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Abstract

In this paper we present a numerical method to compute deggaof the rotation
number for parametric families of circle diffeomorphismghahigh accuracy. Our me-
thodology is an extension of a recently developed approadompute rotation numbers
based on suitable averages of the iterates of the map andrBsdn extrapolation. We
focus on analytic circle diffeomorphisms, but the methagbakorks if the maps are dif-
ferentiable enough. In order to justify the method, we aksquire the family of maps to
be differentiable with respect to the parameters and tlagioot number to be Diophantine.
In particular, the method turns out to be very efficient fompoiting Taylor expansions of
Arnold Tongues of families of circle maps. Finally, we addse ideas to study invariant
curves for parametric families of planar twist maps.
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1 Introduction

The rotation number, introduced by Poincaré, is an impottapological invariant in the study
of the dynamics of circle maps and, by extension, invariantes for maps or two dimensional
invariant tori for vector fields. For this reason, severaheuical methods for approximating
rotation numbers have been developed during the last y@&rsefer to the works [3, 4, 8, 13,
14, 21, 24, 31] as examples of methods of different natureeantplexity. This last ranges from
pure definition of the rotation number to sophisticated analved methods like frequency
analysis. The efficiency of these methods varies depentling approximated rotation number
is rational or irrational. Moreover, even though some ofth&an be very accurate in many
cases, they are not adequate for every kind of applicatosreXample due to violation of their
assumptions or due to practical reasons, like the requirezliat of memory.

Recently, a new method for computing Diophantine rotatiomhers of circle diffeomor-
phisms with high precision at low computational cost hasibetoduced in [26]. This method
is built assuming that the circle map is conjugate to a rigtdtion in a sufficiently smooth way
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and, basically, it consists in averaging the iterates ofntla@ together with Richardson extra-
polation. This construction takes advantage of the gegnaetd the dynamics of the problem,
so it is very efficient in multiple applications. The methsdspecially suited if we are able to
compute the iterates of the map with high precision, for g¥arf we can work with computer
arithmetic having a large number of decimal digits.

The goal of this paper is to extend the method of [26] in ordexampute derivatives of the
rotation number with respect to parameters in families afleidiffeomorphisms. We follow
the same averaging-extrapolation process applied to tinatiees of the iterates of the map.
To this end, we require the family to be differentiable wiglspect to parameters. Hence, we are
able to obtain accurate variational information at the same that we approximate the rotation
number. Consequently, the method allows us to study paranf@tilies of circle maps from
a point of view that is not given by any of the previously menad methods.

From a practical point of view, circle diffeomorphisms appm the study of quasi-periodic
invariant curves for maps. In particular, for planar twistps, any such a curve induces a circle
diffeomorphism in a direct way just by projecting the itesbn the angular variable. Then,
using the approximated derivatives of the rotation numvercan continue numerically these
invariant curves with respect to parameters by means of thetdh method. The method-
ology presented is an alternative to more common approdwdssd on solving numerically
the invariance equation, interpolation of the map or apjpnaxion by periodic orbits (see for
example [5, 7, 12, 28]). Furthermore, using the variatiom@rmation obtained, we are able to
compute the asymptotic expansion relating parameterstiel conditions that correspond to
curves of fixed rotation number.

Finally, we point out that the method can be formally extehttedeal with maps of the
torus with Diophantine rotation vector. However, in ordeapply the method to the study of
quasi-periodic tori for symplectic maps in higher dimemnsitere is not an analogue of the twist
condition to guarantee a well defined projection of the tes@n the standard torus. Then, the
immediate interest is focused in the generalization of tkéd to the case of non-twist maps
and deal with folded invariant curves (for example, the albed meanderings [29]). These and
other extensions will be object of future research [22].

The contents of the paper are organized as follows. In se2twe recall some fundamental
facts about circle maps and we briefly review the method of. [26 section 3 we describe
the method for the computation of derivatives of the rotathmmber. The rest of the paper
is devoted to illustrate the method through several apjpdica. Concretely, in section 4 we
study the Arnold family of circle maps. Finally, in sectionwe focus on the computation
and continuation of invariant curves for planar twist mapd,an particular, we present some
computations for the conservative Henon map.
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2 Notation and previous results

All the results presented in this section can be found in thikdgraphy, but we include them
for self-consistence of the text. Concretely, in subsacid we recall the basic definitions,
notations and properties of circle maps that we need in themave refer to [9, 18] for more

details and proofs). On the other hand, in subsection 2.22wiew briefly the method of [26]

for computing rotation numbers of circle diffeomorphisms.

2.1 Circle diffeomorphisms

LetT = R/Z be the real circle which inherits both a group structure atghalogy by means of
the natural projection : R — T (also called the universal coverdj. We denote byift | (T),
r € [0,+00) U {oco,w}, the group of orientation-preserving homeomorphism aff class
C". Concretely, ifr = 0 it is the group of homeomorphisms @f if » > 1, r € (0,00)\N, it
is the group ofC\")-diffeomorphisms whosegr |-th derivative verifies a Holder condition with
exponent — |r|; if »r = w itis the group of real analytic diffeomorphisms.
Given f € Diftf [ (T), we can lift f to R by = obtaining aC" map that makes the following

diagram commute

R

T

Moreover, we havgf(a: +1) - f(x) = 1 (since f is orientation-preserving) and the lift
is unique if we ask forf(0) € [0,1). Accordingly, from now on we choose the lift with this
normalization so we can omit the tilde without any ambiguity

f

—_—

R
Jw Wof:fow,
T

.

Definition 2.1. Let f be the lift of an orientation-preserving homeomorphisnhefdircle such
that f(0) € [0, 1). Then theotation number of is defined as the limit

o) = tim LD =50

[n]—o0 n
that exists for allzy € R, is independent of, and satisfieg(f) € [0, 1).

Let us remark that the rotation number is invariant undesrdgdtion-preserving conjugation,
i.e., for everyf,h € Diff)(T) we have thatp(h~! o f o h) = p(f). Furthermore, given
f € Diff2(T) with p(f) € R\Q, Denjoy’s theorem ensures thats topologically conjugate to
the rigid rotationR,,;), whereRy(z) = x + 0. That is, there exists € Diff?(T) making the
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following diagram commute

|

T

I

T
‘n fon=mnoR,p. (2)
Ro(s) o

In addition, if we require)(0) = z, for fixed x(, then the conjugacy is unique.

All the ideas and algorithms described in this paper makeotifee existence of such con-
jugation and its regularity. Let us remark that, althouglosth or even finite differentiability is
enough, in this paper we are concerned with the analytic ddeesover, it is well known that
the regularity of the conjugation depends also on the ratiapproximation properties of f),
so we will focus on Diophantine numbers.

Definition 2.2. Givend € R, we say that is a Diophantine numbeof (C, 7) type if there exist
constants” > 0 andr > 1 such that

1| < Clk[", VK€ Z..

We will denote byD(C, 7) the set of such numbers and Bythe set of Diophantine numbers of
any type.

Although Diophantine sets are Cantorian (i.e., compacafepeand nowhere dense) a re-
markable property is tha&\D has zero Lebesgue measure. For this reason, this condigon fi
very well in practical issues and we do not resort to otherknesmditions on small divisors
such as the Brjuno condition (see [33]).

The first result on the regularity of the conjugacy (1) is daeAtnold [2] but we also
refer to [16, 19, 30, 33] for later contributions. In pariey the theoretical support of the
methodology is provided by the following result:

Theorem 2.3(Katznelson and Ornstein [19])f f < Diff | (T) has Diophantine rotation num-
berp(f) € D(C,7) for 7 + 1 < r, then f is conjugated taR, ;) by means of a conjugacy
n € Diff |77 %(T), for anye > 0. Note thatDiff {(T) = Diff ;™" *(T) while the domain of

analyticity is reduced.

