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Abstract

Recently, a new numerical method has been proposed to cemgation numbers of
analytic circle diffeomorphisms, as well as derivativefmespect to parameters, that takes
advantage of the existence of an analytic conjugation tgid rotation. This method can be
directly applied to the study of invariant curves of planaist maps by simply projecting
the iterates of the curve onto a circle. In this work we extéredmethodology to deal with
general planar maps. Our approach consists in computingoseliaverages of the iterates
of the map that allow to obtain a new curve for which the diggciection onto a circle is
well posed. Furthermore, since our construction does r®thssinvariance of the quasi-
periodic curve under the map, it can be applied to more genergexts. We illustrate the
method with several examples.
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1 Introduction

In this paper we present numerical algorithms to deal withstperiodic invariant curves of
planar maps by adapting a method presented in [29] to comptdggon numbers of analytic
circle diffeomorphisms. The developed ideas do not reghigecurve to be invariant under any
map so they can be applied to more general objects that wetceésquasi-periodic signals
(see Definition 2.2).

The method of [29] is built assuming that the circle map idwiwally! conjugate to a rigid
rotation and, basically, it consists in computing suitadlerages of the iterates of the map
followed by Richardson extrapolation. Since this congtaictakes advantage of the geometry
and the dynamics of the problem, the method turns out to déyhagcurate and very efficient
in multiple applications. In a few words, if we compudé iterates of the map, then we can
approximate the rotation number with an error of or@¢t /N?*1) wherep is the selected order
of averaging (compared wit(1/N) obtained using the definition). This methodology has
been extended in [23] to deal with derivatives of the rotatiamber with respect to parameters.
In this case, it is required to compute and average the qgnesng derivatives of the iterates

1The methods of [23, 29] also work in the clasg6fcircle diffeomorphisms; being sufficiently large, but we
restrict the discussion to the analytic case in order to kiyjhe exposition.
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of the circle map. We want to point out that this variatiomdbrmation cannot be obtained in
such a direct way by means of other existing methods to coemptition numbers (we refer to
the works [3, 4, 8, 15, 22, 36]).

As a matter of motivation, let us assume first thats a map on the real annulds x I,
wherel is areal interval an@l = R/Z, and letX : T x I — R denote the canonical projection
X(x,y) = x. If Fis a twist map, the Birkhoff Graph Theorem (see [12]) ensures thatyever
invariant curvel is a graph over its projection on the circle by meansXofand its dynam-
ics induces a circle map by projecting the iterates. Heras, straightforward to apply the
method of [29] in order to approximate the rotation numbef p§ince for any(zo, y9) € I’
we can compute the orhit, = X (F™(xo, yo)) —this is the only data that the method requires.
Furthermore, ifF" has a differentiable family of invariant curves or a Caraorfamily differ-
entiable in the sense of Whitney, we can approximate dérasbf the rotation number with
respect to initial conditions and parameters. This allosvsriplement a Newton scheme for
the computation and continuation of invariant curves ostwmaps (as it is discussed in detail
in[23]).

If the map does not satisfy the twist condition or it is nottéem in suitable coordinates,
its invariant curves are not necessarily graphs over thggtion on a circle. In this situation,
invariant curves can fold in a very wild way (see Section 318 eeferences given therein for
examples of such curves). Nevertheless, if we can selecttab®uicircle so that the folded
curve “rotates” around it, then the projection of the itesadf the map does not define a circle
map but a “circle correspondence” and we can compute thgantaumber of the curve from
the “lift” of this correspondence to the real line —see Sati.1 for details. Moreover, albeit
we do not have a justification of this fact, we realize thaté¢kiapolation methods of [23, 29]
work quite well when applied to the iterates of this “lift”.

In some cases —for example, if the rotation number is largepased with the size of the
folds— we can compute numerically this “lift” from the itées of the map. However, if the
curve is extremely folded additional work is required in@rtb face the problem in a systematic
way. Hence, we propose a numerical method to constructle arap —preserving the rotation
number— from a general invariant curve on the plane. The ogetionsists in averaging the
iterates of an orbit of the curve in such a way that the nevaiés belong to another curve, no
longer invariant under the map, but having the same rotationber. Concretely, if we know an
approximation of the rotation number with eregwe construct a sequence of (averaged) curves
that approaches a circle up to terms of or@¥e). We refer to this construction asfolding
of the curvesince ife is small enough, then this construction provides us withreeimap.
Taking into account the discussion in the previous pardgraporder to apply the methods
of [23, 29] it is not necessary to unfold completely the cutweat only to “kill” its main folds
so we can compute the “lift” of the correspondence generayettie projection of the iterates
of the new (less-folded) curve. In order to justify this udfag procedure we require the curve
to be analytic (or at least differentiable enough) and thatimn number to be Diophantine.

2The mapF satisfies theéwist conditionif (X o F')/dy does not vanishes.
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Sometimes the requested approximation of the rotation eumstgiven by the context of the
problem —for example, if we look for invariant curves of fixetation number— or it can be
obtained by means of any method of frequency analysis (sesx@mple [15, 22]). Therefore,
we obtain a very efficient toolkit for the study of invarianirees of planar maps and their
numerical continuation.

Let us remark that due to the importance, both theoretichbpplied, of invariant curves of
maps or2-dimensional tori of flows (for example, they play a fundataérole in the design of
space missions [13, 14] and also in the study of models insialdViechanics [32], Molecular
Dynamics [27, 35] or Plasma-Beam Physics [24], just to samg,fseveral approaches to deal
with these objects have been developed in the literatuneeXample, the methods in [5, 7, 19]
have been applied efficiently in a wide set of contexts. H@wethey require to compute
a representation —by means of a trigonometric polynomiakhe curve which solves the
invariance equation of the problem, so it is required to sdérge systems of equations —as
large as the used number of Fourier modes, EayOne possibility to face this difficulty is to
solve these full linear systems, with a c@¥tA/?) in time andO (%) in memory, by means of
efficient parallel algorithms as it is proposed in [19]. Am@trecent approach presented in [7],
based on the analytic and geometric ideas developed inl[@ysato reduce the computational
effort of the problem to a cost of ordér( M log M) in time andO (M) in memory. On the other
hand, we can compute the invariant curve by looking for atmmrthat the corresponding orbit
has a prefixed rotation number. Then, rather than approximexplicitly the parameterization
of the curve, we reduce the problem to finding a zero of a fonctiThis approach can be
implemented using interpolation methods as in [33] or alsimgithe extrapolation methods
in [23, 29]. These extrapolation methods, that are the cetoee of the presented paper, have
a cost of orde @ (N log N) in terms of the used number of iterat¥sand are free in memory.
Once we know a point on the curve and its rotation number, wiecompute a trigonometric
approximation of the curve “a posteriori”, using Fourieamsform (FT) on the iterates of the
curve. In addition, in Section 2.7 we develop a method fofquering this FT based also on
averaging-extrapolation ideas.

Given a numerical method for the continuation of invariamtves, it is specially interest-
ing to verify if the method is valid up to thiereakdown thresholdorresponding to theritical
invariant curve(see [9, 16, 26]). These critical curves are specially irtgpagrobjects that orga-
nize the long-term behavior of a given dynamical systemabse of their role as “last barriers”
or “bottlenecks” to chaos (see [12]). Actually, the criticalue for the breakdown of the golden
curve for the Chirikov standard map was estimated by meaegtadpolation methods in [29]
obtaining a good agreement with the value predicted by mafethe classical Greene’s criterion
in [16]. For the non-twist case, we refer to computationslinlf0] as examples of break-down
studies in non-twist maps. It is worth mentioning that thehnds presented in this paper can
be applied also in this context.

Since our construction does not use the invariance of thescunder the map, it can be
applied to the study of quasi-periodic curves that are noesgarily embedded (that we call
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quasi-periodic signals). This context is very interessigge it allows to analyze sets of data
obtained from real experiments or observed natural phenanmfctually, in order to check that
the methods are robust when facing experimental data, wadenthe effect of Gaussian error
in the evaluation of iterates of a known quasi-periodic fiorc

We want to point out that our approach can be also undersadeethod for the refinement
of the frequency analysis of [22]. Actually, an efficient nefiment of these methods, based in
the simultaneous improvement of the frequencies and thditags of the signal, is given
in [15]. Once again, the main advantage of our approach iswkado not have to compute
Fourier coefficients of the curve. This fact reduces the aamtpnal effort of solving big
linear systems of equations required to refine the repragentof the signal. In addition, the
accuracy in the computation of the rotation number is noitéichby the truncation error in the
representation of the signal.

Finally, we notice that the methodology of [23, 29] also weoflr dealing with maps of the
d-dimensional torus that admit an analytic conjugation tgal rotation having a Diophantine
rotation vector. Our aim is to explore the extension of theaglpresented in this paper to deal
with invariant tori and quasi-periodic signals of arbiyraumber of frequencies.

The paper is organized as follows. In the first part, conthimeSection 2, we develop
and justify different results, methods and algorithms tadgtquasi-periodic invariant curves
(or quasi-periodic signals). In the second part, presemteslection 3, we consider several
examples in order to illustrate different features of thespnted methodology. These examples
have been selected in order to sustain the presentatioreah#thods and to highlight both
some of the possibilities and limitations of our approach.

2 Exposition of methods

As we said in the introduction, we approach the study of gpeasiodic signals by computing
the rotation number of a circle map (or a circle correspondgimduced by the curve. The main
definitions and notation, together with a brief overviewta problem, are given in Section 2.1.
After that, we present and justify a method to unfold a quesiedic signal. We first assume
in Section 2.2 that the rotation number is known exactly ideorto highlight the involved
ideas. Basically, we construct a sequence of curves thaeoges to a circle whose dynamics
corresponds to a rigid rotation. In Section 2.3 we assuntenbanly have an approximation
of the rotation number and we show that the previous consbruallows to obtain a curve that
is C'-close to be a circle —the proximity being of the same ordeha®rror in the initial guess
of the rotation number.

In order to obtain the required approximation, a possipisitto resort to frequency analysis
methods. In Section 2.4 we review Laskar’s frequency amafgsthod in terms of the language
presented in this paper, just to stress that the same dlgwitlerived to unfold the curve can
be adapted to obtain the required approximation of theiostatiumber as alternative of the
classical methods.
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For the sake of completeness we include in Section 2.5 adaurigey of the methods of [23,
29] to compute the rotation number and derivatives with @espo parameters of the obtained
circle map or correspondence. This review is necessaryderstand the higher order method
that we develop in Section 2.6 to improve the unfolding ofvest During the exposition it
will be clear that the ideas used in the unfolding are relateBT. This fact is exploited in
Section 2.7 in order to extrapolate Fourier coefficientseahe rotation number is known.

2.1 Setting of the problem

For convenience, we identify the real plane with the set ohglex numbers by defining
z=u+iv for any (u,v) € R?>. LetT' C C be a quasi-periodic invariant curve for a map
F : U c C — C of rotation numbep € R\Q. Let us assume, for example, that the curve
“rotates” around the origin and that it is a graph of the aaguériable. Then, the projection

r — T (1)

z +—— x=arg(z)/2m
generates a circle map induced by the dynamicB|ef On the other hand, if is folded, then
the projection (1) does not provide a circle map, but defiresrgespondence dii that we can
“lift” to R. For example, in the left plot of Figure 1 we show a “foldedVaniant curve on the
complex plane for an example considered in Section 3.3.dmitht plot of Figure 1 we show
the “lift” of the correspondence ofi given by (1). Since the rotation number of the curve is
no more than the averaged number of revolutions per itettaite not surprising that we can
compute it adim,, .. (z,, — x¢)/n, wherex,, are the iterates under the “lift" t& of the circle
correspondence. In this situation, we have observed teah#thods of [23, 29] can be applied
to such a “lift” (see examples in Section 3.3), even thougldweaot have a justification of this
fact.

