generates a circle map induced by the dynamics ofF |Γ. On the other hand, ifΓ is folded, then
the projection (1) does not provide a circle map, but defines acorrespondence onT that we can
“lift” to R. For example, in the left plot of Figure 1 we show a “folded” invariant curve on the
complex plane for an example considered in Section 3.3. In the right plot of Figure 1 we show
the “lift” of the correspondence onT given by (1). Since the rotation number of the curve is
no more than the averaged number of revolutions per iterate,it is not surprising that we can
compute it aslimn→∞(xn − x0)/n, wherexn are the iterates under the “lift” toR of the circle
correspondence. In this situation, we have observed that the methods of [23, 29] can be applied
to such a “lift” (see examples in Section 3.3), even though wedo not have a justification of this
fact.

In some cases, for example if the rotation number is large enough as to avoid the folds, we
can compute numerically the “lift” of (1) using the iteratesof an orbit. However, if the invariant
curve presents large folds or we cannot identify directly a good point around which the curve
is rotating, we cannot compute this “lift” in a systematic way. Then, our aim is to construct
another curve, having the same rotation number, by using suitable averages of iterates of the
original map. If we manage to eliminate (or at least minimize) the folds in the new curve, then
we are able to obtain a circle diffeomorphism (or at least a circle correspondence that we can
“lift” numerically).

As Γ is a quasi-periodic invariant curve of rotation numberθ, there exists an analytic em-
beddingγ : T→ C verifying Γ = γ(T) and

F (γ(x)) = γ(x + θ).

In this situation, since the parameterizationγ is periodic, we can use the Fourier series

γ(x) =
∑

k∈Z

γ̂ke
2πikx,
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Figure 1:Left: Folded invariant curve with quasi-periodic dynamicsthat rotates around the origin in the complex

plane (this curve corresponds to an example discussed in Section 3.3). Right: “Lift” of the associated circle

correspondence given by (1).

and, moreover, for a givenz0 ∈ Γ we can ask forγ(0) = z0. Then, the iterates ofz0 underF
can be expressed usingγ as

zn = F n(z0) = F n(γ(0)) = F n−1(γ(θ)) = γ(nθ) =
∑

k∈Z

γ̂ke
2πiknθ. (2)

As we will see, our method does not use the invariance ofΓ underF but only the expres-
sion (2) for the iterates. Furthermore, even if we start withan invariant curve of a map, the
intermediate stages of our construction may produce curvesthat are not embedded inC. Using
this fact as a motivation, we state the following definitions:

Definition 2.1. We say that a complex sequence{zn}n∈Z is a quasi-periodic signalof rotation
numberθ if there exists a periodic functionγ : T → C such thatzn = γ(nθ). We also call
Γ = γ(T) a quasi-periodic curve.

Definition 2.2. Under the above conditions, let{zn}n∈Z be a quasi-periodic signal. Then, for
anyθ0 ∈ R andL ∈ N, we define the following iterates

z(L,θ0)
n =

1

L

L+n−1∑

m=n

zme2πi(n−m)θ0 . (3)

It is clear that{z(L,θ0)
n }n∈Z is a quasi-periodic signal on another curveΓ(L,θ0) = γ(L,θ0)(T)

of the same rotation number, i.e.,

z(L,θ0)
n = γ(L,θ0)(nθ) =

∑

k∈Z

γ̂
(L,θ0)
k e2πiknθ, (4)
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and the new Fourier coefficients are given by

γ̂
(L,θ0)
k =

γ̂k

L

L+n−1∑

m=n

e2πi(m−n)(kθ−θ0) =
γ̂k

L

1− e2πiL(kθ−θ0)

1− e2πi(kθ−θ0)
, (5)

In Section 2.2 we show that, under conditions on regularity and non-resonance, ifθ0 = θ,
then the new curveγ(L,θ) is arbitrarilyC1-close to a circle (see Lemma 2.6) forL large enough.
On the other hand, ifε = θ0− θ is small, then we can chooseL = L(ε) such that the new curve
is C1-close to a circle with an error of orderO(ε) (this is concluded from Proposition 2.8) so
that the projection

Γ(L,θ0) ⊂ C∗ −→ T

z
(L,θ0)
n 7−→ x

(L,θ0)
n = arg(z

(L,θ0)
n )/2π,

(6)

provides an orbit of a circle diffeomorphismf (L,θ0)
Γ . Once this circle map has been obtained

(as we have discussed, in practice it suffices to obtain a slightly folded curve such that we can
compute the “lift” of the circle correspondence defined by the direct projection), we can apply
the methodology of [23, 29] to compute the rotation number and derivatives with respect to
parameters (this is described in Secion 2.5). In order to justify this construction, we require the
rotation number to be Diophantine.

Definition 2.3. Givenθ ∈ R, we say thatθ is aDiophantine numberof (C, τ) type if there exist
constantsC > 0 andτ ≥ 1 such that

|kθ − l|−1 ≤ C|k|τ , ∀(l, k) ∈ Z× Z∗. (7)

We will denoteD(C, τ) the set of such numbers andD the set of Diophantine numbers of any
type.

In the aim of KAM theory, we know that the hypothesis of Diophantine rotation number
for the dynamics on the curve is consistent with its own existence. Although Diophantine sets
are Cantorian —i.e., compact, perfect and nowhere dense— a remarkable property is thatR\D
has zero Lebesgue measure. For this reason, this condition fits very well in practical issues
and we do not resort to other weaker conditions on small divisors such as the Brjuno condition
(see [38]). It is worth mentioning that ifθ is a “bad” Diophantine rotation number, i.e., having
a large constantC in (7), then the methods presented in this paper turn out to beless efficient
as we discuss in Section 3.

2.2 Unfolding a curve of known rotation number

Let us consider the previous setting and suppose that the Fourier coefficients ofγ are γ̂1 6= 0
andγ̂k = 0 for k ∈ Z\{1}. In this case,Γ = {z ∈ C | |z| = |γ̂1|} and the circle map obtained
by the projection (1) is a rigid rotationRθ(x) = x + θ.
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Assume now that̂γ1 6= 0 and|γ̂k| is small (compared with|γ̂1|) for everyk ∈ Z\{1} in such
a way that the curveγ is alsoC1-close to a circle. In this case, the projectionx = arg(z)/2π
also makes sense and defines a circle diffeomorphism.

In the general case this projection does not provide a circlemap. However, it turns out
that the projection of the iteratesz(L,θ0)

n is well posed if we takeθ0 = θ andL large enough.
More quantitatively, we assert that the curveγ(L,θ) differs from a circle by an amount of order
O(1/L). In Lemma 2.6 bellow we make precise the above arguments.

Definition 2.4. Given an analytic functionγ : T→ C and its Fourier coefficients{γ̂k}k∈Z, we
consider the norm||γ|| =

∑
k∈Z
|γ̂k|.

Definition 2.5. Givenk ∈ Z\{0} andr ∈ C, we define the mapγk[r] : T→ C as

γk[r](x) = r e2πikx.

Then we state the following result:

Lemma 2.6. Let us consider a quasi-periodic signalzn = γ(nθ) of rotation numberθ ∈
D(C, τ). Assume thatγ : T→ C is analytic in the complex stripB∆ = {z ∈ C : |Im(z)| < ∆}
and bounded in the closure, withM = supz∈B∆

|γ(z)|. Then, ifγ̂1 6= 0, the curveγ(L,θ) : T→
C given by(4) and (5) satisfies

||γ(L,θ) − γ1[γ̂1]|| ≤
A

L
,

whereA is a constant depending onM, C, τ and∆.

Proof. First, let us observe that the Fourier coefficients of the newcurve are given by

γ̂
(L,θ)
1 = γ̂1, γ̂

(L,θ)
k =

γ̂k

L

1− e2πi(k−1)θL

1− e2πi(k−1)θ
, k ∈ Z\{1}.

Then, we have to bound the expression

||γ(L,θ0) − γ1[γ̂1]|| ≤
1

L

∑

k∈Z\{1}

∣∣∣∣γ̂k
1− e2πi(k−1)θL

1− e2πi(k−1)θ

∣∣∣∣ ≤
1

L

∑

k∈Z\{1}

2|γ̂k|
|1− e2πi(k−1)θ| .

We observe that the Fourier coefficients ofγ satisfy|γ̂k| ≤Me−2π∆|k| and we use (7) to control
the small divisors. Concretely, standard manipulations show that (see for example [2])

|1− e2πi(k−1)θ|−1 ≤ C

4
|k − 1|τ .

Introducing these expressions in the previous sum we obtainthat

||γ(L,θ0) − γ1[γ̂1]|| ≤
CM

2L

∑

k∈Z\{1}

|k − 1|τe−2π∆|k| ≤ CM

L
sup
x≥0
{e−π∆x(x + 1)τ}

∞∑

k=0

e−π∆k.
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Moreover, we observe that

sup
x≥0
{e−sx(x + 1)m} =

{
1 if s ≥ m,

(m/(se))mes if s < m.

Finally, takingA = MC
1−e−π∆ (1 + ( τ

π∆
)τ ) the stated bound follows immediately.

Remark 2.7. Note that in order to guarantee that the projection(6) is well posed we also need
to control the derivative(γ(L,θ))′(x). Of course, this can be done modifying slightly the proof of
Lemma 2.6.

2.3 Unfolding a curve of unknown rotation number

Since we are concerned with the computation ofθ, the construction presented in the previous
section seems useless. Next we show that the method still works —with certain restrictions—
if the rotation numberθ is unknown, but we have an approximationθ0.

Proposition 2.8. Let us consider a quasi-periodic signalzn = γ(nθ) of rotation numberθ ∈
D(C, τ). Assume thatγ : T → C is analytic in the complex stripB∆ and bounded in the
closure, withM = supz∈B∆

|γ(z)|. Suppose thatθ0 is an approximation ofθ and let us denote
ε = θ0−θ andKε = ⌊(2C|ε|)−1/τ⌋. Then, ifγ̂1 6= 0 andKε ≥ 1, for everyL ∈ N the following
estimate holds

||γ(L,θ0) − γ1[γ̂
(L,θ0)
1 ]||

|γ̂(L,θ0)
1 |

≤
∣∣∣∣

sin(πε)

sin(πεL)

∣∣∣∣
(

A

|γ̂1|
+

2ML

|γ̂1|
e−2π∆(Kε−1)

1− e−2π∆

)
, (8)

whereA is a constant depending onM, C, τ and∆.

Proof. Let us consider the sets

K(ε) = {k ∈ Z\{1} : |k − 1| ≤ Kε},
K∗(ε) = Z\(K(ε) ∪ {1}).