2.2 Computing rotation numbers by averaging and extrapolaion

We review here the method developed in [26] for computingpbantine rotation numbers
of analytic circle diffeomorphisms (thé" case is similar). This method is highly accurate
with low computational cost and it turns out to be very efitizhen combined with multiple
precision arithmetic routines. The reader is referredetier a detailed discussion and several
applications.
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Let us considey € Diff? (T) with rotation numbeé = p(f) € D. Notice that we can write
the conjugacy of theorem 2.3 aér) = = + £(x), £ being a 1-periodic function normalized in
such a way tha§(0) = z, for a fixedz, € [0, 1). Now, by using the fact that conjugates to
a rigid rotation, we can write the following expression fbetiterates under the lift:

fr(@o) = [ (n(0)) = n(nh) =nb+ > &e™™*’ Vn e, 2)

kEZ

where the sequenc{efk}kez denotes the Fourier coefficients &f Then, the above expression
gives us the following formula
"(xg) — 1 . .
f ( 07/)L 0 _ 0+ E Z &C(e%ﬂkzne _ 1)’

kEZy

to computed modulo terms of orde®(1/n). Unfortunately, this order of convergence is very
slow for practical purposes, since it requires a huge nurabeerates if we want to compute
0 with high precision. Nevertheless, by averaging the ier#t () in a suitable way, we can
manage to decrease the order of this quasi-periodic term.

As a motivation, let us start by considering the sum of thé¢ firsterates undey, that has
the following expression (we use (2) to write the iterates)

N N(N + 1 . . @2mik (1 _ o2mikNO
SY(P) =S o) —a) = Mgy S g g ST

n=1 kEZx kEZx

and we observe that the new factor multiplyihgrows quadratically with the number of ite-
rates, while it appears a linear term M with constant4, = — 3%, , . Moreover, the
quasi-periodic sum remains uniformly bounded sifide Diophantine and, is analytic (use
lemma 2.4 withp = 1). Thus, we obtain

2 1 o 2 2
mSN(f) =0+ 5 A+ O(/N?), 3)

that allows us to extrapolate the valuefofiith an errorO(1/N?) if, for example, we compute

Sn(f) andSan (f).
In general, we introduce the followirrgcursive sum$r p € N

N

SN) = N (wo) =m0, SR() =D STN(S). (4)

j=1

Then, the result presented in [26] says that under the abgatlhmeses, the followingveraged
sums of ordep
~ (N +p

=011 s ©
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satisfy the expression

N AP )

where the coefficientd] depend orf andp but are independent df. Furthermore, we have
the following expressions for them

27r1k:l 1)6
Al = (=D (p—=1+2)- Zﬁk — e2mikf) =1’
27r1kp6' 1 eQﬁikNG‘)
— +1
EP(N) o (_1)p Z k e27r1k9)

Finally, the remaindeE? (V) is uniformly bounded by an expression of ord@f1 /N?*1).
This follows immediately from the next standard lemma onlsdiisors.

Lemma 2.4. Let¢ € DiffY(T) be a circle map that can be extended analytically to a complex
strip Ba = {2z € C : [Im(z)| < A}, with |{(2)| < M up to the boundary of the strip. If we
denote{¢, }rez the Fourier coefficients af and considef) € D(C, 1), then for any fixegp € N

we have
—7A

e TP
< FAMCP
T 1l—e (WAG)

To conclude this survey, we describe the implementatiorhefrhethod and discuss the
expected behavior of the extrapolation error. In order t&enRichardson extrapolation we
assume, for simplicity, that the total number of iterates jwer of two. Concretely, we select
an averaging order € N, a maximum number of iteratéé = 27, for someg > p, and compute
the averaged sun{sSp (f)}i=o...p With N; = 2477+ Then, we can use formula (6) to obtain
0 by neglecting the remamdeté”( ;) and solving the resulting linear set of equations for the
unknowns), A7, ..., AP,

However, let us point out that, due to the denominatdfs+ p — 1 + 1) --- (N; + p), the
matrix of this linear system depends gnand this is inconvenient if we want to repeat the
computations using different number of iterates. Nevéetfge we note that expression (6) can
be written alternatively as

R eQwikpG(l _ e27rikN6‘)

k — 2miko
i (e

—9+§: +Ep )

.....

from EP(N) only by terms of orde@(l/NP+1). Then, by neglecting the remaindéF’(N)
in (7), we can obtai by solving a new(p + 1)-dimensional system of equations, independent
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of ¢, for the unknowng), A? /21(@-») .,A§/2p<q*p). Therefore, the rotation number can be
computed as follows
0 =O4,(f) + O(2- @), (8)

where©, , is anextrapolation operatarthat is given by

@q,p(f) = Z C?ggq—pﬂ- (f), 9

ol(1+1)/2
o()o(p = 1)’
where we definé(n) := (2" — 1)(2"' —1)--- (2! — 1) for n > 1 and§(0) := 1.

= (=1 (10)

Remark 2.5. Note that the dimension of this linear system and the asytof®haviour of the
error only depend on the averaging orderFor this reason, in [26] is called the extrapolation
order. However, this is not always the case when computingateses of the rotation number.
As we discuss in section 3, the extrapolation order is in gdress than the averaging order.

As far as the behavior of the error is concerned, using (8) ave that
10— O4,(f)] < C/QQ(pH)a

for certain constant, independent of, that we estimate heuristically as follows. Let us com-
pute©,_1,(f) andO,,(f). SinceO,,(f) is a better approximation @f it turns out that

¢~ 26" DEHIQ () — 0,1, (f)]-

Then, we obtain the expression

6= 00s(D) < 5557100s() = Oy1o (S (12)

wherev is a “safety parameter” whose role is to prevent the osmitetin the error as a function
of ¢ due to the quasi-periodic part. In every numerical computate taker = 10. For more
details on the behavior of the error we refer to [26].

Now, we comment two sources of error to take into account énitfiplementation of the
method:

e The sumsSy, (f) are evaluated using the lift rather than the map itself. Qirse, this
makes the sumsjpvj( f) to increase (actually they are of ord@¢ N?*1)) and is recom-
mended to store separately their integer and decimal paxsder to keep the desired
precision.
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¢ If the required number of iterates increases, we have to lageawf round-off errors in
the evaluation of the iterates. For this reason, when imetgmg the above scheme in
a computer, we use multiple-precision arithmetics. The matations presented in this
paper have been performed using a C++ compiler and the neuftighmetic has been
provided by the routinegouble-double and quad-double packaxf¢l17], which include
a double-doubledata type of approximately 32 decimal digits anduadruple-double
data type of approximately 64 digits.

Along this section we have required the rotation number t®logphantine. Of course, if
0 € Q equation (6) is not valid since, in general, the dynamicg of not conjugate to a rigid
rotation. Anyway, we can compute the susi$(f) and it turns out that the method works as
well as for Diophantine numbers. We can justify this behafriom the known fact that, for any
circle homeomorphism of rational rotation number, evelyitas either periodic or its iterates
converge to a periodic orbit (see [9, 18]). Then, the iteratethe map tend toward periodic
points, and for such points, one can see that the averageﬂ%;,(rﬁ) also satisfy an expression
like (7) with an error of the same order, and this is all we nggerform the extrapolation. In
fact, the worst situation appears when computing irratiostation numbers that are “close” to
rational ones (see also the discussion in subsection 4.1).

3 Derivatives of the rotation number with respect to parame-
ters

Now we adapt the method already described in section 2 irr eod®mpute derivatives of the
rotation number with respect to parameters (assuming hlegtexist). For the sake of simplic-
ity, we introduce the method for one-parameter familiesiafle diffeomorphisms, albeit the
construction can be adapted to deal with multiple pararadtee discuss this situation in re-
mark 3.3). Thus, considere I C R — f,, € Diff {(T) depending on: in a regular way. The
rotation numbers of the famil{/f,, } ., induce a functio : I — [0, 1) given by#(u) = p(f,.).
Then, our goal is to approximate numerically the derivaiwg) at a given poinj.

Let us remark that the functiofiis only continuous in th€°-topology and, actually, the
rotation number depends @nin a very non-smooth way: generically, there exist a famfly o
disjoint open intervals of, with dense union, such thétakes constant rational values on these
intervals (a so-called Devil's Staircase). Howevé(y:) is defined for any: such that/(n) ¢ Q
(see [15]).

