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Abstract

In this paper we present a numerical method to compute derivatives of the rotation
number for parametric families of circle diffeomorphisms with high accuracy. Our me-
thodology is an extension of a recently developed approach to compute rotation numbers
based on suitable averages of the iterates of the map and Richardson extrapolation. We
focus on analytic circle diffeomorphisms, but the method also works if the maps are dif-
ferentiable enough. In order to justify the method, we also require the family of maps to
be differentiable with respect to the parameters and the rotation number to be Diophantine.
In particular, the method turns out to be very efficient for computing Taylor expansions of
Arnold Tongues of families of circle maps. Finally, we adaptthese ideas to study invariant
curves for parametric families of planar twist maps.
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1 Introduction

The rotation number, introduced by Poincaré, is an important topological invariant in the study
of the dynamics of circle maps and, by extension, invariant curves for maps or two dimensional
invariant tori for vector fields. For this reason, several numerical methods for approximating
rotation numbers have been developed during the last years.We refer to the works [3, 4, 8, 13,
14, 21, 24, 31] as examples of methods of different nature andcomplexity. This last ranges from
pure definition of the rotation number to sophisticated and involved methods like frequency
analysis. The efficiency of these methods varies depending if the approximated rotation number
is rational or irrational. Moreover, even though some of them can be very accurate in many
cases, they are not adequate for every kind of application, for example due to violation of their
assumptions or due to practical reasons, like the required amount of memory.

Recently, a new method for computing Diophantine rotation numbers of circle diffeomor-
phisms with high precision at low computational cost has been introduced in [26]. This method
is built assuming that the circle map is conjugate to a rigid rotation in a sufficiently smooth way
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and, basically, it consists in averaging the iterates of themap together with Richardson extra-
polation. This construction takes advantage of the geometry and the dynamics of the problem,
so it is very efficient in multiple applications. The method is specially suited if we are able to
compute the iterates of the map with high precision, for example if we can work with computer
arithmetic having a large number of decimal digits.

The goal of this paper is to extend the method of [26] in order to compute derivatives of the
rotation number with respect to parameters in families of circle diffeomorphisms. We follow
the same averaging-extrapolation process applied to the derivatives of the iterates of the map.
To this end, we require the family to be differentiable with respect to parameters. Hence, we are
able to obtain accurate variational information at the sametime that we approximate the rotation
number. Consequently, the method allows us to study parametric families of circle maps from
a point of view that is not given by any of the previously mentioned methods.

From a practical point of view, circle diffeomorphisms appear in the study of quasi-periodic
invariant curves for maps. In particular, for planar twist maps, any such a curve induces a circle
diffeomorphism in a direct way just by projecting the iterates on the angular variable. Then,
using the approximated derivatives of the rotation number,we can continue numerically these
invariant curves with respect to parameters by means of the Newton method. The method-
ology presented is an alternative to more common approachesbased on solving numerically
the invariance equation, interpolation of the map or approximation by periodic orbits (see for
example [5, 7, 12, 28]). Furthermore, using the variationalinformation obtained, we are able to
compute the asymptotic expansion relating parameters and initial conditions that correspond to
curves of fixed rotation number.

Finally, we point out that the method can be formally extended to deal with maps of the
torus with Diophantine rotation vector. However, in order to apply the method to the study of
quasi-periodic tori for symplectic maps in higher dimension, there is not an analogue of the twist
condition to guarantee a well defined projection of the iterates on the standard torus. Then, the
immediate interest is focused in the generalization of the method to the case of non-twist maps
and deal with folded invariant curves (for example, the so-called meanderings [29]). These and
other extensions will be object of future research [22].

The contents of the paper are organized as follows. In section 2 we recall some fundamental
facts about circle maps and we briefly review the method of [26]. In section 3 we describe
the method for the computation of derivatives of the rotation number. The rest of the paper
is devoted to illustrate the method through several applications. Concretely, in section 4 we
study the Arnold family of circle maps. Finally, in section 5we focus on the computation
and continuation of invariant curves for planar twist maps and, in particular, we present some
computations for the conservative Hénon map.
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2 Notation and previous results

All the results presented in this section can be found in the bibliography, but we include them
for self-consistence of the text. Concretely, in subsection 2.1 we recall the basic definitions,
notations and properties of circle maps that we need in the paper (we refer to [9, 18] for more
details and proofs). On the other hand, in subsection 2.2 we review briefly the method of [26]
for computing rotation numbers of circle diffeomorphisms.

2.1 Circle diffeomorphisms

Let T = R/Z be the real circle which inherits both a group structure and atopology by means of
the natural projectionπ : R → T (also called the universal cover ofT). We denote byDiff r

+(T),
r ∈ [0, +∞) ∪ {∞, ω}, the group of orientation-preserving homeomorphisms ofT of class
Cr. Concretely, ifr = 0 it is the group of homeomorphisms ofT; if r ≥ 1, r ∈ (0,∞)\N, it
is the group ofC⌊r⌋-diffeomorphisms whose⌊r⌋-th derivative verifies a Hölder condition with
exponentr − ⌊r⌋; if r = ω it is the group of real analytic diffeomorphisms.

Givenf ∈ Diff r
+(T), we can liftf to R by π obtaining aCr mapf̃ that makes the following

diagram commute

R R

T T

?
π

-f̃

?
π

-f

π ◦ f̃ = f ◦ π.

Moreover, we havẽf(x + 1) − f̃(x) = 1 (sincef is orientation-preserving) and the lift
is unique if we ask forf̃(0) ∈ [0, 1). Accordingly, from now on we choose the lift with this
normalization so we can omit the tilde without any ambiguity.

Definition 2.1. Letf be the lift of an orientation-preserving homeomorphism of the circle such
thatf(0) ∈ [0, 1). Then therotation number off is defined as the limit

ρ(f) := lim
|n|→∞

fn(x0) − x0

n
,

that exists for allx0 ∈ R, is independent ofx0 and satisfiesρ(f) ∈ [0, 1).

Let us remark that the rotation number is invariant under orientation-preserving conjugation,
i.e., for everyf, h ∈ Diff 0

+(T) we have thatρ(h−1 ◦ f ◦ h) = ρ(f). Furthermore, given
f ∈ Diff 2

+(T) with ρ(f) ∈ R\Q, Denjoy’s theorem ensures thatf is topologically conjugate to
the rigid rotationRρ(f), whereRθ(x) = x + θ. That is, there existsη ∈ Diff 0

+(T) making the
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following diagram commute

T T

T T

-f

6
η

-
Rρ(f)

6
η f ◦ η = η ◦ Rρ(f). (1)

In addition, if we requireη(0) = x0, for fixedx0, then the conjugacyη is unique.
All the ideas and algorithms described in this paper make useof the existence of such con-

jugation and its regularity. Let us remark that, although smooth or even finite differentiability is
enough, in this paper we are concerned with the analytic case. Moreover, it is well known that
the regularity of the conjugation depends also on the rational approximation properties ofρ(f),
so we will focus on Diophantine numbers.

Definition 2.2. Givenθ ∈ R, we say thatθ is aDiophantine numberof (C, τ) type if there exist
constantsC > 0 andτ ≥ 1 such that

∣∣1 − e2πikθ
∣∣−1 ≤ C|k|τ , ∀k ∈ Z∗.

We will denote byD(C, τ) the set of such numbers and byD the set of Diophantine numbers of
any type.

Although Diophantine sets are Cantorian (i.e., compact, perfect and nowhere dense) a re-
markable property is thatR\D has zero Lebesgue measure. For this reason, this condition fits
very well in practical issues and we do not resort to other weak conditions on small divisors
such as the Brjuno condition (see [33]).

The first result on the regularity of the conjugacy (1) is due to Arnold [2] but we also
refer to [16, 19, 30, 33] for later contributions. In particular, the theoretical support of the
methodology is provided by the following result:

Theorem 2.3(Katznelson and Ornstein [19]). If f ∈ Diff r
+(T) has Diophantine rotation num-

ber ρ(f) ∈ D(C, τ) for τ + 1 < r, thenf is conjugated toRρ(f) by means of a conjugacy
η ∈ Diff r−τ−ε

+ (T), for anyε > 0. Note thatDiff ω
+(T) = Diff ω−τ−ε

+ (T) while the domain of
analyticity is reduced.

2.2 Computing rotation numbers by averaging and extrapolation

We review here the method developed in [26] for computing Diophantine rotation numbers
of analytic circle diffeomorphisms (theCr case is similar). This method is highly accurate
with low computational cost and it turns out to be very efficient when combined with multiple
precision arithmetic routines. The reader is referred there for a detailed discussion and several
applications.
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Let us considerf ∈ Diffω
+(T) with rotation numberθ = ρ(f) ∈ D. Notice that we can write

the conjugacy of theorem 2.3 asη(x) = x + ξ(x), ξ being a 1-periodic function normalized in
such a way thatξ(0) = x0, for a fixedx0 ∈ [0, 1). Now, by using the fact thatη conjugatesf to
a rigid rotation, we can write the following expression for the iterates under the lift:

fn(x0) = fn(η(0)) = η(nθ) = nθ +
∑

k∈Z

ξ̂ke
2πiknθ, ∀n ∈ Z, (2)

where the sequence{ξ̂k}k∈Z denotes the Fourier coefficients ofξ. Then, the above expression
gives us the following formula

fn(x0) − x0

n
= θ +

1

n

∑

k∈Z∗

ξ̂k(e
2πiknθ − 1),

to computeθ modulo terms of orderO(1/n). Unfortunately, this order of convergence is very
slow for practical purposes, since it requires a huge numberof iterates if we want to compute
θ with high precision. Nevertheless, by averaging the iteratesfn(x0) in a suitable way, we can
manage to decrease the order of this quasi-periodic term.