Then, ifk ∈ K(ε) the following bound is satisfied∀l ∈ Z

|kθ − θ0 − l| ≥ |(k − 1)θ − l| − |ε| ≥ 1

C|k − 1|τ − |ε| ≥
1

2C|k − 1|τ

allowing to control the small divisors

|1− e2πi(kθ−θ0)| ≥ 2

C|k − 1|τ ∀k ∈ K(ε). (9)

Then, from formula (5) and recalling that the Fourier coefficients satisfy|γ̂k| ≤ Me−2π∆|k|,
we obtain estimates for̂γ(L,θ0)

k . If k ∈ K(ε), we use the expression (9) to obtain|γ̂(L,θ0)
k | ≤
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MCL−1|k− 1|τe−2π∆|k|. On the other hand, for indexesk ∈ K∗(ε) we use that|γ̂(L,θ0)
k | ≤ |γ̂k|.

Therefore, we have to consider the following sums

||γ(L,θ0) − γ1[γ̂
(L,θ0)
1 ]|| ≤ MC

L

∑

k∈K(ε)

|k − 1|τe−2π∆|k| + M
∑

k∈K∗(ε)

e−2π∆|k|.

Now, the sum fork ∈ K(ε) is controlled by splitting it into the sets[−Kε + 1, 0] ∩ Z

and [2, Kε + 1] ∩ Z. Then, we proceed as in the proof of Lemma 2.6 obtaining the constant
A = 2MC

1−e−π∆

(
1 +

(
τ

π∆

)τ)
. Finally, we compute the first Fourier coefficient

|γ̂(L,θ0)
1 | =

∣∣∣∣
γ̂1

L

∣∣∣∣

∣∣∣∣
1− e−2πiεL

1− e−2πiε

∣∣∣∣ =

∣∣∣∣
γ̂1

L

∣∣∣∣

∣∣∣∣
sin(πεL)

sin(πε)

∣∣∣∣ ,

ending up with estimate (8).

Remark 2.9. If we restrict Lemma 2.8 to those values ofθ0 such that the Diophantine condi-
tion (9) is valid∀k ∈ Z\{1}, then we obtain the estimate

||γ(L,θ0) − γ1[γ̂
(L,θ0)
1 ]||

|γ̂(L,θ0)
1 |

≤
∣∣∣∣

sin(πε)

sin(πεL)

∣∣∣∣
A

|γ̂1|
. (10)

Indeed, if we denoteE ⊂ R the set of values ofε such thatθ0 = θ + ε satisfies estimate(9)
for everyk ∈ Z\{1}, then for everyε0 sufficiently small the measure of the set[−ε0, ε0]\E is
exponentially small inε0.3

Observe that for any fixed|ε| > 0, estimate (10) depends|1
ε
|-periodically onL and also

does (8) modulo exponentially small terms in|ε|. Since we are interested in the minimization
of (8), we point out that ifL ≃ | 1

2ε
|, then

||γ(L,θ0) − γ1[γ̂
(L,θ0)
1 ]||

|γ̂(L,θ0)
1 |

= O(ε).

Hence, the new parameterization is closer to a circle for|ε| sufficiently small and the projection

Γ(L,θ0) ⊂ C∗ −→ T

z
(L,θ0)
n 7−→ x

(L,θ0)
n = arg(z

(L,θ0)
n )/2π,

induces a well-posed circle diffeomorphism that we denote as f
(L,θ0)
Γ . Of course, the regularity

of the circle mapf (L,θ0)
Γ follows from the regularity ofγ. Hence, we can compute the rotation

numberθ and derivatives with respect to parameters by applying the methods of [23, 29] that we
recall briefly in Section 2.5. Before that, we discuss how this required guessθ0 can be obtained.

3These two points of view are analogous to different approaches followed in [20] and [21] to study reducibility
of quasi-periodic linear equations.



12 Numerical computation of rotation numbers for quasi-periodic planar curves

T T

Γ(L,θ0) ⊂ C Γ ⊂ C Γ ⊂ C Γ(L,θ0) ⊂ C

T T

T T

?

γ

�
�

�
�

�
�+

γ(L,θ0)

-Rθ

?

γ

Q
Q

Q
Q

Q
Qs

γ(L,θ0)

Q
Q

Q
Q

Q
Qs

arg(·)/2π

ppppppp� -F
p p p p p p p-

�
�

�
�

�
�+

arg(·)/2π

-
f
(L,θ0)
Γ

-Rθ
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Figure 2:This diagram summarizes the construction of the analytic circle diffeomorphismf
(L,θ0)
Γ from a folded

invariant curveΓ of F of rotation numberθ.

2.4 First approximation of the rotation number

The classicalfrequency analysisapproach introduced by J. Laskar (see [22]) to obtain an ap-
proximation of frequencies of a quasi-periodic signal —here we are considering only one in-
dependent frequency— is to look for the frequencies as peaksof the modulus of the Discrete
Fourier Transform (DFT) of the studied signal. In this section we translate the elementary ideas
used in frequency analysis into the terminology introducedin Section 2.3.

Let us focus on the iterates{z(L,θ0)
n }n∈Z of Definition 2.2. We observe that they look very

similar to the DFT of the signal. We also notice that they can be defined for anyθ0 but the
Fourier coefficient̂γ(L,θ0)

1 , given explicitly in (5), has a local maximum whenθ0 equalsθ, and
from Proposition 2.8 we conclude that, forL large enough, the functionθ0 7→ |z(L,θ0)

n | has a local
maximum for a value ofθ0 close toθ. In general, this phenomena occurs for thetth coefficient
if we selectθ0 close to an integer multiple of the rotation number, i.e.,θ0 = tθ + ε, t ∈ Z. The
corresponding justification is given by the following proposition (the proof is analogous to that
of Proposition 2.8).

Proposition 2.10. Let us consider a quasi-periodic signalzn = γ(nθ) of rotation number
θ ∈ D(C, τ). Assume thatγ : T → C is analytic in the complex stripB∆ and bounded in the
closure, withM = supz∈B∆

|γ(z)|. Suppose thatθ0 is an approximation oftθ and let us denote
ε = θ0 − tθ and Kε = ⌊(2C|ε|)−1/τ⌋. Then, ifγ̂t 6= 0 and Kε ≥ |t|, for everyL ∈ N the
following estimate holds

||γ(L,θ0) − γt[γ̂
(L,θ0)
t ]||

|γ̂(L,θ0)
t |

≤
∣∣∣∣

sin(πε)

sin(πεL)

∣∣∣∣
(

A

|γ̂t|
+

2ML

|γ̂t|
e−2π∆(Kε−|t|)

1− e−2π∆

)
, (11)
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whereA = 2MC
1−e−π∆

(
|t|τ +

(
τ

π∆

)τ)
.

According with this result and the previous discussion, we summarize the following obser-
vations:

• First, we notice that Remark 2.9 also holds in this context, and so we conclude that this
estimate behaves periodically inL for most of the values ofθ0 close totθ.

• From equation (5), we observe thatγ̂
(L,θ0)
t → γ̂t when ε → 0 and that the modulus

|γ̂t| is an upper bound for|γ̂(L,θ0)
t |. Moreover, forL sufficiently large, we obtain a local

maximum in the modulus of the iteratesz
(L,θ0)
n for a value ofθ0 close totθ.

• On the other hand, the estimate (11) grows with|t| thus implying that, for fixedL, only
low order harmonics can be detected.

The previous discussion gives us a heuristic method for computing an approximationθ0 of
the rotation numberθ (and its multiples modulo1). Basically, we fixL and compute the iterates
z

(L,θ0)
n for different values ofθ0 in order to compute local maxima of the modulus. In particular,

if we just study the modulus of the initial iteratez(L,θ0)
0 , we recover the method of [22]. This

method is enough for our purposes —we recall that we just lookfor a rough approximation of
the rotation number— but in Remark 2.12 we explain some refinements that can be performed
in this procedure. Thus, from the method of [22] we find a finitenumber of candidates for the
rotation number and we have to decide which one is the generator. Details are given in the next
four steps.

Step 1: Maxima chasing. First, we fixL ∈ N and define the function

T −→ R

θ0 7−→ |z(L,θ0)
0 | = | 1

L

∑L−1
m=0 zme−2πimθ0 | . (12)

We want to obtain values ofθ0 that correspond to maxima of the function (12). To this
end, let us consider a sample of points{θi

0}i=1,...,N , whereN ∈ N andθi
0 ∈ [0, 1] (actually,

one can reduce the interval if some information about the rotation number is available,
sayθ ∈ [θmin, θmax]). Then, for every pair{θj

0, θj+1
0 }, j = 1, . . . , N − 1, we compute a

local maximum for (12) by means ofgolden section searchusing a toleranceεGSS (we
refer to [28] for details). Then, we introduce the followingterminology:

- θ̃j
0: Maximum obtained from the pair{θj

0, θj+1
0 }. Let us observe that this maximum

is not necessarily contained in the interval[θj
0, θj+1

0 ].

- np: Number of maxima obtained at the end of this step. In order toavoid redundant
information, two maxima are considered equivalent ifdT(θ̃j

0, θ̃
k
0) ≤ 10εGSS where

dT is the quotient metric induced on the torus.
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Step 2: Maxima selection. Now we sort the obtained points{θ̃i
0}1,...,np

according to

|z(L,eθi
0)

0 | > |z(L,eθj
0)

0 | provided i < j

At this point, we select the firstnu points just omitting those ones whose correspond-

ing maxima are small when compared with|z(L,eθ1
0)

0 |. In particular, we only take those
elements such that

|z(L,eθ1
0)

0 | < ν|z(L,eθi
0)

0 |, (13)

whereν > 1 is a “selecting factor” (we typically take values ofν between3 and6) and
we denote by{θk

0}k=1,...,nu
the set of numbers thus obtained.

Step 3: Rotation number selection. This set{θk
0}k=1,...,nu

, with θk
0 ∈ [0, 1], corresponds to

approximate multiples of the rotation number computed modulo 1. In addition, if|γ̂1| is
not too small, there is an element in this set that approximates the rotation number. Notice
that for everyθk

0 there existmk, nk ∈ Z such thatθk
0 ≈ mkθ + nk. This motivates the

following definitions

kij = argmink∈Z
{dT(kθi

0, θ
j
0)}, κi =

nu∑

j=1

|kij| (14)

dij = mink∈Z {dT(kθi
0, θ

j
0)}, δi =

nu∑

j=1

dij . (15)

Let us observe that if we assume thatθi
0 ≈ θ, thenκi corresponds to the sum of the order

of Fourier terms that allow to approximate the remaining pointsθj
0. On the other hand,δi

gives an idea of the error whenθi
0 is selected. If the minimum values of{κi}i=1,...,nu

and
{δi}i=1,...,nu

correspond to the same indexk ∈ {1, . . . , nu}, then we selectθ0 = θk
0 as an

approximation ofθ. If they do not coincide butδk = mini{δi} is small, then we select
θ0 = θk

0 . Otherwise we start again from Step 1 using a larger value ofL.

Step 4: Validation and iteration. Of course, it is recommended to verify that the computations
are stable by repeating the process (from Step 1) with largervalues ofN andL.