For what refers to higher order derivatives, they are definéohany” points in the sense of
Whitney. Concretely, lef C I be the subset of parameters such thah € D (typically a Can-
tor set). Then, from theorem 2.3, there exists a family ofwgacies € J — 7, € Diff (T),
satisfying f, o 7, = 1, o Ry(,), that is unique if we fix;,(0) = zo. Then, if f, is C* with
respect tou, the Whitney derivatived/n, and DJ¢, for j = 1,...,d, can be computed by
taking formal derivatives with respect joon the conjugacy equation and solving the small
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divisors equations thus obtained. Actually, we know tHaue defineJ(C, ) as the subset of
J such that(p) € D(C, 1), for certainC' > 0 andr > 1, then the mapg € J(C, 1) — 1, and
€ J(C,7) — 6 can be extended ©° functions on/, wheres depends or andr, provided
thatd is big enough (see [32]).

As itis shown in subsection 3.1, when we extend the methoddomputing thel-th deriva-
tive of 4, in general, we are forced to select an averaging grderd and the remainder turns
out to be of orde®(1/N?~4+1). Nevertheless, if the rotation number is known to be corstan
as a function of the parameters, we can avoid the previoutations. Concretely, in this case
we can select any averaging orderindependent ofl, since the remainder is now of order
O(1/NP+1). Of course, if the rotation number is constant, then thevedvies off are all zero
and the fact that we can obtain them with better precisiomseée be irrelevant. However, from
the computation of these vanishing derivatives, we carve@nformation about other involved
objects. This is the case of many applications in which theshmdology turns out to be very
useful (two examples are worked out in subsections 4.3 é8)d 5.

3.1 Computation of the first derivative

We start by explaining how to compute the first derivative) ofFor notational convenience,
from now on we fixuo such thatd(yy) € D and we omit the dependence pnas a sub-
script in families of circle maps. In addition, let us redhlat we can write any conjugation as
n(x) =z + £(z) and denote by;fk}kez the Fourier coefficients of. Finally, we denote the
first derivatives ag’ = D .0 and¢;, = D,&;.

As we did in subsection 2.2, we begin by computing the firstayes (of the derivatives of
the iterates) in order to illustrate the idea of the methdausl we proceed by formally taking
derivatives with respect to at both sides of equation (2)

D, f"(xo) = nb" + Z &e?™k0 4 oring’ Z k&e?mikn?, Vn € Z.

kEZ kEZ

Then, notice that a factar appears multiplying the second quasi-periodic sum. Howéduse
perform the recursive sums, we can still manage to conteobtiowth of this term due to the
quasi-periodic part. Let us compute the sum

DSy (f) = D Dulf"(wo) — o)

27iko ( 1 — e?ﬂikzN&)

N(N +1) . e
- 9 QI_NZ§’;+25’/€ 1 — o2miko

k€Z+ kE€Z+

N Ne2ﬂ'ik(N+2)0 _ (N + 1)627rik:(N+1)9 + e27rik9
-/
+2mif Z k€ (1 — e2mik0)2

kEZy
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Hence, we observe that the method is still valid, even thdagh’ # 0 the quasi-periodic
sum is bigger than expected a priori. Indeed, we obtain thedmmg formula

2

N(N +1)

that is similar to equation (3), but notice that the teXry /(N + 1) has been included in the

remainder since there are oscillatory terms of the same.dPdeceeding like in subsection 2.2,
we introduceecursive sumgor the derivatives of the iterates

DuSy(f) =0+ O(1/N), (12)

Dusﬁf(f) = Du(fN(xo) — @), DuSJIi/(f) = ZD#S;?_I(f)

and their correspondingveraged sums of order

nsn= (V1) pasion

Finding an expression like (12) for > 1 is quite cumbersome to do directly, since the
computations are very involved. However, the computasatraightforward if we take formal
derivatives at both sides of equation (6). The resultingesgion reads as

D, A}
(N+p—I1+1)---(N+p)

p
DSK(f) =0+ + D, EP(N),
=1

where the new coefficients afe, A” = (-1)!(p — 1 +2)--- (p + 1) D, A; with

e?ﬂikz(lfl)a . omik(l — 1 g
DuAl - Z 1 o kON—1 <§k ( )ék ) )

= (1 627r1k9) 627r1k9

and the new remainder is

+ 1)[ eQwikpG . '
D,EP(N) = (-1 pri__ D _ . { /(1 _ o2mikNG
w ( ) ( ) N(N—i—p)kzZ: (1 e27|'1k'9)p k:( € )

. 1 — 2mikNO .
+2miké 0 <p71 e Ne2mkpN0) } .

Assuming that)(py) € D andf'(py) # 0, we can obtain analogous bounds as those of
lemma 2.4 and conclude that the remainder satigfigg”(N) = O(1/N?). Moreover, we
observe that the coefficient, AL corresponds to a term of the same order, so we have to redefine
the remainder in order to include this term. Hence, as werdehuation (7), we can arrange
the unknown terms and obtain

D, A”
D,SE(f) =6 + Z + O(1/N?),
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..........

tion (7).

Finally, we can extrapolate an approximatiotaising Richardson’s method of order 1
as in subsection 2.2. Concretely, if we compde= 29 iterates, we can approximate the
derivative of the rotation number by means of the followingiiula

p—1
= > AT DUSE, s () + O, (13)

=0

3.2 Computation of higher order derivatives

The goal of this section is to generalize formula (13) to amlmateDdH for anyd, when they
exists. Then, we assume that the family» f € Diff{(T) depend§d -smoothly with respect
to the parameter. As usual, we define the recursive sumsdakderivative and their averages
of orderp as

DZS?V(JC) = DZ(fn(ﬂﬁo) — 1p), DZSP Z Ddsp Y
and )
3 N -
pisi() = (1) oishin,

respectively. As before, we relate these sum@ﬁnﬁ by taking formal derivatives in equa-
tion (6), thus obtaining
D4AY
Do +
Z N+p—l+1) (N +p)

DISR(f) = + DIEP(N). (14)

Is immediate to check that, #{) € D and D%0(u,) # 0, the remaindeD{E?(N) is of
orderO(1/NP~4+1), so this expression makes sense if the averaging ordefiesitis- d.

Remark 3.1. Notice that, in order to work with reasonable computatiotiale and round-off
errors, p cannot be taken arbitrarily big. Consequently, there is eapical) limitation in the
computation of high order derivatives.

In addition, as it was done for the first derivative, the remdar D¢ £ (N') must be redefined
in order to include the terms corresponding to p — d + 1 in equation (14). Then we can
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extrapolatefo@ by computingV = 27 iterates and solving the linegy — d + 1)-dimensional
system associated to the following rearranged equation

DSE(f ADd9+-§:

)- (15)

Since the averaging orderand the extrapolation order— d do not coincide, let us define
theextrapolation operator of ordem for the d-derivativeas

qpm ZCmengq mei ()5 (16)

where the coefficient§c]" };—, ..., are given by (10). Therefore, according to formula (15), we
can approximate thé-th derivative of the rotation number as

Do =0, (f)+ 0@ Prdthe,

q,p,p—d

Furthermore, as explained in subsection 2.2, by compahe@pproximations that corre-
spond to2¢~! and?2¢ iterates, we obtain the following heuristic formula for tletrapolation
error:

‘Dd@ @pr d( )| = 9p— d+1|@qpp d(f) @Z 1,p,p— d(f)| (17)

where, once agaimw, is a “safety parameter” that we takemas- 10.

Remark 3.2. Up to this point we have assumed ttﬁ,‘j@ =# 0 at the computed point. However,
if we know a priori thatD7 6 = 0 for r = 1, ..., d, then equation (14) holds with the following
expression for the remainder:

27rik:p6'( 27rikN6')

1—e
_ e?ﬂikz@)p ’

D _ (_1\p+1 (p_'_l)' 0 €
DL = (i s S D

which now is of orde(1/N?*!). As in section 2, this allows us to approximd&d with the
same extrapolation order as the averaging orgefndeed, we obtain
0=Dio=0l (f)+02 "),

a9,p,p

and we observe that the ordéiis not limited byp anymore.

The case remarked above is very interesting since we knawrthay applications can be
modeled as a family of circle diffeomorphisms of fixed ratathumber. The possibilities of this
approach are illustrated by computing the Taylor expansigrnold Tongues (subsection 4.3)
and the continuation of invariant curves for the Hénon nsabéection 5.3).
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3.3 Scheme for evaluating the derivatives of the averaged s1s

Let us introduce a recursive way for computing the Slmjé‘ﬁ,(f) required to evaluate the ex-
trapolation operator (16). First of all, notice that by kmigy it suffices to computé)ff(f"(xo))
foranyn € N.