As a motivation, let us start by considering the sum of the first N iterates underf , that has
the following expression (we use (2) to write the iterates)

S1
N (f) :=

N∑

n=1

(fn(x0) − x0) =
N(N + 1)

2
θ − N

∑

k∈Z∗

ξ̂k +
∑

k∈Z∗

ξ̂k
e2πikθ(1 − e2πikNθ)

1 − e2πikθ
,

and we observe that the new factor multiplyingθ grows quadratically with the number of ite-
rates, while it appears a linear term inN with constantA1 = −

∑
k∈Z∗

ξ̂k. Moreover, the
quasi-periodic sum remains uniformly bounded sinceθ is Diophantine andη is analytic (use
lemma 2.4 withp = 1). Thus, we obtain

2

N(N + 1)
S1

N(f) = θ +
2

N + 1
A1 + O(1/N2), (3)

that allows us to extrapolate the value ofθ with an errorO(1/N2) if, for example, we compute
SN(f) andS2N (f).

In general, we introduce the followingrecursive sumsfor p ∈ N

S0
N (f) := fN(x0) − x0, Sp

N(f) :=
N∑

j=1

Sp−1
j (f). (4)

Then, the result presented in [26] says that under the above hypotheses, the followingaveraged
sums of orderp

S̃p
N (f) :=

(
N + p

p + 1

)−1

Sp
N(f) (5)
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satisfy the expression

S̃p
N(f) = θ +

p∑

l=1

Ap
l

(N + p − l + 1) · · · (N + p)
+ Ep(N), (6)

where the coefficientsAp
l depend onf andp but are independent ofN . Furthermore, we have

the following expressions for them

Ap
l = (−1)l(p − l + 2) · · · (p + 1)

∑

k∈Z∗

ξ̂k
e2πik(l−1)θ

(1 − e2πikθ)l−1
,

Ep(N) = (−1)p+1 (p + 1)!

N · · · (N + p)

∑

k∈Z∗

ξ̂k
e2πikpθ(1 − e2πikNθ)

(1 − e2πikθ)p
.

Finally, the remainderEp(N) is uniformly bounded by an expression of orderO(1/Np+1).
This follows immediately from the next standard lemma on small divisors.

Lemma 2.4. Let ξ ∈ Diff ω
+(T) be a circle map that can be extended analytically to a complex

strip B∆ = {z ∈ C : |Im(z)| < ∆}, with |ξ(z)| ≤ M up to the boundary of the strip. If we
denote{ξ̂k}k∈Z the Fourier coefficients ofξ and considerθ ∈ D(C, τ), then for any fixedp ∈ N

we have ∣∣∣∣∣
∑

k∈Z∗

ξ̂k
e2πikpθ(1 − e2πikNθ)

(1 − e2πikθ)p

∣∣∣∣∣ ≤
e−π∆

1 − e−π∆
4MCp

(
τp

π∆e

)τp

.

To conclude this survey, we describe the implementation of the method and discuss the
expected behavior of the extrapolation error. In order to make Richardson extrapolation we
assume, for simplicity, that the total number of iterates isa power of two. Concretely, we select
an averaging orderp ∈ N, a maximum number of iteratesN = 2q, for someq ≥ p, and compute
the averaged sums{S̃p

Nj
(f)}j=0,...,p with Nj = 2q−p+j. Then, we can use formula (6) to obtain

θ by neglecting the remaindersEp(Nj) and solving the resulting linear set of equations for the
unknownsθ, Ap

1, . . . , A
p
p.

However, let us point out that, due to the denominators(Nj + p − l + 1) · · · (Nj + p), the
matrix of this linear system depends onq, and this is inconvenient if we want to repeat the
computations using different number of iterates. Nevertheless, we note that expression (6) can
be written alternatively as

S̃p
N(f) = θ +

p∑

l=1

Âp
l

N l
+ Êp(N), (7)

for certain{Âp
l }l=1,...,p, also independent ofN , and with a new remainder̂Ep(N) that differs

from Ep(N) only by terms of orderO(1/Np+1). Then, by neglecting the remainderÊp(N)
in (7), we can obtainθ by solving a new(p + 1)-dimensional system of equations, independent
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of q, for the unknownsθ, Âp
1/21(q−p), . . . , Âp

p/2p(q−p). Therefore, the rotation number can be
computed as follows

θ = Θq,p(f) + O(2−(p+1)q), (8)

whereΘq,p is anextrapolation operator, that is given by

Θq,p(f) :=

p∑

j=0

cp
j S̃

p
2q−p+j (f), (9)

and the coefficients{cp
j}j=0,...,p are

cp
l = (−1)p−l 2l(l+1)/2

δ(l)δ(p − l)
, (10)

where we defineδ(n) := (2n − 1)(2n−1 − 1) · · · (21 − 1) for n ≥ 1 andδ(0) := 1.

Remark 2.5. Note that the dimension of this linear system and the asymptotic behaviour of the
error only depend on the averaging orderp. For this reason, in [26]p is called the extrapolation
order. However, this is not always the case when computing derivatives of the rotation number.
As we discuss in section 3, the extrapolation order is in general less than the averaging order.

As far as the behavior of the error is concerned, using (8) we have that

|θ − Θq,p(f)| ≤ c/2q(p+1),

for certain constantc, independent ofq, that we estimate heuristically as follows. Let us com-
puteΘq−1,p(f) andΘq,p(f). SinceΘq,p(f) is a better approximation ofθ, it turns out that

c ∼ 2(q−1)(p+1)|Θq,p(f) − Θq−1,p(f)|.

Then, we obtain the expression

|θ − Θq,p(f)| ≤ ν

2p+1
|Θq,p(f) − Θq−1,p(f)|, (11)

whereν is a “safety parameter” whose role is to prevent the oscillations in the error as a function
of q due to the quasi-periodic part. In every numerical computation we takeν = 10. For more
details on the behavior of the error we refer to [26].

Now, we comment two sources of error to take into account in the implementation of the
method:

• The sumsSp
Nj

(f) are evaluated using the lift rather than the map itself. Of course, this
makes the sumsSp

Nj
(f) to increase (actually they are of orderO(Np+1)) and is recom-

mended to store separately their integer and decimal parts in order to keep the desired
precision.
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• If the required number of iterates increases, we have to be aware of round-off errors in
the evaluation of the iterates. For this reason, when implementing the above scheme in
a computer, we use multiple-precision arithmetics. The computations presented in this
paper have been performed using a C++ compiler and the multiple arithmetic has been
provided by the routinesdouble-double and quad-double packageof [17], which include
a double-doubledata type of approximately 32 decimal digits and aquadruple-double
data type of approximately 64 digits.

Along this section we have required the rotation number to beDiophantine. Of course, if
θ ∈ Q equation (6) is not valid since, in general, the dynamics off is not conjugate to a rigid
rotation. Anyway, we can compute the sumsSp

N(f) and it turns out that the method works as
well as for Diophantine numbers. We can justify this behavior from the known fact that, for any
circle homeomorphism of rational rotation number, every orbit is either periodic or its iterates
converge to a periodic orbit (see [9, 18]). Then, the iterates of the map tend toward periodic
points, and for such points, one can see that the averaged sums S̃p

N(f) also satisfy an expression
like (7) with an error of the same order, and this is all we needto perform the extrapolation. In
fact, the worst situation appears when computing irrational rotation numbers that are “close” to
rational ones (see also the discussion in subsection 4.1).

3 Derivatives of the rotation number with respect to parame-
ters

Now we adapt the method already described in section 2 in order to compute derivatives of the
rotation number with respect to parameters (assuming that they exist). For the sake of simplic-
ity, we introduce the method for one-parameter families of circle diffeomorphisms, albeit the
construction can be adapted to deal with multiple parameters (we discuss this situation in re-
mark 3.3). Thus, considerµ ∈ I ⊂ R 7→ fµ ∈ Diff ω

+(T) depending onµ in a regular way. The
rotation numbers of the family{fµ}µ∈I induce a functionθ : I → [0, 1) given byθ(µ) = ρ(fµ).
Then, our goal is to approximate numerically the derivatives of θ at a given pointµ0.

Let us remark that the functionθ is only continuous in theC0-topology and, actually, the
rotation number depends onµ in a very non-smooth way: generically, there exist a family of
disjoint open intervals ofI, with dense union, such thatθ takes constant rational values on these
intervals (a so-called Devil’s Staircase). However,θ′(µ) is defined for anyµ such thatθ(µ) /∈ Q

(see [15]).
For what refers to higher order derivatives, they are definedin “many” points in the sense of

Whitney. Concretely, letJ ⊂ I be the subset of parameters such thatθ(µ) ∈ D (typically a Can-
tor set). Then, from theorem 2.3, there exists a family of conjugaciesµ ∈ J 7→ ηµ ∈ Diff ω

+(T),
satisfyingfµ ◦ ηµ = ηµ ◦ Rθ(µ), that is unique if we fixηµ(0) = x0. Then, if fµ is Cd with
respect toµ, the Whitney derivativesDj

µηµ andDj
µθ, for j = 1, . . . , d, can be computed by

taking formal derivatives with respect toµ on the conjugacy equation and solving the small



A. Luque and J.Villanueva 10

divisors equations thus obtained. Actually, we know that, if we defineJ(C, τ) as the subset of
J such thatθ(µ) ∈ D(C, τ), for certainC > 0 andτ ≥ 1, then the mapsµ ∈ J(C, τ) 7→ ηµ and
µ ∈ J(C, τ) 7→ θ can be extended toCs functions onI, wheres depends ond andτ , provided
thatd is big enough (see [32]).