In some cases, for example if the rotation number is largegmas to avoid the folds, we
can compute numerically the “lift” of (1) using the iteratdsan orbit. However, if the invariant
curve presents large folds or we cannot identify directlypoadypoint around which the curve
IS rotating, we cannot compute this “lift” in a systematicywa hen, our aim is to construct
another curve, having the same rotation number, by usingldaiaverages of iterates of the
original map. If we manage to eliminate (or at least mininibe folds in the new curve, then
we are able to obtain a circle diffeomorphism (or at leastr@eicorrespondence that we can
“lift” numerically).

As I' is a quasi-periodic invariant curve of rotation numBethere exists an analytic em-
beddingy : T — C verifyingI" = v(T) and

F(y(z)) =~(z +0).

In this situation, since the parameterizatiprs periodic, we can use the Fourier series

’V(I) _ Zﬁ/ke%ﬁkxv

keZ
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Figure 1:Left: Folded invariant curve with quasi-periodic dynanticat rotates around the origin in the complex
plane (this curve corresponds to an example discussed itoB8ex3). Right: “Lift” of the associated circle
correspondence given by (1).

and, moreover, for a given, € T" we can ask for/(0) = z,. Then, the iterates of, underF
can be expressed usings

2 = F"(20) = F"(7(0)) = F" " (4(0)) = y(nf) = > Are”™*"". 2

As we will see, our method does not use the invariancé ohderF' but only the expres-
sion (2) for the iterates. Furthermore, even if we start vaithinvariant curve of a map, the
intermediate stages of our construction may produce cuhasre not embedded @ Using
this fact as a motivation, we state the following definitions

Definition 2.1. We say that a complex sequer{cg } .z is a quasi-periodic signadf rotation
numberd if there exists a periodic function : T — C such thatz, = ~(nf). We also call
[' = 7(T) a quasi-periodic curve.

Definition 2.2. Under the above conditions, I€t, },.cz be a quasi-periodic signal. Then, for
anyf, € RandL € N, we define the following iterates

1 L+n—1
ZT(LLﬂo) — z Z Zme%rl(n—m)eo‘ (3)

It is clear that{z\""},.; is a quasi-periodic signal on another cuitvé:%) = ~(L:0)(T)
of the same rotation number, i.e.,

2{100) = (L00) () = Z%E;L’HO)GQ’M”@, 4)
keZ
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and the new Fourier coefficients are given by

~ L4+n—1 . - B
() _ TS aminema-ag _ e L= O 5
T L — T L 1 — e2ri(ko—00)

In Section 2.2 we show that, under conditions on regularity @on-resonance, #, = 6,
then the new curve™? is arbitrarilyC'-close to a circle (see Lemma 2.6) fbilarge enough.
On the other hand, i = 6, — ¢ is small, then we can chooge= L(¢) such that the new curve
is C'-close to a circle with an error of ordé?(¢) (this is concluded from Proposition 2.8) so
that the projection

r&d) cCcx — T

6
S0 (L) (L,@O))/Qm (6)

= arg(zn
provides an orbit of a circle diﬁeomorphisﬁﬁL’a‘)). Once this circle map has been obtained
(as we have discussed, in practice it suffices to obtain atsfifplded curve such that we can
compute the “lift” of the circle correspondence defined by direct projection), we can apply
the methodology of [23, 29] to compute the rotation numbet derivatives with respect to
parameters (this is described in Secion 2.5). In order tifyukis construction, we require the
rotation number to be Diophantine.

Definition 2.3. Givend € R, we say that is a Diophantine numbeof (C, 7) type if there exist
constants” > 0 andr > 1 such that

k0 — 1" < ClkI”,  Y(L,k) € ZxZ.. ©)

We will denoteD(C, 7) the set of such numbers afitithe set of Diophantine numbers of any
type.

In the aim of KAM theory, we know that the hypothesis of Dioptiae rotation number
for the dynamics on the curve is consistent with its own exiseé. Although Diophantine sets
are Cantorian —i.e., compact, perfect and nowhere densesmarkable property is th&t\ D
has zero Lebesgue measure. For this reason, this condisovefly well in practical issues
and we do not resort to other weaker conditions on small aligisuch as the Brjuno condition
(see [38]). Itis worth mentioning that éfis a “bad” Diophantine rotation number, i.e., having
a large constant’ in (7), then the methods presented in this paper turn out tedseefficient
as we discuss in Section 3.

2.2 Unfolding a curve of known rotation number

Let us consider the previous setting and suppose that theeF@oefficients ofy ared; # 0
andy, = 0 for k € Z\{1}. Inthis casel' = {z € C| |z| = |%1|} and the circle map obtained
by the projection (1) is a rigid rotatioRy(z) = = + 6.
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Assume now that; # 0 and|9,| is small (compared withy, |) for everyk € Z\{1} in such
a way that the curve is alsoC!-close to a circle. In this case, the projection= arg(z)/27
also makes sense and defines a circle diffeomorphism.

In the general case this projection does not provide a cimde. However, it turns out
that the projection of the iterates”” is well posed if we také, = 6 and L large enough.
More quantitatively, we assert that the curvé?) differs from a circle by an amount of order
O(1/L). In Lemma 2.6 bellow we make precise the above arguments.

Definition 2.4. Given an analytic function : T — C and its Fourier coefficient$yy } ez, we
consider the nornfly|| = >, ., [Vk|-

Definition 2.5. Givenk € Z\{0} andr € C, we define the magp,[r] : T — C as

Wlrl(z) = r e,

Then we state the following result:

Lemma 2.6. Let us consider a quasi-periodic signa| = ~(n#f) of rotation numberd <
D(C, 7). Assumethat : T — Cis analytic in the complexstripy = {z € C : |Im(2)| < A}
and bounded in the closure, wiftf = sup.., |[v(2)|. Then, ify; # 0, the curvey“9 : T —
C given by(4) and (5) satisfies

(L,0)

IV =l <

)

s

whereA is a constant depending avl, C', 7 and A.

Proof. First, let us observe that the Fourier coefficients of the cewe are given by
21 27i(k—1)0L

(Lo - (L) wl—e
o= T T emteno k € Z\{1}.

Then, we have to bound the expression

1 — @2mi(k=1)0L

~

. 1
e 1o e D A= =3

keZ\{1}

1 2|
= I Z |1 — e2mitk—1)0]"
keZ\{1}

We observe that the Fourier coefficientsyafatisfy|9,| < Me?72*l and we use (7) to control
the small divisors. Concretely, standard manipulatioms\siat (see for example [2])

‘1 . eQwi(k—l)G‘—l < €|k5 . 1‘7’
4
Introducing these expressions in the previous sum we otitain

) CM - om M ~mAz S
H,y(L,HO)_,ylhl]H < ﬁ Z |/{Z—1‘ e 2 Ak < TSup{e A (:L’+1) }Ze Ak.

keZ\{1} 220
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Moreover, we observe that

sup{e **(z+1)"} =
x>0

{ 1 if s >m,
(m/(se))™e® if s < m.

Finally, takingA = < (1 + (Z)7) the stated bound follows immediately. O

Remark 2.7. Note that in order to guarantee that the projecti) is well posed we also need
to control the derivativeé~“9)'(z). Of course, this can be done modifying slightly the proof of
Lemma 2.6.

2.3 Unfolding a curve of unknown rotation number

Since we are concerned with the computatiord,athe construction presented in the previous
section seems useless. Next we show that the method stkswewvith certain restrictions—
if the rotation numbeé is unknown, but we have an approximatign

Proposition 2.8. Let us consider a quasi-periodic signal = ~(nf) of rotation numbe® <
D(C, 7). Assume that : T — C is analytic in the complex stri@3, and bounded in the
closure, withM = sup..p, |7(2)|. Suppose tha, is an approximation of and let us denote
e=0y—0andK. = [(2C|e|)""/7|. Then, ify; # 0 and K. > 1, for everyL € N the following
estimate holds

7% — 5| _ | sinre) ' ( A, 2ML e‘Q”A(KE‘”) (®)
‘%L790)| ~ |sin(weL)| \ 71| 91| 1—e2m2 )7
whereA is a constant depending avl, C', 7 and A.
Proof. Let us consider the sets
K(e) = {k € Z\{1} : |k 1] < K.},
K*(e) = Z\(K () U{1}).
Then, ifk € K(¢) the following bound is satisfied € Z
50— 0 — 1) > (k= 1)0— 1 —|e] > = —|e| > — L
Clk—1| 20k — 1]
allowing to control the small divisors
|1 — 2milki=00)| > ﬁ VEk € K(e). (9)

Then, from formula (5) and recalling that the Fourier cogdfits satisfy|y,| < Me2mAlkl
we obtain estimates f(fy,iL’GO). If & € K(¢), we use the expression (9) to obtmL’eo)\ <
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MCL |k —1|7e~2*AlK_On the other hand, for indexése K* () we use thaty\""| < |44/
Therefore, we have to consider the foIIowing sums

||,Y(L,60) _7[ (L, 00) H < Z |k 7o 2mAlk| + M Z o 2mAlk|

keK (e) kEK*(e)

Now, the sum fork € K(e) is controlled by splitting it into the sets-K. + 1,0] N Z
and[2, K. + 1] NZ. Then, we proceed as in the proof of Lemma 2.6 obtaining tmstemt
A= 2MC (14 (X)7). Finally, we compute the first Fourier coefficient

1 — e—27rieL

1 — e727ris -

A
L

A

~(L60)| _
‘71 | I

sin(re)

ending up with estimate (8). ]

Remark 2.9. If we restrict Lemma 2.8 to those valuesfgfsuch that the Diophantine condi-
tion (9) is validVk € Z\{1}, then we obtain the estimate

(L,00)

j (L’eo)] I sin(7e)

- M [71
L0
|50

|17t

(10)

~ |sin(mel) ) )| Al

Indeed, if we denoté C R the set of values of such that, = 6 + ¢ satisfies estimat)
for everyk € Z\{1}, then for every, sufficiently small the measure of the §et, £¢]\& is
exponentially small ir,.2

Observe that for any fixett| > 0, estimate (10) depends$|-periodically onZ and also
does (8) modulo exponentially small terms|ifh. Since we are interested in the minimization
of (8), we point out that if.. ~ ||, then

~(L,00)

\%”O)\

|y (E-b0) —

Hence, the new parameterization is closer to a circlésfasufficiently small and the projection

&) cCcx — T
S0 (L6o) _

Tn = arg( )/2
induces a well-posed circle diffeomorphism that we denstﬁr(’a%). Of course, the regularity
of the circle mapfF(L’(’“) follows from the regularity ofy. Hence, we can compute the rotation
number and derivatives with respect to parameters by applying thaods of [23, 29] that we
recall briefly in Section 2.5. Before that, we discuss how teguired gues can be obtained.

3These two points of view are analogous to different appresaébilowed in [20] and [21] to study reducibility
of quasi-periodic linear equations.



12 Numerical computation of rotation numbers for quasi-pdid@lanar curves

Ry

Ry

Figure 2:This diagram summarizes the construction of the analytatecdiffeomorphis §L’0°) from a folded

invariant curvel of F' of rotation numbep.

2.4 First approximation of the rotation number

The classicafrequency analysiapproach introduced by J. Laskar (see [22]) to obtain an ap-
proximation of frequencies of a quasi-periodic signal —ehee are considering only one in-
dependent frequency— is to look for the frequencies as pefttee modulus of the Discrete
Fourier Transform (DFT) of the studied signal. In this sective translate the elementary ideas
used in frequency analysis into the terminology introduoeglection 2.3.

Let us focus on the iterate{s,(f’e“)}nez of Definition 2.2. We observe that they look very

similar to the DFT of the signal. We also notice that they candbfined for any, but the
Fourier coefficienfny"%), given explicitly in (5), has a local maximum whép equalsfd, and
from Proposition 2.8 we conclude that, fbtarge enough, the functiagly — \zﬁL’9°)| has alocal
maximum for a value o, close tof. In general, this phenomena occurs for ttiecoefficient
if we selectd, close to an integer multiple of the rotation number, g+~ t0 + ¢,t € Z. The
corresponding justification is given by the following prggmn (the proof is analogous to that

of Proposition 2.8).