Remark 2.11. When the frequency of the quasi-periodic signal is not an integer multiple of the
“basic frequency”1/L associated to the sample interval of the associated DFT in(12), there
appear in the DFT spurious frequencies, that is, the DFT is different from zero at frequencies not
being multiple of the frequency of the function. This is a phenomenon known asleakage, that it
can be reduced by means of the so-called filter or window functions (see [15, 22]). Nevertheless,
these spurious peaks are smaller than the corresponding harmonic that generates them, so we
get rid of them in Step 2 of the described procedure.
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Remark 2.12. Finally, we notice that this procedure can be modified in several ways taking
into account the ideas introduced in this paper. For example, when looking for local maxima of
function(12) we can minimize with respect toθ0 the distance of the iterates{z(L,θ0)

n }n∈Z to be
on a circle —see Proposition 2.10— that can be measured by means of several criteria discused
in Section 3.1. On the other hand, we can use higher order averages as discused in Section 2.6
in order to improve the resolution of the maxima. These refinements may become relevant
when dealing with more than one frequency as a possible alternative to the filters mentioned in
Remark 2.11.

2.5 Computation of rotation numbers and derivatives

Next, we include a brief review of the methods developed in [23, 29] to compute numerically the
rotation number of circle diffeomorphisms together with derivatives with respect to parameters.
We include this review to set the notation of the rest of the paper and also in order to remark
that ideas of Section 2.6 and 2.7 follow from those introduced in [29] in a close way.

Given an orientation-preserving circle homeomorphismf : T → T, we identifyf with its
lift to R by fixing the normalization conditionf(0) ∈ [0, 1). Then, we recall that the rotation
number off is defined as the limit

θ = lim
|n|→∞

fn(x0)− x0

n
, (16)

that exists for allx0 ∈ R, is independent ofx0 and satisfiesθ ∈ [0, 1). It is well known
(we refer to [17]) that iff is an analytic diffeomorphism andθ ∈ D, thenf is analytically
conjugate to a rigid rotationRθ(x) = x + θ, i.e., there exists an orientation-preserving analytic
circle diffeomorphismη such thatf ◦ η = η ◦ Rθ. Moreover, we can write this conjugacy as
η(x) = x + ξ(x), ξ being a 1-periodic function normalized in such a way thatξ(0) = x0, for a
fixedx0 ∈ [0, 1). Now, by using the fact thatη conjugatesf to a rigid rotation, we can write the
following expression for the iterates under the lift:

fn(x0) = fn(η(0)) = η(nθ) = nθ +
∑

k∈Z

ξ̂ke
2πiknθ, ∀n ∈ Z,

where the sequence{ξ̂k}k∈Z denotes the Fourier coefficients ofξ. Then, the above expression
gives us the following formula

fn(x0)− x0

n
= θ +

1

n

∑

k∈Z∗

ξ̂k(e
2πiknθ − 1),

to computeθ modulo terms of orderO(1/n). Unfortunately, this order of convergence is very
slow for practical purposes, since it requires a huge numberof iterates if we want to compute
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θ with high precision. Nevertheless, by averaging the iteratesfn(x0) in a suitable way, we can
manage to decrease the size of the quasi-periodic remainder.

Givenp ∈ N ∪ {0}, that we call theaveraging order, we introduce the followingrecursive
sums of orderp

S0
N = fN(x0)− x0, Sp

N =

N∑

j=1

Sp−1
j ,

and the correspondingaveraged sums of orderp

S̃p
N =

(
N + p

p + 1

)−1

Sp
N .

Then, as it is shown in [29], these averages satisfy the following property.

Proposition 2.13. If f is the lift of an orientation-preserving analytic circle diffeomorphism of
rotation numberθ ∈ D, then the following expression holds

S̃p
N = θ +

p∑

l=1

Âp
l

N l
+ Êp(N), (17)

where the coefficientŝAp
l depend onf and p but are independent ofN . Furthermore, the

remainderÊp(N) is uniformly bounded by an expression of orderO(1/Np+1).

Let us observe that equation (17) allows to extrapolate the rotation number just by comput-
ing S̃p

N for different values ofN , neglecting the remainder and solving a set of linear equations.

Algorithm 2.14. Once an averaging orderp is selected, we takeN = 2q iterates of the map,
for someq > p, and compute the sums{S̃p

Nj
}j=0,...,p with Nj = 2q−p+j. We approximate the

rotation number using the formula

θ = Θq,p +O(2−(p+1)q), Θq,p =

p∑

j=0

c
(p)
j S̃p

2q−p+j , (18)

where the coefficientsc(p)
j are given by

c
(p)
l = (−1)p−l 2l(l+1)/2

δ(l)δ(p− l)
, (19)

with δ(n) = (2n − 1)(2n−1 − 1) · · · (21 − 1) for n ≥ 1 and δ(0) = 1. The operatorΘq,p

corresponds to the Richardson extrapolation of orderp of equation(17).

As far as the behavior of the error is concerned, if we fix the extrapolation orderp and
computeΘq,p, we know that|θ − Θq,p| ≤ c/2q(p+1), for certain (unknown) constantc in-
dependent ofq (see [29]). To estimatec, we computeΘq−1,p and consider the expression
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|θ−Θq−1,p| ≤ c/2(q−1)(p+1). Then, we replace in this inequality the exact value ofθ by Θq,p, as
we expectΘq,p to be closer toθ thanΘq−1,p. After that, we estimatec by

c ≃ 2(q−1)(p+1)|Θq,p −Θq−1,p|.

From this approximation we obtain the following (heuristic) expression

|θ −Θq,p| ≤
ν

2p+1
|Θq,p −Θq−1,p|, (20)

whereν is a “safety parameter” whose role is to prevent oscillations of c a function ofq due
to the quasi-periodic part. In the computations of Section 3we takeν = 10 (this value works
quite well as observed in [29]).

Furthermore, let us consider a familyµ ∈ I ⊂ R 7→ fµ of orientation-preserving analytic
circle diffeomorphisms dependingCd-smoothly with respect toµ. The rotation numbers of the
family {fµ}µ∈I induce a functionθ : I → [0, 1) given by θ(µ) = ρ(fµ). Let us remark that
the functionθ is continuous but non-smooth: generically, there exist a family of disjoint open
intervals ofI, with dense union, such thatθ takes distinct constant values on these intervals (a
so-called Devil’s Staircase). However, the derivatives ofθ are defined in “many” points (see the
discussion in [23] and references given therein).

In order to computeDd
µθ(µ0), the d-th derivative with respect toµ at µ0, we proceed as

before and define recursive sums of orderp (we omit the notation regarding the fact that the
map is evaluated atµ = µ0)

Dd
µS

0
N = Dd

µ(fN
µ (x0)− x0), Dd

µSp
N =

N∑

j=0

Dd
µS

p−1
j ,

and the corresponding averaged sums

Dd
µS̃

p
N =

(
N + p

p + 1

)−1

Dd
µS

p
N .

Proposition 2.15. If θ(µ0) ∈ D andDd
µθ(µ0) exists, we obtain (omitting the pointµ0)

Dd
µS̃

p
N = Dd

µθ +

p−d∑

l=1

Dd
µÂ

p
l

N l
+ Dd

µÊ
p(N), (21)

where the remainderDd
µÊ

p(N) is of orderO(1/Np−d+1).

Therefore, according to formula (21), we implement the following algorithm to extrapolate
thed-th derivative of the rotation number.
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Algorithm 2.16. Once an averaging orderp is selected, we takeN = 2q iterates of the map,
for someq > p, and compute the sums{Dd

µS̃
p
Nj
}j=0,...,p with Nj = 2q−p+j+d. We approximate

thed-th derivative of the rotation number using the formula

Dd
µθ = Θd

q,p,p−d +O(2−(p−d+1)q), Θd
q,p,m =

m∑

j=0

c
(m)
j Dd

µS̃
p
2q−m+j ,

where the coefficientsc(m)
j are also given by equation(19). The operatorΘd

q,p,p−d corresponds
to the Richardson extrapolation of orderp− d of equation(21).

In this case, we obtain the following heuristic expression for the extrapolation error

|Dd
µθ −Θd

q,p,p−d| ≤
ν

2p−d+1
|Θd

q,p,p−d −Θd
q−1,p,p−d|. (22)

We remark that if we select an averaging orderp, then we are limited to extrapolate with
order p − d instead ofp. Moreover,p is the maximum order of the derivative that can be
computed.

Let us observe that, in order to approximate derivatives of the rotation number, we require to
compute efficiently the quantitiesDd

µ(f
n
µ (x)), i.e., the derivatives with respect to the parameter

of the iterates of an orbit. If the familyµ 7→ fµ is known explicitly or it is induced directly
by a map on the annulus, several algorithms based on recursive and combinatorial formulas
are detailed in [23]. In the rest of this section we develop recursive formulas to compute these
derivatives when the family comes from a general planar map.

Let us consider an analytic mapF : C→ C, with F = F1 + iF2, having a Cantor family of
invariant curves differentiable in the sense of Whitney, i.e., there exists a family of parameteriza-
tionsµ ∈ U 7→ γµ defined in a Cantor setU such thatγµ(T) = Γµ andF (γµ(x)) = F (x + θ(µ)),
for θ(µ) ∈ D. In the following, we fix a value of the parameter and we omit the dependence
on µ in order to simplify the notation and we writezn = F n(z0), for z0 ∈ Γ. As in Section 2,
we consider a curveγ of rotation numberθ and we assume that we have an approximationθ0.
Then, we suppose that we can selectL ∈ N (depending onµ0 andθ0) in order to unfold the
curve and obtain an orbit of a circle mapf = f (L,θ0) (or circle correspondence), that has the
same rotation numberθ, given by

x(L,θ0)
n =

1

2π
arctan

Im z
(L,θ0)
n

Rez
(L,θ0)
n

wherez(L,θ0)
n are given in equation (3). The computation of the derivatives ofx(L,θ0)

n = fn(x
(L,θ0)
0 ),

that are required to computeDµS
p
N , are carried out as

Dµ(x
(L,θ0)
n ) =

1

2π

Im ((Dµzn)(L,θ0))Rez
(L)
n −Re((Dµzn)(L,θ0))Im z

(L,θ0)
n

(Rez
(L,θ0)
n )2 + (Im z

(L,θ0)
n )2

,
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where

(Dµzn)(L,θ0) =
1

L

L+n−1∑

m=n

Dµzme2πi(n−m)θ0 .