As it is shown in subsection 3.1, when we extend the method forcomputing thed-th deriva-
tive of θ, in general, we are forced to select an averaging orderp > d and the remainder turns
out to be of orderO(1/Np−d+1). Nevertheless, if the rotation number is known to be constant
as a function of the parameters, we can avoid the previous limitations. Concretely, in this case
we can select any averaging orderp, independent ofd, since the remainder is now of order
O(1/Np+1). Of course, if the rotation number is constant, then the derivatives ofθ are all zero
and the fact that we can obtain them with better precision seems to be irrelevant. However, from
the computation of these vanishing derivatives, we can derive information about other involved
objects. This is the case of many applications in which this methodology turns out to be very
useful (two examples are worked out in subsections 4.3 and 5.3).

3.1 Computation of the first derivative

We start by explaining how to compute the first derivative ofθ. For notational convenience,
from now on we fixµ0 such thatθ(µ0) ∈ D and we omit the dependence onµ as a sub-
script in families of circle maps. In addition, let us recallthat we can write any conjugation as
η(x) = x + ξ(x) and denote by{ξ̂k}k∈Z the Fourier coefficients ofξ. Finally, we denote the
first derivatives asθ′ = Dµθ andξ̂′k = Dµξ̂k.

As we did in subsection 2.2, we begin by computing the first averages (of the derivatives of
the iterates) in order to illustrate the idea of the method. Thus, we proceed by formally taking
derivatives with respect toµ at both sides of equation (2)

Dµf
n(x0) = nθ′ +

∑

k∈Z

ξ̂′ke
2πiknθ + 2πinθ′

∑

k∈Z

kξ̂ke
2πiknθ, ∀n ∈ Z.

Then, notice that a factorn appears multiplying the second quasi-periodic sum. However, if we
perform the recursive sums, we can still manage to control the growth of this term due to the
quasi-periodic part. Let us compute the sum

DµS
1
N(f) :=

N∑

n=1

Dµ(f
n(x0) − x0)

=
N(N + 1)

2
θ′ − N

∑

k∈Z∗

ξ̂′k +
∑

k∈Z∗

ξ̂′k
e2πikθ(1 − e2πikNθ)

1 − e2πikθ

+2πiθ′
∑

k∈Z∗

kξ̂k
Ne2πik(N+2)θ − (N + 1)e2πik(N+1)θ + e2πikθ

(1 − e2πikθ)2
.
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Hence, we observe that the method is still valid, even thoughfor θ′ 6= 0 the quasi-periodic
sum is bigger than expected a priori. Indeed, we obtain the following formula

2

N(N + 1)
DµS

1
N(f) = θ′ + O(1/N), (12)

that is similar to equation (3), but notice that the term2A1/(N + 1) has been included in the
remainder since there are oscillatory terms of the same order. Proceeding like in subsection 2.2,
we introducerecursive sumsfor the derivatives of the iterates

DµSp
N(f) := Dµ(fN(x0) − x0), DµS

p
N (f) :=

N∑

j=1

DµSp−1
j (f),

and their correspondingaveraged sums of orderp

DµS̃
p
N(f) :=

(
N + p

p + 1

)−1

DµS
p
N(f).

Finding an expression like (12) forp > 1 is quite cumbersome to do directly, since the
computations are very involved. However, the computation is straightforward if we take formal
derivatives at both sides of equation (6). The resulting expression reads as

DµS̃
p
N(f) = θ′ +

p∑

l=1

DµA
p
l

(N + p − l + 1) · · · (N + p)
+ DµE

p(N),

where the new coefficients areDµA
p
l = (−1)l(p − l + 2) · · · (p + 1)DµAl with

DµAl =
∑

k∈Z∗

e2πik(l−1)θ

(1 − e2πikθ)l−1

(
ξ̂′k +

2πik(l − 1)ξ̂kθ
′

1 − e2πikθ

)
,

and the new remainder is

DµE
p(N) = (−1)p+1 (p + 1)!

N · · · (N + p)

∑

k∈Z∗

e2πikpθ

(1 − e2πikθ)p

{
ξ̂′k(1 − e2πikNθ)

+2πikξ̂kθ
′

(
p
1 − e2πikNθ

1 − e2πikθ
− Ne2πikpNθ

)}
.

Assuming thatθ(µ0) ∈ D andθ′(µ0) 6= 0, we can obtain analogous bounds as those of
lemma 2.4 and conclude that the remainder satisfiesDµE

p(N) = O(1/Np). Moreover, we
observe that the coefficientDµAp

p corresponds to a term of the same order, so we have to redefine
the remainder in order to include this term. Hence, as we did in equation (7), we can arrange
the unknown terms and obtain

DµS̃p
N(f) = θ′ +

p−1∑

l=1

DµÂ
p
l

N l
+ O(1/Np),
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where the coefficients{DµÂ
p
l }l=1,...,p−1 are the derivatives of{Âp

l }l=1,...,p−1 that appear in equa-
tion (7).

Finally, we can extrapolate an approximation toθ′ using Richardson’s method of orderp−1
as in subsection 2.2. Concretely, if we computeN = 2q iterates, we can approximate the
derivative of the rotation number by means of the following formula

θ′ =

p−1∑

j=0

cp−1
j DµS̃

p
2q−p+1+j(f) + O(2−pq), (13)

where the coefficients{cp−1
j }j=0,...,p−1 are given by (10).

3.2 Computation of higher order derivatives

The goal of this section is to generalize formula (13) to approximateDd
µθ for anyd, when they

exists. Then, we assume that the familyµ 7→ f ∈ Diff ω
+(T) dependsCd-smoothly with respect

to the parameter. As usual, we define the recursive sums for thed-derivative and their averages
of orderp as

Dd
µS0

N(f) := Dd
µ(fn(x0) − x0), Dd

µS
p
N (f) :=

N∑

j=0

Dd
µSp−1

j (f),

and

Dd
µS̃

p
N(f) :=

(
N + p

p + 1

)−1

Dd
µS

p
N(f),

respectively. As before, we relate these sums toDd
µθ by taking formal derivatives in equa-

tion (6), thus obtaining

Dd
µS̃

p
N(f) = Dd

µθ +

p∑

l=1

Dd
µAp

l

(N + p − l + 1) · · · (N + p)
+ Dd

µEp(N). (14)

Is immediate to check that, ifθ(µ0) ∈ D andDd
µθ(µ0) 6= 0, the remainderDd

µEp(N) is of
orderO(1/Np−d+1), so this expression makes sense if the averaging order satisfiesp > d.

Remark 3.1. Notice that, in order to work with reasonable computationaltime and round-off
errors,p cannot be taken arbitrarily big. Consequently, there is a (practical) limitation in the
computation of high order derivatives.

In addition, as it was done for the first derivative, the remainderDd
µEp(N) must be redefined

in order to include the terms corresponding tol ≥ p − d + 1 in equation (14). Then we can



A. Luque and J.Villanueva 13

extrapolateDd
µθ by computingN = 2q iterates and solving the linear(p − d + 1)-dimensional

system associated to the following rearranged equation

Dd
µS̃

p
N(f) = Dd

µθ +

p−d∑

l=1

Dd
µÂ

p
l

N l
+ O(1/Np−d+1). (15)

Since the averaging orderp and the extrapolation orderp − d do not coincide, let us define
theextrapolation operator of orderm for thed-derivativeas

Θd
q,p,m(f) :=

m∑

j=0

cm
j Dd

µS̃
p
2q−m+j (f), (16)

where the coefficients{cm
j }j=0,...,m are given by (10). Therefore, according to formula (15), we

can approximate thed-th derivative of the rotation number as

Dd
µθ = Θd

q,p,p−d(f) + O(2−(p−d+1)q).

Furthermore, as explained in subsection 2.2, by comparing the approximations that corre-
spond to2q−1 and2q iterates, we obtain the following heuristic formula for theextrapolation
error:

|Dd
µθ − Θd

q,p,p−d(f)| ≤ ν

2p−d+1
|Θd

q,p,p−d(f) − Θd
q−1,p,p−d(f)|, (17)

where, once again,ν is a “safety parameter” that we take asν = 10.

Remark 3.2. Up to this point we have assumed thatDd
µθ 6= 0 at the computed point. However,

if we know a priori thatDr
µθ = 0 for r = 1, . . . , d, then equation (14) holds with the following

expression for the remainder:

Dd
µE

p(N) = (−1)p+1 (p + 1)!

N · · · (N + p)

∑

k∈Z∗

Dd
µξ̂k

e2πikpθ(1 − e2πikNθ)

(1 − e2πikθ)p
,

which now is of orderO(1/Np+1). As in section 2, this allows us to approximateDd
µθ with the

same extrapolation order as the averaging orderp. Indeed, we obtain

0 = Dd
µθ = Θd

q,p,p(f) + O(2−(p+1)q),

and we observe that the orderd is not limited byp anymore.

The case remarked above is very interesting since we know that many applications can be
modeled as a family of circle diffeomorphisms of fixed rotation number. The possibilities of this
approach are illustrated by computing the Taylor expansionof Arnold Tongues (subsection 4.3)
and the continuation of invariant curves for the Hénon map (subsection 5.3).
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3.3 Scheme for evaluating the derivatives of the averaged sums

Let us introduce a recursive way for computing the sumsDd
µS̃

p
N(f) required to evaluate the ex-

trapolation operator (16). First of all, notice that by linearity it suffices to computeDd
µ(fn(x0))

for anyn ∈ N.