Proposition 2.10. Let us consider a quasi-periodic signal = ~(nd) of rotation number
0 € D(C, 7). Assume that : T — C is analytic in the complex strijg, and bounded in the
closure, with) = sup..p, |7(2)|. Suppose that, is an approximation of¢ and let us denote
e =0, —thand K. = [(2C|e|)~"7]. Then, ify, # 0 and K. > |t|, for everyL € N the
following estimate holds

~(L.,0
|7 E00) — y[50])]
5%)

11
|| |l 1 —e 22 1D

sin(7e) ' < A 2ML e—QWA(Ke—tI))

{ ~ |sin(weL)
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whered = 22 (1" + (X%)7).

1—e—7A TA

According with this result and the previous discussion, wamarize the following obser-
vations:

e First, we notice that Remark 2.9 also holds in this contexd, 0 we conclude that this
estimate behaves periodically Infor most of the values df; close tot6.

e From equation (5), we observe thﬁt”“) — 4, whene — 0 and that the modulus
|4¢| is an upper bound fqm“"’“)\. Moreover, forL sufficiently large, we obtain a local
maximum in the modulus of the iterate$"®’ for a value off, close tot6.

e On the other hand, the estimate (11) grows vittthus implying that, for fixed_, only
low order harmonics can be detected.

The previous discussion gives us a heuristic method for cimgp an approximatiot, of
the rotation numbef (and its multiples moduld). Basically, we fixL, and compute the iterates
2% for different values ofly in order to compute local maxima of the modulus. In particula
if we just study the modulus of the initial iteraﬁéL’HO), we recover the method of [22]. This
method is enough for our purposes —we recall that we just fopk rough approximation of
the rotation number— but in Remark 2.12 we explain some nefergs that can be performed
in this procedure. Thus, from the method of [22] we find a finkenber of candidates for the
rotation number and we have to decide which one is the geme2¢tails are given in the next
four steps.

Step 1: Maxima chasingFirst, we fixL € N and define the function

T — R
By (] = |2 L o) -
We want to obtain values ¢f, that correspond to maxima of the function (12). To this
end, let us consider a sample of poif#§},—; . v, whereN € N andd; € [0, 1] (actually,
one can reduce the interval if some information about thatiat number is available,
sayl € [Bmin, Omax]). Then, for every paif#?, 6,7}, j = 1,..., N — 1, we compute a
local maximum for (12) by means gplden section searchising a tolerancegss (we
refer to [28] for details). Then, we introduce the followitggminology:

- 6: Maximum obtained from the pafig}, #,"'}. Let us observe that this maximum
is not necessarily contained in the inter{&l, 6'].
- n,: Number of maxima obtained at the end of this step. In ordevted redundant

information, two maxima are considered equivalerdﬂing, 5(’)“) < 10egss Where
dr is the quotient metric induced on the torus.
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Step 2: Maxima selectionNow we sort the obtained poin{g; },

Numerical computation of rotation numbers for quasi-pdid@lanar curves

‘ n, @ccording to

zéL’93)| > \zéL’%)\ provided i<
At this point, we select the first, points just omitting those ones whose correspond-

ing maxima are small when compared WjﬂéL’a‘l))\. In particular, we only take those
elements such that _

L0}

o, (13)

whererv > 1 is a “selecting factor” (we typically take values ntbetween3 and6) and

1287 < vz

7777

7777

approximate multiples of the rotation number computed nwdu In addition, if|9;] is
not too small, there is an element in this set that approxasdie rotation number. Notice
that for every@’g there existm,, n;, € Z such thatﬁ’g ~ myf + ni,. This motivates the
following definitions

ki = argmingey {dr(k6), 0)},  Ki= ) |kl (14)
j=1
di; = mingez {de (K05, 0)}, 6 =) dy. (15)
7j=1

Let us observe that if we assume thate 6, thenx; corresponds to the sum of the order
of Fourier terms that allow to approximate the remainingys#). On the other hand

.....

.....

approximation of). If they do not coincide buf, = min;{J;} is small, then we select
0y = 6%. Otherwise we start again from Step 1 using a larger value of

Step 4: Validation and iteration Of course, it is recommended to verify that the computation

are stable by repeating the process (from Step 1) with las@ees of NV and L.

Remark 2.11. When the frequency of the quasi-periodic signal is not aeget multiple of the
“pbasic frequency”1/L associated to the sample interval of the associated DHIL#), there
appear in the DFT spurious frequencies, thatis, the DFTfigetent from zero at frequencies not
being multiple of the frequency of the function. This is aqgmeenon known deakagethat it
can be reduced by means of the so-called filter or window fome{see [15, 22]). Nevertheless,
these spurious peaks are smaller than the correspondingnbaic that generates them, so we
get rid of them in Step 2 of the described procedure.
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Remark 2.12. Finally, we notice that this procedure can be modified in ssvwways taking
into account the ideas introduced in this paper. For examwleen looking for local maxima of
function(12) we can minimize with respect #g the distance of the iteratE{Ssz’gO)}neZ to be
on a circle —see Proposition 2.10— that can be measured bysr@aeveral criteria discused
in Section 3.1. On the other hand, we can use higher orderagesras discused in Section 2.6
in order to improve the resolution of the maxima. These refgr@s may become relevant
when dealing with more than one frequency as a possiblerdgltee to the filters mentioned in

Remark 2.11.

2.5 Computation of rotation numbers and derivatives

Next, we include a brief review of the methods developed &) P2] to compute numerically the
rotation number of circle diffeomorphisms together withidstives with respect to parameters.
We include this review to set the notation of the rest of thegpand also in order to remark
that ideas of Section 2.6 and 2.7 follow from those introduog29] in a close way.

Given an orientation-preserving circle homeomorphgmT — T, we identify f with its
lift to R by fixing the normalization conditiori(0) € [0,1). Then, we recall that the rotation
number off is defined as the limit

o= lim LT =T (16)

[n|]—o0 n

that exists for allzy, € R, is independent of, and satisfie® < [0,1). It is well known
(we refer to [17]) that iff is an analytic diffeomorphism antl € D, then f is analytically
conjugate to a rigid rotatio®,(z) = x + 0, i.e., there exists an orientation-preserving analytic
circle diffeomorphism,) such thatf o n = n o Ry. Moreover, we can write this conjugacy as
n(x) =z + £(x), £ being a 1-periodic function normalized in such a way (@) = =, for a
fixedzy € [0,1). Now, by using the fact that conjugates to a rigid rotation, we can write the
following expression for the iterates under the lift:

fM(wo) = [ (n(0)) = n(nh) = nf + Y _&e*™ ™, Vnez,

kEZ

where the sequenqefk}kez denotes the Fourier coefficients &f Then, the above expression
gives us the following formula

S (o) — w0 1ZA omiknd
7:0 _ TR _1’
n +nk€Z gk(e )

to compute) modulo terms of orde®(1/n). Unfortunately, this order of convergence is very
slow for practical purposes, since it requires a huge nurabgerates if we want to compute
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0 with high precision. Nevertheless, by averaging the ie#t (z() in a suitable way, we can
manage to decrease the size of the quasi-periodic remainder

Givenp € N U {0}, that we call theaveraging orderwe introduce the followingecursive
sums of ordep

N
S?V = fN(I()) — X, Sg/ = ZS;»)_I,
j=1

and the correspondirgveraged sums of order

~ N_|_p -1
P _ P
SN_(JJH) o

Then, as it is shown in [29], these averages satisfy theviatig property.

Proposition 2.13.1f f is the lift of an orientation-preserving analytic circleftiomorphism of
rotation numbe# € D, then the following expression holds

A

- POAP L
SR=0+> ~i B, (17)

=1

where the coefficientzif depend onf and p but are independent oV. Furthermore, the
remainderE?(N) is uniformly bounded by an expression of ord¥l /NPT1).

Let us observe that equation (17) allows to extrapolatedtation number just by comput-
ing S%; for different values ofV, neglecting the remainder and solving a set of linear eqoati

Algorithm 2.14. Once an averaging ordey is selected, we tak&' = 27 iterates of the map,

.....

rotation number using the formula
p ~
0 = @%p + O(2i(p+1)q)a @q,p = Z Cgp)sgqﬂﬂrj? (18)
7=0

where the coeﬁicientéf) are given by
_1)p7l 2l(l+1)/2 |
6(1)o(p —1)

with 6(n) = (2" — 1)(2»* = 1)---(2' — 1) forn > 1 and§(0) = 1. The operatorO,,,
corresponds to the Richardson extrapolation of ordef equation(17).

o =

(19)

As far as the behavior of the error is concerned, if we fix thiagolation ordep and
compute®,,,, we know that|/d — ©,,| < c¢/2¢?*1), for certain (unknown) constant in-
dependent of; (see [29]). To estimate, we compute9,_; , and consider the expression



A. Luque and J.Villanueva 17

10— 0, 1,| <c/2"DE+ Then, we replace in this inequality the exact valué bj ©,, ,, as
we expecBH, , to be closer td than©,_, ,. After that, we estimate by

c= 2<q71)(p+1)|@q,p — Og-1-

From this approximation we obtain the following (heurisgxpression
1%
|9 - @q,p| < ﬁ‘@q,p - @qup" (20)

wherev is a “safety parameter” whose role is to prevent oscillaiohc a function ofg due
to the quasi-periodic part. In the computations of Sectiove3aker = 10 (this value works
quite well as observed in [29]).

Furthermore, let us consider a familyc / C R — f, of orientation-preserving analytic
circle diffeomorphisms dependirtf-smoothly with respect tp. The rotation numbers of the
family {f,}.e; induce a functiord : I — [0,1) given by6#(u) = p(f,). Let us remark that
the functiond is continuous but non-smooth: generically, there existnailfaof disjoint open
intervals of/, with dense union, such thattakes distinct constant values on these intervals (a
so-called Devil's Staircase). However, the derivativeg afe defined in “many” points (see the
discussion in [23] and references given therein).

In order to computd)ff@(uo), the d-th derivative with respect ta at 119, we proceed as
before and define recursive sums of orgdgwe omit the notation regarding the fact that the
map is evaluated at = )

N
DESY = Di(fN (w0) — x0), DSk =) Dis,
§=0
and the corresponding averaged sums

~ N+p\ !
d _ d
D1SY = <p+ 1) DSy,

Proposition 2.15.1f 6(1) € D and D{6(1) exists, we obtain (omitting the poipg)

p—d md jp
. : .
DySk =Dy + ) — o + DUE'(N), (21)
=1

where the remaindeD?£7(N) is of orderO(1/N?~4+1),

Therefore, according to formula (21), we implement thediwihg algorithm to extrapolate
the d-th derivative of the rotation number.
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Algorithm 2.16. Once an averaging ordey is selected, we takd&' = 29 iterates of the map,

.....

thed-th derivative of the rotation number using the formula

m

Dig =6, ,+0@ -ty el L =N"d"pisy .,

q?p?m
3=0

where the coefficients(jm) are also given by equatiofi9). The operaton@ip,p_d corresponds
to the Richardson extrapolation of ordgr d of equation(21).

In this case, we obtain the following heuristic expressmrilie extrapolation error

v

d d
‘Due o @q,p,pfd‘ < op—d+1

[E% o

qp,p—d

(22)

71,p,p7d|‘

We remark that if we select an averaging orgdethen we are limited to extrapolate with
orderp — d instead ofp. Moreover,p is the maximum order of the derivative that can be
computed.

Let us observe that, in order to approximate derivativee@fotation number, we require to
compute efficiently the quantitieBﬁ( fii(z)), i.e., the derivatives with respect to the parameter
of the iterates of an orbit. If the family — £, is known explicitly or it is induced directly
by a map on the annulus, several algorithms based on reeuasiy combinatorial formulas
are detailed in [23]. In the rest of this section we develaursive formulas to compute these
derivatives when the family comes from a general planar map.