Then, given an averaging orderp, we can compute the sumsDµS
p
N that allow to extrapolate

Dµθ with an error of orderO(1/Np). The only point that we need to clarify is the computation
of the derivativesDµzn. They are easily obtained by means of the recursive formula

Re(Dµzn) =
∂F1

∂u
(zn−1)Re(Dµzn−1) +

∂F1

∂v
(zn−1)Im(Dµzn−1).

and similarly for Im(Dµzn) replacingF1 by F2.
Furthermore, if we consider a family of analytic mapsα ∈ Λ ⊂ R 7→ Fα such that for any

α we have a family of invariant curves as described before, i.e., there is a parameterµ labeling
invariant curves ofFα in a Cantor setUα. This setting induces a function(α, µ) 7→ θ(α, µ).
Omitting the dependence on(α, µ), let z

(L,θ0)
n be the unfolded iterates of an orbit that belongs

to one of the above curves. Then, we can compute the derivative of θ with respect toα just
by averaging the sums ofDα(x

(L,θ0)
n ). These iterates are evaluated as explained in the text but

using now the recursive formulas

Re(Dαzn) =
∂F1

∂α
(zn−1) +

∂F1

∂u
(zn−1)Re(Dαzn−1) +

∂F1

∂v
(zn−1)Im(Dαzn−1),

and similarly for Im(Dαzn) replacingF1 by F2.
The generalization of the previous recurrences to compute high order derivatives of the

rotation number is straightforward from Leibniz and product rules (see [23]). We also refer there
for details about the use of this information to implement a Newton method for the numerical
continuation of invariant curves. In addition, expression(21) allows to obtain (pseudo-analytic)
asymptotic expansions relating parameters and initial conditions that correspond to curves of
prefixed rotation number (see an application to Hénon’s mapin [23]).

2.6 Higher order unfolding of curves

As it is discused in Section 2.3, if we know the rotation number with an errorε small enough,
then we can select a numberL ∈ N (depending onε) to unfold the curve obtaining a new
curve which is a circle with an error of orderO(ε) = O(1/L) —we refer to the discussion that
follows Proposition 2.8. Roughly speaking, in the same way that the method of [29] accelerates
the convergence of the definition in (16) to the rotation number fromO(1/N) toO(1/Np+1),
we introduce higher order averages to the iteratesz

(L,θ0)
n to accelerate the convergence of the

new curve to a circle. Concretely, by performing averages oforderp we improve the rate of
convergence fromO(1/L) toO(1/Lp).
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Given θ0 ∈ R, a complex sequence{zn}n∈Z and a natural numberL we introduce the
following recursive sumsof orderp

S1
L,θ0,n =

L+n−1∑

m=n

zme−2πimθ0 , Sp
L,θ0,n =

L∑

l=1

Sp−1
l,θ0,n,

and the correspondingaveraged sums

S̃p
L,θ0,n =

(
L + p− 1

p

)−1

Sp
L,θ0,n.

Definition 2.17. Under the above conditions, givenp ∈ N, we define the following iterates for
any integerq ≥ p

z(2q ,θ0,p)
n =

(
p−1∑

j=0

c
(p−1)
j S̃p

Lj ,θ0,n

)
e2πinθ0 , (23)

whereLj = 2q−p+j+1 and the coefficientsc(p−1)
j are given in formula(19).

We remark thatz(2q ,θ,1)
n = z

(2q ,θ)
n , but that the iteratesz(L,θ0,p)

n are only defined forL being
a power of2, since they are constructed following the ideas in Algorithms 2.14 and 2.16. We
see next that if certain non-resonance conditions are fulfilled, these new iterates belong to a
quasi-periodic signal such that the corresponding curve approaches a circle improving Proposi-
tion 2.8. For the sake of simplicity, we assume non-resonance conditions as those discused in
Remark 2.9.

Proposition 2.18.Let {zn}n∈Z be a quasi-periodic signal of rotation numberθ ∈ D and aver-
aging orderp. Let us consider thatε = θ0 − θ is small and thatθ0 satisfies

|1− e2πi(kθ−θ0)| ≥ 2

C|k − 1|τ ∀k ∈ Z\{1}, (24)

for someC, τ > 0. Then, there exists a periodic analytic functionγ(2q ,θ0,p) : T → C such that
z

(2q ,θ0,p)
n = γ(2q ,θ0,p)(nθ) and it turns out that

||γ(2q,θ0,p) − γ1[γ̂
(2q ,θ0,p)
1 ]|| = O(2−qp), (25)

where the functionγ1[·] was introduced in Definition 2.5. Moreover,γ̂
(2q ,θ0,p)
1 —the first Fourier

coefficient ofγ(2q ,θ0,p)— has the following expression

γ̂
(2q ,θ0,p)
1 =

p−1∑

j=0

c
(p−1)
j ∆̃p

Lj ,ε, Lj = 2q−p+j+1, (26)
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where∆̃p
L,ε is defined recursively as follows

∆1
L,ε = γ̂1

1− e−2πiεL

1− e−2πiε
, ∆p

L,ε =
L∑

l=1

∆p−1
l,ε , ∆̃p

L,ε =

(
L + p− 1

p

)−1

∆p
L,ε.

In particular, we have thatlimε→0 γ̂
(2q ,θ0,p)
1 = γ̂1.

Proof. This result is obtained by means of the same arguments used in[29]. First, we claim
that the following expression follows by induction

S̃p
L,θ0,n = ∆̃p

L,εe
−2πinε +

( p−1∑

l=1

Ap
l,θ0

(nθ)

(L + p− l) · · · (L + p− 1)
+ Ep

L,θ0
(nθ)

)
e−2πinθ0, (27)

where the coefficients{Ap
l,θ0

(nθ)}l=1,...,p−1 are given by

Ap
l,θ0

(nθ) = (−1)l+1(p− l + 1) · · ·p
∑

k∈Z\{1}

γ̂k
e2πi(l−1)(kθ−θ0)

(1− e2πi(kθ−θ0))l
e2πiknθ

and the remainder is

Ep
L,θ0

(nθ) =
(−1)p+1p!

L · · · (L + p− 1)

∑

k∈Z\{1}

γ̂k
e2πi(p−1)(kθ−θ0)(1− e2πiL(kθ−θ0))

(1− e2πi(kθ−θ0))p
e2πiknθ.

For example, we consider the sum forp = 2

S2
L,θ0,n =

L∑

l=1

l+m−1∑

m=n

zme−2πimθ0 =

L∑

l=1

l+m−1∑

m=n

∑

k∈Z

γ̂ke
2πim(kθ−θ0) =

L∑

l=1

l+m−1∑

m=n

γ̂1e
−2πimε

+
∑

k∈Z\{1}

γ̂k

L∑

l=1

l+m−1∑

m=n

e2πim(kθ−θ0) = ∆2
L,εe

−2πinε + L
∑

k∈Z\{1}

γ̂k
e2πin(kθ−θ0)

1− e2πi(kθ−θ0)

−
∑

k∈Z\{1}

γ̂k
e2πi(n+1)(kθ−θ0)(1− e2πiL(kθ−θ0))

(1− e2πi(kθ−θ0))2
.

Dividing this expression byL(L + 1)/2, we obtain (27) and we proceed inductively to prove
the claim. Hence, it is clear that the sequencez

(2q ,θ0,p)
n in (23) corresponds to a quasi-periodic

signal since it is a linear combination of quasi-periodic functions.
Using the analyticity assumptions and estimates in (24) it turns out that the obtained re-

mainder is of orderEp
L,θ0

(nθ) = O(1/Lp) . To extrapolate in this expression using the coeffi-
cients (19) we require the denominators(L + p− l) · · · (L + p− 1) in (27) not to depend onp.
To this end, we write

S̃p
L,θ0,n = ∆̃p

L,εe
−2πinε +

( p−1∑

l=1

Âp
l,θ0

(nθ)

Ll
+ Êp

L,θ0
(nθ)

)
e−2πinθ0,
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by redefining the coefficients{Âp
l,θ0

(nθ)}l=1,...,p−1, also independent ofL, whereÊp
L,θ0

(nθ) dif-
fers fromEp

L,θ0
(nθ) only by terms of orderO(1/Lp). Hence, we can use Richardson extrapola-

tion using a maximum number of iteratesL = 2q and introduce the corresponding expression
into (23), thus obtaining

z(2q ,θ0,p)
n =

( p−1∑

j=0

c
(p−1)
j ∆̃p

Lj ,ε

)
e2πinθ +

p−1∑

j=0

c
(p−1)
j Êp

Lj ,θ0
(nθ) = γ(2q ,θ0,p)(nθ).

Therefore, the estimate (25) is obtained after observing that the first Fourier coefficient is
given by equation (26). Finally, the limitlimε→0 γ̂

(2q ,θ0,p)
1 = γ̂1 follows from the fact that∑p−1

j=0 c
(p−1)
j = 1.

2.7 Extrapolation of Fourier coefficients

Our goal now is to adapt the previous methodology in order to obtain the Fourier coefficients
of a quasi-periodic signal of known rotation number. Let us recall that standard FFT algorithms
are based in equidistant samples of points. Since the iterates of a quasi-periodic signal are
not distributed in such a way onT, one has to implement a non-equidistant FFT or resort to
interpolation of points (see for instance [1, 8, 25]). We avoid this difficulty using the fact that
the iterates are equidistant “according with the quasi-periodic dynamics”.

We consider a quasi-periodic signalzn = γ(nθ) of rotation numberθ ∈ D as given by
Definition 2.1. Let us observe that we can compute thet-th Fourier coefficient,̂γt, as the
average of the quasi-periodic signalzne−2πintθ. For this purpose, we introduce the following
recursive sums of orderp

S
0
N,t = zNe−2πiNtθ, S

p
N,t =

N∑

n=1

S
p−1
n,t , (28)

and their corresponding averages

S̃
p
N,t =

(
N + p− 1

p

)−1

S
p
N,t.

Proposition 2.19.For any analytic quasi-periodic signalzn = γ(nθ) of rotation numberθ ∈ D
the following expression is satisfied

S̃
p
N,t = γ̂t +

p−1∑

l=1

A
p−1
t,l

N l
+ E

p
t (N),

where the coefficientsAp
t,l are independent ofN . Furthermore, the remainderEp

t (N) is uni-
formly bounded by an expression of orderO(1/Np).
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This proposition, that can be proved analogously as Proposition 2.13, allows to obtain the
following extrapolation scheme to approximateγ̂t.

Algorithm 2.20. Once an averaging orderp is selected, we takeN = 2q iterates of the map,
for someq > p, and compute the sums{Sp

Nj ,t}j=0,...,p with Nj = 2q−p+j+1. We approximate the
tth Fourier coefficient using the formula

γ̂t = Φq,p,t +O(2−pq), Φq,p,t =

p−1∑

j=0

c
(p−1)
j S̃

p
Nj ,t,

using the same formula(19) for the coefficientsc(p−1)
j .

The extrapolation error of this algorithm can be estimated by means of the following (heuris-
tic) expression

|γ̂t − Φq,p,t| ≤
ν

2p
|Φq,p,t − Φq−1,p,t|. (29)

Remark 2.21. As it was mentioned in the introduction, the typical approach to compute an
invariant curve it to look for it in terms of its Fourier representation. One of the main features
of the methodology discused in this paper is that we can compute these objects looking for an
initial condition on the curve (see Section 3.3 and also examples in [23, 29]) without computing
simultaneously any Fourier expansion or similar approximation. Then, the method discussed
above allows to obtain “a-posteriori” Fourier coefficientsof the parameterization from the
iterates of the mentioned initial condition.