To compute the derivatives gf* = fo w) of, we proceed inductively with respect to
andd. Thus, let us assume that the derivativ&g f"~'(z,)) are known for a givem > 1 and
for anyr < d. Then, if we denote := f"~'(z), our goal is to comput®’,(f(z)) for r < d
by using the known derivatives of

Ford = 1, a recursive formula appears directly by applying the chalie

Dyu(f(2)) = 0uf(2) + 02 f(2) Du(2). (18)

This formula can be implemented provided the partial déxead, f andd, f can be numeri-
cally evaluated at the point
In general, we can perform higher order derivatives andioli following expression

DY) = Dzl(auf<z>+axf<z>0u<z>)

- D) Z( i@ sennEe)

=0

This motivates the extension of recurrence (18), sinceValuating the previous formula
we require to know the derivatives;, (9, f(z)) for r < d and D¢'(9,f(z)). We note that
these derivatives can also be computed recursively usingpsiexpressions for the maps f
andd, f, respectively. Concretely, assuming that we can eva@@g? (z) forany (i, ) € Z2
such that + j < d, we can use the following recurrences

D09, () = D@9 £ Z( )DS (8151 F(2)) DL (2).

to compute in a tree-like order the corresponding derieativio prevent redundant computa-
tions in the implementation of the method, we store (in mgmtire value of the “intermedi-
ate” derivativesD;, (.7, f(z)) so they only have to be computed one time. For this reasa, thi
scheme turns out to be more efficient than evaluating exgligiressions such as Faa di Bruno
formulas (see for example [20]). Figure 1 summarizes thersage computations required and
the convenience of storing these intermediate computtion

Remark 3.3. The above scheme can be generalized immediately to the taseeval param-
eters. For example, consider a two-parameter fangily, ji2) — f., ., € Diffy(T) whose
rotation number induces a may, ps) — 0(u1, po). Then, if0(ud, 1) € D, we can ob-

tain a similar scheme to approximaié/‘fl1 ;ge(ug,ug). In this context, note that the operator
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Dii(f(2)) —>Dd HOuf(2) —>D“32 . 9 f(2)
Dd 18f Dd 2811f A ad 11f()

Danf Ddsallf

T

0a f (2)

Figure 1:Schematic representation of the recurrent computatiorisnoged to evaluaté)ff(f(z)).

@le,léfl;—dl—dz can be defined as (16), but averaging the derivativ 1,‘,ﬂ§(f”(a?o))- Finally, if we

write z := "' (), we can compute inductively the derivatives’, (f(z)), form < d; and
[ < ds, using the following recurrences

D™ (9RR f(z)) = D™ H(QETLIR f(2)

H1sp2 \Y 1, p2,T Bisp2 \Ypt,pe,T

3 (") () piaae o

=0 r=0

if m # 0 and

DOl (azgk f(Z)) DOl 1(8z]+1kz Z))+ - (l; )DOT (azngrlf( ))DOI r()

H1,p2 N, 2, 1,2 N, 2, T H1,p2 N 2, 1,02
r=0

if [ # 0. Of course,DY,°  (9i7F  f(z)) = d,7F, ,f(z) corresponds to the evaluation of the

partial derivative of the map.

4  Application to the Arnold family

As a first example, let us consider the Arnold family of ciralaps, given by

faes:S — S

r — x4+ 21a+ esin(z), (19)

where(a,e) € [0,1) x [0, 1) are parameters arffl= R /(27Z). Notice that this family satisfies
fae € Diff£(S) for any value of the parameters. Let us remark that (19) allesvto illustrate
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the method in a direct way, since there are explicit formtdashe partial derivative8’”." f(x)
of the map, for anyi, j, k) € Z3 . In section 5 we will consider another interesting applaat
in which the studied family is not given explicitly.

For this family of maps, it is convenient to take the angleslulo 27 just for avoiding the
loss of significant digits due to the factqi®r)?—! that would appear in thé-derivative of the
map.

The contents of this section are organized as follows. ,Hirstubsection 4.1 we compute
the derivative of a Devil's Staircase, that correspond&ovariation of the rotation number
of (19) with respect tax for a fixede. In subsection 4.2 we use the computation of deriva-
tives of the rotation number to approximate the Arnold Taegyof the family (19) by means
of the Newton method. Furthermore, we compute the asyngpdapansion of these tongues
and obtain pseudo-analytical expressions for the firstficoagits, as a function of the rotation
number.

4.1 Stepping up to a Devil’'s Staircase

Let us fix the value ot € [0, 1) and consider the one-parameter familf, }.cp0,1) given by
equation (19), i.ef, := f... Letus recall that we can establish an ordering in this fasiiice
the normalized lifts satisfy,, (z) < f.,(z) for all z € R if and only if oy < ay. Then, we
conclude that the function — p(f,) is monotone increasing. In particular, fer < «, such
thatp(f.,) € R\Q we havep(f,,) < p(f.,). On the other hand, i#(f,,) € Q, there is an
interval containingy; giving the same rotation number. As the valuesvdbr which f, has
rational rotation number are dens€nl) (the complement is a Cantor set), there are infinitely
many intervals where( f,,) is locally constant. Therefore, the map— p(f,) gives rise to

a “staircase” with a dense number of stairs, that is usualligd a Devil's Staircase (we refer
to [9, 18] for more details).

To illustrate the behavior of the method we have computedlloge staircase far= 0.75.
The computations have been performed by takiofgpoints ofa € [0, 1), using32-digit arith-
metics @ouble-doubledata type from [17]), and a fixed averaging orgeer= 8. In addition,
we estimate the error in the approximatiorp¢f, ) andD,p( f.) using formulas (11) and (17),
respectively. Then, we stop the computations for a tolexaric0—2¢ and10-%, respectively,
using at mose*? = 4194304 iterates.

Let us discuss the obtained results. First, we point outahét 11.4 % of the selected
points have not reached the previous tolerance8*oiterates. Moreover, we observe that the
rotation number foB8.8 % of the points has been obtained with an error lessitbrat’, while
the estimated error in the derivatives is less than'® for 97.7 % of the points. Let us focus
in o = 0.3377, that is one of the “bad” points. The estimated errors forrttation number
and the derivative at this point are of ordér'® and10~?, respectively. We observe that, even
though this rotation number is irrational (the derivativeed not vanish), it is very close to the
rationa|105/317, Since‘?)l? . @2279(f0.3377) — 105‘ ~ 42107,
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Figure 2: Devil's Staircasen — p(f.) (top-left) and its derivative (top-right) for the Arnoldrfaly with
e = 0.75. The plots in the bottom correspond to some magnificationiseofop-right one.

In figure 2 we showy — p( f,) and its derivativer — D,p( f) for those points that satisfy
that the estimated error is less theim'® and 1071, respectively. We recall that the rational
values of the rotation number correspond to the constaatvals in the top-left plot, and note
that by looking at the derivative (top-right plot) we canuadize the density of the stairs better
than looking at the staircase itself. We remark that botlseémational rotation numbers and
their vanishing derivatives have been computed as well dgiDiophantine case.

Moreover, at the bottom of the same figure, we plot some magtidins of the derivative
to illustrate the non-smoothness of a Devil's Staircasenddetely, the plot in the bottom-left
corresponds td0° values ofx € [0.2, 0.3] using the same implementation parameters as before.
Once again, if the estimated error is bigger than'® the point is not plotted. Finally, on the
right plot we give another magnification fo6° values ofa € [0.282, 0.292] that are computed
with p = 7, and allowing at most*! = 2097152 iterates. In this case, the points that correspond
to the branch in the left (i.e. close to= 0.2825), are typically computed with an erre0—°.
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4.2 Newton method for computing the Arnold Tongues

Sincef,. € Diff?(S), we obtain a functionie, €) — p(a, €) := p(fa,-) given by the rotation
number. Then, the Arnold Tongues of (19) are defined as tedset {(«,¢) : p(a,e) = 0},
for anyf € [0, 1). It is well known that ifd € Q, thenT, is a set with interior; otherwisdy is
a continuous curve which is the graph of a functior> «(¢), with «(0) = 6. In addition, if
0 € D, the corresponding tongue is given by an analytic curve [&&.