Let us consider an analytic map: C — C, with F' = I} + iF3, having a Cantor family of
invariant curves differentiable in the sense of Whitney, there exists a family of parameteriza-
tionsu € U — ~* defined in a Cantor sét such thaty*(T) = I'* andF' (v*(x)) = F(x + 0(u)),
for 0(u) € D. In the following, we fix a value of the parameter and we omé tlependence
on p in order to simplify the notation and we writg = F"(z), for zo € I'. As in Section 2,
we consider a curve of rotation number) and we assume that we have an approximation
Then, we suppose that we can seléce N (depending oni, andé,) in order to unfold the
curve and obtain an orbit of a circle mgp= f("%) (or circle correspondence), that has the
same rotation numbé, given by

1 Im z{&%)
xﬁlL’GO) — — arctan —
27 Rez %)
wherez{"%) are given in equation (3). The computation of the derivatvfer %) = f”(xéL’HO)),

that are required to compuf, S%;, are carried out as

1 Im ((DpZn)(LﬁO))ReZﬁLL) — Re((DuZn)(Lﬁo))lm ZﬁlL,GO)
2 (ReZT(LL,eo))Q +(Im ZT(LL’QO))Q )

Du(xgzLﬁO)) =
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where
L4+n—1

1 .
(Duzn)(Lﬂo) — z Z Duzme%n(nfm)eo'

Then, given an averaging ordgy we can compute the sunis,S%; that allow to extrapolate
D,0 with an error of orde®(1/N?). The only point that we need to clarify is the computation
of the derivatived,, z,,. They are easily obtained by means of the recursive formula

REDyz0) = o ORD, 20 1) + 5 1 )IM(Dy ).

and similarly for Im(D,,z,,) replacingF; by F5.

Furthermore, if we consider a family of analytic maps A C R — F,, such that for any
a we have a family of invariant curves as described beforg,there is a parameterlabeling
invariant curves off, in a Cantor set/,,. This setting induces a functiday, ;1) — 6(a, ).
Omitting the dependence dn;, 1), let 22" e the unfolded iterates of an orbit that belongs
to one of the above curves. Then, we can compute the deevati¢ with respect tox just
by averaging the sums (ﬁia(xﬁf’%)). These iterates are evaluated as explained in the text but

using now the recursive formulas

Re(DaZn) = %(zn_l) + %(zn_l)Re(Dazn_l) + %(Z'n_l)lm(l)azn_l),
and similarly for Im(D,,z,,) replacingF; by Fs.

The generalization of the previous recurrences to compiggie dvrder derivatives of the
rotation number is straightforward from Leibniz and produées (see [23]). We also refer there
for details about the use of this information to implementewitbn method for the numerical
continuation of invariant curves. In addition, expresg@h) allows to obtain (pseudo-analytic)
asymptotic expansions relating parameters and initiatlitimms that correspond to curves of
prefixed rotation number (see an application to HEnon’s m#p3]).

2.6 Higher order unfolding of curves

As it is discused in Section 2.3, if we know the rotation numbgh an errore small enough,
then we can select a numbér € N (depending or¥) to unfold the curve obtaining a new
curve which is a circle with an error of ordé(c) = O(1/L) —we refer to the discussion that
follows Proposition 2.8. Roughly speaking, in the same vay the method of [29] accelerates
the convergence of the definition in (16) to the rotation namfbom O(1/N) to O(1/N**+1),

we introduce higher order averages to the iteratf€’ to accelerate the convergence of the
new curve to a circle. Concretely, by performing averagesrdérp we improve the rate of
convergence frond(1/L) to O(1/LP).
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Given#, € R, a complex sequencgz, },.cz and a natural numbek we introduce the
following recursive sumsf orderp

L4+n—1 L

_ —27mim0g D o p—1
,00,m Z Zm€ ) SL,@Q,TL - Z Sl ,00,n
m—

=1

Sp

and the correspondirgyeraged sums

= L+p—1\"
Sﬁﬂo,n = ( D ) Sﬁﬂo,n'

Definition 2.17. Under the above conditions, givere N, we define the following iterates for
any integerg > p

(2‘1 60,p) _ (Z P 1)§£j790,n> 627rin90’ (23)

whereL; = 27777 +! and the coefficient&f’1 are given in formulg19).

(29.0,1) _ (L,00,p)

We remark that;, %) put that the iterates!” are only defined for. being
a power of2, since they are constructed following the ideas in Algongh?2.14 and 2.16. We
see next that if certain non-resonance conditions arelédfithese new iterates belong to a
quasi-periodic signal such that the corresponding curpecgthes a circle improving Proposi-
tion 2.8. For the sake of simplicity, we assume non-resomaoaditions as those discused in
Remark 2.9.

Proposition 2.18. Let{z, }.cz be a quasi-periodic signal of rotation numbgk D and aver-
aging orderp. Let us consider that = 6, — ¢ is small and that), satisfies

1 — e2rilko=00)| > VEk € Z\{1}, (24)

_?
Clk—1f

for someC, 7 > 0. Then, there exists a periodic analytic functigi’-%») : T — C such that
2000P) — ~(2%009) (ng) and it turns out that

~ (29,00, _
(&) = (]| = o(27), (25)
where the functiom[ | was introduced in Definition 2.5. Moreové/tfq’go’p) —the first Fourier

coefficient ofy**.%0?) — has the following expression

-1

~(2%,60,p) __ (r=1)Ap
T - Cj AL €

’U

Lj — 2qu+j+1’ (26)

<.
Il
=)
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whereA? _is defined recursively as follows

. 1_6—27ri5L . L—l-p-l -1
AlL’a -n 1 — e—2mie ’ Ai € Z Al £ 0 Ai,e = ( p ) Ai,e‘
In particular, we have thatim,_ 4*"%*) = 4,

Proof. This result is obtained by means of the same arguments ug@@]inFirst, we claim
that the following expression follows by induction

gp _ Ep —2mine — ?90 (ne) gp A —2minfy 27
Loomn — 2L,e® + Z(L+p—l)-~-(L+p—1)+ L,Go(n) e ) ( )
=1

where the coefficientf A7, (n0)}i-1

»—1 are given by

27r1 1—1)(k6—6p)

zeo(ne) (— )Hl(P D Z ”Yk — o2mi(ko— 00))le2ﬂikn0
keZ\{1}

and the remainder is
(_1)p+1p! . e27ri(p—1)(k6‘—6'0)(1 _ e27riL(k0—00))

Tk Ti(kO—
L'”(L—i_p_l)ke%n (1_e2 (ko 00))p

27wiknd

5290 (nf) = e

For example, we consider the sum foe 2

Sl L Hml L l+m-1
8290,71 = E § Zme—27r1m6'o — E § E ,?ke%nm(ke—é'o) _ § : § : ,%e_gmma
=1 m=n I=1 m=n kcZ =1 m—n
e (k0—00) o2rin(k6—0p)
E v E E 2mim(k0—0p) _ A2 —2mwine Z et
keZ\{1} =1 m=n KeZ\ (1}

27r1(n+1)(k:0 00)(1 _ leriL(kﬂfHo))

Z Vi (1 — e2mi(k0—60))2

keZ\{1}

Dividing this expression by.(L + 1)/2, we obtain (27) and we proceed inductively to prove
the claim. Hence, it is clear that the sequena%eo’p) in (23) corresponds to a quasi-periodic
signal since it is a linear combination of quasi-periodiedtions.

Using the analyticity assumptions and estimates in (24)ritd out that the obtained re-
mainder is of orde€? , (nf) = O(1/L”) . To extrapolate in this expression using the coeffi-
cients (19) we require the denominat¢fs+p —1)--- (L + p — 1) in (27) not to depend op.

To this end, we write

opr AD —2mine — Afﬁo (77,9) 5p —2minfg
St oom = AL € + Z — + &7 6, (nf) |e ,
=1
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by redefining the coeﬁicient&iﬁ (nf) }i=1,..p—1, also independent df, Whereé”L’(, (n@) dif-
fers from&7 , (nd) only by terms of orde©(1/LP). Hence, we can use Richardson extrapola-
tion using a maximum number of iteratés= 27 and introduce the corresponding expression

into (23), thus obtaining

.
WM:(Zﬁlﬂ)”W+Z@1%Mw=W%Ww.

J=0

Therefore, the estimate (25) is obtained after observig tihe first Fourier coefficient is
given by equation (26). Finally, the limltm,._,4*"** = 4, follows from the fact that
ZP 1 (P 1) —1. O

JOJ

2.7 Extrapolation of Fourier coefficients

Our goal now is to adapt the previous methodology in ordertaio the Fourier coefficients
of a quasi-periodic signal of known rotation number. Letersatl that standard FFT algorithms
are based in equidistant samples of points. Since theetew@ta quasi-periodic signal are
not distributed in such a way R, one has to implement a non-equidistant FFT or resort to
interpolation of points (see for instance [1, 8, 25]). Weidubis difficulty using the fact that
the iterates are equidistant “according with the quasieplér dynamics”.

We consider a quasi-periodic signal = ~(n#) of rotation numbe € D as given by
Definition 2.1. Let us observe that we can compute #hle Fourier coefficient;j;, as the
average of the quasi-periodic signak=2""*_ For this purpose, we introduce the following
recursive sums of order

Sy, = ave NS, = Zan, (28)
and their corresponding averages

~ N+p—1\"
szov,t:( ) 6}]7V,t-

Proposition 2.19. For any analytic quasi-periodic signa), = v(n#) of rotation numbep) € D
the following expression is satisfied

where the coefficientd7, are independent oV. Furthermore, the remainde¢y (/) is uni-
formly bounded by an expression of ordef1/N?).
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This proposition, that can be proved analogously as Propos2.13, allows to obtain the
following extrapolation scheme to approximaie

Algorithm 2.20. Once an averaging ordey is selected, we tak®& = 27 iterates of the map,

.....

tth Fourier coefficient using the formula
Go= Dype +O277), Bypi= PSR

using the same formul@.9) for the coeﬁicientsgp’l).

The extrapolation error of this algorithm can be estimatechbans of the following (heuris-
tic) expression

. v
Ve — Pgpil < g@q,p,t — Dy 1 ptl- (29)

Remark 2.21. As it was mentioned in the introduction, the typical apploéc compute an
invariant curve it to look for it in terms of its Fourier repsentation. One of the main features
of the methodology discused in this paper is that we can ctarthese objects looking for an
initial condition on the curve (see Section 3.3 and also gpdamin [23, 29]) without computing
simultaneously any Fourier expansion or similar approxiima. Then, the method discussed
above allows to obtain “a-posteriori” Fourier coefficientsf the parameterization from the
iterates of the mentioned initial condition.

Remark 2.22. If we want to computé/ Fourier coefficients, notice that Algorithm 2.20 in-
volves a computational cost of ordéx N M) that seems to be deceiving when comparing with
FFT methods. Nevertheses, it is clear that the s(#8%can be also computed as it is standard
in FFT since they also satisfy Danielson-Lanczos Lemmafgezample [28]), thus obtain-
ing a cost of orderO(N log V) for computingN coefficients. However, unlike in the other
algorithms presented in this paper, this fast implemeatatequires to store the iterates of the
map.

Remark 2.23. We point out that with Algorithm 2.20 we can compute isolatedfficients,
meanwhile FFT computes simultaneously all the coefficiept® a given order. This can be
useful if one is interested only in computing families offtients with high precision, as for
example it is done in [30] —using similar ideas— for coeffitsecorresponding to Fibonacci
numbers.