Remark 2.22. If we want to computeM Fourier coefficients, notice that Algorithm 2.20 in-
volves a computational cost of orderO(NM) that seems to be deceiving when comparing with
FFT methods. Nevertheses, it is clear that the sums(28)can be also computed as it is standard
in FFT since they also satisfy Danielson-Lanczos Lemma (seefor example [28]), thus obtain-
ing a cost of orderO(N log N) for computingN coefficients. However, unlike in the other
algorithms presented in this paper, this fast implementation requires to store the iterates of the
map.

Remark 2.23. We point out that with Algorithm 2.20 we can compute isolatedcoefficients,
meanwhile FFT computes simultaneously all the coefficientsup to a given order. This can be
useful if one is interested only in computing families of coefficients with high precision, as for
example it is done in [30] —using similar ideas— for coefficients corresponding to Fibonacci
numbers.

3 Some numerical illustrations

In this part of the paper we illustrate several features of the methods discused in Section 2. To
this end, we have selected three different contexts that we summarize next.
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• First, in Section 3.1, we study invariant curves inside the Siegel domain of a quadratic
polynomial. We use this example, where the rotation number is known “a-priori”, as a test
of the methods. In particular, we show how difficult it is to unfold a given invariant curve
as a function of the arithmetic properties of the selected rotation numbers. Furthermore,
we introduce two simple criteria to decide if the projectionof the iterates of the invariant
curve induces a circle map.

• Then, in Section 3.2, we deal with a toy model obtained by fixing the Fourier coefficients
and the rotation number that define a non-embedded quasi-periodic signal. In this ex-
ample we study the behavior of the unfolded curveγ(L,θ0) and we check the estimates in
Lemma 2.6 and Proposition 2.8. Furthermore, in order to simulate uncertainty coming
from experimental data we add to this signal a normally distributed random error and we
show that the method still provides very accurate results tocompute the rotation number
of the signal.

• In Section 3.3 we consider the study of quasi-periodic invariant curves for planar non-
twist maps. For thestandard non-twist map, we apply Algorithm 2.14 to compute the
rotation number in cases where we can compute easily the “lift” of the circle correspon-
dence induced by the direct projection, and also in a very folded curve that we require
to unfold. Moreover, weunfold a shearlessinvariant curve comparing the methods in
Sections 2.3 and 2.6. For Hénon’s map, we apply Algorithm 2.16 to illustrate the com-
putations of derivatives of the rotation number from the “lift” of circle correspondences
induced by a family of invariant curves. Finally, we use our methodology to continue
numerically a folded (labyrinthic) invariant curve in a more degenerate family of maps.

Let us observe that, since all the recursive sums are evaluated using lifts rather than maps,
they turn out to be very large when we increase the order of averaging and the number of iterates.
Concretely,

Sp
N = O(Np+1), Dd

µS
p
N = O(Np+1), Sp

L,θ0,n = O(Lp), S
p
N = O(Np).

A natural way to overcome this problem is to do computations by using a representation of
real numbers using a computer arithmetic having a large number of decimal digits. Moreover,
we have to be very careful with the manipulation of this largenumbers to prevent the loss of
significant digits (for example, by storing separately integer and decimal parts) and beware not
to “saturate” them.

The presented computations have been performed using a C++ compiler and multiple arith-
metic (when it is required) has been provided by the routinesdouble-double and quad-double
packageof [18], which include adouble-doubledata type of approximately 32 decimal digits
and aquadruple-doubledata type of approximately 64 digits.
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Figure 3:Left: iterates (in the complex plane) of the pointz0 = 0.8 for the quadratic polynomial withθ = θ(50).

Right: averaged iteratesz(200,θ(50))
n of this curve given by (3).
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Figure 4: Unfolding of the invariant curve corresponding to the pointz0 = 0.8 for the quadratic polynomial.

Left plot: we show, versus the integers, the value ofL for which the curveγ(L,θ(s)) is “almost” a circle (solid

line, right vertical axis) and the minimum value ofL for which the projection defines a circle map (dashed line,

left vertical axis). Right plot: we plot function (30) for the averaged curve of Figure 3 (left plot) versus the arc

parameterα onT described in Remark 3.1.

3.1 Siegel domain of a quadratic polynomial

Let F : U → C be an analytic map, whereU ⊂ C is an open set, such thatF (0) = 0 and
F ′(0) = e2πiθ. It is well known that ifθ is a Brjuno number, then there exists a conformal
isomorphism that conjugatesF to a rotation around the origin of angle2πθ (see [38]). The
conjugation determines a maximal set (calledSiegel disk) which is foliated by invariant curves
of rotation numberθ.

In particular, we consider the case of the quadratic polynomial F (z) = λ(z − 1
2
z2) ,with

λ = e2πiθ, for several rotation numbersθ. Concretely, we useθ = θ(s) ∈ (0, 1) which is a zero
of θ2 + sθ− 1 = 0, with s ∈ N. It is clear thatθ(s) is a Diophantine number for anys but with a
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larger constantC (recall Definition 2.3) whens increases. Note thatθ(s) = 1/s−6/s3+O(1/s5)
shows that, for larges, θ(s) is “close” to a rational number.

Even in this simple example, the direct projection on the angular variable does not always
give a diffeomorphism onT. For example, in the left plot of Figure 3 we show the curve that
corresponds toθ = θ(50) for the initial conditionz0 = 0.8. The right plot of Figure 3 corresponds

to the averaged iteratesz(200,θ(50))
n according to (3). As expected, the new curve is closer to a

circle centered at the origin.
Our first goal is to emphasize how difficult it becomes to unfold the invariant curve of the

point z0 = 0.8 depending on the chosen rotation numberθ(s) (ass increases). To this end, we
introduce a criterion to decide when the curve is “close enough” to be a circle. Given a fixed

value ofθ(s), we chooseL = 1 and compute{z(L,θ(s))
n }n=1,...,50000 iterates, the mean value of

their modulus, and the corresponding standard deviation. Then, if the relative standard deviation
is less than0.5%, we consider that the curveγ(L,θ(s)) is close enough to be a circle or we increase
L otherwise. The continuous line in the left plot of Figure 4 (using the vertical axis on the right)
shows the obtained value ofL versus the integers that labels the rotation numberθ(s). As
expected, we require larger values ofL when the rotation number is closer to a rational number.

Let us observe that in practice we do not require to take such large values ofL to unfold
the curve. Rather than obtaining a circle, we are interestedin unfolding the curve in a way that
can be projected smoothly into a circle. To this end, we propose a simple criterion to decide if
the curve is already unfolded or not. This can be done by computing the changes of sign of the
function

z ∈ γ(T) 7−→ det(vt(z), vr(z)) ∈ [−1, 1], (30)

wherevt(z) is the oriented (in the sense of the dynamics) unitary tangent vector ofγ at the point
z andvr(z) the corresponding unitary radial vector with respect to theorigin. It is clear that if
det(vt(z), vr(z)) changes sign at some point, then the curveγ is still folded. Moreover, ifγ(T)
is exactly a circle, we have thatdet(vt(z), vr(z)) is constant for allz ∈ γ(T), taking the value
−1 or 1, depending if the iterates rotate clockwise or counterclockwise.

As an example, we apply this criterion to the invariant curveshown in the left plot of Fig-
ure 3. The function (30) is shown in the right plot of Figure 4.The horizontal axis in this plot
corresponds to the sampling of points on the curve distributed according to Remark 3.1. Let us
observe that this function oscillates due to the folds of theinvariant curve, and there are changes
of sign since the projection is not well posed. Now, we unfoldthis invariant curve for different
values ofθ(s) looking for the minimum value ofL such thatmin(det(vt(z), vr(z))) > 0. The
discontinuous line in the left plot of Figure 4 (using the vertical axis on the left) shows this value
of L versuss, and we observe that it is much smaller than the value ofL for which the curve is
almost a circle.

Remark 3.1. Function (30) is evaluated by computing the tangent vectorvt(z) using finite
differences. To this end, we require a good distribution of points along the curveγ that are
obtained using the fact that we know the rotation number (at least approximately). In particular,
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coefficient value estimated error real error
γ̂−1 1.4− 2i 6 · 10−40 1 · 10−40

γ̂0 4.1 + 1.34i 6 · 10−41 9 · 10−42

γ̂1 −2 + 2.412i 5 · 10−41 8 · 10−42

γ̂2 −2.5− 1.752i 4 · 10−40 8 · 10−41

Table 1: Fourier coefficients defining expression (31) and the numerical error obtained in their approximation

using the method of Section 2.7. The estimated error is obtained by means of formula (29).

we fix a number of pointsM to discretize the curve parameterized by an “arc parameter”
α ∈ [0, 1) on T defined by the quasi-periodic dynamics. We start with a pointz0 ∈ γ(T) that
we identify with the reference parameterα = 0. Then, we compute the next iterate of the map
and we update the parameterα ← α + θ0(mod 1). Definingi as the integer part ofαM and if
dT(α, i/M) < 10−4 we store the iterate in the positioni-th of an array. We iterate this process
till we storeM points onγ(T). Observe that these computed points are ordered following
the dynamics of the curve so we can compute the tangent vectorjust by finite differences. We
will consider thatmin(det(vt(z), vr(z))) > 0 if the minimum value at theM selected points is
positive.

3.2 Study of a quasi-periodic signal

We consider a quasi-periodic signalzn = γ(nθ), with θ = (
√

5 − 1)/2 ∈ D, as introduced
in Definition 2.1. Interest is focused in the case whereγ is not an embedding, and hence the
corresponding orbit is not related to a planar map. In particular, we consider

γ(x) = γ̂−1e
−2πix + γ̂0 + γ̂1e

2πix + γ̂2e
4πix, (31)

where the Fourier coefficients, given in Table 1, have been selected in such a way that the curve
γ(T) intersects itself.

First, we show the initial curveγ(T) (left plot of Figure 5) and averaged curvesγ(L,θ)(T)
(right plot of Figure 5) corresponding toL = 2, 3, 4. Observe that we are using the exact value
of the rotation number to compute the averaged iterates given by (3). As expected, the new
curves are unfolded and become close to a circle.

Since in this problem we know the rotation number, we can perform a simple test of the
method presented in Section 2.7 computing the non-zero Fourier coefficients of the initial curve.
To this end we use64-digit arithmetics (quadruple-doubledata type from [18]) taking an av-
eraging orderp = 9 andN = 223 iterates of the map. Both the estimated extrapolation error
using (29) and the real one are shown in Table 1 observing a very good agreement.