To compute the derivatives offn = f◦ (n)· · · ◦f , we proceed inductively with respect ton
andd. Thus, let us assume that the derivativesDr

µ(fn−1(x0)) are known for a givenn ≥ 1 and
for anyr ≤ d. Then, if we denotez := fn−1(x0), our goal is to computeDr

µ(f(z)) for r ≤ d
by using the known derivatives ofz.

Ford = 1, a recursive formula appears directly by applying the chainrule

Dµ(f(z)) = ∂µf(z) + ∂xf(z)Dµ(z). (18)

This formula can be implemented provided the partial derivatives∂µf and∂xf can be numeri-
cally evaluated at the pointz.

In general, we can perform higher order derivatives and obtain the following expression

Dd
µ(f(z)) = Dd−1

µ

(
∂µf(z) + ∂xf(z)Dµ(z)

)

= Dd−1
µ (∂µf(z)) +

d−1∑

r=0

(
d − 1

r

)
Dr

µ(∂xf(z))Dd−r
µ (z).

This motivates the extension of recurrence (18), since for evaluating the previous formula
we require to know the derivativesDr

µ(∂xf(z)) for r < d andDd−1
µ (∂µf(z)). We note that

these derivatives can also be computed recursively using similar expressions for the maps∂xf
and∂µf , respectively. Concretely, assuming that we can evaluate∂i,j

µ,xf(z) for any(i, j) ∈ Z2
+

such thati + j ≤ d, we can use the following recurrences

Dr
µ(∂i,j

µ,xf(z)) = Dr−1
µ (∂i+1,j

µ,x f(z)) +

r−1∑

s=0

(
r − 1

s

)
Ds

µ(∂i,j+1
µ,x f(z))Dr−s

µ (z),

to compute in a tree-like order the corresponding derivatives. To prevent redundant computa-
tions in the implementation of the method, we store (in memory) the value of the “intermedi-
ate” derivativesDr

µ(∂i,j
µ,xf(z)) so they only have to be computed one time. For this reason, this

scheme turns out to be more efficient than evaluating explicit expressions such as Faà di Bruno
formulas (see for example [20]). Figure 1 summarizes the recursive computations required and
the convenience of storing these intermediate computations.

Remark 3.3. The above scheme can be generalized immediately to the case of several param-
eters. For example, consider a two-parameter family(µ1, µ2) 7→ fµ1,µ2 ∈ Diffω

+(T) whose
rotation number induces a map(µ1, µ2) 7→ θ(µ1, µ2). Then, ifθ(µ0

1, µ
0
2) ∈ D, we can ob-

tain a similar scheme to approximateDd1,d2
µ1,µ2

θ(µ0
1, µ

0
2). In this context, note that the operator
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Dd
µ(f(z)) //

''N

N

N

N

N

N

N

N

N

N

N

��
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

��
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dd−1
µ (∂µf(z)) //

((Q

Q

Q

Q
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!!
B

B

B

B

B

B

B

B
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Dd−2
µ (∂2

µf(z)) //

%%L

L

L

L

L

L

L

L

L

L

L

· · · // ∂d
µf(z)

Dd−1
µ (∂xf(z)) //

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Dd−2
µ (∂1,1

µ,xf(z)) //

%%L

L

L

L

L

L

L

L

L

L

L

· · · // ∂d−1,1
µ,x f(z)

Dd−2
µ (∂xf(z)) //

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Dd−3
µ (∂1,1

µ,xf(z)) // · · ·

...

∂xf(z)

Figure 1:Schematic representation of the recurrent computations performed to evaluateDd
µ(f(z)).

Θd1,d2

q,p,p−d1−d2
can be defined as (16), but averaging the derivativesDd1,d2

µ1,µ2
(fn(x0)). Finally, if we

write z := fn−1(x0), we can compute inductively the derivativesDm,l
µ1,µ2

(f(z)), for m ≤ d1 and
l ≤ d2, using the following recurrences

Dm,l
µ1,µ2

(∂i,j,k
µ1,µ2,xf(z)) = Dm−1,l

µ1,µ2
(∂i+1,j,k

µ1,µ2,xf(z))

+

m−1∑

s=0

l∑

r=0

(
m − 1

s

)(
l

r

)
Ds,r

µ1,µ2
(∂i,j,k+1

µ1,µ2,xf(z))Dm−s,l−r
µ1,µ2

(z),

if m 6= 0 and

D0,l
µ1,µ2

(∂i,j,k
µ1,µ2,xf(z)) = D0,l−1

µ1,µ2
(∂i,j+1,k

µ1,µ2,xf(z)) +
l−1∑

r=0

(
l − 1

r

)
D0,r

µ1,µ2
(∂i,j,k+1

µ1,µ2,xf(z))D0,l−r
µ1,µ2

(z),

if l 6= 0. Of course,D0,0
µ1,µ2

(∂i,j,k
µ1,µ2,xf(z)) = ∂i,j,k

µ1,µ2,xf(z) corresponds to the evaluation of the
partial derivative of the map.

4 Application to the Arnold family

As a first example, let us consider the Arnold family of circlemaps, given by

fα,ε : S −→ S

x 7−→ x + 2πα + ε sin(x),
(19)

where(α, ε) ∈ [0, 1)× [0, 1) are parameters andS = R/(2πZ). Notice that this family satisfies
fα,ε ∈ Diff ω

+(S) for any value of the parameters. Let us remark that (19) allows us to illustrate
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the method in a direct way, since there are explicit formulasfor the partial derivatives∂i,j,k
α,ε,xf(x)

of the map, for any(i, j, k) ∈ Z3
+. In section 5 we will consider another interesting application

in which the studied family is not given explicitly.
For this family of maps, it is convenient to take the angles modulo 2π just for avoiding the

loss of significant digits due to the factors(2π)d−1 that would appear in thed-derivative of the
map.

The contents of this section are organized as follows. First, in subsection 4.1 we compute
the derivative of a Devil’s Staircase, that corresponds to the variation of the rotation number
of (19) with respect toα for a fixedε. In subsection 4.2 we use the computation of deriva-
tives of the rotation number to approximate the Arnold Tongues of the family (19) by means
of the Newton method. Furthermore, we compute the asymptotic expansion of these tongues
and obtain pseudo-analytical expressions for the first coefficients, as a function of the rotation
number.

4.1 Stepping up to a Devil’s Staircase

Let us fix the value ofε ∈ [0, 1) and consider the one-parameter family{fα}α∈[0,1) given by
equation (19), i.e.fα := fα,ε. Let us recall that we can establish an ordering in this family since
the normalized lifts satisfyfα1(x) < fα2(x) for all x ∈ R if and only if α1 < α2. Then, we
conclude that the functionα 7→ ρ(fα) is monotone increasing. In particular, forα1 < α2 such
thatρ(fα1) ∈ R\Q we haveρ(fα1) < ρ(fα2). On the other hand, ifρ(fα1) ∈ Q, there is an
interval containingα1 giving the same rotation number. As the values ofα for which fα has
rational rotation number are dense in[0, 1) (the complement is a Cantor set), there are infinitely
many intervals whereρ(fα) is locally constant. Therefore, the mapα 7→ ρ(fα) gives rise to
a “staircase” with a dense number of stairs, that is usually called a Devil’s Staircase (we refer
to [9, 18] for more details).

To illustrate the behavior of the method we have computed theabove staircase forε = 0.75.
The computations have been performed by taking104 points ofα ∈ [0, 1), using32-digit arith-
metics (double-doubledata type from [17]), and a fixed averaging orderp = 8. In addition,
we estimate the error in the approximation ofρ(fα) andDαρ(fα) using formulas (11) and (17),
respectively. Then, we stop the computations for a tolerance of 10−26 and10−24, respectively,
using at most222 = 4194304 iterates.

Let us discuss the obtained results. First, we point out thatonly 11.4 % of the selected
points have not reached the previous tolerances for222 iterates. Moreover, we observe that the
rotation number for98.8 % of the points has been obtained with an error less that10−20, while
the estimated error in the derivatives is less than10−18 for 97.7 % of the points. Let us focus
in α = 0.3377, that is one of the “bad” points. The estimated errors for therotation number
and the derivative at this point are of order10−18 and10−9, respectively. We observe that, even
though this rotation number is irrational (the derivative does not vanish), it is very close to the
rational105/317, since|317 · Θ22,9(f0.3377) − 105| ≃ 4.2 · 10−6.
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Figure 2: Devil’s Staircaseα 7→ ρ(fα) (top-left) and its derivative (top-right) for the Arnold family with

ε = 0.75. The plots in the bottom correspond to some magnifications ofthe top-right one.

In figure 2 we showα 7→ ρ(fα) and its derivativeα 7→ Dαρ(fα) for those points that satisfy
that the estimated error is less than10−18 and10−16, respectively. We recall that the rational
values of the rotation number correspond to the constant intervals in the top-left plot, and note
that by looking at the derivative (top-right plot) we can visualize the density of the stairs better
than looking at the staircase itself. We remark that both these rational rotation numbers and
their vanishing derivatives have been computed as well as inthe Diophantine case.