3  Some numerical illustrations

In this part of the paper we illustrate several features efrttethods discused in Section 2. To
this end, we have selected three different contexts thatwergrize next.
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e First, in Section 3.1, we study invariant curves inside tieg& domain of a quadratic
polynomial. We use this example, where the rotation nungdenown “a-priori”’, as a test
of the methods. In particular, we show how difficult it is tdfeid a given invariant curve
as a function of the arithmetic properties of the selectéatian numbers. Furthermore,
we introduce two simple criteria to decide if the projectadrihe iterates of the invariant
curve induces a circle map.

e Then, in Section 3.2, we deal with a toy model obtained by @jxhe Fourier coefficients
and the rotation number that define a non-embedded quaedfesignal. In this ex-
ample we study the behavior of the unfolded cupfe®) and we check the estimates in
Lemma 2.6 and Proposition 2.8. Furthermore, in order to Eitawncertainty coming
from experimental data we add to this signal a normally iisted random error and we
show that the method still provides very accurate result®topute the rotation number
of the signal.

e In Section 3.3 we consider the study of quasi-periodic ilavdrcurves for planar non-
twist maps. For thestandard non-twist mgpwve apply Algorithm 2.14 to compute the
rotation number in cases where we can compute easily thedfithe circle correspon-
dence induced by the direct projection, and also in a veryefdlcurve that we require
to unfold. Moreover, waunfold a shearlesgvariant curve comparing the methods in
Sections 2.3 and 2.6. For Hénon’s map, we apply Algorithh® 20 illustrate the com-
putations of derivatives of the rotation number from thé&™lof circle correspondences
induced by a family of invariant curves. Finally, we use owthodology to continue
numerically a folded (labyrinthic) invariant curve in a reategenerate family of maps.

Let us observe that, since all the recursive sums are eealusing lifts rather than maps,
they turn out to be very large when we increase the order ohgugg and the number of iterates.
Concretely,

SR = O(NP*T), DZSJIDV = O(NPHh), ST 6om = O(LP), S = O(NP).

A natural way to overcome this problem is to do computatiopsiging a representation of
real numbers using a computer arithmetic having a large eumibdecimal digits. Moreover,
we have to be very careful with the manipulation of this langenbers to prevent the loss of
significant digits (for example, by storing separately gaieand decimal parts) and beware not
to “saturate” them.

The presented computations have been performed using adnpiler and multiple arith-
metic (when it is required) has been provided by the routdmsble-double and quad-double
packageof [18], which include adouble-doublaelata type of approximately 32 decimal digits
and aquadruple-doublelata type of approximately 64 digits.
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Figure 3:Left: iterates (in the complex plane) of the poigt= 0.8 for the quadratic polynomial with = ().
Right: averaged iterateéfoo’e( g of this curve given by (3).
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Figure 4: Unfolding of the invariant curve corresponding to the paigt= 0.8 for the quadratic polynomial.
Left plot: we show, versus the integerthe value ofL for which the curvey(Lv"(S>> is “almost” a circle (solid
line, right vertical axis) and the minimum value bffor which the projection defines a circle map (dashed line,
left vertical axis). Right plot: we plot function (30) foréhaveraged curve of Figure 3 (left plot) versus the arc
parametery on T described in Remark 3.1.

3.1 Siegel domain of a quadratic polynomial

Let /' : U — C be an analytic map, wherié C C is an open set, such that0) = 0 and
F'(0) = e*™. It is well known that if¢ is a Brjuno number, then there exists a conformal
iIsomorphism that conjugatds to a rotation around the origin of angkerf (see [38]). The
conjugation determines a maximal set (caldgel diskwhich is foliated by invariant curves
of rotation numbes#.

In particular, we consider the case of the quadratic polyiabfi(z) = A(z — £z%) ,with
A = ™ for several rotation numbefs Concretely, we usé = 0*) ¢ (0, 1) which is a zero
of 02 +s0 — 1 = 0, with s € N. Itis clear tha¥®) is a Diophantine number for amybut with a
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larger constant’ (recall Definition 2.3) when increases. Note thét®) = 1/s—6/s°+0(1/s°)
shows that, for large, 8*) is “close” to a rational number.

Even in this simple example, the direct projection on theudengvariable does not always
give a diffeomorphism off. For example, in the left plot of Figure 3 we show the curve tha
corresponds té = 60 for the initial conditionz, = 0.8. The right plot of Figure 3 corresponds

to the averaged iterateém’a(so)) according to (3). As expected, the new curve is closer to a
circle centered at the origin.

Our first goal is to emphasize how difficult it becomes to udfible invariant curve of the
point z, = 0.8 depending on the chosen rotation numiér (as s increases). To this end, we
introduce a criterion to decide when the curve is “close ghduo be a circle. Given a fixed

value of6), we choose. = 1 and compute{z,SLﬁ(S))}n:l 50000 Iterates, the mean value of

their modulus, and the corresponding standard deviatiban(if the relative standard deviation
is less thari.5%, we consider that the curv;é”“)) is close enough to be a circle or we increase
L otherwise. The continuous line in the left plot of Figure 4i(ig the vertical axis on the right)
shows the obtained value df versus the integes that labels the rotation numbéf). As
expected, we require larger values/oivhen the rotation number is closer to a rational number.
Let us observe that in practice we do not require to take sargje lvalues of. to unfold
the curve. Rather than obtaining a circle, we are interastadfolding the curve in a way that
can be projected smoothly into a circle. To this end, we pse@osimple criterion to decide if
the curve is already unfolded or not. This can be done by caimgpthe changes of sign of the
function

z € y(T) — det(v(2),v,.(2)) € [-1,1], (30)

whereu,(z) is the oriented (in the sense of the dynamics) unitary taingsator ofy at the point
z andv,(z) the corresponding unitary radial vector with respect todtigin. It is clear that if
det(v(2), v,(2)) changes sign at some point, then the curvestill folded. Moreover, ify(T)
is exactly a circle, we have thdet(v,(z), v.(2)) is constant for alk € ~(T), taking the value
—1or 1, depending if the iterates rotate clockwise or countefciose.

As an example, we apply this criterion to the invariant cusliewn in the left plot of Fig-
ure 3. The function (30) is shown in the right plot of FigureThe horizontal axis in this plot
corresponds to the sampling of points on the curve disetdhatcording to Remark 3.1. Let us
observe that this function oscillates due to the folds ofitkariant curve, and there are changes
of sign since the projection is not well posed. Now, we untbig invariant curve for different
values ofg®) looking for the minimum value of, such thatmin(det(v,(2),v,(2))) > 0. The
discontinuous line in the left plot of Figure 4 (using thetieal axis on the left) shows this value
of L versuss, and we observe that it is much smaller than the valuk fafr which the curve is
almost a circle.

Remark 3.1. Function (30) is evaluated by computing the tangent vectgz) using finite
differences. To this end, we require a good distribution @hfs along the curve that are
obtained using the fact that we know the rotation numbermg@st approximately). In particular,
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coefficient value estimated error real erfor
A1 1.4 —2i 61071 1-107%
Ao 4.1 4 1.34i 6-10~4 9.10"%2
o] —2+2.412i 5-1074 810742
Ao —2.5 — 1.752i 4.10740 8.10~4

Table 1: Fourier coefficients defining expression (31) and the nurakgrror obtained in their approximation
using the method of Section 2.7. The estimated error is wbtHby means of formula (29).

we fix a number of pointd/ to discretize the curve parameterized by an “arc parameter”
a € [0,1) on'T defined by the quasi-periodic dynamics. We start with a pgirt ~(T) that

we identify with the reference parameter= 0. Then, we compute the next iterate of the map
and we update the parameter— « + 6y(mod 1). Definingi as the integer part ofeM and if
dr(a,i/M) < 10~* we store the iterate in the positiarth of an array. We iterate this process
till we store M points onv(T). Observe that these computed points are ordered following
the dynamics of the curve so we can compute the tangent jastdsy finite differences. We
will consider thatmin(det(v(z), v.(2))) > 0 if the minimum value at th&/ selected points is
positive.

3.2 Study of a quasi-periodic signal

We consider a quasi-periodic signgl = ~v(nf), with § = (/5 — 1)/2 € D, as introduced
in Definition 2.1. Interest is focused in the case whelie not an embedding, and hence the
corresponding orbit is not related to a planar map. In palgicwe consider

v(z) =910
where the Fourier coefficients, given in Table 1, have beksttes in such a way that the curve
~(T) intersects itself.

First, we show the initial curve(T) (left plot of Figure 5) and averaged curve$-")(T)
(right plot of Figure 5) corresponding t = 2, 3, 4. Observe that we are using the exact value
of the rotation number to compute the averaged iteratesdiye(3). As expected, the new
curves are unfolded and become close to a circle.

Since in this problem we know the rotation number, we cangperfa simple test of the
method presented in Section 2.7 computing the non-zeradrarefficients of the initial curve.

To this end we usé4-digit arithmetics quadruple-doublelata type from [18]) taking an av-
eraging ordep = 9 and N = 2% iterates of the map. Both the estimated extrapolation error
using (29) and the real one are shown in Table 1 observingyageerd agreement.

Our goal now is to study the dependence with respeét ¢dthe norms in Lemma 2.6 and
Proposition 2.8. In Figure 6 (left) we plot the function

|| 50 —%[%]H)
91| 7

—2mix _'_,3/0 _'_,3/1627rim + ’3/2647ri$, (31)

L — logy, < (32)
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Figure 5:Left: Curvey(T) in the complex plane corresponding to the parameterizati¢8i). Right: Unfolded
curvesy"9(T), for I = 2, 3 and4, using the known value of the rotation numides (v/5 — 1)/2.
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Figure 6: Left: we plot function (32) versus. Right: we plot function (33) versub using the approximation
0o = 0+ 1/250.

that can be evaluated from expression (5) using the exage\@fl the rotation number. We
observe that the computed points can be bounded from abaevsharp way by.19/L.

On the other hand, assuming that we only have an approxim@tiof the rotation number
0, we want to study the estimate (8) of Proposition 2.8. Cdetyrewe compute the function

||y(Efo) — 4y 3200

(33)

using the approximatiofi, = 6 + 1/250. In the right plot of Figure 6 we observe that this
function is close to be periodic, of period approximatehp, and it reaches a minimum at
L ~ 125 (mod 250) so the bound given in Proposition 2.8 turns out to be quitedgodhis
case.

It is very interesting to study the effect of a random errathi@ evaluation of iterates, trying



A. Luque and J.Villanueva 29

” L L L L L L L 35 L L L L L L
-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22

Figure 7: Effect of a random noise in the quasi-periodic signal (31¢ftLUnfolded clouds of points (in the
complex plane) corresponding to the curves in the right@iétigure 5 using = 0.5 (see text for details). Right:
For different noises, taken as= 107° for § = 1,...,10, 00, we plotlog,, of the real error versug in the
computation of the rotation number (usipg= 9 and2? iterates). The data is “unfolded” using = 10 and
0p = 0 + 1/250.

to simulate that the source of our quasi-periodic signakgeemental data. Concretely, we
consider the iterates, = (nf) + cx,,, where the real and the imaginary parts of the naise
are normally distributed with zero mean and unit variandecddrse, the new iterates do not
belong to a curve but they are distributed in a cloud arouedcthive in Figure 5 (left plot). If
we compute the iterates™"", using the approximatiofy, = 6 + 1/250, then it turns out that
we can “unfold” the cloud of points in a similar way. For exdmpn the left plot of Figure 7
we show unfolded clouds for an error of size= 0.5, usingL = 2, 3,4, i.e., the same values
that we used in Figure 5 (right plot).

Now we focus on the effect of this external noise when conmguthe rotation numbet
of the “circle map” thus obtained. The size of the considereise ranges as = 10~° for
0 = 1,...,10,00. Although we observe in Figures 5 (right plot) and 7 (lefttplthat the
“projection” is well defined for, = 4, in the following computations we takle = 10 since for
this value the corresponding curve is almost a circle. Tactmstructed “circle map” we apply
Algorithm 2.14 to refine the numerical computation of theatmn number. As implementation
parameters we take an averaging orger 9 and N = 21 iterates of the map, witlh =
9,...,22. The random numbers, are generated using the routigasdev from [28] for
generating normal (Gaussian) deviates. Computationsasfermed using2-digit arithmetics
(double-doublelata type from [18]).