Our goal now is to study the dependence with respect toL of the norms in Lemma 2.6 and
Proposition 2.8. In Figure 6 (left) we plot the function

L 7−→ log10

( ||γ(L,θ) − γ1[γ̂1]||
|γ̂1|

)
, (32)
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Figure 6:Left: we plot function (32) versusL. Right: we plot function (33) versusL using the approximation

θ0 = θ + 1/250.

that can be evaluated from expression (5) using the exact value of the rotation number. We
observe that the computed points can be bounded from above ina sharp way by3.19/L.

On the other hand, assuming that we only have an approximation θ0 of the rotation number
θ, we want to study the estimate (8) of Proposition 2.8. Concretely, we compute the function

L 7−→ log10

( ||γ(L,θ0) − γ1[γ̂
(L,θ0)
1 ]||

|γ̂(L,θ0)
1 |

)
(33)

using the approximationθ0 = θ + 1/250. In the right plot of Figure 6 we observe that this
function is close to be periodic, of period approximately250, and it reaches a minimum at
L ≈ 125 (mod 250) so the bound given in Proposition 2.8 turns out to be quite good in this
case.

It is very interesting to study the effect of a random error inthe evaluation of iterates, trying
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Figure 7: Effect of a random noise in the quasi-periodic signal (31). Left: Unfolded clouds of points (in the

complex plane) corresponding to the curves in the right plotof Figure 5 usingε = 0.5 (see text for details). Right:

For different noises, taken asε = 10−δ for δ = 1, . . . , 10,∞, we plot log10 of the real error versusq in the

computation of the rotation number (usingp = 9 and2q iterates). The data is “unfolded” usingL = 10 and

θ0 = θ + 1/250.

to simulate that the source of our quasi-periodic signal is experimental data. Concretely, we
consider the iterateszn = γ(nθ) + εxn, where the real and the imaginary parts of the noisexn

are normally distributed with zero mean and unit variance. Of course, the new iterateszn do not
belong to a curve but they are distributed in a cloud around the curve in Figure 5 (left plot). If
we compute the iteratesz(L,θ0)

n , using the approximationθ0 = θ + 1/250, then it turns out that
we can “unfold” the cloud of points in a similar way. For example, in the left plot of Figure 7
we show unfolded clouds for an error of sizeε = 0.5, usingL = 2, 3, 4, i.e., the same values
that we used in Figure 5 (right plot).

Now we focus on the effect of this external noise when computing the rotation numberθ
of the “circle map” thus obtained. The size of the considerednoise ranges asε = 10−δ for
δ = 1, . . . , 10,∞. Although we observe in Figures 5 (right plot) and 7 (left plot) that the
“projection” is well defined forL = 4, in the following computations we takeL = 10 since for
this value the corresponding curve is almost a circle. To theconstructed “circle map” we apply
Algorithm 2.14 to refine the numerical computation of the rotation number. As implementation
parameters we take an averaging orderp = 9 and N = 2q iterates of the map, withq =
9, . . . , 22. The random numbersxn are generated using the routinegasdev from [28] for
generating normal (Gaussian) deviates. Computations are performed using32-digit arithmetics
(double-doubledata type from [18]).

In the right plot of Figure 7 we show, inlog10 scale, the error in the computation of the
rotation number with respect toq for different values ofε. Let us observe that forε = 0 (lowest
curve) the extrapolation error is saturated around10−31 for q ≥ 18. We notice that this error
is of the order of the selected arithmetics. The other curvesin the right Figure 7 correspond to
increasing values ofε (from bottom to top). Let us remark that in all cases the random error is
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Figure 8: Left: some meandering curves, in thexy-plane, of the map (34) around the shearles invariant curve

corresponding toa = 0.615 andb = 0.4; four dots represent the corresponding indicator points for this curve.

Right: Rotation number versusx along the straight line connecting the points(x, y) = (0.21, 0.15) and(x, y) =

(0.29, 0.235) in the left plot.

averaged in a very efficient way, and it turns out that the rotation number is approximated with
an error of orderε · 10−10.

3.3 Study of invariant curves in non-twist maps

Finally, we apply the developed methodology to the study of quasi-periodic invariant curves
of non-twist maps. It is known that Aubry-Mather variational theory for twist maps does not
generalize to the non-twist case, but there is an analogue ofKAM theory (see for example the
works of [11, 34]). However, the loss of the twist condition introduces different properties than
in the twist case, for example the fact that the Birkhoff Graph Theorem does not generalize. A
classical mechanism that creates folded invariant curves is calledreconnection. Reconnection is
a global bifurcation of the invariant manifolds of two or more distinct hyperbolic periodic orbits
having the same winding number (we refer to [10, 34, 37] and references therein for discussion
of this bifurcation).

Let us start by considering the family of area preserving non-twist maps given by

Fa,b : (x, y) 7−→ (x̄, ȳ) =
(
x + a(1− ȳ2), y − b sin(2πx)

)
, (34)

where(x, y) ∈ T × R are phase space coordinates anda, b parameters. This family is usually
calledstandard non-twist mapand it is studied as a paradigmatic example of a non-twist family.
Although this family is non-generic (it is degenerate in thesense that it contains just one har-
monic), it describes the essential features of non-twist systems with a local quadratic extremum
in the rotation number.

It is clear that the standard non-twist map violates the twist condition along the curvey =
b sin(2πx) which is callednon-monotone curve. Only orbits with points falling on this curve and
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orbits with points on both sides of it are affected by the non-twist property. Among these orbits,
of special interest is the one that corresponds to an invariant curve having a local extremum in
the rotation number, calledshearless invariant curveγS. For the standard non-twist map this
curve is characterized by the fact that, when it exists, it must contain the points

(x
(0)
± , y

(0)
± ) =

(
±1

4
,± b

2

)
(x

(1)
± , y

(1)
± ) =

(
a

2
± 1

4
, 0

)
,

that are calledindicator points(see [31]). These points are used extensively in the literature to
study the breakdown of shearless invariant curves (we referfor example to [1, 37]).

In the left plot of Figure 8 we show some invariant curves close to a reconnection scenario
for a = 0.615 andb = 0.4. We observe somemeandering curves, i.e., curves that are folded
around periodic orbits in such a way that they are not graphs over x. In addition, we plot the
four indicator points in order to identify the shearless invariant curve. Actually, the invariant
curve that we used as an illustration in Section 2.1 (see Figure 1) is precisely this shearless
curve in the complex variablez = eyeix.

First, we focus on this shearless curve computing its rotation number by applying the ex-
trapolation method of Algorithm 2.14 to the circle correspondence obtained by direct projection
(see the discussion in Sections 1 and 2.1) on the angular variablex. Since the folds of this exam-
ple are relatively small and the rotation number is quite big—it is close to0.6, i.e., the winding
number of the nearby periodic orbits— this direct projection allows to compute numerically the
lift of this circle correspondence without unfolding the curve. In Table 2 we give the estimated
extrapolation error, by means of formula (20), in the computation of the rotation number ofγS,
for different values of the extrapolation orderp and number of iterates2q. Computations are per-
formed using32-digit arithmetics (double-doubledata type from [18]). Let us observe that the
extrapolation method allows to obtain a very good approximation of the rotation number with
a relative small number of iterates, in contrast withp = 0 which corresponds to the definition
of the rotation number —let us mention that some recent workslike [37] use the definition to
approximate the rotation number. According to our estimates, the best computed approximation
of the rotation number turns out to be

θ ≃ Θ21,7 = 0.59918902772269558576430971159247.

In addition, we compute the rotation number of meandering curves in the left plot of Figure 8
using an averaging orderp = 7 and221 iterates of the map. In Figure 8 (right plot) we show
the rotation number profile in this reconnection scenario. Concretely, we compute the rotation
number for the orbits corresponding to1000 points along an straight line connecting(x, y) =
(0.21, 0.15) and(x, y) = (0.29, 0.235), that are close to the elliptic periodic orbits of winding
number3/5. As far as the estimated extrapolation error is concerned, 93% of the points have an
error less than10−26 and 98% of the points have an error less than10−20. The minimum value
in the profile corresponds to the rotation number ofγS, and we observe the loss of uniqueness
of invariant curves when the twist condition fails.
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p q = 10 q = 11 q = 12 q = 13 q = 14 q = 15 q = 16 q = 17 q = 18 q = 19 q = 20 q = 21
0 1.4e-03 7.3e-04 1.9e-04 1.9e-04 8.1e-05 3.6e-05 1.1e-05 1.0e-05 5.0e-06 2.5e-06 1.0e-06 3.4e-07
1 7.9e-06 5.5e-06 2.6e-07 8.1e-07 1.4e-07 6.9e-08 3.7e-09 1.9e-09 1.2e-09 2.5e-11 8.8e-12 6.4e-12
2 3.8e-07 8.6e-09 3.0e-08 4.5e-08 4.6e-09 2.1e-10 3.7e-11 1.4e-12 8.5e-13 1.9e-14 4.1e-16 1.3e-16
3 1.6e-05 9.5e-11 1.0e-09 8.5e-10 7.0e-12 1.2e-11 5.0e-13 6.5e-14 2.3e-16 1.2e-16 1.6e-17 7.1e-22
4 1.6e-05 1.2e-07 1.9e-09 5.2e-11 2.2e-12 8.9e-13 2.0e-14 2.8e-16 1.0e-17 1.9e-19 1.2e-20 8.8e-23
5 4.9e-06 7.0e-07 2.1e-08 5.0e-12 6.9e-14 2.2e-14 3.3e-17 1.7e-17 2.0e-19 6.0e-21 4.0e-24 8.2e-25
6 2.6e-06 1.0e-06 2.8e-08 4.5e-11 4.5e-13 3.5e-15 3.6e-18 1.9e-18 9.3e-21 4.5e-23 3.3e-25 2.0e-27
7 4.7e-06 8.8e-07 8.5e-09 4.5e-10 2.7e-12 7.7e-16 1.6e-18 6.9e-20 2.1e-23 2.5e-24 8.6e-27 5.9e-29

Table 2: Estimated extrapolation error, using formula (20), in the approximation of the rotation number of the

shearless curve of the map (34) that corresponds toa = 0.615 andb = 0.4.
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Figure 9: Left: we plot in thexy-plane the shearless curveγS = γ(1,θ0) in Figure 8 and the averaged curve

γ(70,θ0), whereθ0 = Θ21,7. Right: we plot function (30) on the previous curves versus the arc parameterα on T

described in Remark 3.1.

Remark 3.2. Of course, the points in the left plot of Figure 8 to which we assign a rational
rotation number (the profile is locally constant) cannot belong to an invariant curve. These
points correspond to “secondary invariant curves” or “islands”, which are invariant curves of
a suitable power of the map, that appear close to the ellipticperiodic orbits. Thus, for a point
on these islands, what we obtain is the “winding number” of the periodic orbit in the middle of
the island. We refer to discussions in [23, 29].

Now, let us illustrate the methodology of Section 2 in order to unfold the shearless invariant
curveγS. To this end, we complexify phase space by means of the changeof variablesz =

eye2πix and compute the new quasi-periodic signal{z(L,θ0)
n } using the approximationθ0 = Θ21,7.

