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Abstract. The thermodynamic impact of the Coulomb repulsion on s–wave superconductors is an-

alyzed via a rigorous study of equilibrium and ground states of the strong coupling BCS–Hubbard

Hamiltonian. We show that the one–site electron repulsion can favor superconductivity at fixed chem-

ical potential by increasing the critical temperature and/or the Cooper pair condensate density. If

the one–site repulsion is not too large, a first or a second order superconducting phase transition can

appear at low temperatures. The Meißner effect is shown to be rather generic but coexistence of su-

perconducting and ferromagnetic phases is also shown to be feasible, for instance near half–filling and

at strong repulsion. Our proof of a superconductor–Mott insulator phase transition implies a rigorous

explanation of the necessity of doping insulators to create superconductors. These mathematical results

are consequences of “quantum large deviation” arguments combined with an adaptation of the proof

of Størmer’s theorem [1] to even states on the CAR algebra.

1. Introduction

Since the discovery of mercury superconductivity in 1911 by the Dutch physicist Onnes, the study of
superconductors has continued to intensify, see, e.g., [2]. Since that discovery, a significant amount of
superconducting materials has been found. This includes usual metals, like lead, aluminum, zinc or
platinum, magnetic materials, heavy–fermion systems, organic compounds, and ceramics. A complete
description of their thermodynamic properties is an entire subject by itself, see [2, 3, 4] and references
therein. Apart from its zero–resistivity and many other complex phenomena, superconductors manifest
the celebrated Meißner or Meißner–Ochsenfeld effect, i.e., they can become perfectly diamagnetic. The
highest3 critical temperature for superconductivity obtained today is between 100 and 200 Kelvin via
doped copper oxides, which are originally insulators. In contrast with most superconductors, note
that magnetic superconductors only exist on a range of non–zero temperatures.

Theoretical foundations of superconductivity go back to the celebrated BCS theory given in 1957
which explains conventional type I superconductors. Nevertheless, a general theory of superconduc-
tivity is still a subject of debate, especially for high–Tc superconductors. An important phenomenon
ignored in the BCS theory is the Coulomb interaction between electrons or holes, which can imply
strong correlations, for instance in high–Tc superconductors. To study these correlations, most of
theoretical methods, inspired by Beliaev [5], use perturbation theory or renormalization group derived
from the diagram approach of Quantum Field Theory. However, even if these approaches have been
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Bilbao, Spain.
1IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain, jb.bru@ikerbasque.org
2Institut für Mathematik, Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany

pedra@mathematik.uni-mainz.de
3In January 2008, a critical temperature over 180 Kelvin was reported in a Pb-doped copper oxide.



2 J.-B. BRU AND W. DE SIQUEIRA PEDRA

successful in explaining many physical properties of superconductors [3, 4], only few rigorous results
exist on superconductivity.

Among these, the exact solution of the strong coupling4 BCS model is well–known since the sixties
[6, 7]. This model is in a sense unrealistic: among other things, its representation of the kinetic energy
of electrons is rather poor. Nevertheless it became popular because it displays most of basic properties
of real superconductors. See, e.g., Chapter VII, Section 4 in [8]. Even though the analysis of the ther-
modynamics of the BCS Hamiltonian was rigorously performed in the eighties [9, 10], generalizations
of the strong coupling approximation of the BCS model are still subject of research. For instance,
strong coupling–BCS–type models with superconducting phases at arbitrarily high temperatures are
treated in [11]. However, the effect of the Coulomb interaction on superconductivity is not rigorously
known. Since most of novel superconducting compounds correspond to strongly correlated electron
systems, it is an important issue.

The aim of the present paper is therefore to understand the possible thermodynamic impact of the
Coulomb repulsion in the strong coupling approximation. More precisely, we study the thermodynamic
properties of the strong coupling BCS–Hubbard model defined in the box5 ΛN := {Z∩ [−L,L]}d≥1 of
volume |ΛN | = N ≥ 2 by the Hamiltonian

HN := −µ
∑

x∈ΛN

(nx,↑ + nx,↓)− h
∑

x∈ΛN

(nx,↑ − nx,↓) + 2λ
∑

x∈ΛN

nx,↑nx,↓

− γ

N

∑

x,y∈ΛN

a∗x,↑a
∗
x,↓ay,↓ay,↑ (1.1)

for real parameters µ, h, λ, and γ ≥ 0. The operator a∗x,s resp. ax,s creates resp. annihilates a fermion
with spin s ∈ {↑, ↓} at lattice position x ∈ Zd whereas nx,s := a∗x,sax,s is the particle number operator
at position x and spin s. The first term of the right hand side (r.h.s.) of (1.1) represents the strong
coupling approximation of the kinetic energy, with µ := µ̃ − ε being the difference between the true
chemical potential µ̃ of the system and a constant kinetic energy per particle ε. For simplicity we set
ε = 0 and µ is further considered in this paper as being the chemical potential. Note that this “strong
coupling approximation” is also called “atomic limit” in the context of the Hubbard model, see, e.g.,
[12, 13]. The second term in the r.h.s. of (1.1) corresponds to the interaction between spins and the
magnetic field h. The one–site interaction with coupling constant λ comes from a caricature of the
(screened) Coulomb repulsion as in the celebrated Hubbard model. So, the parameter λ should be
taken as a positive number but our results are also valid for any real λ. The last term is the BCS
interaction written in the x–space since

γ

N

∑

x,y∈ΛN

a∗x,↑a
∗
x,↓ay,↓ay,↑ =

γ

N

∑

k,q∈Λ∗N

ã∗k,↑ã
∗
−k,↓ãq,↓ã−q,↑, (1.2)

with Λ∗N being the reciprocal lattice of quasi–momenta and where ãq,s is the corresponding annihila-
tion operator for s ∈ {↑, ↓}. Observe that the thermodynamics of the model for γ = 0 can easily be
computed. Therefore we restrict the analysis to the case γ > 0. The spin dependence of the homoge-
neous BCS interaction (1.2) considered here corresponds to the class of s–wave superconductors. The
mediator implying this effective interaction does not matter, i.e., it could be due to phonons, as in
conventional type I superconductors, or anything else.