Using the method described in subsection 2.2, some Arnofdjdes’;, of Diophantine
rotation number, were approximated in [26] by means of tleasemethod. Now, since we
can compute derivatives of the rotation number, we are allegeat the computations using a
Newton method. To do that, we fixe D and solve the equatigi{«, €) — 6 = 0 by continuing
the known solutior{f, 0) with respect te. Indeed, we fix a partitiofe; } ;o . x 0f [0, 1), and
compute a numerical approximatia for everya(e;).

To this end, assume that we have a good approximation to a(e;_1) and let us first
compute an initial approximation fer(< ;). Taking derivative in the equatigria(c),c) —60 = 0
we obtain

.....

Dap(a(e),e)d/(€) + Depla(e),e) = 0. (20)
Thus, we can approximaté(s,_;) by computing numerically the derivativés,p and D, p at
(aj_1,€-1). Hence, we obtain an approximated vahﬁ@ =aj_; +d(g51)(gj —gj) for
a(e;). Next, we apply the Newton method

(n4+1) _ (n) ( )
QG TN #
Dap(e;”, &)

and stop when we converge to a valyethat approximates(e;).

The computations are performed using 64 diggsadruple-doubledata type from [17])
and, in order to compare with the results obtained in [26],s&kect the same parameters in
the implementation. In particular, we take a partitign= j/K with K = 100 of the interval
[0,1), we select an averaging order= 9 and allow at mosp?* = 8388608 iterates of the
map. The required tolerances are taken@s* for the computation of the rotation number
(we use (11) to estimate the error) arid3° for the convergence of the Newton method. Let us
remark that the computations are done without any presttidderance for the computation of
the derivatived,p and D.p, even though we check, using (17), that the extrapolaticiomne
correctly.

Let us discuss the results obtainedfoe (1/5 — 1)/2. As expected, the number of iterates
of the Newton method is less than the ones required by thensewethod. Concretely, we
perform from2 to 3 corrections as we approach the critical vatue 1, while using the secant
method we need at least 4 steps to converge. However, wevebeat the computation of
the derivatived, p and D.p fails if we takes = 1, even though the secant method converges
after 18 iterations. This is totally consistent since wewrbat f, ; € Diff } (T) but is still an
analytic map, and that the conjugation to a rigid rotatioorky Holder continuous (see [8, 34]).
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Figure 3:Left: Graph of the derivatives— D,p(a(c),e) ande +— D_p(a(e), ) alongTy, ford = (v/5—1)/2.
The solid curve corresponds (®,p — 1) and the dashed one (20 - D.p). Right: error (estimated using (11)) in
log;,, scale in the computation of these derivatives.

In figure 3 (left) we plot the derivatives— D,p(a(¢),e) ande — D_.p(«(e), ) evaluated
on the previous tongue. We observe that the derivatives bega normalized in order to fit
together in the same plot. On the other hand, in the rightywéoshow the estimated error in
the computation of these derivatives (obtained from equdi7)). In the worst case,= 0.99,
we obtain errors of ordei0—2" and10~% for D, p andD.p, respectively.

4.3 Computation of the Taylor expansion of the Arnold Tongus

As we have mentioned in subsection 4.29 i€ D then the Arnold Tongu&j of (19) is given
by the graph of an analytic functianc), for e € [0, 1). Then, we can expandat the origin as

a'(0)  a"(0) , oD (0)
TR T T

and the goal now is to approximate numerically the terms is ¢éxpansion. We know that
every odd derivative in this expansion vanishes, so theofaxpansion can be written in terms
of powers ins? (see [27] for details). However, we do not use this symméiny,instead we
verify the accuracy of the computations according to thigrmation (see the results presented
in table 1).

First of all, we want to emphasize that the direct extensioth@® computations performed
in the previous subsection is hopeless. Concretely, asavi@dapproximatingy'(¢), we could
take higher order derivatives with respecttat equation (20) and, after evaluating at the point
(o, €) = (0,0), isolate the derivatives™(0), 1 < r < d. For example, once we know/(0),
the computation of¢”(0) would follow from the expression

ale) =0+ el + O™, (21)

Dapla(e).2)a"(e) + (szm(e), )0/ (€) 4+ 2D pla(e), e>)a/<e> L D2plale)e) =0, (22)
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that requires to compute the second order partial deresitof the rotation number (see re-
mark 3.3). Then, by induction, we would obtain recurrentrfalas to compute the expan-
sion (21) up to orded. However, this approach is highly inefficient due to thedwaling rea-
sons:

e As discussed in subsection 3.2, using this approach wenaited to computer™ (0) up
to orderp— 1, wherep is the selected averaging order. Of course, the precisionf0)
decreases dramatically whemncreases to.

e Note that, for the Arnold family, we can write explicit®,, (/7 (= ))|(9 0) = n. Then, if
we look at the formulas in remark 3.3, we expect the te@gg (20))l0,0) to grow
very fast, since they contain factors of the previous exgoes Actually, we find that
these quantities depend polynomially onwith a power that increases with the order
of the derivative. On the other hand, we expect the smﬁg‘,S%( fa,:) to converge, and
therefore many cancelations are taking place in the cortipota Consequently, when
implementing this approach we unnecessarily lose a highuatmad significant digits.

e Even if we could comput®””’ 5p(9, 0) up to any order, it turns out that the generalization
of equation (22) for computlng(’“>(0) is badly conditioned. Concretely, the derivatives
of the rotation number increase with the order, giving risa big propagation of errors.
Actually, the round-off errors increase so fast that, ircpce, we cannot go beyond order
5 in the computation of (21) with the above methodology.

Therefore, we have to approach the problem in a different Vi@mncretely, our idea is to
use the fact that the rotation number is constant on the ®sngmbined with remark 3.2. To
this end, we consider the one-parameter farfifly.) . }-c(o,1) of circle diffeomorphisms, where
the graph ofa parametrizes the tongug. For this family, we havey(f,.).) = ¢ for any
e € [0,1), and hence, from remark 3.2 we read the expression

0= 04,,(fawe) + 0O, (23)

q9,p,p

wherep is the averaging order, we uge iterates an(Bd ,» Is the extrapolation operator (16)
that, in this case, depends on the derivatives(@af) up to orderd With this idea in mind, the
aim of the next paragraphs is to show how we can isolate inaitlgthese derivatives at= 0
from the previous equation.

Let us start by describing how to approximate the first déikiea’ (0). As mentioned above,
we have to writed,  (fa(e).c)|-=0 In terms ofa’(0) and we note that, by linearity, it suffices to
work with the expressiod). (/7 (zo))|-=0. To do that, we write

f(z) =2ma(e) + g(x), g(x) = x + esin(x),
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in order to uncouple the dependencecoim the circle map. Observe that, as usual, we omit the
dependence on the parameter in the maps. Using this nqtetsonave:

D.(f(w9)) = 2ma’(e) + d-g(x0),
De(f*(x0)) = 2ma/(e) + -g(f (o)) + Bzg(f (x0)) De(f (0))

= 2#04’(5){1 + (%g(f(xo))} + 0:9(f(0)) + 029(f(20))0-g(x0).

Similarly, we can proceed inductively and split the delix@of then-th iterate,D.(f™(xo)),
in two parts, one of them having a factdra’(<). Moreover, if we set = 0 in D.(f"(xo)),
then it is clear that, with the exception of the previousdadhe resulting expression does not
depend on'(0) but only ona(0) = 6.

Now, we generalize the above argument to higher order des@s| Let us assume that the
valuesa’(0), ..., a4=1(0) are known, and isolate the derivatin€’ (0) from D4 ( £ (20))|.—o.
We claim that the following formula holds

DZ(f™(w0))]e=0 = 2mna®(0) + g2, (24)

where the factoRrn comes from the fact thal,g|.—o = 1, andg? := {g?},.cn is @ sequence
that only requires the known derivative§’(0), for » < d. Concretely, let us obtain the term
g2 of the sequence by induction with respectitdOnce again, it is straightforward to write

DY) = D (2m'<e> +3ag(f"1($0))+am9(f"1($0))De(f"1($0)))
— 200 ®(e) + D (ug(f (o))

+3 (1) Pt a0t )

We note that the term = 0 in this expression contain®?(f"~1(z)). Then, if we set = 0
and replace inductively the previous term by equation (24)find that

gl = DIM0.9(f" N(z0))|e=0
a1

3 (d; 1) DZ(@eg (1" o) D (7 (o) emo + gy

r=1

and let us remark that, as mentioned, this expression ipertent ofx(@ (0).