In Figure 9 (left plot) we show the original curveγS, corresponding toL = 1, together with
the curveγ(70,θ0) that is less folded but its projection is not well defined yet.In Figure 9 (right
plot) we show function (30) forγS andγ(70,θ0). Actually, the projection into a circle is well
posed forL = 75 and the curve is very close to be a circle —the minimum of function (30) is
≃ 0.999897— for L = 240.

Furthermore, we try to unfoldγS using higher order averages to accelerate the convergence
to a circle. To this end, we still fixθ0 = Θ21,7 and apply the higher order method explained in
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q p = 1 p = 2 p = 3 p = 4 p = 5
6 2.8e-02 (−) 5.6e-02 (−) 7.1e-02 (−) 7.5e-02 (−) 7.4e-02 (−)
7 1.1e-01 (+) 1.5e-01 (=) 1.2e-01 (=) 7.7e-02 (−) 4.2e-02 (−)
8 4.0e-02 (+) 5.6e-02 (+) 9.6e-02 (=) 1.4e-01 (=) 1.4e-01 (=)
9 1.8e-03 (+) 4.4e-03 (+) 3.4e-02 (+) 6.7e-02 (+) 6.4e-02 (=)
10 2.8e-03 (+) 3.6e-05 (+) 7.8e-03 (+) 1.2e-02 (+) 1.1e-02 (+)
11 2.0e-03 (+) 3.5e-05 (+) 1.0e-06 (+) 2.6e-04 (+) 1.9e-03 (+)
12 3.0e-03 (+) 2.1e-04 (+) 7.6e-06 (+) 2.4e-06 (+) 1.3e-04 (+)
13 9.6e-04 (+) 1.1e-04 (+) 3.0e-06 (+) 9.8e-08 (+) 1.5e-08 (+)
14 8.0e-04 (+) 2.0e-05 (+) 3.8e-07 (+) 7.7e-08 (+) 4.5e-09 (+)
15 3.0e-04 (+) 3.5e-06 (+) 1.7e-07 (+) 1.9e-08 (+) 8.0e-10 (+)
16 2.0e-05 (+) 8.4e-07 (+) 1.9e-08 (+) 9.3e-10 (+) 1.8e-11 (+)

Table 3:Estimated distance to be a circle of the higher order averaged curveγ(2q,θ0,p), whereθ0 = Θ21,7, for

the shearless curveγS in Figure 8. The meaning of the symbols is the following: (−) if the curve is still folded,

(=) if the curve is unfolded but not close enough to a circle and (+) if the curve is close to be a circle.
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Figure 10: Top-left: Higher order meandering curve for the standard nontwist map in the complexified

phase space usingz = e
√

2π|a|ye2πix. Top-right: Circle correspondence obtained from the direct projection

—defined in (1)— of the iterates of the curve in top-left plot.Bottom: We show the curvesγ(L,θ0), where

θ0 = 0.0429853252, for L = 50 (left) andL = 150 (right) in the complex plane.

Section 2.6 to unfold the curve, using different values of the extrapolation orderp and number
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Figure 11:We plot the functionθ0 7→ |z(L,θ0)
0 | using the valuesL = 30 (left) and60 (right) for the meandering

curve in Figure 10. The real value of the rotation number is around0.04332244074906551 (see the text for details).

of iteratesL = 2q. In table 3 we present the estimated error when we compare thenew curve
with a circle. Since we have constructed a sequence of curvestending to a circle —up to small
error— we estimate the distance of these curves to be a circlejust looking at the number of digits
that coincide for a point on these curves when we increase thenumber of iterates from2q−1 to
2q, this is, we use the formula|z(2q ,θ0,p)

0 − z
(2q−1,θ0,p)
0 |, whereθ0 = Θ21,7. The adjacent symbol

in this table indicates if the projection of the invariant curve induces a circle map, according to
the criterion of the sign of function (30) —as explained in Remark 3.1. We put the symbol (−)
if the minimum of function (30) is negative, we put (=) if this minimum is positive but less than
0.99 and we put (+) if this minimum is between0.99 and1. As expected, forp = 1 andq = 6

the curve is still folded sincez(2q ,θ0)
n = z

(2q ,θ0,1)
n and26 = 64 < 75. Let us observe that when we

increase the order of averaging we require more iterates in order to appreciate an improvement
in the extrapolation. Nevertheless, after this transitionthe method turns out to be much more
efficient (for example, see the row forq = 16).

A further step is to consider the case of the so calledhigher order meanderingsthat appear
due to reconnections involving periodic orbits in a neighborhood of a meandering curve. The
considered example is selected from [34] and we refer there for a constructive explanation.
Concretely, we consider the valuesa = −0.071963192 andb = −0.44614508325727 and the
curve that corresponds to the initial condition(x0, y0) = (0,−2.00377736103447). In Figure 10
(left plot) we show this higher order meandering curve in thecomplex plane by means of the

change of variablesz = e
√

2π|a|ye2πix.
Let us observe that the invariant curve of this example is folded in a very wild way. Ac-

tually, in the top-right plot of Figure 10 we show the “lift” to R of the circle correspondence
that we obtain by means of the direct projection on the angular variablex. This plot has been
obtained projecting iterates of an orbit of the curve, and weobserve that it is not easy to com-
pute numerically this lift just looking at isolated iterates of the circle correspondence —without
any “a-priori” information on the rotation number. Therefore, we apply Laskar’s method of
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L = 30 L = 60 L = 90 L = 120 L = 150
0.9577778096 (0.74) 0.1303407362 (0.95) 0.1302228135 (0.86) 0.1302697604 (0.82) 0.1301364744 (0.84)
0.1371713373 (0.67) 0.9562939918 (0.75) 0.9565703718 (0.77) 0.9565427675 (0.72) 0.9569018161 (0.70)
0.0465959056 (0.54) 0.1734756047 (0.74) 0.0870283875 (0.68) 0.0870160838 (0.62) 0.0865975344 (0.65)
0.2046548291 (0.50) 0.0872525690 (0.73) 0.1733546296 (0.64) 0.0437697415 (0.59) 0.0429853252 (0.62)
0.3084897181 (0.29) 0.2166379341 (0.68) 0.0437231352 (0.61) 0.1737224972 (0.58) 0.1736243983 (0.61)
0.8683260095 (0.23) 0.0435679422 (0.61) 0.2169984090 (0.58) 0.2172096615 (0.54) 0.2171559900 (0.57)
0.3631744037 (0.19) 0.2593740449 (0.50) 0.2601564576 (0.42) 0.2604187823 (0.38) 0.2606176626 (0.40)
0.4154453760 (0.15) 0.3024868348 (0.41) 0.3037390964 (0.34) 0.3041163591 (0.32) 0.3041431703 (0.34)

Table 4:Relevant maxima of the functionθ0 ∈ [0, 1] 7→ |z(L,θ0)
0 | for different values ofL corresponding to the

invariant curve in Figure 10 (top-left plot). In parentheses we show the value of the function at the local maxima.

We write in bold the value of the maximum that approximates the rotation number of the curve.

i ki1 ki2 ki3 ki4 ki5 ki6 ki7 ki8 κi

1 1 -8 9 -7 -6 8 2 10 51
2 -3 1 -4 -2 -5 -1 -6 -7 29
3 -5 -6 1 -11 7 6 13 -4 53
4 -10 -12 2 1 -9 -11 3 -8 56
5 -4 9 10 5 1 -9 -8 6 52
6 3 -1 4 2 5 1 6 7 29
7 -11 -4 -7 8 -3 4 1 5 43
8 7 -10 -6 -3 4 10 -9 1 50

Table 5: Indicatorskij andκi corresponding to the step “rotation number selection” described in Section 2.4.

We useL = 60.

frequency analysis (implemented as described in Section 2.4) to obtain a sufficiently good ap-
proximation of the rotation number in order to unfold the curve. Maxima chasingis performed
looking for local maxima ofθ0 7→ |z(L,θ0)

0 | in the interval[0, 1]. These maxima are obtained
using a partition of500 points of this interval and asking for a toleranceεGSS = 10−10 in the
golden section search. In Table 4 we show the revelant maxima, usingν = 5 in equation (13),
for several values ofL. Moreover, in Figure 11 we plot the functionθ0 7→ |z(L,θ0)

0 |, for L = 30
(left plot) andL = 60 (right plot). Of course, when we increaseL we observe a larger number
of maxima but the width of the peaks is reduced so their approximation is improved.

As explained in Section 2.4, we assume that one of these maxima approximates the rotation
number of the curve in such a way that the rest are multiples ofit (modulo1). To select which
maximum approximates the rotation number, we compute the indicatorskij, κi, dij andδi given
in equations (14) and (15). For example, the values corresponding toL = 60 are given in
Tables 5 and 6. Let us point out that the maximum corresponding to thei-th row in these
tables can be read in thei-th row of Table 4. If we select the 2nd or the 6th maxima as the
approximationθ0 of the rotation number, then the remaining peaks are approximated —with
the error shown in Table 6— as multipleskθ0 (modulo1) using smaller values fork than if we
make any other choice (see Table 5). These two peaks correspond to approximations of1 − θ
andθ, and we select the6th one as an approximation of the rotation number since is follows the
positive orientation of the dynamics. We write this peak in bold in Table 4.