In the right plot of Figure 7 we show, ilvg,, scale, the error in the computation of the
rotation number with respect tofor different values ot. Let us observe that far= 0 (lowest
curve) the extrapolation error is saturated aroudd® for ¢ > 18. We notice that this error
is of the order of the selected arithmetics. The other cuirvéise right Figure 7 correspond to
increasing values of (from bottom to top). Let us remark that in all cases the ram@oror is
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Figure 8: Left: some meandering curves, in thg-plane, of the map (34) around the shearles invariant curve
corresponding ta = 0.615 andb = 0.4; four dots represent the corresponding indicator pointsHis curve.
Right: Rotation number versusalong the straight line connecting the poiftsy) = (0.21,0.15) and(z,y) =
(0.29,0.235) in the left plot.

averaged in a very efficient way, and it turns out that thetimtanumber is approximated with
an error of ordee - 10719,

3.3 Study of invariant curves in non-twist maps

Finally, we apply the developed methodology to the studywdsiperiodic invariant curves
of non-twist maps. It is known that Aubry-Mather variatibttzeory for twist maps does not
generalize to the non-twist case, but there is an analogl&\bf theory (see for example the
works of [11, 34]). However, the loss of the twist conditiotroduces different properties than
in the twist case, for example the fact that the Birkhoff Grdjmeorem does not generalize. A
classical mechanism that creates folded invariant cus/ealiedreconnectionReconnection is
a global bifurcation of the invariant manifolds of two or realistinct hyperbolic periodic orbits
having the same winding number (we refer to [10, 34, 37] afeteaces therein for discussion
of this bifurcation).
Let us start by considering the family of area preserving-tvast maps given by

Fop: (z,y) — (2,9) = (z + a(l — %),y — bsin(2mz)) , (34)

where(z,y) € T x R are phase space coordinates andparameters. This family is usually
calledstandard non-twist maand it is studied as a paradigmatic example of a non-twisilyam
Although this family is non-generic (it is degenerate in femse that it contains just one har-
monic), it describes the essential features of non-twistiesgs with a local quadratic extremum
in the rotation number.

It is clear that the standard non-twist map violates thetteasidition along the curvge =
bsin(27x) which is callechon-monotone curveOnly orbits with points falling on this curve and
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orbits with points on both sides of it are affected by the hwist property. Among these orbits,
of special interest is the one that corresponds to an invaciave having a local extremum in
the rotation number, calleshearless invariant curves. For the standard non-twist map this
curve is characterized by the fact that, when it exists, isthgontain the points

©)  (0) 1 b M ) a1
—(+=. 42 Y
(le: ay:I: ) ( 47 2) ('Tzl: ay:I: ) (2 47 ) 5

that are calledndicator points(see [31]). These points are used extensively in the lilegab
study the breakdown of shearless invariant curves (we fefexample to [1, 37]).

In the left plot of Figure 8 we show some invariant curves eltzsa reconnection scenario
for a = 0.615 andb = 0.4. We observe sommeandering curves.e., curves that are folded
around periodic orbits in such a way that they are not grapks:a In addition, we plot the
four indicator points in order to identify the shearlessaimant curve. Actually, the invariant
curve that we used as an illustration in Section 2.1 (seer€idl is precisely this shearless
curve in the complex variable = evel®.

First, we focus on this shearless curve computing its matumber by applying the ex-
trapolation method of Algorithm 2.14 to the circle corresgence obtained by direct projection
(see the discussion in Sections 1 and 2.1) on the angulat¥ari. Since the folds of this exam-
ple are relatively small and the rotation number is quite-bigis close to0.6, i.e., the winding
number of the nearby periodic orbits— this direct projectidiows to compute numerically the
lift of this circle correspondence without unfolding thereel. In Table 2 we give the estimated
extrapolation error, by means of formula (20), in the corapiah of the rotation number ofs,
for different values of the extrapolation orgeand number of iterate¥. Computations are per-
formed using32-digit arithmetics ouble-doublealata type from [18]). Let us observe that the
extrapolation method allows to obtain a very good approtioneof the rotation number with
a relative small number of iterates, in contrast with- 0 which corresponds to the definition
of the rotation number —let us mention that some recent witkkq37] use the definition to
approximate the rotation number. According to our estisdtee best computed approximation
of the rotation number turns out to be

0 ~ Oy 7 = 0.59918902772269558576430971159247.

In addition, we compute the rotation number of meanderimgesiin the left plot of Figure 8
using an averaging order= 7 and2?! iterates of the map. In Figure 8 (right plot) we show
the rotation number profile in this reconnection scenariondzetely, we compute the rotation
number for the orbits corresponding 1600 points along an straight line connectifig y) =
(0.21,0.15) and(z,y) = (0.29,0.235), that are close to the elliptic periodic orbits of winding
number3/5. As far as the estimated extrapolation error is concerngh 6f the points have an
error less than0—2% and 98% of the points have an error less than*®. The minimum value
in the profile corresponds to the rotation numbergfand we observe the loss of uniqueness
of invariant curves when the twist condition fails.
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q=10 q¢g=11 ¢g=12 ¢g=13 g¢q=14 qg=15 ¢q=16 q=17 ¢=18 ¢=19 ¢=20 qg=21
1.4e-03 7.3e-04 1.9e-04 1.9e-04 8.1le-05 3.6e-05 1l.1e-0®Me-0b 5.0e-06 2.5e-06 1.0e-06 3.4e-p7
7.9e-06 5.5e-06 2.6e-07 8.1le-07 1.4e-07 6.9e-08 3.7e-09e-0P 1.2e-09 2.5e-11 8.8e-12 6.4e-]12
3.8e-07 8.6e-09 3.0e-08 4.5e-08 4.6e-09 2.1e-10 3.7e-14e-12 8.5e-13 1.9e-14 4.1e-16 1.3e-16
1.6e-05 9.5e-11 1.0e-09 8.5e-10 7.0e-12 1.2e-11 5.0e-1%e-1& 2.3e-16 1.2e-16 1.6e-17 7.1le-R2
1.6e-05 1.2e-07 1.9e-09 5.2e-11 2.2e-12 8.9e-13 2.0e-18e-15 1.0e-17 1.9e-19 1.2e-20 8.8e-R3
4.9e-06 7.0e-07 2.1e-08 5.0e-12 6.9e-14 2.2e-14 3.3e-177e-1¥ 2.0e-19 6.0e-21 4.0e-24  8.2e-p5
2.6e-06 1.0e-06 2.8e-08 4.5e-11 4.5e-13 3.5e-15 3.6e-1®e-1B  9.3e-21 4.5e-23 3.3e-25 2.0e-p7
4.7e-06 8.8e-07 8.5e-09 4.5e-10 2.7e-12 7.7e-16 1.6e-1®e-200 2.1e-23 2.5e-24 8.6e-27 5.9e-P9

~No o~ wWwNE O

Table 2: Estimated extrapolation error, using formula (20), in tperaximation of the rotation number of the
shearless curve of the map (34) that corresponds+d).615 andb = 0.4.
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Figure 9: Left: we plot in thezy-plane the shearless curyg = ~(1:%) in Figure 8 and the averaged curve
4(70:00) 'wheref, = ©,1,7. Right: we plot function (30) on the previous curves versigsdrc parameter on T
described in Remark 3.1.

Remark 3.2. Of course, the points in the left plot of Figure 8 to which wsigs a rational
rotation number (the profile is locally constant) cannotdrej to an invariant curve. These
points correspond to “secondary invariant curves” or “islds”, which are invariant curves of
a suitable power of the map, that appear close to the ellipéidodic orbits. Thus, for a point
on these islands, what we obtain is the “winding number” & greriodic orbit in the middle of
the island. We refer to discussions in [23, 29].

Now, let us illustrate the methodology of Section 2 in oraeunfold the shearless invariant
curve~s. To this end, we complexify phase space by means of the chaingsiables: =
eve?m* and compute the new quasi-periodic sighal*”’} using the approximatiofl, = Oa1 7.

In Figure 9 (left plot) we show the original curvg, corresponding td, = 1, together with
the curvey(™>%) that is less folded but its projection is not well defined yiatFigure 9 (right
plot) we show function (30) foryg and~(7%)  Actually, the projection into a circle is well
posed forl, = 75 and the curve is very close to be a circle —the minimum of fiamc(30) is
~ (0.999897— for L = 240.

Furthermore, we try to unfolds using higher order averages to accelerate the convergence
to a circle. To this end, we still fik, = O4; ;7 and apply the higher order method explained in
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q p=1 p=2 p=3 p=4 p=5

6 28e02() 56e02() 7.1e02() 7.5e-02() 7.4e-02()
7  1.1e014) 15e-01&) 1.2e-01E&) 7.7e-02() 4.2e-02()
8 4.0e-024) 56e-02¢) 9.6e-02(&) 1.4e-0lf) 1.4e-01¢)
9 1.8e-03¢) 4.4e-03¢) 3.4e-02¢) 6.7e-02¢) 6.4e-02 ()
10 2.8e-034) 3.6e-05{() 7.8e-03¢) 12e-02¢) 1.1e-02¢)
11 2.0e-034) 35e-05{() 1.0e-06¢) 26e-04¢) 1.9e-03¢)
12 3.0e-034) 21e-04() 7.6e-06() 2.4e-06() 1.3e-04 )
13 9.6e-044) 1.1e-04{) 3.0e-06¢) 9.8e-08¢) 1.5e-08¢)
14 8.0e-044) 20e-05() 3.8e-07() 7.7e-08¢) 4.5e-09 {)
15 3.0e-044) 35e-06{) 17e-07¢) 1.9e-08¢) 8.0e-10¢)
16 2.0e-054) 8.4e-07() 1.9e-08() 9.3e-10¢) 1.8e-11¢)

Table 3:Estimated distance to be a circle of the higher order averagevey("-%02) wheref, = 0, 7, for
the shearless curvgs in Figure 8. The meaning of the symbols is the following:) (f the curve is still folded,
(=) if the curve is unfolded but not close enough to a circle anylif the curve is close to be a circle.
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Figure 10: Top-left: Higher order meandering curve for the standardtw@st map in the complexified
phase space using = eV/2mlalyg2miz Top-right: Circle correspondence obtained from the dipgojection

—defined in (1)— of the iterates of the curve in top-left pldBottom: We show the curves(Z-%) where

0o = 0.0429853252, for L = 50 (left) and L = 150 (right) in the complex plane.

Section 2.6 to unfold the curve, using different values eféltrapolation ordey and number
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Figure 11:We plot the functiordy — |z(()L’9“)| using the value$, = 30 (left) and60 (right) for the meandering
curve in Figure 10. The real value of the rotation numberdasiad0.04332244074906551 (see the text for details).

of iteratesL, = 29. In table 3 we present the estimated error when we companestheurve
with a circle. Since we have constructed a sequence of cteneling to a circle —up to small
error— we estimate the distance of these curves to be a fstllooking at the number of digits
that coincide for a point on these curves when we increaseuhber of iterates frora?—! to

24, this is, we use the formula*" %" — zé2q_1’9°’p)|, wheref, = 04, 7. The adjacent symbol
in this table indicates if the projection of the invariant\wiinduces a circle map, according to
the criterion of the sign of function (30) —as explained imiRek 3.1. We put the symboH)

if the minimum of function (30) is negative, we put) if this minimum is positive but less than
0.99 and we put{) if this minimum is betwee.99 and1. As expected, fop = 1 andg = 6
the curve is still folded sincel> ) = %Y and26 = 64 < 75. Let us observe that when we
increase the order of averaging we require more iteratesglier ®o appreciate an improvement
in the extrapolation. Nevertheless, after this transittmmethod turns out to be much more
efficient (for example, see the row fgr= 16).