Moreover, at the bottom of the same figure, we plot some magnifications of the derivative
to illustrate the non-smoothness of a Devil’s Staircase. Concretely, the plot in the bottom-left
corresponds to105 values ofα ∈ [0.2, 0.3] using the same implementation parameters as before.
Once again, if the estimated error is bigger than10−16 the point is not plotted. Finally, on the
right plot we give another magnification for106 values ofα ∈ [0.282, 0.292] that are computed
with p = 7, and allowing at most221 = 2097152 iterates. In this case, the points that correspond
to the branch in the left (i.e. close toα = 0.2825), are typically computed with an error10−10.
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4.2 Newton method for computing the Arnold Tongues

Sincefα,ε ∈ Diff ω
+(S), we obtain a function(α, ε) 7→ ρ(α, ε) := ρ(fα,ε) given by the rotation

number. Then, the Arnold Tongues of (19) are defined as the setsTθ = {(α, ε) : ρ(α, ε) = θ},
for anyθ ∈ [0, 1). It is well known that ifθ ∈ Q, thenTθ is a set with interior; otherwise,Tθ is
a continuous curve which is the graph of a functionε 7→ α(ε), with α(0) = θ. In addition, if
θ ∈ D, the corresponding tongue is given by an analytic curve (see[25]).

Using the method described in subsection 2.2, some Arnold TonguesTθ of Diophantine
rotation number, were approximated in [26] by means of the secant method. Now, since we
can compute derivatives of the rotation number, we are able to repeat the computations using a
Newton method. To do that, we fixθ ∈ D and solve the equationρ(α, ε)− θ = 0 by continuing
the known solution(θ, 0) with respect toε. Indeed, we fix a partition{εj}j=0,...,K of [0, 1), and
compute a numerical approximationα∗

j for everyα(εj).
To this end, assume that we have a good approximationα∗

j−1 to α(εj−1) and let us first
compute an initial approximation forα(εj). Taking derivative in the equationρ(α(ε), ε)−θ = 0
we obtain

Dαρ(α(ε), ε)α′(ε) + Dερ(α(ε), ε) = 0. (20)

Thus, we can approximateα′(εj−1) by computing numerically the derivativesDαρ andDερ at
(α∗

j−1, εj−1). Hence, we obtain an approximated valueα
(0)
j = α∗

j−1 + α′(εj−1)(εj − εj−1) for
α(εj). Next, we apply the Newton method

α
(n+1)
j = α

(n)
j −

ρ(α
(n)
j , εj) − θ

Dαρ(α
(n)
j , εj)

,

and stop when we converge to a valueα∗
j that approximatesα(εj).

The computations are performed using 64 digits (quadruple-doubledata type from [17])
and, in order to compare with the results obtained in [26], weselect the same parameters in
the implementation. In particular, we take a partitionεj = j/K with K = 100 of the interval
[0, 1), we select an averaging orderp = 9 and allow at most223 = 8388608 iterates of the
map. The required tolerances are taken as10−32 for the computation of the rotation number
(we use (11) to estimate the error) and10−30 for the convergence of the Newton method. Let us
remark that the computations are done without any prescribed tolerance for the computation of
the derivativesDαρ andDερ, even though we check, using (17), that the extrapolation isdone
correctly.

Let us discuss the results obtained forθ = (
√

5− 1)/2. As expected, the number of iterates
of the Newton method is less than the ones required by the secant method. Concretely, we
perform from2 to 3 corrections as we approach the critical valueε = 1, while using the secant
method we need at least 4 steps to converge. However, we observe that the computation of
the derivativesDαρ andDερ fails if we takeε = 1, even though the secant method converges
after 18 iterations. This is totally consistent since we know thatfα,1 ∈ Diff 0

+(T) but is still an
analytic map, and that the conjugation to a rigid rotation isonly Hölder continuous (see [8, 34]).
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Figure 3:Left: Graph of the derivativesε 7→ Dαρ(α(ε), ε) andε 7→ Dερ(α(ε), ε) alongTθ, for θ = (
√

5−1)/2.

The solid curve corresponds to(Dαρ− 1) and the dashed one to(20 ·Dερ). Right: error (estimated using (11)) in

log10 scale in the computation of these derivatives.

In figure 3 (left) we plot the derivativesε 7→ Dαρ(α(ε), ε) andε 7→ Dερ(α(ε), ε) evaluated
on the previous tongue. We observe that the derivatives havebeen normalized in order to fit
together in the same plot. On the other hand, in the right plotwe show the estimated error in
the computation of these derivatives (obtained from equation (17)). In the worst case,ε = 0.99,
we obtain errors of order10−27 and10−29 for Dαρ andDερ, respectively.

4.3 Computation of the Taylor expansion of the Arnold Tongues

As we have mentioned in subsection 4.2, ifθ ∈ D then the Arnold TongueTθ of (19) is given
by the graph of an analytic functionα(ε), for ε ∈ [0, 1). Then, we can expandα at the origin as

α(ε) = θ +
α′(0)

1!
ε +

α′′(0)

2!
ε2 + · · ·+ α(d)(0)

d!
εd + O(εd+1), (21)

and the goal now is to approximate numerically the terms in this expansion. We know that
every odd derivative in this expansion vanishes, so the Taylor expansion can be written in terms
of powers inε2 (see [27] for details). However, we do not use this symmetry,but instead we
verify the accuracy of the computations according to this information (see the results presented
in table 1).

First of all, we want to emphasize that the direct extension of the computations performed
in the previous subsection is hopeless. Concretely, as we did for approximatingα′(ε), we could
take higher order derivatives with respect toε at equation (20) and, after evaluating at the point
(α, ε) = (θ, 0), isolate the derivativesα(r)(0), 1 ≤ r ≤ d. For example, once we knowα′(0),
the computation ofα′′(0) would follow from the expression

Dαρ(α(ε), ε)α′′(ε)+

(
D2

αρ(α(ε), ε)α′(ε)+2Dα,ερ(α(ε), ε)

)
α′(ε)+D2

ερ(α(ε), ε) = 0, (22)
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that requires to compute the second order partial derivatives of the rotation number (see re-
mark 3.3). Then, by induction, we would obtain recurrent formulas to compute the expan-
sion (21) up to orderd. However, this approach is highly inefficient due to the following rea-
sons:

• As discussed in subsection 3.2, using this approach we are limited to computeα(r)(0) up
to orderp−1, wherep is the selected averaging order. Of course, the precision for α(r)(0)
decreases dramatically whenr increases top.

• Note that, for the Arnold family, we can write explicitlyDα(fn
α,ε(x0))|(θ,0) = n. Then, if

we look at the formulas in remark 3.3, we expect the termsDm,l
α,ε (f

n
α,ε(x0))|(θ,0) to grow

very fast, since they contain factors of the previous expression. Actually, we find that
these quantities depend polynomially onn, with a power that increases with the order
of the derivative. On the other hand, we expect the sumsDm,l

α,ε S̃
p
N(fα,ε) to converge, and

therefore many cancelations are taking place in the computations. Consequently, when
implementing this approach we unnecessarily lose a high amount of significant digits.

• Even if we could computeDm,l
α,ερ(θ, 0) up to any order, it turns out that the generalization

of equation (22) for computingα(r)(0) is badly conditioned. Concretely, the derivatives
of the rotation number increase with the order, giving rise to a big propagation of errors.
Actually, the round-off errors increase so fast that, in practice, we cannot go beyond order
5 in the computation of (21) with the above methodology.

Therefore, we have to approach the problem in a different way. Concretely, our idea is to
use the fact that the rotation number is constant on the tongue combined with remark 3.2. To
this end, we consider the one-parameter family{fα(ε),ε}ε∈[0,1) of circle diffeomorphisms, where
the graph ofα parametrizes the tongueTθ. For this family, we haveρ(fα(ε),ε) = θ for any
ε ∈ [0, 1), and hence, from remark 3.2 we read the expression

0 = Θd
q,p,p(fα(ε),ε) + O(2−(p+1)q), (23)

wherep is the averaging order, we use2q iterates andΘd
q,p,p is the extrapolation operator (16)

that, in this case, depends on the derivatives ofα(ε) up to orderd. With this idea in mind, the
aim of the next paragraphs is to show how we can isolate inductively these derivatives atε = 0
from the previous equation.

Let us start by describing how to approximate the first derivativeα′(0). As mentioned above,
we have to writeΘ1

q,p,p(fα(ε),ε)|ε=0 in terms ofα′(0) and we note that, by linearity, it suffices to
work with the expressionDε(f

n
α(ε),ε(x0))|ε=0. To do that, we write

f(x) = 2πα(ε) + g(x), g(x) = x + ε sin(x),
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in order to uncouple the dependence onα in the circle map. Observe that, as usual, we omit the
dependence on the parameter in the maps. Using this notation, we have:

Dε(f(x0)) = 2πα′(ε) + ∂εg(x0),

Dε(f
2(x0)) = 2πα′(ε) + ∂εg(f(x0)) + ∂xg(f(x0))Dε(f(x0))

= 2πα′(ε)

{
1 + ∂xg(f(x0))

}
+ ∂εg(f(x0)) + ∂xg(f(x0))∂εg(x0).

Similarly, we can proceed inductively and split the derivative of then-th iterate,Dε(f
n(x0)),

in two parts, one of them having a factor2πα′(ε). Moreover, if we setε = 0 in Dε(f
n(x0)),

then it is clear that, with the exception of the previous factor, the resulting expression does not
depend onα′(0) but only onα(0) = θ.

Now, we generalize the above argument to higher order derivatives. Let us assume that the
valuesα′(0), . . . , α(d−1)(0) are known, and isolate the derivativeα(d)(0) from Dd

ε (f
n(x0))|ε=0.