We show that the one–site repulsion suppresses s–wave superconductivity for large λ ≥ 0. In
particular, the repulsive term in (1.1) cannot imply any superconducting state if γ = 0. However, the
first elementary but nonetheless important property of this model is that the presence of an electron
repulsion is not incompatible with superconductivity if |λ−µ| and (λ+|h|) are not too big as compared

4See (1.1) with λ = 0 and h = 0.
5Without loss of generality we choose N such that L := (N1/d − 1)/2 ∈ N.
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to the coupling constant γ of the BCS interaction. In this case, the superconducting phase appears
at low temperatures as either a first order or a second order phase transition. More surprisingly, the
one–site repulsion can even favor superconductivity at fixed chemical potential µ by increasing the
critical temperature and/or the Cooper pair condensate density. This contradicts the naive guess
that any one–site repulsion between electron pairs should at least reduce the formation of Cooper
pairs. It is however important to mention that the physics described by the model depends on which
parameter, µ or ρ, is fixed. (It does not mean that the canonical and grand–canonical ensembles
are not equivalent for this model). Indeed, we also analyze the thermodynamic properties at fixed
electron density ρ per site in the grand–canonical ensemble, as it is done for the perfect Bose gas in the
proof of Bose-Einstein condensation. The analysis of the thermodynamics of the strong coupling BCS–
Hubbard model is performed in details. In particular, we prove that the Meißner effect is rather generic
but also that the coexistence of superconducting and ferromagnetic phases is possible, for instance
at large λ > 0 and densities near half–filling. The later situation is related to a superconductor–
Mott insulator phase transition. This transition gives furthermore a rigorous explanation of the need
of doping insulators to obtain superconductors. Indeed, at large enough coupling constant λ, the
superconductor–Mott insulator phase transition corresponds to the breakdown of superconductivity
together with the appearance of a gap in the chemical potential as soon as the electron density per
site becomes an integer, i.e., 0, 1 or 2. If the system has an electron density per site equal to 1 without
being superconductor, then any non–zero magnetic field h 6= 0 implies a ferromagnetic phase.

Note that the present setting is still too simplified with respect to (w.r.t.) real superconductors. For
instance, the anti–ferromagnetic phase or the presence of vortices, which can appear in (type II) high–
Tc superconductors [3, 4], are not modeled. However, the BCS–Hubbard Hamiltonian (1.1) may be a
good model for certain kinds of superconductors or ultra-cold Fermi gases in optical lattices, where
the strong coupling approximation is experimentally justified. Actually, even if the strong coupling
assumption is a severe simplification, it may be used in order to analyze the thermodynamic impact
of the Coulomb repulsion, as all parameters of the model have a phenomenological interpretation and
can be related to experiments. See discussions in Section 5. Moreover, the range of parameters in
which we are interested turns out to be related to a first order phase transition. This kind of phase
transitions are known to be stable under small perturbations of the Hamiltonian. In particular, by
including a small kinetic part it can be shown by high–low temperature expansions that the model

HN,ε := HN +
∑

x,y∈ΛN

ε(x− y)
(
a∗y,↓ax,↓ + a∗y,↑ax,↑

)

has essentially the same correlation functions as HN , up to corrections of order ||ε||1. This analysis
will be the subject of a separated paper. For any ε 6= 0 notice that the model HN,ε is not anymore
permutation invariant but only translation invariant. Such translation invariant models are studied in
a systematic way in [14]. Their detailed analysis is however, generally much more difficult to perform.
Starting with models having more symmetries – for instance permutation invariance – is in this case
technically easier.

Coming back to the strong coupling BCS–Hubbard model HN , it turns out that the thermodynamic
limit of its (grand–canonical) pressure6

pN (β, µ, λ, γ, h) :=
1

βN
lnTrace

(
e−βHN

)
(1.3)

6Our notation for the “Trace” does not include the Hilbert space where it is evaluated but it should be deduced from

operators involved in each statement.
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exists at any fixed inverse temperature β > 0. It corresponds to a variational problem which has min-
imizers7 in the set ES,+

U of (even8) permutation invariant states on the CAR C∗–algebra U generated
by annihilation and creation operators:

p (β, µ, λ, γ, h) := lim
N→∞

{pN (β, µ, λ, γ, h)} = − inf
ω∈ES,+

U
F (ω) . (1.4)

The minimum of this variational problem is attained for any weak–∗ limit point of local Gibbs states

ωN (·) :=
Trace

( · e−βHN
)

Trace (e−βHN )
(1.5)

associated with HN . Similarly to what is done for general translation invariant models (see [15, 16]),
the set of equilibrium states of the strong coupling BCS–Hubbard model is naturally defined to be
the set Ωβ = Ωβ(µ, λ, γ, h) of minimizers of (1.4). Note that Ωβ is a non empty convex subset9 of
ES,+
U and the extremal decomposition in Ωβ coincides with the one in ES,+

U , i.e., Ωβ is a face in ES,+
U .

So, pure equilibrium states are extremal states of Ωβ. Meanwhile, any weak–∗ limit point as n → ∞
of an equilibrium state sequence {ω(n)}n∈N with diverging inverse temperature βn → ∞ is a ground
state ω ∈ ES,+

U . We have left the Fock space representation of the model to go to a representation–
free formulation of thermodynamic phases. Doing so we take advantage of the non–uniqueness of the
representation of the CAR C∗–algebra U , as stressed for instance in [6, 17, 18] for the BCS model. This
property is indeed necessary to get non–unique equilibrium and ground states, i.e., phase transitions.

Equilibrium states define tangents to the convex map

(β, µ, λ, γ, h) 7→ p (β, µ, λ, γ, h) .

The analysis of the set of tangents of this map gives hence information about the expectations of
many important observables w.r.t. equilibrium states. The main technical point in the present work
is therefore to find an explicit representation of the pressure by using the permutation invariance of
the model in a crucial way. Indeed, we adapt to our case of fermions on a lattice the methods of [21]
used to find the pressure of spin systems of mean–field type. Then, it is proven that it suffices to
minimize the variational problem (1.4) w.r.t. the set ES,+

U of extremal states in ES,+
U . By adapting the

proof of the Størmer’s theorem [1] to even states on the CAR algebra, we show next that extremal,
permutation invariant and even states are product states

ωζ :=
⊗

x∈Zd

ζx

obtained by “copying” some one–site even state ζ to all other sites. This result is a non–commutative
version of the celebrated de Finetti Theorem from (classical) probability theory. Using this, the vari-
ational problem (1.4) can be drastically simplified to a minimization problem on a finite dimensional
manifold. At the end, it yields to another explicit, rather simple, variational problem on R+

0 , which
can be rigorously analyzed by analytic or numerical methods to obtain the complete thermodynamic
behavior of the model.