Let us refine the approximation of the rotation number from the 6th peak. In Figure 10
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i di1 di2 di3 di4 di5 di6 di7 di8 δi

1 0.00e+00 9.80e-04 4.00e-04 3.60e-04 1.30e-03 8.40e-04 1.30e-03 9.20e-04 6.10e-03
2 7.70e-04 0.00e+00 1.30e-03 1.50e-04 1.80e-03 1.30e-04 2.80e-03 3.40e-03 1.00e-02
3 2.20e-03 2.80e-03 0.00e+00 4.50e-03 2.30e-03 2.70e-03 4.10e-03 3.60e-03 2.20e-02
4 2.80e-03 3.30e-03 1.00e-03 0.00e+00 1.90e-03 3.30e-03 2.30e-03 5.00e-04 1.50e-02
5 3.10e-03 6.50e-03 7.10e-03 4.00e-03 0.00e+00 6.60e-03 7.50e-03 2.60e-03 3.70e-02
6 3.60e-04 1.30e-04 7.90e-04 1.10e-04 1.20e-03 0.00e+00 2.00e-03 2.40e-03 7.10e-03
7 1.60e-02 6.20e-03 1.00e-02 1.20e-02 5.20e-03 6.00e-03 0.00e+00 5.60e-03 6.20e-02
8 1.20e-02 1.80e-02 1.10e-02 5.20e-03 6.60e-03 1.80e-02 1.80e-02 0.00e+00 9.20e-02

Table 6:Indicatorsdij andδi corresponding to the step “rotation number selection” described in Section 2.4. We

useL = 60.

we plotγ(L,θ0) using the approximationθ0 = 0.0429853252 for L = 50 (bottom-left plot) and
L = 150 (bottom-right plot). We observe that forL = 50 the curve is still very folded but if we
takeL = 150, even thought there are still some harmonics that fold the curve, we are close to a
circle centered at the origin and the projection gives us a circle correspondence that we can “lift”
to R easily, since the size of the folds is small when compared with θ0. Finally, we compute
the rotation number of this invariant curve from the circle correspondence obtained by means
of this unfolding procedure. We apply Algorithm 2.14, usingp = 7 andq = 21, to the iterates
xn = arg(z

(150,θ0)
n )/2π thus obtaining the approximationΘ7,21 = 0.04332244074906551 with

an estimated error1.7 · 10−13.
We observe that the computation of the rotation number does not work as well as in previous

examples, but an error of order10−13 is very satisfying in this context since a huge number of
Fourier coefficients is required to approximate the curve with this error and the rotation number
is close to resonance (see also the discussion regarding Hénon’s map example). To show this,
let us compute the Fourier coefficients corresponding to|k| ≤ 750 by means of Algorithm 2.20
usingp = 7, q = 21 andθ ≃ Θ21,7. Computations are performed using32-digit arithmetics
(double-doubledata type from [18]). The modulus of the obtained valuesΦ21,7,k are shown in
the left plot of Figure 12. The extrapolation error, estimated using (29), typically ranges between
10−10 and10−8. As expected, the decay of these coefficients is very mild andwe point out that
coefficients for|k| ≃ 750 are still of order10−5. It is interesting to compare this behavior to
that corresponding to the shearless curve in Figure 8 since the extrapolation methods can be
applied successfully to this case. For this curve the Fourier coefficients —computed using the
same implementation parameters— decay much faster (see theright plot in Figure 12). In this
case, the estimated extrapolation error typically ranges between10−16 and10−24, and Fourier
coefficients for|k| ≥ 400 are so small that we cannot compute any significant digit (we detect
this fact because|Φ21,7,k| is of the same order as the extrapolation error). A final remark is that
in this plot we observe an increase of the size of Fourier coefficients around|k| ≃ 250 and after
that they decay again at the same rate. The rotation number ofthis curve has the convergent
145/242, so the small divisor for the corresponding Fourier coefficient turns out to be very
small. Precisely we observe that|Φ21,7,243| ≃ 214|Φ21,7,242|.

In the next example we want to illustrate the computation of derivatives of the rotation num-
ber by applying Algorithm 2.16 to a circle correspondence that we can “lift” numerically to
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Figure 12:We plotlog10 |Φ21,7,k| versusk corresponding to the approximated Fourier coefficients of two studied

invariant curves. Left: Higher order meandering curve in Figure 10 (top-left plot). Right: Shearless invariant curve

in Figure 8 (left plot).

R. Moreover, we also want to stress how extrapolation methodsare less accurate when the
rotation number is a Diophantine number “close to a rational” —thus having a large constant
C in (7). Therefore, we select a problem very close to a resonance. Comparing with previous
examples, we point out that the shearless curve in Figure 8 isnot too resonant —actually the
continued fraction of the rotation number in that case is[0, 1, 1, 2, 48, 1, . . .]. Meanwhile the
case of higher order meandering in Figure 10 is more resonantbut the curve extremely compli-
cated. Let us consider the well-known Hénon family, which is a paradigmatic example since it
appears generically in the study of a saddle-node bifurcation. This family can be written as

Hα :

(
u
v

)
7−→

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)(
u

v − u2

)
.

It is not difficult to check that we can perform a close to the identity change of variables
to guarantee the twist condition close to the origin, exceptfor the valuesα = 1/3, 2/3. Then,
for values ofα close to1/3 and2/3, reconnection takes places and meandering phenomena
arises, i.e., there are folded invariant curves. Next we want to illustrate the computation of the
derivatives of the rotation number forα close to1/3.

In the left plot of Figure 13 we show meandering curves forα = 0.299544. We use the direct
projection and we apply Algorithm 2.16 to the “lift” of the circle correspondence thus obtained,
in order to compute the derivative of the rotation number with respect to the initial condition
u0, for 6000 points of the form(u0, 0.15) along the dotted line in the figure. Computations
are performed takingp = 8, q = 23, and using32-digit arithmetics (double-doubledata type
from [18]). The corresponding profile is shown in the right plot of Figure 13, and we observe
that the sign of the derivative changes when we pass from one twist zone to another. The
isolated points where the derivative vanishes correspond to theshearless invariant curvewhile
the points where it is locally constant corresponds to the chain of islands (secondary tori) around
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Figure 13:Left: Phase space in theuv-plane of Hénon map forα = 0.299544 showing meandering curves close

to periodic orbits of period3/10. Right: we plot the derivative of the rotation numberu 7→ Duρ along the straight

line in the left plot.

the elliptic periodic points (see Remark 3.2). We want to stress that since we are very close to
a resonance, the convergence of the computations in this example is not as good as in the
far-from-resonance case. For example, foru0 = 0.28 we obtain the approximationΘ23,8 =
0.299999020519 of the rotation number with an estimated error, using (20), of order10−12 and
the derivativeΘ1

23,8,7 = −6.027735852·10−5 with an estimated error, using (22), of order10−10.
Actually, the continued fraction expansion ofΘ23,8 is given by[0, 3, 2, 1, 10203, 2, . . .] which
is close to3/10 (winding number of the periodic orbit). It is interesting tocompare the error
of order10−12 in the computation of the rotation number with the error obtained when dealing
with good Diophantine numbers, that are typically of order10−30 for the used implementation
parameters. We refer to several comments given in [23, 29] regarding this situation.

We remark that all the previous examples considered in this section contain only one har-
monic or are written as perturbations of maps that have strong twist behavior. For this reason
we have not shown all the possibilities of our methodology. As it is pointed out in [34], folded
invariant curves appear in a natural way, when we introduce more harmonics in the studied
family of maps. Since these curves can be constructed following arbitrarily complicated paths
in phase space, they got the name oflabyrinthic curves. We shall consider the following family
of mapsFε = Fs1,s2,c1,y2,y3,γ,ε defined onR/(2πZ)× R:

Fε :

(
x
y

)
7−→

(
x̄
ȳ

)
=

(
x + εP (ȳ)
y + εγT (x)

)
. (35)

where

P (y) = y(y − y2)(y − y3)(y − 1)

T (x) = s1 sin(x) + s2 sin(2x) + c1(cos(x)− cos(2x)).
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Figure 14:Phase space in thexy-plane of family (35). Left:ε = 5. Right: ε = 10.

From now on, following [34], we fix

y2 = 0.33040195,

y3 = 0.84999789,

s1 = 0.1608819674465999,

s2 = 0.9444712344787136,

c1 = 0.2865154093461046,

γ = −0.0049.

In the left plot of Figure 14 we show some iterates forε = 5 corresponding to several initial
conditions. We observe that, if we consider the main elliptic islands as holes on the cylinder,
then we find invariant curves of different homotopy classes.Since these curves are folded in a
very complicated way, it is difficult to face the systematic computation of the “lift” of the direct
projection of the iterates. Then, the unfolding method turns out to be very useful to computate
these invariant curves.

For example, we consider the curve associated to the initialcondition(x0, y0) = (0, 2.2), for
ε = 5. We first obtain an approximation of the rotation number by means of frequency analysis
as it is explained in Section 2.4. In particular, using the complex variablez = eyeix andL = 100
we obtain the approximation of the rotation numberθ0 = 7.46161 · 10−3 (details are omitted
since they are very similar of those corresponding to the previously discussed examples). Using
this approximationθ0 we can unfold the invariant curve computing the averages (3)for L = 150
(for this values the curve is almost a circle). Then, we applyAlgorithm 2.14 usingp = 9
andq = 23. Computations are performed using32-digit arithmetics (double-doubledata type
from [18]). We obtain the approximation

θ ≃ Θ23,9 = 0.0080998168999841202002324221453501 (36)

of the rotation number with an estimated extrapolation error of order10−34, that corresponds
with the arithmetic precision of our computations. Let us observe that the number (36) is very
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Figure 15: Left: Labyrinthic invariant curve in thexy-plane of (35) corresponding to the initial condition

(x0, y0) = (0, 2.2) for ε = 5. Right: We ploty(ε) versusε, in the continuation of the invariant curve on the

left.

close to zero, but its continued fraction is[0, 123, 2, 5, 1, 2, . . .], so we conclude that it is not
so resonant as the example of Hénon’s map that we consideredbefore —for this reason the
obtained computations are more accurate.

Furthermore, we use the methods of the paper to follow the evolution, whenε changes,
of the invariant curve ofFε having a prefixed rotation numberθ. Concretely, let(x0, y(ε0))
be a point on an invariant curve of rotation numberθ of the mapFε0. Then, givenε close to
ε0, we want to compute an initial condition(x0, y(ε)) that corresponds to the invariant curve
—if it exists— of Fε that has the same rotation number. Indeed, if we denote byρ(ε, y0) the
function that gives the rotation number of the invariant curve ofFε for the point(x0, y0) —if it
exists— then we look for solutions with respect toy0 = y(ε) of the equationρ(ε, y0) = θ. The
computation of the pointy(ε) is performed by means of the secant method as it is done in [29]
for the standard map. Another possibility is to use a Newton scheme like in [23] for Hénon’s
map, computing derivatives of the rotation number as described in Section 2.5, but the secant
method is enough for our purposes.

We continue the curve of rotation number given by (36) starting from the valuesε0 = 5 and
(x0, y0) = (0, 2.2). Computations are performed using32-digit arithmetics (double-doubledata
type from [18]). In order to unfold invariant curves we use asan approximation the prefixed
value of the rotation number (curves nearby have a similar rotation number) and we takeL =
150. For computing the rotation number, we apply Algorithm 2.14usingp = 6 and216 iterates
of the map at most. We estimate the error of the rotation number by using (20) and we validate
this computation if it is smaller than10−16. For the secant method we require an error smaller
than10−14.

The continuation of the invariant curve is performed successfully for values ofε in the inter-
val (4.75745894, 5.75985518) —in Figure 15 we ploty(ε) in this interval. Forε = 4.75745894
the invariant curve turns shearless and then it disappears after the collapse with the other invari-
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ant curve of the same rotation number on the other side of the meandering, so we have a turning
point in the continuation. Forε = 5.75985518 we stop because we are very close to the break-
down of the curve. Forε > 5.75985518 we have observed that the chaotic zone that appears at
the breakdown of this invariant curve is very narrow and there are still many invariant curves
nearby. In the right plot of Figure 14 we include the phase space that corresponds toε = 10
in order to show the chaotic zone that is created when most of the invariant curves around the
continued one are destroyed.
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[38] J.C. Yoccoz. Théorème de Siegel, nombres de Bruno et polynômes quadratiques.
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