We claim that the following formula holds

Dd
ε(f

n(x0))|ε=0 = 2πnα(d)(0) + gd
n, (24)

where the factor2πn comes from the fact that∂xg|ε=0 = 1, andgd := {gd
n}n∈N is a sequence

that only requires the known derivativesα(r)(0), for r < d. Concretely, let us obtain the term
gd

n of the sequence by induction with respect ton. Once again, it is straightforward to write

Dd
ε(f

n(x0)) = Dd−1
ε

(
2πα′(ε) + ∂εg(fn−1(x0)) + ∂xg(fn−1(x0))Dε(f

n−1(x0))

)

= 2πα(d)(ε) + Dd−1
ε (∂εg(fn−1(x0))

+
d−1∑

r=0

(
d − 1

r

)
Dr

ε(∂xg(fn−1(x0)))D
d−r
ε (fn−1(x0)).

We note that the termr = 0 in this expression containsDd
ε(f

n−1(x0)). Then, if we setε = 0
and replace inductively the previous term by equation (24),we find that

gd
n = Dd−1

ε (∂εg(fn−1(x0))|ε=0

+

d−1∑

r=1

(
d − 1

r

)
Dr

ε(∂xg(fn−1(x0)))D
d−r
ε (fn−1(x0))|ε=0 + gd

n−1

and let us remark that, as mentioned, this expression is independent ofα(d)(0).
We conclude the explanation of the method by describing the extrapolation process that

allows us to approximate these derivatives. To this end, we introduce an extrapolation operator
as (9) for the sequencegd. Indeed, we extend the recursive sums (4) and the averaged sums (5)
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d 2πα(d)(0) e1 e2

0 3.883222077450933154693731259925391915269339787692096599014776434 - -
1 5.289596087298835974306750728481413682115174017433159533705768026·10−54 2·10−50 5·10−54

2 -1.944003667801032197325141712953470682792841985057545477738933600·10−1 7·10−50 2·10−53

3 6.353866339253870417285870622952031667026712174414003758743809499·10−52 3·10−48 6·10−52

4 9.865443989835495993231949890783720243438883460505483297079900562·10−1 2·10−47 5·10−51

5 4.733853534850495777271526084574485398105534790325269345544052633·10−49 2·10−45 5·10−49

6 -1.451874181864020963416053802229271731186248529989217665545212404·101 6·10−45 1·10−48

7 -1.986768674642925514096249083525472601734104441662711304098209993·10−47 7·10−44 2·10−47

8 1.673363822376717001078781931538386967523434046199355922539083323·101 8·10−42 2·10−45

9 -5.559060362825539878039137008326038842079877436013501651866007318·10−44 2·10−40 6·10−44

10 1.974679484744669888248485084754876332689468886829840384314732615·104 2·10−39 4·10−43

11 4.019718902900154426125206309959051888079502318143227318836414835·10−42 1·10−38 4·10−42

12 3.594891944526889578314748272295019294147597687816868847742850594·105 6·10−37 -
13 -4.123166034989923032518732576715313341946051550138603536248010821·10−39 2·10−35 4·10−39

14 2.198602821435568153883567054383394767567371744732559263055644337·106 3·10−33 -
15 1.307318024754974551233761145122558811543944190022138837513637182·10−35 6·10−32 1·10−35

16 -4.009257214040427899940043656551946700300230713255210114705187412·1010 4·10−31 -
17 -6.641638995605492204184114438636683272452899190211080822408603857·10−33 4·10−29 7·10−33

18 -2.582559893723659427522610275977697024396910000154382754643273110·1012 1·10−27 -
19 -4.366235264281358239242428788236090577328510850575386329987344515·10−30 2·10−26 4·10−30

Table 1:Derivatives of2πα(ε) at the origin forθ = (
√

5 − 1)/2. The columne1 corresponds to the estimated

error using (11). The columne2 is the real error, that for even derivatives is computed comparing with the analytic

expressions (25) and (26) using the coefficients from table 2.

for this sequence, thus obtaining

Θq,p(g
d) :=

p∑

j=0

cp
j S̃

p
2q−p+j (g

d).

Recalling thatDd
εθ vanishes, we obtain from equation (23) that

Θd
q,p,p(f)|ε=0 = 2πα(d)(0) + Θq,p(g

d) = O(2−(p+1)q).

Therefore, the Taylor expansion (21) follows from the sequential computation ofα(d)(0) by
means of the expression

α(d)(0) = − 1

2π
Θq,p(g

d) + O(2−(p+1)q).

Let us discuss some obtained results. The following computations are performed using64
digits (quadruple-doubledata type from [17]). The implementation parameters are selected as
p = 11, q = 23 and any tolerance is required in the extrapolation error (which is estimated by
means of (11)).

In table 1 we show the computations of2πα(d)(0), for 0 ≤ d ≤ 19, that correspond to the
Arnold Tongue associated toθ = (

√
5 − 1)/2.

In addition, we use the above computations to obtain formulas, depending onθ, for the
first coefficients of (21). To make this dependence explicit,we introduce the notationαr(θ) :=
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α(2r)(0), where(ε, α(ε)) parametrizes the Arnold TongueTθ. Analytic expressions for these
coefficients can be found, for example, by solving the conjugation equation of diagram (1)
using Lindstedt series. However, the complexity of the symbolic manipulations required for
carrying the above computations is very big. In particular,the first two coefficients, whose
computation is detailed in [27], are

α1(θ) =
cos(πθ)

22π sin(πθ)
, α2(θ) = − 3 cos(4πθ) + 9

25π
(
sin(πθ)

)2
sin(2πθ)

. (25)

From these formulas and a heuristic analysis of the small divisors equations to be solved for
computing the remaining coefficients, we make the followingguess forαr(θ):

αr(θ) =
Pr(θ)

2c(r)π
(
sin(πθ)

)2r−1(
sin(2πθ)

)2r−2

· · ·
(
sin((r − 1)πθ)

)2
sin(rπθ)

, (26)

wherec(r) is a natural number andPr is a trigonometric polynomial of the form

Pr(θ) =

dr∑

j=1

aj cos(jπθ),

with integer coefficients and degreedr = 2r+1 − r − 2 that coincides with the degree of the de-
nominator. In addition, the coefficientsaj vanish except for indexesj such thatj ≡ dr(mod 2).

In order to obtain the coefficients ofPr, we have computed the Taylor expansions of the
Arnold Tongues for 120 different rotation numbers. Concretely, we have selected the quadratic
irrationalsθa,b = (

√
b2 + 4b/a− b)/2, for 1 ≤ a ≤ b ≤ 5, that have periodic continued fraction

given byθa,b = [0; â, b]. Then, we fix the value ofc(r) and perform minimum square fit for the
coefficientsaj. We validate the computations if the solution corresponds to integer numbers,
or we increasec(r) otherwise. In order to detect ifaj ∈ Z, we require an arithmetic precision
higher than 64 digits. Then, these computations have been implemented in PARI-GP (available
at [1]) using 100-digit arithmetics.

Following the above idea, we have obtained expressions for the next three coefficients. Con-
cretely, we find the valuesc(3) = 10, c(4) = 19, andc(5) = 38. On the other hand, the corres-
ponding polynomialsPr are given in table 2. The comparison between these pseudo-analytical
coefficients and the values computed numerically forθ = (

√
5− 1)/2 is shown in columne2 of

table 1, obtaining a very good agreement. Let us observe thatthe coefficients ofPr grow very
fast with respect tor, and the same occurs toc(r). Indeed, the values that correspond tor = 6
are too big to be computed with the selected precision, due tothe loss of significant digits.

Finally, we also compare the truncated Taylor expansions with the numerical approximation
of the Arnold Tongue forθ = (

√
5 − 1)/2, computed using Newton method. To this end, we

perform the computation of subsection 4.2 forε ∈ [0, 0.1], usingquadruple-doubleprecision,
an averaging orderp = 9 and requiring tolerances of10−42 for the computation of the rotation
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P3 P4

j aj j aj j aj

1 -105 0 -360150 14 -177625
3 825 2 40950 16 -14770
5 -465 4 469630 18 34755
7 -315 6 91140 20 49735
9 120 8 -378700 22 -53235
11 -60 10 67165 24 18900

12 215355 26 -3150

P5

j aj j aj j aj

1 33992959770 21 46136915685 41 6059661930
3 -96457394880 23 -28888862310 43 -4422651975
5 107920471050 25 23182141500 45 1217211030
7 -47792873520 27 -24695086815 47 651686490
9 -1102024980 29 7313756940 49 -826836885
11 3276815850 31 14354738685 51 404729640
13 -38366469540 33 -20342636055 53 -112651560
15 97991931555 35 13721635620 55 17781120
17 -74144022120 37 -4249642635 57 -1270080
19 -11687638410 39 -3152375100

Table 2:Coefficients for the trigonometric polynomialsP3, P4 andP5.

number, and10−40 for the convergence of the Newton method. In all the computations, we
allow at most223 iterates of the map. Then, in figure 4 we compare the approximated tongue
with the Taylor expansions truncated at orders2, 4, 6, 8 and10.

5 Study of invariant curves for planar twist maps

In this last section we deal with a classical problem in dynamical systems that arise in many
applications: the study of quasi-periodic invariant curves for planar maps. Concretely, we focus
on the context of so-called twist maps, because in this case we can easily make a link with
circle diffeomorphisms. First of all, in subsection 5.1 we formalize the problem and fix some
notation. Then, in subsection 5.2 we adapt our methodology to compute invariant curves and
their evolution with respect to parameters by means of the Newton method. Finally, in sub-
section 5.3 we follow the ideas of subsection 4.3 and computeasymptotic expansions relating
initial conditions and parameters that correspond to invariant curves of fixed rotation number.
As an example, we study the neighborhood of the elliptic fixedpoint for the Hénon map, which
appears generically in the study of area-preserving maps.
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Figure 4: Comparison between the numerical expressions ofα(ε) for the Arnold TongueTθ, with

θ = (
√

5 − 1)/2, obtained using the Newton method and the truncated Taylor expansion (21) up to orderd. Con-

cretely we plot, as a function ofε, the difference inlog10 scale between these quantities. The curves from top to

bottom correspond, respectively, tod = 2, 4, 6, 8 and10.