Observe however, that all correlation functions cannot be drawn from an explicit formula for the
pressure by taking derivatives combined with Griffiths arguments [20, 22, 23] on the convergence of
derivatives of convex functions, unless the (infinite volume) pressure is shown to be differentiable w.r.t.
any perturbation. Showing differentiability of the pressure as well as the explicit computation of its
corresponding derivative can be a very hard task, for instance for correlation functions involving many
lattice points. By contrast, the method presented in this paper gives access to all correlation functions

7Because ω 7→ F(ω) is lower semicontinuous and ES,+
U is compact with respect to the weak–∗ topology.

8See Remark 6.1 in Section 6.1.
9The map ω 7→ F(ω) on the convex set ES,+

U is affine and lower semicontinuous, thus Ωβ is a non empty face of ES,+
U .
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at once. This is one basic (mathematical) message of this method, which is generalized in [14] to all
translation invariant Fermi systems without requiring any quantum spin representation.

In fact, we analyze the sets Ωβ for β ∈ (0,∞], where Ω∞ is the set of ground states with parameters
µ, γ, λ, and h. This gives some rigorous answers to the following questions:

• existence of a set of parameters with equilibrium and ground states breaking the U(1)–
gauge symmetry (superconducting phase transition) and showing off–diagonal long range order
(ODLRO);

• gap equation and formation of Cooper pairs in the superconducting phase (by proving bounds
for the density–density correlations);

• relation between superconductivity and magnetization with a proof of the Meißner effect;
• relation between the superconducting and Mott insulator phases for ground or equilibrium

states;
• behavior of the critical temperature θc for the superconducting phase transition w.r.t. λ, γ or

h in the case of constant electron density ρ and in the case of fixed chemical potential µ;
• behavior of the heat capacity w.r.t. parameters.

Note that our study of equilibrium states is reminiscent of the work of Fannes, Spohn and Verbeure
[19], performed however within a different framework. By opposition with our setting, their analysis
[19] concerns symmetric states on an infinite tensor product of one C∗–algebra and their definition of
equilibrium states uses the so-called correlation inequalities for KMS–states, see [20, Appendix E].

To conclude, this paper is organized as follows. In Section 2 we give the thermodynamic limit of the
pressure pN (1.3) as well as the gap equation. Then, our main results concerning the thermodynamic
properties of the model are formulated in Section 3 at fixed chemical potential µ and in Section 4 at
fixed electron density ρ per site. Section 5 briefly explains our result on the level of equilibrium states
and gives additional remarks. Actually, in order to keep the main issues and the physical implications
as transparent as possible, we reduce the technical and formal aspects to a minimum in Sections 2–5. In
particular, in Sections 2–4 we only stay on the level of pressure and thermodynamic limit of local Gibbs
states. The generalization of the results on the level of equilibrium and ground states is postponed to
Section 6.2. Indeed, the rather long Section 6 gives the detailed mathematical foundations of our phase
diagrams. In particular, in Section 6.1 we introduce the C∗–algebraic machinery needed in our analysis
and prove various technical facts to conclude in Section 6.2 with the rigorous study of equilibrium
and ground states. In Section 7, we collect some useful properties on the qualitative behavior of the
Cooper pair condensate density, whereas Section 8 is an appendix on Griffiths arguments [20, 22, 23].

2. Grand–canonical pressure and gap equation

In order to obtain the thermodynamic behavior of the strong coupling BCS–Hubbard model HN ,
it is essential to get first the thermodynamic limit N → ∞ of its grand–canonical pressure pN (1.3).
The rigorous derivation of this limit is performed in Section 6.1. We explain here the final result with
the heuristic behind it.

The first important remark is that one can guess the correct variational problem by the so-called
approximating Hamiltonian method [24, 25, 26] originally proposed by Bogoliubov Jr. [27]. In our
case, the correct approximation of the Hamiltonian HN is the c–dependent Hamiltonian

HN (c) := −µ
∑

x∈ΛN

(nx,↑ + nx,↓)− h
∑

x∈ΛN

(nx,↑ − nx,↓) + 2λ
∑

x∈ΛN

nx,↑nx,↓

− γ

N

∑

x∈ΛN

(
(Nc) a∗x,↑a

∗
x,↓ + (Nc̄) ax,↓ax,↑

)
, (2.1)
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with c ∈ C, see also [6, 7]. The main advantage of this Hamiltonian in comparison with HN is the
fact that it is a sum of shifts of the same local operator. For an appropriate order parameter c ∈ C,
it leads to a good approximation of the pressure pN as N →∞. This can be partially seen from the
inequality

γN |c|2 + HN (c)−HN =
γ

N


 ∑

x∈ΛN

a∗x,↑a
∗
x,↓ −Nc̄





 ∑

x∈ΛN

ax,↑ax,↓ −Nc


 ≥ 0,

which is valid as soon as γ ≥ 0. Observe that the constant term γN |c|2 is not included in the definition
of HN (c). Hence, by using that Trace(eA+B∗B) ≤ Trace(eA), the thermodynamic limit p(β, µ, λ, γ, h)
of the pressure pN (1.3) is bounded from below by

p (β, µ, λ, γ, h) ≥ sup
c∈C

{−γ|c|2 + p (c)
}

. (2.2)

The function p (c) = p(β, µ, λ, γ, h; c) is the pressure associated with HN (c) for any N ≥ 1. It can
easily be computed since HN (c) is a sum of local operators which commute with each other. Indeed,
for any N ≥ 1, this pressure equals10

p (c) :=
1

βN
lnTrace

(
e−βHN (c)

)
=

1
β

lnTrace
(
e−βH1(c)

)

=
1
β

lnTrace
(
eβ{(µ+h)n↑+(µ−h)n↓+γ(ca∗↓a

∗
↑+c̄a↑a↓)−2λn↑n↓}) . (2.3)

To be useful, the variational problem in (2.2) should also be an upper bound of p(β, µ, λ, γ, h). By
adapting the proof of the celebrated Størmer’s theorem [1] to even states on the CAR algebra and by
using the Petz–Raggio–Verbeure proof for spin systems [21] as a guideline, we prove this in Section 6.1.
Thus the thermodynamic limit of the pressure of the model HN exists and can explicitly be computed
by using the approximating Hamiltonian HN (c):

Theorem 2.1 (Grand-canonical pressure).
For any β, γ > 0 and µ, λ, h ∈ R, the thermodynamic limit p(β, µ, λ, γ, h) of the grand–canonical
pressure pN (1.3) equals

p (β, µ, λ, γ, h) = sup
c∈C

{−γ|c|2 + p (c)
}

= β−1 ln 2 + µ + sup
r≥0

f (r) < ∞,

where the real function f (r) = f(β, µ, λ, γ, h; r) is defined by

f (r) := −γr +
1
β

ln
{

cosh (βh) + e−λβ cosh (βgr)
}

,

with gr := {(µ− λ)2 + γ2r}1/2.