We conclude the explanation of the method by describing ¥tegolation process that
allows us to approximate these derivatives. To this endniveduce an extrapolation operator
as (9) for the sequengg. Indeed, we extend the recursive sums (4) and the averagesi(S)
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d 2ra(d) (0) el es

0  3.88322207745093315469373125992539191526933976896929014776434 - -
1  5.289596087298835974306750728481413682115174013833370576802610 %4  2.107°0  5.10-5¢
2 -1.9440036678010321973251417129534706827928419886587773893360010 ! 71050 2.10-53
3 6.353866339253870417285870622952031667026712100318874380949910—52  3.1048  6.10~52
4 9.865443989835495993231949890783720243438883468309707990056210 1 210747 510751
5  4.733853534850495777271526084574485398105534796328554405263310~ 49  2.107%5 5.10*°
6 -1.4518741818640209634160538022292717311862488299665545212404101 6104  1.10748
7 -1.9867686746429255140962490835254726017341042316804098209993 047  7.1044  2.10~%7
8  1.673363822376717001078781931538386967523434036%9992539083323101 810742 210745
9  -5.5590603628255398780391370083260388420798773360651866007318.0 44 2.1040 61044
10 1.974679484744669888248485084754876332689468886828431473261510% 210739 410~
11  4.019718902900154426125206309959051888079502328131883641483510— 42  1.10738 41042
12 3.594891944526889578314748272295019294147597686884774285059410° 6-1037 -

13 -4.123166034989923032518732576715313341946053860353624801082110—39  2.10735  4.10~39
14 2.1986028214355681538835670543833947675673712889236305564433710° 3.10733

15  1.307318024754974551233761145122558811543944298883751363718210~3° 610732  1.1073°
16 -4.0092572140404278999400436565519467003002363232114705187412010 4.10—31 -
17  -6.64163899560549220418411443863668327245289910808224086038520 33  4.10-29  7.10733
18  -2.58255989372365942752261027597769702439691608827546432731100'2 1.10—27 -
19  -4.3662352642813582392424287882360905773285108386329987344518030  2.10-26  4.10730

Table 1:Derivatives of2ra(e) at the origin ford = (v/5 — 1)/2. The columre; corresponds to the estimated
error using (11). The columey, is the real error, that for even derivatives is computed cning with the analytic
expressions (25) and (26) using the coefficients from table 2

for this sequence, thus obtaining

P
@q,p(gd) = Z C? gq—pﬂ' (gd)-
i=0

J

Recalling thatD40 vanishes, we obtain from equation (23) that

O pp()le=0 = 27D (0) + O, (¢7) = O(2~#+D1).
Therefore, the Taylor expansion (21) follows from the sewjiaécomputation ofv(¥)(0) by
means of the expression

0 (0) = ~ 5O, (g") + O(2-0)

Let us discuss some obtained results. The following contipuisare performed usingt
digits (Quadruple-doublelata type from [17]). The implementation parameters arecsatl as
p = 11, ¢ = 23 and any tolerance is required in the extrapolation erroidwis estimated by
means of (11)).

In table 1 we show the computationsfa(?(0), for 0 < d < 19, that correspond to the
Arnold Tongue associated to= (/5 — 1)/2.

In addition, we use the above computations to obtain forsyul@pending o, for the
first coefficients of (21). To make this dependence expheit,introduce the notation,. (6) :=
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a?1)(0), where(s, a(c)) parametrizes the Arnold Tongdg. Analytic expressions for these
coefficients can be found, for example, by solving the coafwy equation of diagram (1)
using Lindstedt series. However, the complexity of the sgiehmanipulations required for
carrying the above computations is very big. In particullag first two coefficients, whose
computation is detailed in [27], are

01 (0) = cos(mf) 3 cos(4mh) + 9

= m, 042( ) = _2571'( SiD(W@))Q SiIl(Qﬂ-Q). (25)

From these formulas and a heuristic analysis of the smalalis equations to be solved for
computing the remaining coefficients, we make the follongogss for,.(9):
P(9)

a(0) = . or—1, . or—2 . 2 .
2607 (sin(7f))”  (sin(270))” -+ (sin((r — 1)76))” sin(rrh)

,  (26)

wherec(r) is a natural number an8,. is a trigonometric polynomial of the form

dr
P.(0) = Z a; cos(jmh),
j=1

with integer coefficients and degrée= 2""! — r — 2 that coincides with the degree of the de-
nominator. In addition, the coefficients vanish except for indexgssuch thatj = d, (mod 2).

In order to obtain the coefficients @f., we have computed the Taylor expansions of the
Arnold Tongues for 120 different rotation numbers. Coralsetwe have selected the quadratic
irrationalst, , = (/0> + 4b/a—10b)/2, for 1 < a < b < 5, that have periodic continued fraction
given by6,;, = [0; cf,\b]. Then, we fix the value of(r) and perform minimum square fit for the
coefficientsa;. We validate the computations if the solution correspondsateger numbers,
or we increase(r) otherwise. In order to detectdf; € Z, we require an arithmetic precision
higher than 64 digits. Then, these computations have bepleimented in PARI-GP (available
at [1]) using 100-digit arithmetics.

Following the above idea, we have obtained expressionbéanéxt three coefficients. Con-
cretely, we find the valueg3) = 10, ¢(4) = 19, andc¢(5) = 38. On the other hand, the corres-
ponding polynomials$’. are given in table 2. The comparison between these pselaytiaal
coefficients and the values computed numericallyfer (v/5 — 1)/2 is shown in columm, of
table 1, obtaining a very good agreement. Let us observettaatoefficients of’, grow very
fast with respect te, and the same occurs 0r). Indeed, the values that correspond-te: 6
are too big to be computed with the selected precision, dtieettoss of significant digits.

Finally, we also compare the truncated Taylor expansiotistive numerical approximation
of the Arnold Tongue fof = (v/5 — 1)/2, computed using Newton method. To this end, we
perform the computation of subsection 4.2 foe [0, 0.1], usingquadruple-doublgrecision,
an averaging order = 9 and requiring tolerances af—*? for the computation of the rotation
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P Py

j Qj j Q. j Qj
1 -105 0 -360150 14 -177625
3 825 2 40950 16 -14770
5 -465 4 469630 18 34755
7 -315 6 91140 20 49735
9 120 8 -378700 22 -53235
11 -60 10 67165 24 18900

12 215355 26 -3150

ps

j a; J a; J a;
1 33992959770| 21 46136915685 41 6059661930
3 -96457394880 23 -28888862310 43 -4422651975
5 107920471050 25 23182141500 45 1217211030
7 -47792873520 27 -2469508681% 47 651686490
9  -1102024980| 29  7313756940| 49 -826836885
11 3276815850 | 31 14354738685 51 404729640
13 -38366469540 33 -20342636055 53 -112651560
15 97991931555 35 13721635620 55 17781120
17 -7414402212Q 37 -4249642635| 57 -1270080
19 -1168763841Q 39 -3152375100

Table 2:Coefficients for the trigonometric polynomialy, P, and Ps.

number, andl0—*° for the convergence of the Newton method. In all the comjmrtat we
allow at most2? iterates of the map. Then, in figure 4 we compare the apprdguitangue
with the Taylor expansions truncated at ord&r$, 6, 8 and10.

5 Study of invariant curves for planar twist maps

In this last section we deal with a classical problem in dyiwaisystems that arise in many
applications: the study of quasi-periodic invariant cgria@ planar maps. Concretely, we focus
on the context of so-called twist maps, because in this casean easily make a link with
circle diffeomorphisms. First of all, in subsection 5.1 veenalize the problem and fix some
notation. Then, in subsection 5.2 we adapt our methodologpmpute invariant curves and
their evolution with respect to parameters by means of thetble method. Finally, in sub-
section 5.3 we follow the ideas of subsection 4.3 and comasyeptotic expansions relating
initial conditions and parameters that correspond to iawércurves of fixed rotation number.
As an example, we study the neighborhood of the elliptic fixeiht for the HEnon map, which
appears generically in the study of area-preserving maps.
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Figure 4: Comparison between the numerical expressionsa(f) for the Arnold TongueTy, with

9 = (/5 —1)/2, obtained using the Newton method and the truncated Tayfmaresion (21) up to ordef. Con-
cretely we plot, as a function ef the difference irflog,, scale between these quantities. The curves from top to
bottom correspond, respectively,de= 2. 4, 6,8 and10.