5.1 Description of the problem

Let A = T × I be the real annulus, whereI is any real interval, that can be lifted to the strip
A = R × I using the universal coverπ : A → A. Let alsoX : A → R andY : A → I denote
the canonical projectionsX(x, y) = x andY (x, y) = y.

In this section, we consider diffeomorphismsF : A → A and their liftsF̃ : A → A
given byF ◦ π = π ◦ F̃ . Note that the lift is unique if we requireX(F̃ (0, y0)) ∈ [0, 1) for
certainy0 ∈ I, so we omit the tilde in the lift. In addition, we restrict to maps satisfying that
∂(X ◦ F )/∂y does not vanish, a condition that is calledtwist.

Assume thatF : A → A is a twist map having an invariant curveΓ, homotopic to the circle
T×{0}, of rotation numberθ ∈ R\Q. Concretely, there exists an embeddingγ : R → A, such
thatΓ = γ(R), satisfyingγ(x + 1) = γ(x) + (1, 0) for all x ∈ R, and making the following
diagram commute

Γ ⊂ A Γ ⊂ A

R R

-F

6
γ

-Rθ

6
γ F (γ(x)) = γ(x + θ). (27)

SinceF is a twist map, the Birkhoff Graph Theorem (see [11]) ensuresthatΓ is a Lipschitz
graph over its projection on the circleT × {0}, and hence the dynamics onΓ induces a circle
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homeomorphismfΓ simply by projecting the iterates, i.e.,fΓ(X(γ(x))) = X(F (γ(x)). We
observe that, ifF andγ areCr-diffeomorphisms, thenfΓ ∈ Diff r

+(T).
From now on, we fix an anglex0 ∈ T and identify invariant curves with pointsy0 ∈ I. Then,

if (x0, y0) belongs to an invariant curveΓ, we also denote the previous circle map asfy0 instead
of fΓ. Of course, the parameterizationγ is unknown in general, so we do not have an expression
for fy0. But we can evaluate the orbit(xn, yn) = F n(x0, y0) and considerxn = fn

y0
(x0). We

recall that this is the only that we need to compute numerically the rotation numberθ using the
method of[27] (reviewed in subsection 2.2).

Remark 5.1. If the mapF does not satisfy the twist condition, their invariant curves are not
necessarily graphs over the circleT × {0}. Of course, ifΓ is an invariant curve ofF , its
dynamics still induces a circle diffeomorphism, even though its construction is not so obvious.
Since the non-twist case presents another kind of difficulties and has its own interest, we plan
to adapt the method to consider the general situation in a subsequent work [22].

If F is aCr-integrable twist map, then there is aCr-family of invariant curves ofF satisfying
(27), andy0 7→ fy0 is a one-parameter family inDiff r

+(T). In this case, we obtain aCr-function
y0 ∈ I 7→ ρ(fy0). Of course, this is not the general situation and, actually,we do not expect
this function to be defined for everyy0 ∈ I. Nevertheless, in many problems we have a family
of invariant curves defined on a Cantor subsetJ ⊂ I having positive Lebesgue measure and
we still have differentiability ofρ(fy0) in the sense of Whitney. For example, if the mapF is
a perturbation of an integrable twist map that is symplecticor satisfies the intersection condi-
tion, KAM theory establishes (under other general assumptions) the existence of such a Cantor
family of invariant curves (we refer to [6, 23]).

For practical purposes, even if a point(x0, y0) ∈ A does not belong to a quasi-periodic
invariant curve, we can compute the orbitxn = fn

y0
(x0) = X(F n(x0, y0)), even thoughfy0 is not

a circle diffeomorphism. Then, we can also compute the averaged sumsSp
N(fy0) of these iterates

but we cannot guarantee in general thatΘq,p(fy0) converges whenq → ∞. Nevertheless, if
(x0, y0) is an initial condition close enough to an invariant curve ofDiophantine rotation number
θ, we expectΘq,p(fy0) to converge to a number close toθ, due to the existence of neighboring
invariant curves for a set of big relative measure (that is called condensationphenomena in
KAM theory). On the other hand, if(x0, y0) belongs to a periodic island, then we expect
Θq,p(fy0) to converge to the winding number of the “central” periodic orbit. Finally, we recall
that the Aubry-Mather theorem (we refer to [11]) states thatF has orbits of all rotation numbers,
so it can occur that the method converges if(x0, y0) corresponds to a periodic orbit or to a ghost
curve (Cantori).

On the other hand, in order to approximate the derivatives ofthe rotation number by means
of Θd

q,p,p−d(fy0), we have to compute the derivatives of the iteratesxn. However, as we do not
have an explicit formula for the induced mapfy0 , the scheme for computing the derivatives of
the iterates is slightly different from the one presented insubsection 3.3. Modified recurrences
are detailed in the moment that they are required.
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5.2 Numerical continuation of invariant curves

Let us considerα : Λ ⊂ R 7→ Fα a one-parameter family of twist maps onA, that induces
a function(α, y0) ∈ U ⊂ Λ × I 7→ ρ(fα,y0) differentiable in the sense of Whitney. In this
situation, we can compute the derivatives of this function (at the points where they exist) by
using the method of section 3. Our goal now is to use these derivatives to compute numerically
invariant curves ofFα by means of the Newton method, similarly as we did in subsection 4.2
for computing the Arnold Tongues.

Concretely, letΓα0 be an invariant curve of rotation numberθ ∈ D for the mapFα0 . Then,
given anyα close toα0, we want to compute the curveΓα, invariant underFα, having the same
rotation number. Once we have fixed an anglex0 ∈ T, we identify the invariant curveΓα by the
point(x0, y(α)) ∈ Γα. Then, our purpose is to solve, with respect toy, the equationρ(fα,y) = θ
by continuing the known solution(α0, y(α0)) ∈ Λ × I. We just remark that, when solving this
equation by means of the Newton method, we have to prevent us from falling into a resonant
island, where the rotation number is locally constant around this point.

Now, in order to approximate numericallyDαρ andDy0ρ, we have to discuss the computa-
tion of the derivatives of the iterates, i.e.Dα(xn) andDy0(xn), wherexn = fn

α,y0
(x0). Omitting

the dependence on the parameterα in the family of twist maps, we denoteF1 = X ◦ F and
F2 = Y ◦ F , and we obtain the recurrent expression

Dy0(xn) = ∂xF1(zn−1)Dy0(xn−1) + ∂yF1(zn−1)Dy0(yn−1), (28)

wherezn := (xn, yn). Furthermore,Dy0(yn) follows from a similar expression replacingF1 by
F2. According to our convention of fixingx0 ∈ T, the computations have to be initialized by
Dy0(x0) = 0 andDy0(y0) = 1. Analogous formulas hold forDα(xn):

Dα(xn) = ∂αF1(zn−1) + ∂xF1(zn−1)Dα(xn−1) + ∂yF1(zn−1)Dα(yn−1),

and similarly forDα(yn) usingF2. The recursive computations are now initialized byDα(x0) =
0 andDα(y0) = 0.

Let us illustrate the above ideas studying the well known Hénon family, that is a paradig-
matic example since it appears generically in the study of a saddle-node bifurcation. In Carte-
sian coordinates, the family can be written as

Hα :

(
u
v

)
7−→

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)(
u

v − u2

)
. (29)

Note that the origin is an elliptic fixed point that corresponds to a “singular” invariant curve.
We can blow-up the origin if, for example, we bring the map to the annulus by means of polar
coordinatesx = arctan(v/u) andy =

√
u2 + v2, thus obtaining a familyα ∈ Λ = [0, 1) 7→ Fα

of mapsFα : S × I 7→ S × I, given by

X ◦ Fα = arctan
sin(x + 2πα) − cos(2πα)y(cos(x))2

cos(x + 2πα) + sin(2πα)y(cos(x))2
, (30)

Y ◦ Fα = y
√

1 − 2y(cos(x))2 sin(x) + y2(cos(x))4. (31)
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Figure 5:Left: Numerical continuation ofy0 (horizontal axis) with respect toα (vertical axis) of the invariant

curve of rotation numberθ = (
√

5−1)/2 for the Hénon map (29). Right: Difference inlog10 scale betweenα(y0)

in the left plot and its truncated Taylor expansion (32) up toorderd (see table 3). The curves from top to bottom

correspond, respectively, tod = 2, 4, 6 and8.

We remark that, analogously as we did in section 4, in this application we consider angles
in S = R/2πZ in order to avoid factors2π that would appear in the derivatives (specially in
subsection 5.3 when we consider higher order ones).

Albeit it is not difficult to check that the twist condition∂(X ◦ F )/∂y 6= 0 is not fulfilled in
these polar coordinates, we can perform a close to the identity change of variables to guarantee
the twist condition except for the valuesα = 1/3, 2/3. Then, it turns out that there exist
invariant curves ofFα in a neighborhood ofS × {0}, whose rotation number tend toα and are
“close to the identity” to graphs overS × {0}. However, for values ofα close to1/3 and2/3,
meandering phenomena arises (we refer to [10, 29]), i.e., there are folded invariant curves (see
remark 5.1).