Remark 2.2. The fact that the pressure pN coincides as N → ∞ with the variational problem
given by the so-called approximating Hamiltonian (here HN (c)) was previously proven via completely
different methods in [24] for a large class of Hamiltonian (including HN ) with BCS–type interaction.
However, as explained in the introduction, our proof gives deeper results, not expressed in Theorem
2.1, on the level of states, cf. (1.4) and (6.33). In contrast to the approximating Hamiltonian method
[24, 25, 26, 27], it leads to a natural notion of equilibrium and ground states and allows the direct
analysis of correlation functions. For more details, we recommend Section 6, particularly Section 6.2.

From the gauge invariance of the map c 7→ p(c) observe that any maximizer cβ ∈ C of the first
variational problem given in Theorem 2.1 has the form r1/2

β eiφ with rβ ≥ 0 being solution of

sup
r≥0

f(r) = f(rβ) (2.4)

10Here a1,↑, a1,↓ and n1,↑, n1,↓ are replaced respectively by a↑, a↓ and n↑, n↓.
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Figure 1. Illustration, as a function of µ, of the critical temperature θc = θc(µ, λ, γ, h)
such that rβ > 0 if and only if β > θ−1

c (blue area) for γ = 2.6, h = 0 and with
λ = −0.575 (left figure), 0 (figure on the center) and 0.575 (right figure). The blue line
corresponds to a second order phase transition, whereas the red dashed line represents
the domain of µ with a first order phase transition. The black dashed line is the chemical
potential µ = λ corresponding to an electron density per site equal to 1, see Section 3.

and φ ∈ [0, 2π). For any β, γ > 0 and real numbers µ, λ, h, it is also clear that the order parameter
rβ is always bounded since f(r) diverges to −∞ when r → ∞. Up to (special) points (β, µ, λ, γ, h)
corresponding to a phase transition of first order, it is always unique and continuous w.r.t. each
parameter (see Section 7).

For low inverse temperatures β (high temperature regime) rβ = 0. Indeed, straightforward com-
putations at low enough β show that the function f(r) is concave as a function of r ≥ 0 whereas
∂rf(0) < 0, see Section 7. On the other hand, any non–zero solution rβ of the variational problem
(2.4) has to be solution of the gap equation (or Euler–Lagrange equation)

tanh
(
βgrβ

)
=

2grβ

γ

(
1 +

eλβ cosh (βh)
cosh

(
βgrβ

)
)

. (2.5)

If gr = 0, observe that one uses in (2.5) the asymptotics x−1 tanhx ∼ 1 as x → 0, see also (7.2).
Because tanh(x) ≤ 1 for x ≥ 0, we then conclude that

0 ≤ rβ ≤ max {0, rmax} , with rmax :=
1
4
− γ−2 (µ− λ)2 . (2.6)

In particular, if γ ≤ 2|µ − λ|, then rβ = 0 for any β > 0. However, at large enough β > 0 (low
temperature regime) and at fixed λ, h, µ ∈ R, there is a unique γc > 2|λ − µ| such that rβ > 0 for
any γ ≥ γc. In other words, the domain of parameters (β, µ, λ, γ, h) where rβ is strictly positive
is non–empty, see figures 1–2 and Section 7. Observe in figure 2 that a positive λ, i.e., a one–site
repulsion, can significantly increase (right figure) the critical temperature θc = θc(µ, λ, γ, h), which is
defined such that rβ > 0 if and only if β > θ−1

c .
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Figure 2. Illustration, as a function of λ, of the critical temperature θc = θc(µ, λ, γ, h)
for γ = 2.6, h = 0 and with µ = −0.5 (left figure), µ = 1 (figure at the center) and
µ = 1.25 (right figure). The blue line corresponds to a second order phase transition,
whereas the red dashed line represents the domain of λ with first order phase transition.
The black dashed line is the coupling constant λ = µ corresponding to an electron
density per site equal to 1, see Section 3.
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From Lemma 7.1, the set of maximizers of the variational problem (2.4) has at most two elements
in [0, 1/4]. It follows by continuity of (β, µ, λ, γ, h, r) 7→ f(β, µ, λ, γ, h; r), and from the fact that the
interval [0, 1/4] is compact, that the set

S :=
{

(β, µ, λ, γ, h) : β, γ > 0 and rβ > 0 is the unique maximizer of (2.4)
}

(2.7)

is open. In Section 3.1, we prove that the set S corresponds to superconducting phases since the order
parameter solution of (2.4) can be interpreted as the Cooper pair condensate density. The boundary
∂S of the set S is called the set of critical points of our model. By definition, if (2.4) has more than one
maximizer, then (β, µ, λ, γ, h) ∈ ∂S, whereas if (β, µ, λ, γ, h) 6∈ S, then r = 0 is the unique maximizer
of (2.4).

For more details on the study of the variational problem (2.4), we recommend Section 7.

3. Phase diagram at fixed chemical potential

By using our main theorem, i.e., Theorem 2.1, we can now explain the thermodynamic behavior
of the strong coupling BCS–Hubbard model HN . The rigorous proofs are however given in Section
6.2. Actually, we concentrate here on the physics of the model extracted from the (finite volume)
grand–canonical Gibbs state ωN (1.5) associated with HN . We start by showing the existence of a
superconducting phase transition in the thermodynamic limit.

3.1 Existence of a superconducting phase transition

The solution rβ of (2.4) can be interpreted as an order parameter related to the Cooper pair con-
densate density ωN (c∗0c0)/N , where

c0 :=
1√
N

∑

x∈ΛN

ax,↓ax,↑ =
1√
N

∑

k∈Λ∗N

ãk,↓ã−k,↑

resp. c∗0 annihilates resp. creates one Cooper pair within the condensate, i.e., in the zero-mode for
electron pairs. Indeed, in Section 6.2 (see Theorem 6.13) we prove, by using a notion of equilibrium
states, the following.