5.1 Description of the problem

Let A = T x I be the real annulus, whereis any real interval, that can be lifted to the strip
A =R x I using the universal cover: A — A. LetalsoX : A — RandY : A — I denote
the canonical projection¥ (z,y) = x andY (z,y) = v.

In this section, we consider diffeomorphisms: A — A and their liftsF : A — A
given by F o 7 = 7 o F. Note that the lift is unique if we requir& (F(0,y,)) € [0,1) for
certainy, € I, so we omit the tilde in the lift. In addition, we restrict toaps satisfying that
J(X o F')/0y does not vanish, a condition that is caltedst

Assume that’ : A — A is a twist map having an invariant curg homotopic to the circle
T x {0}, of rotation numbe# € R\Q. Concretely, there exists an embeddingR — A, such
thatT' = v(R), satisfyingy(x + 1) = y(z) + (1,0) for all z € R, and making the following
diagram commute

FCA—F>FCA

‘ ‘ Ply(x)) = 1(a + ). (27)
R——" R

Sincel’ is a twist map, the Birkhoff Graph Theorem (see [11]) ensthiatl’ is a Lipschitz
graph over its projection on the circlex {0}, and hence the dynamics dninduces a circle
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homeomorphismy simply by projecting the iterates, i.efy(X(y(z))) = X(F(y(x)). We
observe that, if” and~ areC"-diffeomorphisms, therfr € Diff | (T).

From now on, we fix an angle, € T and identify invariant curves with pointg € 7. Then,
if (z0,y0) belongs to an invariant cunig we also denote the previous circle mapfgsinstead
of fr. Of course, the parameterizatigms unknown in general, so we do not have an expression
for f,,. But we can evaluate the orldit,,,y,) = " (z¢, ) and consider,, = f; (zo). We
recall that this is the only that we need to compute numdyitiaé rotation numbe# using the
method of{27] (reviewed in subsection 2.2).

Remark 5.1. If the mapF does not satisfy the twist condition, their invariant cus\age not
necessarily graphs over the circlé x {0}. Of course, ifl" is an invariant curve off’, its
dynamics still induces a circle diffeomorphism, even thoiig) construction is not so obvious.
Since the non-twist case presents another kind of diffesiind has its own interest, we plan
to adapt the method to consider the general situation in asgbent work [22].

If F'is aC"-integrable twist map, then there i€&family of invariant curves of*' satisfying
(27), andy, — f,, is a one-parameter family iDiff’ (T). In this case, we obtain@ -function
yo € I — p(f,,). Of course, this is not the general situation and, actualtydo not expect
this function to be defined for evegy € I. Nevertheless, in many problems we have a family
of invariant curves defined on a Cantor subget 7 having positive Lebesgue measure and
we still have differentiability ofo( f,,) in the sense of Whitney. For example, if the mé&ps
a perturbation of an integrable twist map that is sympleatisatisfies the intersection condi-
tion, KAM theory establishes (under other general asswmnpjithe existence of such a Cantor
family of invariant curves (we refer to [6, 23]).

For practical purposes, even if a pointy, yo) € A does not belong to a quasi-periodic
invariant curve, we can compute the orhjt= f;' (xo) = X (F" (70, 1)), €ven thouglf,, is not
acircle diffeomorphism. Then, we can also compute the gestaumss?, ( f,, ) of these iterates
but we cannot guarantee in general tBgt,(f,,) converges whegy — oco. Nevertheless, if
(x0, yo) is an initial condition close enough to an invariant curv®afphantine rotation number
g, we expecH,,( f,,) to converge to a number close#pdue to the existence of neighboring
invariant curves for a set of big relative measure (that Iledacondensatiorphenomena in
KAM theory). On the other hand, ifz,,yo) belongs to a periodic island, then we expect
©,,(fy,,) to converge to the winding number of the “central” periodibit Finally, we recall
that the Aubry-Mather theorem (we refer to [11]) states thags orbits of all rotation numbers,
so it can occur that the method converggg:if, yo) corresponds to a periodic orbit or to a ghost
curve (Cantori).

On the other hand, in order to approximate the derivativésefotation number by means
of ©¢  4(fy), we have to compute the derivatives of the iteratesHowever, as we do not
have an explicit formula for the induced mgp, the scheme for computing the derivatives of
the iterates is slightly different from the one presentesduhbsection 3.3. Modified recurrences
are detailed in the moment that they are required.
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5.2 Numerical continuation of invariant curves

Let us considery : A C R — F, a one-parameter family of twist maps ofy that induces
a function(a,yo) € U C A x I — p(fa,,) differentiable in the sense of Whitney. In this
situation, we can compute the derivatives of this functiantiie points where they exist) by
using the method of section 3. Our goal now is to use thesead®es to compute numerically
invariant curves off,, by means of the Newton method, similarly as we did in subsecti2
for computing the Arnold Tongues.

Concretely, lef’,, be an invariant curve of rotation numbee D for the mapfF,,,. Then,
given anya close toag, we want to compute the cuntg,, invariant under,,, having the same
rotation number. Once we have fixed an anglec T, we identify the invariant curvg,, by the
point(zo, y(a)) € I',. Then, our purpose is to solve, with respecy tthe equation(f,,,) = ¢
by continuing the known solutiofivy, y(ag)) € A x I. We just remark that, when solving this
equation by means of the Newton method, we have to prevembosfalling into a resonant
island, where the rotation number is locally constant adainrs point.

Now, in order to approximate numerically, p and D, p, we have to discuss the computa-
tion of the derivatives of the iterates, i.B,(x,) andD,, (v,), wherexr,, = f7  (xo). Omitting
the dependence on the parametdn the family of twist maps, we denot&, = X o F' and
5, =Y o I, and we obtain the recurrent expression

Dyo(xn) = a’cFl(anl)Dyo (Tn—1) + ayFl(anl)Dyo(ynfl)a (28)

wherez, := (z,,y,). FurthermoreD,, (y,,) follows from a similar expression replacirg by
F,. According to our convention of fixing, € T, the computations have to be initialized by
D, (zo) = 0 andD,,(yo) = 1. Analogous formulas hold fab,,(z,,):

Da(xn) - aaFl(Zn—l) + aa:Fl(Zn—l)Da(‘rn—l) + ayFl(Zn—l)Da(yn—1)7

and similarly forD,, (y,,) usingF». The recursive computations are now initializedBy(x,) =
0 andD,(yo) = 0.

Let us illustrate the above ideas studying the well knowndtéfamily, that is a paradig-
matic example since it appears generically in the study eifdale-node bifurcation. In Carte-
sian coordinates, the family can be written as

[ u cos(2rar)  —sin(27ma) u

Ha: ( v ) — ( sin(2ra)  cos(2mar) v—u? )’ (29)
Note that the origin is an elliptic fixed point that corresgerio a “singular” invariant curve.
We can blow-up the origin if, for example, we bring the maphe annulus by means of polar
coordinates: = arctan(v/u) andy = v/u? + v2, thus obtaining a familp € A = [0,1) — F,
of mapsF, : S x I — S x I, given by
sin(z + 2ra) — cos(2ra)y(cos(z))?
cos(z + 2ma) + sin(2mwa)y(cos(z))?
YoF, = yy1—2y(cos(z))?sin(x) + y2(cos(z))4. (31)

XolF, = arctan

: (30)
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Figure 5: Left: Numerical continuation o, (horizontal axis) with respect ta (vertical axis) of the invariant
curve of rotation numbet = (1/5 — 1) /2 for the Henon map (29). Right: Differencelisg, , scale between ()

in the left plot and its truncated Taylor expansion (32) uptiderd (see table 3). The curves from top to bottom
correspond, respectively, tb= 2, 4,6 ands.

We remark that, analogously as we did in section 4, in thidiegmon we consider angles
in S = R/2xZ in order to avoid factor@r that would appear in the derivatives (specially in
subsection 5.3 when we consider higher order ones).