As an example, we study the invariant curves of rotation numberθ = (
√

5−1)/2 by contin-
uing the initial valuesα0 = θ andy0 = 0, i.e, the curveS × {0}. The computations have been
performed by using thedouble-doubledata type, a fixed averaging orderp = 8 and up to223 it-
erates of the map, at most. As usual, we estimate the error in the rotation number by using (11),
and we validate the computation when the error is smaller than 10−26. For the Newton method,
we require a tolerance smaller than10−23 when comparing two successive computations. Fi-
nally, we do not require a prescribed tolerance in the computation of the derivativesDαρ and
Dy0ρ, but the biggest error in their computation is less that10−21.

The resulting curve in the spaceI×Λ is shown in figure 5 (left). During the continuation, the
step inα is typically taken between10−4 and10−3, but falls to10−10 when we compute the last
point (α, y(α)) = (0.5917905628, 0.8545569509). In figure 6 we plot the graph corresponding
to this invariant curve and its derivative. We observe that,even though the curve is still a graph,
this parameterization is close to have a vertical tangency,so our approach is not suitable for
continuing the curve. However, since the fractalization ofthe curve has not occurred, we expect
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that it still exists beyond this point. To continue the family of curves in this situation it is
convenient to use another approach (see remark 5.1).

5.3 Computing expansions with respect to parameters

In the same situation of subsection 5.2, our aim now is to use the variational information of the
rotation number to compute the Taylor expansion at the origin of figure 5 (left). Notice that in
the selected exampleα′(0) = 0, so we work with the expansion of the functionα(y0) rather
thany0(α).

In general, if(x0, y
∗
0) is a point on an invariant curve of rotation numberθ for a twist map

Fα∗, then we consider the expansion

α(y0) = α∗ + α′(y∗
0)(y0 − y∗

0) +
α′′(y∗

0)

2!
(y0 − y∗

0)
2 + · · · , (32)

that corresponds to the value of the parameter for which(x0, y0) is contained in an invariant
curve ofFα(y0) having the same rotation number. We know that ifθ ∈ D and the familyFα

is analytic, then (32) is an analytic function aroundy∗
0. Once again, during the rest of the

section, we omit the dependence on the parameterα in the family of twist maps, and we denote
F1 = X ◦ F andF2 = Y ◦ F .

Like in subsection 4.3, we use that the familyy0 7→ fα(y0),y0 ∈ Diff ω
+(S) induced by

y0 7→ Fα(y0) has constant rotation number, together with remark 3.2. Concretely, for any in-
tegerd ≥ 1 we have

0 = Θd
q,p,p(fα(y0),y0) + O(2−(p+1)q), (33)

whereΘd
q,p,p is the extrapolation operator (16). We observe that the value of Θd

q,p,p(fy0) at the
point y∗

0 only depends on the derivativesα(r)(y∗
0) up to r ≤ d. We use this fact to compute

inductively these derivatives from equation (33). To achieve this, we have to isolate them from
Dd

y0
(xn)|y0=y∗

0
for anyd ≥ 1, as we discuss through the next paragraphs.

The following formula generalizes (28):

Dd
y0

(xn) =
d−1∑

j=0

(
d − 1

j

){
Dj

y0
(∂αF1(zn−1)) α(d−j)(y0)

+Dj
y0

(∂xF1(zn−1))D
d−j
y0

(xn−1) + Dj
y0

(∂yF1(zn−1))D
d−j
y0

(yn−1)

}
, (34)

while a similar equation holds forDd
y0

(yn) replacingF1 by F2. Moreover, as in subsection 3.3,
we compute the derivativesDr

y0
of ∂αF1(zn−1), ∂xF1(zn−1) and∂yF1(zn−1) by means of the
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Figure 6:Left: Invariant curve of (29) of rotation numberθ = (
√

5 − 1)/2 corresponding to the last computed

point in figure 5 (see text) expressed as a graphx 7→ y on the annulusS × I. Right: Derivative of the left plot

computed using finite differences.

following recurrent expression

Dr
y0

(∂k,l,m
α,x,yFi(zn−1)) =

r−1∑

j=0

(
r − 1

j

){
Dj

y0
(∂k+1,l,m

α,x,y Fi(zn−1)) α(r−j)(y0)

+Dj
y0

(∂k,l+1,m
α,x,y Fi(zn−1))D

r−j
y0

(xn−1)

+Dj
y0

(∂k,l,m+1
α,x,y Fi(zn−1))D

r−j
y0

(yn−1)

}
,

which only requires to evaluate the partial derivatives ofF1 andF2 with respect toα, x andy.
Using the above expressions, we reproduce the inductive argument of subsection 4.3. Let

us assume that the valuesα′(y∗
0), . . . , α

(d−1)(y∗
0) are known. Then, we observe that if we set

y0 = y∗
0 andα = α∗ in equation (34), the only term containing the derivativeα(d)(y∗

0) is the one
corresponding toj = 0. By induction, it is easy to find that

Dd
y0

(xn)|y0=y∗

0
= X d

n α(d)(y∗
0) + X̂ d

n , Dd
y0

(yn)|y0=y∗

0
= Yd

n α(d)(y∗
0) + Ŷd

n,

where the coefficientsX d
n , X̂ d

n , Yd
n and Ŷd

n are obtained recursively and only depend on the
derivativesα(r)(y∗

0), with r < d. Concretely,X d
n andX̂ d

n satisfy

X d
n =

(
∂αF1(zn−1) + ∂xF1(zn−1)X d

n−1 + ∂yF1(zn−1)Yd
n−1

)
|y0=y∗

0
,

X̂ d
n =

(
∂xF1(zn−1)X̂ d

n−1 + ∂yF1(zn−1)Ŷd
n−1 +

d−1∑

j=1

(
d − 1

j

){
Dj

y0
(∂αF1(zn−1))α

(d−j)(y0)

+Dj
y0

(∂xF1(zn−1))D
d−j
y0

(xn−1) + Dj
y0

(∂yF1(zn−1))D
d−j
y0

(yn−1)

})∣∣∣∣
y0=y∗

0

,
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d 2πα(d)(0) e1

0 3.8832220774509331546937312599254 -
1 2.9215929940647956972904287221575·10−29 6·10−27

2 -3.9914536995187621201317645570286·10−1 6·10−28

3 -7.2312013917244657534375078612123·10−1 5·10−27

4 -1.4570409862191278806067261207843·100 9·10−27

5 2.0167847130561842764416032369501·101 4·10−26

6 1.2357011948811946999538300791232·102 1·10−25

7 -9.1717201199029959021691212417954·101 2·10−25

8 -3.0832824868383111456060167381447·103 4·10−24

9 -7.2541251340271326844826925983923·104 2·10−22

Table 3:Derivatives of2πα(y0) at the origin forθ = (
√

5 − 1)/2. The columne1 corresponds to the estimated

error using (11).

and similar equations hold forYd
n andŶd

n replacingF1 by F2. These sequences are initialized
as

X 1
0 := X̂ 1

0 := Y1
0 := 0, Ŷ1

0 := 1, and X d
0 := X̂ d

0 := Yd
0 := Ŷd

0 := 0, for d > 1.

Finally, if we evaluate the extrapolation operatorΘq,p for the sequencesX d = {X d
n}n=1,...,N

andX̂ d = {X̂ d
n}n=1,...,N , then we obtain from (33) the following expression

α(d)(y∗
0) = −Θq,p(X̂ d)

Θq,p(X d)
+ O(2−(p+1)q).

Now, we apply this methodology to the Hénon familyα ∈ Λ = [0, 1) 7→ Fα given by (30)
and (31). In particular, we fixx0 = 0 and compute the expansion (32) aty∗

0 = 0 corresponding
to invariant curves of rotation numberα∗ = θ = (

√
5 − 1)/2.

Observe that the derivatives of this map are hard to compute explicitly, so we have to intro-
duce another recursive scheme for them. Moreover, in order reduce the amount of computations,
we use that the iterates of(0, 0) arexn = 2πnθ andyn = 0.

We detail the computations of∂k,l,m
α,x,y (Y ◦ Fα) at the point(α, x, y) = (θ, xn, 0), while the

derivatives ofX ◦ Fα satisfy completely analogous expressions. Let us introduce the function

g(x, y) = 1 − 2y(cos(x))2 sin(x) + y2(cos(x))4,

so we can writeY ◦ Fα(x, y) = y
√

g(x, y). First, we observe that for anys ∈ Q we have
∂k,l,m

α,x,y (ygs)|y=0 = 0 providedk 6= 0 or m = 0. Otherwise, the required derivatives can be
computed by means of the following recurrent expressions

∂l,m
x,y (ygs) = ∂l,m−1

x,y (gs) + s

l∑

i=0

m−1∑

j=0

(
l

i

)(
m − 1

j

)
∂i,j

x,y(ygs−1)∂l−i,m−j
x,y (g)
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and

∂l,m
x,y (gs) = s

l∑

i=0

m−1∑

j=0

(
l

i

)(
m − 1

j

)
∂i,j

x,y(ygs−1)∂l−i,m−j
x,y (g).

Finally, we observe that the derivatives∂l−i,m−j
x,y (g) can be computed easily by expanding

the function as a trigonometric polynomial

g(x, y) = 1 − y

2

(
sin(3x) + sin(x)

)
+

y2

2

(
3

4
+ cos(2x) +

1

4
cos(4x)

)
.

The computations are performed by usingdouble-doubledata type,p = 7 and221 iterates,
at most. We stop the computations if the estimated error is less than10−25. The derivatives of
the expansion (32) and their estimated error, are given in table 3. Finally, in order to verify the
results, we compare the truncated expansions of the curve with the numerical approximation
computed in section 5.2. The deviation is plotted inlog10 scale in figure 5 (right).
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[11] C. Golé. Symplectic Twist Maps: Global Variational Techniques. World Scientific Pub-
lishing, 2001.
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