Theorem 3.1 (Cooper pair condensate density).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, the (infinite volume) Cooper pair
condensate density equals

lim
N→∞

{
1
N

ωN (c∗0c0)
}

= lim
N→∞





1
N2

∑

x,y∈ΛN

ωN

(
a∗x,↑a

∗
x,↓ay,↓ay,↑

)




= rβ ≤ max {0, rmax} ,

with rmax ≤ 1/4 defined in (2.6). The (uniquely defined) order parameter rβ = rβ(µ, λ, γ, h) is an
increasing function of γ > 0.

Remark 3.2. In fact, Theorem 3.1 is not anymore satisfied only if the order parameter rβ is dis-
continuous w.r.t. γ > 0 at fixed (β, µ, λ, h). In this case, the thermodynamic limit of the Cooper
pair condensate density is bounded by the left and right limits of the corresponding (infinite volume)
density, see Section 8, in particular (8.1). Similar remarks can be done for Theorems 3.6, 3.8, 3.10
and 3.12.

At least for large enough β and γ, we have explained that rβ > 0, see figures 1–2. Illustrations of
the Cooper pair condensate density rβ as a function of β and λ are given in figure 3. In other words,
a superconducting phase transition can appear in our model. Its order depends on parameters: it can
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be a first order or a second order superconducting phase transition, cf. figure 3 and Section 7 for more
details. From numerical investigations, note that rβ was always found to be an increasing function of
β > 0. In Section 7 we only give a partial proof of this fact, unfortunately. Therefore, a superconducting
phase appearing only on a range of non–zero temperatures as for magnetic superconductors cannot
not rigorously been excluded. But we conjecture that our model can never show this phenomenon,
i.e., rβ should always be an increasing function of β > 0.

2 4 6 8 10
Β

0.05

0.10

0.15

0.20

0.25

r Β

0.0

0.2

0.4

0.6

Λ 2
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Β
0.00

0.05

0.10

0.15

0.20
rΒ

Figure 3. In the figure on the left, we have three illustrations of the Cooper pair
condensate density rβ as a function of the inverse temperature β for λ = 0 (blue line),
λ = 0.45 (red line) and λ = 0.575 (green line). The figure on the right represents a
3D illustration of rβ as a function of λ and β. The color from red to blue reflects the
decrease of the temperature. In all figures, µ = 1, γ = 2.6 and h = 0.

Observe that a non–trivial solution rβ 6= 0 is a manifestation of the breakdown of the U(1)–gauge
symmetry. To see this phenomenon, we need to perturb the Hamiltonian HN with the external field

α
√

N
(
e−iφc0 + eiφc∗0

)
for any α ≥ 0 and φ ∈ [0, 2π) .

This leads to the perturbed Gibbs state ωN,α,φ (·) defined by (1.5) with HN replaced by

HN,α,φ := HN − α
∑

x∈ΛN

(
e−iφax,↓ax,↑ + eiφa∗x,↑a

∗
x,↓

)
, (3.1)

see (6.42). We then obtain the following result for the so–called quasi–averages (cf. Theorem 6.12).

Theorem 3.3 (Breakdown of the U(1)-gauge symmetry).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, and for any φ ∈ [0, 2π), one gets
for the quasi–average below:

lim
α↓0

lim
N→∞

ωN,α,φ(c0/
√

N) = lim
α↓0

lim
N→∞





1
N

∑

x∈ΛN

ωN,α,φ (ax,↑ax,↓)



 = r1/2

β eiφ,

with rβ ≥ 0 being the unique solution of (2.4), see Theorem 2.1.

Note that the breakdown of the U(1)–gauge symmetry should be “seen” in experiments via the so–
called off diagonal long range order (ODLRO) property of the correlation functions [28], see Section
6.2. In fact, because of the permutation invariance, Theorem 3.1 still holds if we remove the space
average, i.e., for any lattice sites x and y 6= x,

lim
N→∞

ωN (a∗y,↓a
∗
y,↑ax,↑ax,↓) = rβ,

see Theorem 6.13. Similar remarks can be done for Theorems 3.6, 3.8, 3.10 and 3.12.
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We conclude now this analysis by giving the zero–temperature limit β → ∞ of the Cooper pair
condensate density rβ proven in Section 7.

Corollary 3.4 (Cooper pair condensate density at zero–temperature).
The Cooper pair condensate density r∞ = r∞(µ, λ, γ, h) is equal at zero–temperature to

r∞ := lim
β→∞

rβ =
{

rmax for any γ > Γ|µ−λ|,λ+|h|
0 for any γ < Γ|µ−λ|,λ+|h|

with rmax ≤ 1/4 (cf. (2.6) and figure 4) and

Γx,y := 2
(
y +

{
y2 − x2

}1/2
)

χ[0,y) (x) χ(0,∞) (y) + 2xχ[y,∞) (x) ≥ 0

be defined for any x ∈ R+ and y ∈ R. Here χK is the characteristic function of the set K ⊂ R.

2 3 4 5 6
Γ

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Λ

2

4

6

Γ -2

0

2

Λ

0.0

0.1

0.2 r¥

Figure 4. In the figure on the left, the blue area represents the domain of (λ, γ) with
1 ≤ γ ≤ 6, where the (zero–temperature) Cooper pair condensate density r∞ is non–
zero at µ = 1 and h = 0. The figure on the right represents a 3D illustration of r∞
when 1 ≤ γ ≤ 6 and −2.5 ≤ λ ≤ 2.5 with again µ = 1, h = 0.

Remark 3.5. If γ = Γ|µ−λ|,λ+|h|, straightforward estimations show that the order parameter rβ con-
verges to r∞ = 0, see Section 7. This special case is a critical point at sufficiently large β. We exclude
it in our discussion since all thermodynamic limits of densities in Section 3 are performed outside any
critical point, see for instance Theorem 3.1.

The result of Corollary 3.4 is in accordance with Theorem 3.1 in the sense that the order parameter
r∞ is an increasing function of γ ≥ 0. Observe also that

sup
λ∈R

{r∞ (µ, λ, γ, h)} = r∞ (µ, µ, γ, h) =
1
4

for any fixed γ > Γ0,µ+|h|, whereas for any real numbers µ, λ, h,

lim
γ→∞r∞ (µ, λ, γ, h) =

1
4
.

In other words, the superconducting phase for µ = λ is as perfect as for γ = ∞. In particular, in
order to optimize the Cooper pair condensate density, if µ > 0, then it is necessary to increase the
one–site repulsion by tuning in λ to µ. Consequently, the direct repulsion between electrons can favor
the superconductivity at fixed µ. This phenomenon is confirmed in the following analysis.