Albeit it is not difficult to check that the twist conditia X o F) /0y # 0 is not fulfilled in
these polar coordinates, we can perform a close to the tgemange of variables to guarantee
the twist condition except for the values = 1/3,2/3. Then, it turns out that there exist
invariant curves of-, in a neighborhood db x {0}, whose rotation number tend toand are
“close to the identity” to graphs ové&rx {0}. However, for values of close tol/3 and2/3,
meandering phenomena arises (we refer to [10, 29]), i.erethre folded invariant curves (see
remark 5.1).

As an example, we study the invariant curves of rotation nentib= (/5 —1)/2 by contin-
uing the initial valuesy, = ¢ andy, = 0, i.e, the curveS x {0}. The computations have been
performed by using théouble-doublelata type, a fixed averaging ordet= 8 and up t2?3 it-
erates of the map, at most. As usual, we estimate the errbeirotation number by using (11),
and we validate the computation when the error is smaller tha*®. For the Newton method,
we require a tolerance smaller thadr > when comparing two successive computations. Fi-
nally, we do not require a prescribed tolerance in the coatput of the derivative®),,p and
D,,p, but the biggest error in their computation is less tat*'.

The resulting curve in the spa¢e A is shown in figure 5 (left). During the continuation, the
step ina is typically taken betweeh0—* and10~3, but falls to10~° when we compute the last
point (o, y(«)) = (0.5917905628, 0.8545569509). In figure 6 we plot the graph corresponding
to this invariant curve and its derivative. We observe teagn though the curve is still a graph,
this parameterization is close to have a vertical tangesmygur approach is not suitable for
continuing the curve. However, since the fractalizatiothefcurve has not occurred, we expect
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that it still exists beyond this point. To continue the famdf curves in this situation it is
convenient to use another approach (see remark 5.1).

5.3 Computing expansions with respect to parameters

In the same situation of subsection 5.2, our aim now is to is&ariational information of the
rotation number to compute the Taylor expansion at the mgifigure 5 (left). Notice that in
the selected example(0) = 0, so we work with the expansion of the functiefiy,) rather
thany,(«).

In general, if(xo, y3) is a point on an invariant curve of rotation numigeior a twist map
F,+, then we consider the expansion

" (yp)

o1 (Yo — Yo + e, (32)

alyo) = " + o' (y5) (Yo — y5) +
that corresponds to the value of the parameter for whighy,) is contained in an invariant
curve of F,,,) having the same rotation number. We know that i D and the familyF,
is analytic, then (32) is an analytic function arougid Once again, during the rest of the
section, we omit the dependence on the parametethe family of twist maps, and we denote
Fi=XoFandF, =Y oF.

Like in subsection 4.3, we use that the family — foo) € Diff(S) induced by

Yo — Fiy) has constant rotation number, together with remark 3.2.c@bely, for any in-
tegerd > 1 we have

0=0j (fa(yo),yo) + O(2i(p+1)q)a (33)

a9,p,p

where@jpm is the extrapolation operator (16). We observe that thea/afl@jp’p( fy) at the
point y; only depends on the derivatives” (y;) up tor < d. We use this fact to compute
inductively these derivatives from equation (33). To achithis, we have to isolate them from
Djo (2n)|yo—y: foranyd > 1, as we discuss through the next paragraphs.

The following formula generalizes (28):

d—1

Di(e) = 3 (7 ) Db a

=

+DJ (0uF1(20-1)) Dl (@n—1) + D? (0, Fi(zp—1)) Dt ? (yn_l)}, (34)

while a similar equation holds dejO (yn) replacingF; by F,. Moreover, as in subsection 3.3,
we compute the derivativel; of 9,Fi(z,-1), 9.F1(2,-1) andd, F1(z,-1) by means of the
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Figure 6: Left: Invariant curve of (29) of rotation numbér= (/5 — 1)/2 corresponding to the last computed
point in figure 5 (see text) expressed as a graph y on the annulu§ x I. Right: Derivative of the left plot
computed using finite differences.

following recurrent expression

r—1
r m r—1 j m r—j
D (T Fy(z)) = Z( . ){Dzm(as:;%;’ F(zr)) a9 (4o)

= N\ J
+D3 (OFLL M F (2,1)) Drd (21)

+Di;0<a§:23§+lﬂ»(zn_n)D;;j(yn_l)},

which only requires to evaluate the partial derivativeg'oind F;, with respect tax, = andy.

Using the above expressions, we reproduce the inductivereegt of subsection 4.3. Let
us assume that the value4y;), . .., o'V (y#) are known. Then, we observe that if we set
Yo = 5 anda = o in equation (34), the only term containing the derivativé (y;) is the one
corresponding tg = 0. By induction, it is easy to find that

Dzo ($n>|yo:y3 = X;zi a(d)(yé> + X;f, Dzo (yn>|yo:y0 = yg ol (?JS) + ygv

where the coefficients?, x¢, Y4 and )¢ are obtained recursively and only depend on the
derivativesa ™) (1), with » < d. Concretely X4 and X'¢ satisfy

X! = (0aFi(zn-1) + 0o F1(20-1) Xy 4 0y F1 (20-1) V1) lyo—ue

) {D;O<aaF1<zn_1>>a<d-j><yo>

d—1
) A . d
N (L IO IR PEL AR ol
j=1

)
Yo=Y,

+D] (0u i (20-1)) D7 (20-1) + D3 (0, F (20-1)) Dl (Y1) })
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2ra(D(0) el
3.8832220774509331546937312599254 -
2.9215929940647956972904287221815%° 610727
-3.9914536995187621201317645570286' 610~ 2%
-7.2312013917244657534375078612123'  5.10~2%7
-1.4570409862191278806067261207843  9.10~27
2.0167847130561842764416032369501 4.10-26
1.2357011948811946999538300791232 1.10~%
-9.1717201199029959021691212417964 21072
-3.0832824868383111456060167381447  4.10~24
-7.2541251340271326844826925983928  2.10-22

O©COoO~NOOOUITA, WNPEFP O

Table 3:Derivatives of2ra(yo) at the origin ford = (v/5 — 1)/2. The columre, corresponds to the estimated
error using (11).

and similar equations hold fgv? andji;f replacingF; by F,. These sequences are initialized
as

X(} = ?E'Ol = y& =0, JAié =1, and Xgl = ?E'gl = yg = :)A)g =0, ford> 1.

Finally, if we evaluate the extrapolation operatyy, for the sequence¥? = {X?},_; n
andx? = {Xd}n 1....~, then we obtain from (33) the following expression

7777

G

aD(y;) = —m
4P

+ @(gf(pﬂ)q).

Now, we apply this methodology to the Hénon familye A = [0,1) — F,, given by (30)
and (31). In particular, we fix, = 0 and compute the expansion (32)ygt= 0 corresponding
to invariant curves of rotation number = 6 = (v/5 — 1)/2.

Observe that the derivatives of this map are hard to compuyiécély, so we have to intro-
duce another recursive scheme for them. Moreover, in oedieroe the amount of computations,
we use that the iterates @, 0) arez,, = 27né andy,, = 0.

We detail the computations &f;,7 (Y o F,) at the point(a, z,y) = (6, z,,0), while the
derivatives ofX o F,, satisfy completely analogous expressions. Let us intredoe function

g(,y) =1 — 2y(cos(x))? sin(w) +y*(cos(x))",

so we can writeY” o F,,(z,y) = y+/g(z,y). First, we observe that for any € Q we have
okLm(yg5)|,—o = 0 providedk # 0 or m = 0. Otherwise, the required derivatives can be

o,T,Y

computed by means of the following recurrent expressions

o () = 05 (g +ZWZ()< Doyt 0
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and

I m—1
m( S l m—1 2,7 s— —i,m—j
o) =5 X () (") o ek o)
i=0 j=0
Finally, we observe that the derivativégljvm*j (9) can be computed easily by expanding
the function as a trigonometric polynomial

2
glx,y)=1-— %(sin(&%’) + sin(a:)) + % <g + cos(2z) + 3005(49@)).

The computations are performed by usatmuble-doublelata typep = 7 and2?! iterates,
at most. We stop the computations if the estimated erroisistleani0-2°. The derivatives of
the expansion (32) and their estimated error, are giverbie & Finally, in order to verify the
results, we compare the truncated expansions of the cutveti numerical approximation
computed in section 5.2. The deviation is plottedbigy,, scale in figure 5 (right).
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