A further step is to consider the case of the so cdtligther order meanderingbhat appear
due to reconnections involving periodic orbits in a neigtilo@d of a meandering curve. The
considered example is selected from [34] and we refer thare fconstructive explanation.
Concretely, we consider the values= —0.071963192 andb = —0.44614508325727 and the
curve that corresponds to the initial condition, yo) = (0, —2.00377736103447). In Figure 10
(left plot) we show this higher order meandering curve incbeplex plane by means of the

change of variables = eV ?mlalyg2miz,

Let us observe that the invariant curve of this example idddlin a very wild way. Ac-
tually, in the top-right plot of Figure 10 we show the “liftbtR of the circle correspondence
that we obtain by means of the direct projection on the amgiaablez. This plot has been
obtained projecting iterates of an orbit of the curve, andbgerve that it is not easy to com-
pute numerically this lift just looking at isolated iteratef the circle correspondence —without
any “a-priori” information on the rotation number. Therefpwe apply Laskar's method of
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L =30 L =60 L =90 L =120 L =150
0.9577778096  (0.74) 0.1303407362  (0.95)] 0.1302228135 (0.86) 0.1302697604  (0.82) 0.1301364744 (0.84
0.1371713373  (0.67) 0.9562939918 (0.75) 0.9565703718 (0.77) 0.9565427675 (0.72) 0.9569018161 (0.70
0.0465959056 (0.54) | 0.1734756047  (0.74) 0.0870283875 (0.68) 0.0870160838 (0.62) 0.0865975344  (0.65
0.2046548291  (0.50) 0.0872525690  (0.73) 0.1733546296 (0.64) 0.0437697415 (0.59) | 0.0429853252 (0.62)
0.3084897181  (0.29) 0.2166379341  (0.68) 0.0437231352 (0.61) | 0.1737224972  (0.58)] 0.1736243983 (0.61
0.8683260095  (0.23) 0.0435679422 (0.61) | 0.2169984090 (0.58) 0.2172096615 (0.54] 0.2171559900 (0.57
0.3631744037  (0.19) 0.2593740449  (0.50) 0.2601564576  (0.42) 0.2604187823 (0.38] 0.2606176626  (0.40
0.4154453760  (0.15) 0.3024868348  (0.41) 0.3037390964  (0.34) 0.3041163591 (0.32) 0.3041431703 (0.34

Table 4:Relevant maxima of the functiofy € [0, 1] |zéL’9°)| for different values of’. corresponding to the
invariant curve in Figure 10 (top-left plot). In parentheses show the value of the function at the local maxima.
We write in bold the value of the maximum that approximatesrtftation number of the curve.

i | kit kio ki3 kia kis  kis kit kig | K
1 1 -8 9 -7 -6 8 2 10| 51
2 -3 1 -4 -2 -5 -1 -6 -7 | 29
3 -5 -6 1 -11 7 6 13 -4 | 53
4 | -10 -12 2 1 -9 -11 3 -8 | 56
5 -4 9 10 5 1 -9 -8 6 | 52
6 3 -1 4 2 5 1 6 7| 29
7| -11 -4 -7 8 -3 4 1 5| 43
8 7 -10 -6 -3 4 10 -9 1|50

Table 5: Indicatorsk;; andx; corresponding to the step “rotation number selection” deed in Section 2.4.
We useL = 60.

frequency analysis (implemented as described in Sect®n@ obtain a sufficiently good ap-
proximation of the rotation number in order to unfold thevauMaxima chasings performed
looking for local maxima ob, — |={"?’| in the interval[0, 1]. These maxima are obtained
using a partition 0600 points of this interval and asking for a tolerangg;s = 107° in the
golden section search. In Table 4 we show the revelant maxisiagr = 5 in equation (13),
for several values of. Moreover, in Figure 11 we plot the functidp — |z{""’|, for L = 30
(left plot) andL = 60 (right plot). Of course, when we increasene observe a larger number
of maxima but the width of the peaks is reduced so their appratton is improved.

As explained in Section 2.4, we assume that one of these naceqaproximates the rotation
number of the curve in such a way that the rest are multiplés(ofodulo1). To select which
maximum approximates the rotation number, we compute ttieatorsk;;, ~;, d;; andd; given
in equations (14) and (15). For example, the values correlipg to L = 60 are given in
Tables 5 and 6. Let us point out that the maximum correspgnttirthei-th row in these
tables can be read in theth row of Table 4. If we select the 2nd or the 6th maxima as the
approximatiord, of the rotation number, then the remaining peaks are apmiateid —with
the error shown in Table 6— as multiple&, (modulo1) using smaller values for than if we
make any other choice (see Table 5). These two peaks comgésp@pproximations of — ¢
andd, and we select théth one as an approximation of the rotation number since lisvislthe
positive orientation of the dynamics. We write this peakahdin Table 4.

Let us refine the approximation of the rotation number from @th peak. In Figure 10
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di1 di2 di3 dig dis dis di7 dig 0
0.00e+00  9.80e-04 4.00e-04 3.60e-04 1.30e-03 8.40e-04 0e-D3  9.20e-04| 6.10e-03
7.70e-04  0.00e+00 1.30e-03 1.50e-04 1.80e-03 1.30e-04 0e-DB  3.40e-03| 1.00e-02
2.20e-03 2.80e-03  0.00e+00  4.50e-03 2.30e-03 2.70e-03 0e©3  3.60e-03| 2.20e-02
2.80e-03 3.30e-03 1.00e-03  0.00e+00 1.90e-03 3.30e-03 0e®3 5.00e-04| 1.50e-02
3.10e-03 6.50e-03 7.10e-03 4.00e-03  0.00e+00 6.60e-03 0e-D3  2.60e-03| 3.70e-02
3.60e-04 1.30e-04 7.90e-04 1.10e-04 1.20e-03  0.00e+00 O0e®®  2.40e-03| 7.10e-03
1.60e-02 6.20e-03 1.00e-02 1.20e-02 5.20e-03 6.00e-03 0e00 5.60e-03| 6.20e-02
1.20e-02 1.80e-02 1.10e-02 5.20e-03 6.60e-03 1.80e-02 0e-DB  0.00e+00] 9.20e-02

O~NO O WN P

Table 6:Indicatorsd;; ands; corresponding to the step “rotation number selection” deed in Section 2.4. We
useL = 60.

we ploty(>%) using the approximatiof, = 0.0429853252 for L = 50 (bottom-left plot) and

L = 150 (bottom-right plot). We observe that fér= 50 the curve is still very folded but if we
take L = 150, even thought there are still some harmonics that fold tineecwve are close to a
circle centered at the origin and the projection gives usaeccorrespondence that we can “lift”
to R easily, since the size of the folds is small when comparet @it Finally, we compute
the rotation number of this invariant curve from the circterespondence obtained by means
of this unfolding procedure. We apply Algorithm 2.14, using- 7 andq = 21, to the iterates
z, = arg(25""")) /27 thus obtaining the approximatia®; o; = 0.04332244074906551 with

an estimated errar.7 - 10713,

We observe that the computation of the rotation number doesork as well as in previous
examples, but an error of ordéd 3 is very satisfying in this context since a huge number of
Fourier coefficients is required to approximate the curw@ wiis error and the rotation number
is close to resonance (see also the discussion regardimgnf$émap example). To show this,
let us compute the Fourier coefficients correspondingtec 750 by means of Algorithm 2.20
usingp = 7, ¢ = 21 andf ~ O, ;. Computations are performed usiBg-digit arithmetics
(double-doublelata type from [18]). The modulus of the obtained val@#es; ;, are shown in
the left plot of Figure 12. The extrapolation error, estietatising (29), typically ranges between
1071 and10~®. As expected, the decay of these coefficients is very mildvegoint out that
coefficients for|k| ~ 750 are still of orderl0~°. It is interesting to compare this behavior to
that corresponding to the shearless curve in Figure 8 shreextrapolation methods can be
applied successfully to this case. For this curve the Fouoefficients —computed using the
same implementation parameters— decay much faster (seigli@lot in Figure 12). In this
case, the estimated extrapolation error typically ranggaden10-¢ and10-24, and Fourier
coefficients fork| > 400 are so small that we cannot compute any significant digit (etect
this fact becauspb,, 7 ;| is of the same order as the extrapolation error). A final ré&sathat
in this plot we observe an increase of the size of Fourierfimberfits aroundk| ~ 250 and after
that they decay again at the same rate. The rotation numhaisofurve has the convergent
145/242, so the small divisor for the corresponding Fourier coedfititurns out to be very
small. Precisely we observe théty; 7 243| >~ 214|Po; 7242/

In the next example we want to illustrate the computationesivétives of the rotation num-
ber by applying Algorithm 2.16 to a circle correspondenca the can “lift” numerically to
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Figure 12:We plotlog;, |®21 7| versusk corresponding to the approximated Fourier coefficientaofstudied
invariant curves. Left: Higher order meandering curve igure 10 (top-left plot). Right: Shearless invariant curve
in Figure 8 (left plot).

R. Moreover, we also want to stress how extrapolation metlaoddess accurate when the
rotation number is a Diophantine number “close to a ratibrathus having a large constant
C'in (7). Therefore, we select a problem very close to a resma@omparing with previous
examples, we point out that the shearless curve in FigurenBtisoo resonant —actually the
continued fraction of the rotation number in that cas@®id, 1,2,48,1,...]. Meanwhile the
case of higher order meandering in Figure 10 is more resdnarnihe curve extremely compli-
cated. Let us consider the well-known Hénon family, whigl iparadigmatic example since it
appears generically in the study of a saddle-node bifuonaiihis family can be written as

I ( u ) . ( cgs(27roz) —sin(27r«) ) ( u )
T\ w sin(2ra)  cos(2mar) v —u?

It is not difficult to check that we can perform a close to thentity change of variables
to guarantee the twist condition close to the origin, exéepthe valuesy = 1/3,2/3. Then,
for values ofa close tol/3 and2/3, reconnection takes places and meandering phenomena
arises, i.e., there are folded invariant curves. Next wetwaitlustrate the computation of the
derivatives of the rotation number farclose tol /3.

In the left plot of Figure 13 we show meandering curvesier 0.299544. We use the direct
projection and we apply Algorithm 2.16 to the “lift” of thercle correspondence thus obtained,
in order to compute the derivative of the rotation numbehwéspect to the initial condition
ug, for 6000 points of the form(ug,0.15) along the dotted line in the figure. Computations
are performed taking = 8, ¢ = 23, and using32-digit arithmetics ouble-doublelata type
from [18]). The corresponding profile is shown in the righttpbf Figure 13, and we observe
that the sign of the derivative changes when we pass from wis¢ zone to another. The
isolated points where the derivative vanishes correspotiteishearless invariant curverhile
the points where it is locally constant corresponds to tlaectf islands (secondary tori) around
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Figure 13:Left: Phase space in the-plane of Henon map fax = 0.299544 showing meandering curves close
to periodic orbits of period/10. Right: we plot the derivative of the rotation numher D, p along the straight
line in the left plot.

the elliptic periodic points (see Remark 3.2). We want tesdrthat since we are very close to
a resonance, the convergence of the computations in thirmg&as not as good as in the
far-from-resonance case. For example,dgr= 0.28 we obtain the approximatio®i; s =
0.299999020519 of the rotation number with an estimated error, using (2Dprder10~12 and
the derivatived,, s , = —6.027735852- 10" with an estimated error, using (22), of ordér '°.
Actually, the continued fraction expansion ©f; s is given by|[0, 3,2, 1,10203, 2, .. .] which

is close t03/10 (winding number of the periodic orbit). It is interestingcompare the error
of order10~'% in the computation of the rotation number with the error otetd when dealing
with good Diophantine numbers, that are typically of ortieér® for the used implementation
parameters. We refer to several comments given in [23, 2@Jrdeng this situation.

We remark that all the previous examples considered in #ai@ contain only one har-
monic or are written as perturbations of maps that have gtraist behavior. For this reason
we have not shown all the possibilities of our methodology.itAs pointed out in [34], folded
invariant curves appear in a natural way, when we introduoeerharmonics in the studied
family of maps. Since these curves can be constructed folfparbitrarily complicated paths
in phase space, they got the namdéadiyrinthic curves We shall consider the following family
of MapsE. = Fy, s, c1.0.us.c d€fined oR/(277Z) x R:

S5y e

P(y)=yly—v2)(y —ys)ly— 1)
T(x) = sysin(x) + sgsin(2z) + ¢ (cos(x) — cos(2x)).

where
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Figure 14:Phase space in thes-plane of family (35). Leftz = 5. Right: ¢ = 10.