First observe that the equation (2.5) has no solution if γ ≤ 2|µ| and λ = 0. In other words, the
strong coupling BCS theory has no phase transition as soon as γ ≤ 2|µ| and µ 6= 0. However, even if
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γ ≤ 2|µ|, there is a range of λ where a superconducting phase takes place. For instance, take µ > 0
and note that γ > Γ|µ−λ|,λ+|h| when

0 ≤ µ− γ

2
< λ < µ +

γ

2
−

√
γ (µ + |h|). (3.2)

This last inequality can always be satisfied for some λ > 0, if µ + |h| < γ ≤ 2µ. Therefore, although
there is no superconductivity for γ ≤ 2|µ| and λ = 0, there is a range of positive λ ≥ 0 defined by (3.2)
for µ + |h| < γ ≤ 2µ, where the superconductivity appears at low enough temperature, see Corollary
3.4 and figure 4. In the region γ ≥ 2µ > 0 where the superconducting phase can occur for λ = 0,
observe also that the critical temperature θc for λ > 0 can sometimes be larger as compared with the
one for λ = 0, cf. figure 2.

The effect of a one–site repulsion on the superconducting phase transition may be surprising since
one would naively guess that any repulsion between pairs of electrons should destroy the formation of
Cooper pairs. In fact, the one–site and BCS interactions in (1.1) are not diagonal in the same basis,
i.e., they do not commute. In particular, the Hubbard interaction cannot be directly interpreted as a
repulsion between Cooper pairs. This interpretation is only valid for large λ ≥ 0. Indeed, at fixed µ
and γ > 0, if λ is large enough, there is no superconducting phase.

3.2 Electron density per site and electron–hole symmetry

We give next the grand–canonical density of electrons per site in the system (cf. Theorem 6.14).

Theorem 3.6 (Electron density per site).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, the (infinite volume) electron
density equals

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑ + nx,↓)



 = dβ := 1 +

(µ− λ) sinh
(
βgrβ

)

grβ

(
eβλ cosh (βh) + cosh

(
βgrβ

)) ,

with dβ = dβ(µ, λ, γ, h) ∈ [0, 2], rβ ≥ 0 being the unique solution of (2.4) and gr := {(µ−λ)2+γ2r}1/2,
see Theorem 2.1 and figure 5.
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Figure 5. In the figures on the left, we give illustrations of the electron density dβ as
a function of the chemical potential µ for β < βc (red line) and β > βc (blue line) at
coupling constant λ = 0 (figure on the left, β = 1.4, 2.45) and λ = 0.575 (figure on
the center, β = 4, 6.45). In the figure on the right, dβ is given as a function of β at
µ = 0.3 with λ > µ equal to 0.35 (orange line, second order phase transition), 0.575
(blue line, first order phase transition) and 1.575 (green line, no phase transition). In
all figures, γ = 2.6, h = 0 and βc = θ−1

c is the critical inverse temperature.

At low enough temperature and for γ > Γ|µ−λ|,λ+|h|, Corollary 3.4 tells us that a superconducting
phase appears, i.e., rβ > 0. In this case, it is important to note that the electron density becomes
independent of the temperature. Indeed, by combining Theorem 3.6 with (2.5) one gets that

dβ = 1 + 2γ−1 (µ− λ) (3.3)



12 J.-B. BRU AND W. DE SIQUEIRA PEDRA

is linear as a function of µ in the domain of (β, µ, λ, γ, h) where rβ > 0, i.e., in the presence of
superconductivity, see figure 5.

We give next the electron density per site in the zero–temperature limit β →∞, which straightfor-
wardly follows from Theorem 3.6 combined with Corollary 3.4.

Corollary 3.7 (Electron density per site at zero–temperature).
The (infinite volume) electron density d∞ = d∞(µ, λ, γ, h) ∈ [0, 2] at zero–temperature is equal to

d∞ := lim
β→∞

dβ = 1 +
sgn (µ− λ)

1 + δ|µ−λ|,λ+|h| (1 + δh,0)
χ[λ+|h|,∞) (|µ− λ|)

for γ < Γ|µ−λ|,λ+|h|, whereas within the superconducting phase, i.e., for γ > Γ|µ−λ|,λ+|h| (Corollary
3.4), d∞ = 1 + 2γ−1(µ− λ). Here δx,y = 1 if and only if x = y. Recall also that sgn(0) := 0.

To conclude, observe that (2−dβ) is the density of holes in the system. So, if µ > λ, then dβ ∈ (1, 2],
i.e., there are more electrons than holes in the system, whereas dβ ∈ [0, 1) for µ < λ, i.e., there are
more holes than electrons. This phenomenon can directly be seen in the Hamiltonian HN , where
there is a symmetry between electrons and holes as in the Hubbard model. Indeed, by replacing the
creation operators a∗x,↓ and a∗x,↑ of electrons by the annihilation operators −bx,↓ and −bx,↑ of holes, we
can map the Hamiltonian HN (1.1) for electrons to another strong coupling BCS–Hubbard model for
holes defined via the Hamiltonian

ĤN := −µhole

∑

x∈ΛN

(n̂x,↑ + n̂x,↓)− hhole

∑

x∈ΛN

(n̂x,↑ − n̂x,↓) + 2λ
∑

x∈ΛN

n̂x,↑n̂x,↓

− γ

N

∑

x,y∈ΛN

b∗y,↑b
∗
y,↓bx,↓bx,↑ + 2 (λ− µ) N − γ,

with

n̂x,↓ := b∗x,↓bx,↓, n̂x,↑ := b∗x,↑bx,↑, hhole := −h and µhole := 2λ− µ− γN−1.

Therefore, if one knows the thermodynamic behavior of HN for any h ∈ R and µ ≥ λ (regime with
more electrons than holes), we directly get the thermodynamic properties for µ < λ (regime with
more holes than electrons), which correspond to the one given by ĤN with hhole = −h and a chemical
potential for holes µhole > λ at large enough N . Note that the last constant term in ĤN shifts
the grand–canonical pressure by a constant, but also the (infinite volume) mean–energy per site εβ

(Section 3.6).

3.3 Superconductivity versus magnetization: Meißner effect

It is well–known that for magnetic fields h with |h| below some critical value h(c)
β , type I supercon-

ductors become perfectly diamagnetic in the sense that the magnetic induction in the bulk is zero.
Magnetic fields with strength above h(c)

β destroy the superconducting phase completely. This prop-
erty is the celebrated Meißner or Meißner–Ochsenfeld effect. It is known that for small fields h (i.e.,
|h| < h(c)

β ) the magnetic field in the bulk of the superconductor is (almost) cancelled by the presence of
steady surface currents. As we do not analyze transport here, we only give the magnetization density
explicitly as a function of the external magnetic field h for the strong coupling BCS–Hubbard model.
Note that type II superconductors cannot be covered in the strong coupling regime since the vortices
appearing in presence of magnetic fields come from the magnetic kinetic energy.

Theorem 3.8 (Magnetization density).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, the (infinite volume) magnetization
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density equals

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑ − nx,↓)



 = mβ :=

sinh (βh) eλβ

eλβ cosh (βh) + cosh
(
βgrβ

) ,

with mβ = mβ(µ, λ, γ, h) ∈ [−1, 1], rβ ≥ 0 being the unique solution of (2.4) and gr := {(µ − λ)2 +
γ2r}1/2, see Theorem 2.1 and figure 6.

0.05 0.10 0.15 0.20 0.25
h

0.2

0.4

0.6

0.8

1.0

1.2

dΒ, r Β, mΒ

6

8

10

Β
0.0

0.1

0.2

h

0.0

0.5
mΒ

Figure 6. In the figure on the left, we have an illustration of the electron density
dβ (blue line), the Cooper pair condensate density rβ (red line) and the magnetization
density mβ (green line) as functions of the magnetic field h at β = 7, µ = 1, λ =
0.575 and γ = 2.6. The figure on the right represents a 3D illustration of mβ =
mβ (1, 0.575, 2.6, h) as a function of h and β. The color from red to blue reflects the
decrease of the temperature. In both figures, we can see the Meißner effect (In the 3D
illustration, the area with no magnetization corresponds to rβ > 0).

This theorem deduced from Theorem 6.14 does not seem to show any Meißner effect since mβ > 0
as soon as h 6= 0. However, when the Cooper pair condensate density rβ is strictly positive, from
Theorem 3.8 combined with (2.5) note that

mβ =
2grβ

eλβ sinh (βh)
γ sinh

(
βgrβ

) . (3.4)

In particular, it decays exponentially as β → ∞ when rβ → r∞ > 0, see figure 6. We give therefore
the zero–temperature limit β →∞ of mβ in the next corollary.

Corollary 3.9 (Magnetization density at zero–temperature).
The (infinite volume) magnetization density m∞ = m∞(µ, λ, γ, h) ∈ [−1, 1] at zero–temperature is
equal to

m∞ := lim
β→∞

mβ =
sgn(h)

1 + δ|µ−λ|,λ+|h|
χ[0,λ+|h|] (|µ− λ|) ,

for γ < Γ|µ−λ|,λ+|h| (see Corollary 3.4), whereas for γ > Γ|µ−λ|,λ+|h| there is no magnetization at
zero–temperature since mβ decays exponentially11 as β →∞ to m∞ = 0.

Consequently, when γ < Γ|µ−λ|,λ+|h| there is no superconductivity, i.e., r∞ = 0, and, as soon as
h 6= 0 with |µ− λ| < λ + |h|, there is a perfect magnetization at zero–temperature, i.e., m∞ = sgn(h).
Observe that the condition |µ−λ| > λ + |h| implies from Corollary 3.7 that either d∞ = 0 or d∞ = 2,
which implies that m∞ must be zero.

11Actually, mβ = O(e−(γ−2(λ+|h|))β/2) for γ > Γ|µ−λ|,λ+|h| ≥ 2(λ + |h|).
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On the other hand, when γ > Γ|µ−λ|,λ, we can define the critical magnetic field at zero–temperature
by the unique positive solution

h(c)
∞ := γ

(
1
4

+ γ−2 (µ− λ)2
)
− λ > 0 (3.5)

of the equation Γ|µ−λ|,λ+y = γ for y ≥ 0. Then, by increasing |h| until h(c)
∞ , the (zero–temperature)

Cooper pair condensate density r∞ stays constant, whereas the (zero–temperature) magnetization
density m∞ is zero, i.e., r∞ = rmax and m∞ = 0 for |h| < h(c)

∞ , see Corollary 3.4. However, as soon
as |h| > h(c)

∞ , r∞ = 0 and m∞ = sgn(h), i.e., there is no Cooper pair and a pure magnetization.
In other words, the model manifests a pure Meißner effect at zero–temperature corresponding to a
superconductor of type I, cf. figure 6.

Finally, note that we give an energetic interpretation of the critical magnetic field h(c)
∞ after Corollary

3.13. Also, observe that a measurement of h(c)
∞ (3.5) implies, for instance, a measurement of the

chemical potential µ if one would know γ and λ, which could be found via the asymptotic (3.15) of
the specific heat, see discussions in Section 5.

3.4 Coulomb correlation density

The space distribution of electrons is still unknown and for such a consideration, we need the (infinite
volume) Coulomb correlation density

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑nx,↓)



 . (3.6)

Together with the electron and magnetization densities dβ and mβ, the knowledge of (3.6) allows us
in particular to explain in detail the difference between superconducting and non–superconducting
phases in terms of space distributions of electrons.

Actually, by the Cauchy–Schwarz inequality for states observe that

1
N

∑

x∈ΛN

ωN (nx,↑nx,↓) ≤
√

1
N

∑

x∈ΛN

ωN (nx,↑)
√

1
N

∑

x∈ΛN

ωN (nx,↓). (3.7)

From Theorems 3.6 and 3.8, the densities of electrons with spin up ↑ and down ↓ equal respectively

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑)



 =

dβ + mβ

2
∈ [0, 1]

and

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↓)



 =

dβ −mβ

2
∈ [0, 1]

for any β, γ > 0 and µ, λ, h outside any critical point. Consequently, by using (3.7) in the thermody-
namic limit, the (infinite volume) Coulomb correlation density is always bounded by

0 ≤ lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑nx,↓)



 ≤ wmax :=

1
2

√
d2

β −m2
β. (3.8)

If for instance (3.6) equals zero, then as soon as an electron is on a definite site, the probability to
have a second electron with opposite spin at the same place goes to zero as N → ∞. In this case,
there would be no formation of pairs of electrons on a site. This phenomenon however does not
appear exactly in finite temperature due to thermal fluctuations. Indeed, we can explicitly compute
the Coulomb correlation in the thermodynamic limit (cf. Theorem 6.14):
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Theorem 3.10 (Coulomb correlation density).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, the (infinite volume) Coulomb
correlation density equals12