From now on, following [34], we fix

Yo = 0.33040195,
ys = 0.84999789,

s1 = 0.1608819674465999,
s9 = 0.9444712344787136,
¢ = 0.2865154093461046,
~ = —0.0049.

In the left plot of Figure 14 we show some iteratesder 5 corresponding to several initial
conditions. We observe that, if we consider the main edigtiands as holes on the cylinder,
then we find invariant curves of different homotopy classiace these curves are folded in a
very complicated way, it is difficult to face the systematerputation of the “lift” of the direct
projection of the iterates. Then, the unfolding method $wut to be very useful to computate
these invariant curves.

For example, we consider the curve associated to the in@radition(xg, yo) = (0, 2.2), for
e = 5. We first obtain an approximation of the rotation number bynseof frequency analysis
as itis explained in Section 2.4. In particular, using theptex variable: = eve'* andL = 100
we obtain the approximation of the rotation numbgr= 7.46161 - 10~ (details are omitted
since they are very similar of those corresponding to theipusly discussed examples). Using
this approximatiord, we can unfold the invariant curve computing the average®(3) = 150
(for this values the curve is almost a circle). Then, we apiyorithm 2.14 usingp = 9
andq = 23. Computations are performed usiBgrdigit arithmetics ouble-doublalata type
from [18]). We obtain the approximation

0 ~ BOy3 9 = 0.0080998168999841202002324221453501 (36)

of the rotation number with an estimated extrapolationreofoorder 10~34, that corresponds
with the arithmetic precision of our computations. Let usetve that the number (36) is very
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Figure 15: Left: Labyrinthic invariant curve in the:y-plane of (35) corresponding to the initial condition
(x0,90) = (0,2.2) for ¢ = 5. Right: We ploty(c) versusz, in the continuation of the invariant curve on the
left.

close to zero, but its continued fraction|is 123,2,5, 1,2, ...], so we conclude that it is not
so resonant as the example of HEnon’s map that we consitbefede —for this reason the
obtained computations are more accurate.

Furthermore, we use the methods of the paper to follow théusea, whene changes,
of the invariant curve of. having a prefixed rotation numbér Concretely, let(z, y(co))
be a point on an invariant curve of rotation numbBesf the mapF.,. Then, givere close to
€0, We want to compute an initial conditigio, y(<)) that corresponds to the invariant curve
—if it exists— of F. that has the same rotation number. Indeed, if we denotgdy,) the
function that gives the rotation number of the invarianteunf £ for the point(xg, yo) —if it
exists— then we look for solutions with respectto= y(¢) of the equatiom(e, yo) = 6. The
computation of the poinj(¢) is performed by means of the secant method as it is done in [29]
for the standard map. Another possibility is to use a Newtdreme like in [23] for HEnon’s
map, computing derivatives of the rotation number as deedrin Section 2.5, but the secant
method is enough for our purposes.

We continue the curve of rotation number given by (36) stgrfrom the values, = 5 and
(z0,%0) = (0,2.2). Computations are performed usisrdigit arithmetics ouble-doublelata
type from [18]). In order to unfold invariant curves we useaasapproximation the prefixed
value of the rotation number (curves nearby have a simikation number) and we take =
150. For computing the rotation number, we apply Algorithm 2ubthgp = 6 and2'® iterates
of the map at most. We estimate the error of the rotation nuimpesing (20) and we validate
this computation if it is smaller thar) 6. For the secant method we require an error smaller
than10~14.

The continuation of the invariant curve is performed susfdly for values of: in the inter-
val (4.75745894, 5.75985518) —in Figure 15 we ploy(¢) in this interval. For = 4.75745894
the invariant curve turns shearless and then it disappéargize collapse with the other invari-



A. Luque and J.Villanueva 41

ant curve of the same rotation number on the other side of #andering, so we have a turning
point in the continuation. Far = 5.75985518 we stop because we are very close to the break-
down of the curve. For > 5.75985518 we have observed that the chaotic zone that appears at
the breakdown of this invariant curve is very narrow andeheme still many invariant curves
nearby. In the right plot of Figure 14 we include the phasesphat corresponds to= 10

in order to show the chaotic zone that is created when mosteointvariant curves around the
continued one are destroyed.

Acknowledgements

We wish to thank Rafael de la Llave and Carles Simo for statiog discussions and sug-
gestions. We also acknowledge the use of EIXAM, the UPC AgapbMath cluster system
for research computing (sétp://www.mal.upc.edu/eixam/ ), and in particular Pau
Roldan for his support in the use of the cluster. The autherse been partially supported
by the Spanish MCyT/FEDER grant MTM2006-00478. Moreovee, tesearch of A. L. has
been supported by the Spanish phD grant FPU AP2005-295Martcktalan phD grant 2005FI
00155.

References

[1] A. Apte, R. de la Llave, and N.P. Petrov. Regularity oftical invariant circles of the
standard nontwist magNonlinearity, 18(3):1173-1187, 2005.

[2] D.K. Arrowsmith and C.M. Place.An introduction to dynamical system£ambridge
University Press, 1990.

[3] H. Broer and C. Simb. Resonance tongues in Hill's equreti a geometric approach.
Differential Equations166(2):290-327, 2000.

[4] H. Bruin. Numerical determination of the continued ftiaa expansion of the rotation
number.Phys. O 59(1-3):158-168, 1992.

[5] E. Castella andd. Jorba. On the vertical families of two-dimensional togian the trian-
gular points of the bicircular problenCelestial Mech. Dynam. Astronon76(1):35-54,
2000.

[6] R.delalLlave, A. Gonzaled. Jorba, and J. Villanueva. KAM theory without action-aagl
variables.Nonlinearity, 18(2):855-895, 2005.

[7] R. de la Llave, G. Huguet, and Y. Sire. Fast numerical atgms for the computation of
invariant tori in Hamiltonian Systems. Preprint availaglectronically atttp://www.
ma.utexas.edu/mp_arc-bin/mpa?yn=09-2 , 2008.



42 Numerical computation of rotation numbers for quasi-pdid@lanar curves

[8] R. de laLlave and N.P. Petrov. Regularity of conjugatiesveen critical circle maps: an
experimental studyExperiment. Math.11(2):219-241, 2002.

[9] Rafael de la Llave and Arturo Olvera. The obstructiortezsion for non-existence of
invariant circles and renormalizatioNonlinearity; 19(8):1907-1937, 2006.

[10] D. del Castillo-Negrete, J.M. Greene, and P.J. Moris@rea preserving nontwist maps:
periodic orbits and transition to chad3hys. O 91(1-2):1-23, 1996.

[11] A. Delshams and R. de la Llave. KAM theory and a partiatijication of Greene’s
criterion for nontwist mapsSIAM J. Math. Anal.31(6):1235-1269 (electronic), 2000.

[12] C. Golé. Symplectic Twist Maps: Global Variational Techniqu&Sorld Scientific Pub-
lishing, 2001.

[13] G. Gomez,A. Jorba, C. Simd, and J. Masdemoribynamics and mission design near
libration points. Vol. Il volume 4 ofWorld Scientific Monograph Series in Mathemat-
ics. World Scientific Publishing Co. Inc., River Edge, NJ, 20@4dvanced methods for
triangular points.

[14] G. Gomez,A. Jorba, C. Simo, and J. Masdemoridynamics and mission design near
libration points. Vol. I\ volume 5 ofWorld Scientific Monograph Series in Mathemat-
ics. World Scientific Publishing Co. Inc., River Edge, NJ, 20@4dvanced methods for
triangular points.

[15] G. Gbmez, J.M. Mondelo, and C. Sim6. Refined Fouriealygsis: procedures, error
estimates and applications. Preprint availablétgt://www.maia.ub.es/dsg/
2001/index.html , 2001.

[16] J.M. Greene. A method for determining a stochasticditeon. J. Math. Phys.20:1183-
1201, 1979.

[17] M.R. Herman. Sur la conjugaison difféerentiable defledimorphismes du cercle a des
rotations.Inst. HautesEtudes Sci. Publ. Math(49):5-233, 1979.

[18] Y. Hida, X. Li, and D. H. Bailey.QD (quad-double/double-double computation package)
2005. Available electronically dittp://crd.lbl.gov/ ~dhbailey/mpdist/

[19] A. Jorba and E. Olmedo. On the computation of reducible iaw&tori in a parallel com-
puter. Preprint available electronically lattp://www.maia.ub.es/dsg/2008/
index.shtml , 2008.

[20] A.Jorba, R. Ramirez-Ros, and J. Villanueva. Effectiveiciility of quasi-periodic linear
equations close to constant coefficier8$AM J. Math. Ana).28(1):178-188, 1997.



A. Luque and J.Villanueva 43

[21] A. Jorbaand C. Simd. On quasi-periodic perturbationslgdted equilibrium points.SIAM
J. Math. Anal, 27(6):1704-1737, 1996.

[22] J. Laskar, C. Froeschlé, and A. Celletti. The meastiohaos by the numerical analysis of
the fundamental frequencies. Application to the standagdping.Phys. O 56(2-3):253—
269, 1992.

[23] A. Luque and J. Villanueva. Computation of derivatiedéghe rotation number for para-
metric families of circle diffeomorphism®hys. D 237(20):2599-2615, 2008.

[24] L. Michelotti. Intermediate classical dynamics with applications to bgdpsics Wiley
Series in Beam Physics and Accelerator Technology. Joheyw&ilSons Inc., New York,
1995. A Wiley-Interscience Publication.

[25] A. Olvera and N.P. Petrov. Regularity properties ofical invariant circles of twist maps,
and their universality. Preprint 2008, available eleditalty at http://arxiv.org/
abs/nlin.CD/0609024

[26] Arturo Olvera and Carles Simbd. An obstruction methodthe destruction of invariant
curves.Phys. D 26(1-3):181-192, 1987.

[27] R. Paskauskas, C. Chandre, and T. Uzer. Dynamicaknaitks to intramolecular energy
flow. Physical Review Letterd 00(8), 2008.

[28] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.Rarfhery. Numerical Recipes in
C: The Art of Scientific ComputingCambridge University Press, second edition edition,
2002.

[29] T.M. Seara and J. Villanueva. On the numerical compotabf Diophantine rotation
numbers of analytic circle mapBhys. O 217(2):107-120, 2006.

[30] T.M. Seara and J. Villanueva. Numerical computatiothefasymptotic size of the rotation
domain for the Arnold familyPhys. Qb 238(2):197-208, 2009.

[31] S. Shinohara and Y. Aizawa. Indicators of reconnecfimycesses and transition to global
chaos in nontwist map$rogr. Theoret. Phys100(2):219-233, 1998.

[32] C. L. Siegel and J. K. MoserLectures on Celestial MechanicsSpringer-Verlag, New
York, 1971. Translation by C. I. Kalme, Die Grundlehren desthematischen Wis-
senschaften, Band 187.

[33] C. Simb. Effective computations in celestial mecltarand astrodynamics. Modern
methods of analytical mechanics and their applicationsifigd 1997) pages 55-102.
Springer, Vienna, 1998.



44 Numerical computation of rotation numbers for quasi-pdid@lanar curves
[34] C. Sim6. Invariant curves of analytic perturbed nostvarea preserving mapgegul.
Chaotic Dyn, 3(3):180-195, 1998. J. Moser at 70.

[35] A.M. Tarquis, J.C. Losada, R.M. Benito, and F. Boronddultifractal analysis of tori
destruction in a molecular Hamiltonian systelRhys. Rev. F65(1):016213, 9, 2002.

[36] M. van Veldhuizen. On the numerical approximation & tiotation numberJ. Comput.
Appl. Math, 21(2):203-212, 1988.

[37] A. Wurm, A. Apte, K. Fuchss, and P. J. Morrison. Meandamd reconnection-collision
sequences in the standard nontwist m@paos 15(2):023108, 13, 2005.

[38] J.C. Yoccoz. Théoreme de Siegel, nombres de Brunoobtnpmes quadratiques.
Astérisque (231):3-88, 1995.