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑nx,↓)



 = wβ :=

1
2

(dβ −mβ coth (βh)) ,

with wβ = wβ(µ, λ, γ, h) ∈ (0,wmax), see figure 7. Here dβ and mβ are respectively defined in Theorems
3.6 and 3.8.
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Figure 7. Illustration of the Coulomb correlation density wβ (red lines) and its cor-
responding upper bound wmax (blue lines) as a function of β > 0 at µ = 0.2, γ = 2.6,
for λ = 1.305 < µ (left figure, dβ < 1), λ = 0.2 = µ (two right figures, dβ = 1), and
from the left to the right, with h = 0 (mβ = 0), and h = 0.3, 0.35 (where mβ > 0).
The dashed green lines indicate that d∞/2 = 0.5 in the three cases. In the figure on the
left there is no superconducting phase in opposition to the right figures where we see a
phase transition for β > 2.3 (second order) or 2.6 (first order).

Consequently, because grβ
≥ |λ − µ|, for any inverse temperature β > 0 the Coulomb correlation

density is never zero, i.e., wβ > 0, even if the electron density dβ is exactly 1, i.e., if λ = µ. Moreover,
the upper bound in (3.8) is also never attained. However, for low temperatures, wβ goes exponentially
fast w.r.t. β to one of the bounds in (3.8), cf. figure 7. Indeed, one has the following zero–temperature
limit:

Corollary 3.11 (Coulomb correlation density at zero–temperature).
The (infinite volume) Coulomb correlation density w∞ = w∞(µ, λ, γ, h) ∈ [0, 1] at zero–temperature is
equal to

w∞ := lim
β→∞

wβ =
1 + sgn (µ− λ)

2
(
1 + δ|µ−λ|,λ+|h| (1 + δh,0)

)χ[λ+|h|,∞) (|µ− λ|)

for γ < Γ|µ−λ|,λ+|h| whereas w∞ = d∞/2 for γ > Γ|µ−λ|,λ+|h|, see Corollaries 3.4-3.7.

If |µ− λ| > λ + |h|, the interpretation of this asymptotics is clear since either d∞ = 0 for µ < λ
or d∞ = 2 for µ > λ. The interesting phenomena are when |µ− λ| < λ + |h|. In this case, if there
is no superconducting phase, i.e., γ < Γ|µ−λ|,λ+|h|, then wβ converges towards w∞ = 0 as β → ∞.
In particular, as explained above, if an electron is on a definite site, the probability to have a second
electron with opposite spin at the same place goes to zero as N →∞ and β →∞.

However, in the superconducting phase, i.e., for γ > Γ|µ−λ|,λ+|h|, the upper bound wmax (3.8) is
asymptotically attained. Since wmax = d∞/2 as β →∞, it means that 100% of electrons form Cooper
pairs in the limit of zero–temperature, which is in accordance with the fact that the magnetization
density must disappear, i.e., m∞ = 0, cf. Corollary 3.9. As explained in Section 3.1, the highest
Cooper pair condensate density is 1/4, which corresponds to an electron density d∞ = 1. Actually,
although all electrons form Cooper pairs at small temperatures, there are never 100% of electron pairs

12If h = 0, then wβ(µ, λ, γ, 0) := lim
h→0

wβ(µ, λ, γ, h).



16 J.-B. BRU AND W. DE SIQUEIRA PEDRA

in the condensate, see figure 8. In the special case where d∞ = 1, only 50% of Cooper pairs are in the
condensate.

The same analysis can be done for hole pairs by changing ax by −b∗x in the definition of extensive
quantities. Define the electron and hole pair condensate fractions respectively by vβ := 2rβ/dβ and
v̂β := 2r̂β/d̂β, where r̂β and d̂β are the hole condensate density and the hole density respectively.
Because of the electron–hole symmetry, r̂β = rβ and d̂β = 2 − dβ. In particular, when rβ > 0, we
asymptotically get that v̂β +vβ → 1 as β →∞. Hence, in the superconducting phase, an electron pair
condensate fraction below 50% means in fact that there are more than 50% of hole pair condensate
and conversely at low temperatures. For more details concerning ground states in relation with this
phenomenon, see discussions around (6.61) in Section 6.2.
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Figure 8. The fraction of electron pairs in the condensate is given in right and left
figures as a function of µ. In the figure on the left, λ = h = 0, with inverse temperatures
β = 2.45 (orange line), 3.45 (red line) and 30 (blue line). In the figure on the right,
λ = 0.575 and h = 0.1 with β = 5 (orange line), 7 (red line) and 30 (blue line). The
figure on the center illustrates the electron density dβ also as a function of µ at β = 30
(low temperature regime) for λ = h = 0 (red line) and for λ = 0.575 and h = 0.1 (green
line). In all figures, γ = 2.6.

3.5 Superconductor–Mott insulator phase transition

By Corollary 3.7, at low temperature, if λ > 0 and the system is not in the superconducting phase
(i.e., if rβ = 0), then the electron density converges to either 0, 1 or 2 as β →∞ since

d∞ = 1 + sgn (µ− λ) . (3.9)

We define the phase where the system does not form a pair condensate and the electron density is
around 1, to be a Mott insulator phase. More precisely, we say that the system forms a Mott insulator,
if for some ε < 1, some 0 < β0 < ∞, some µ0 ∈ R and some δµ > 0, the electron density

dβ ∈ (1− ε, 1 + ε) and rβ = 0 for all (β, µ) ∈ (β0,∞)× (µ0 − δµ, µ0 + δµ).

As discussed in Section 3.4, observe that we have, in this phase, exactly one electron (or hole) localized
in each site at the low temperature limit since dβ → 1 and wβ → 0 as β →∞.

To extract the whole region of parameters where such a thermodynamic phase takes place, a pre-
liminary analysis of the function Γx,y defined in Corollary 3.4 is first required. Observe that Γ0,y > 0
if and only if y > 0. Consequently, for any real numbers λ and h such that λ + |h| ≤ 0 we have
Γ0,λ+|h| = 0. However, if λ + |h| > 0 then Γ0,λ+|h| > 0. Meanwhile, at fixed y > 0, the continuous
function Γx,y of x ≥ 0 is convex with minimum for x = y, i.e.,

inf
x≥0

{Γx,y} = Γy,y = 2y > 0. (3.10)

In particular, Γx,y is strictly decreasing as a function of x ∈ [0, y] and strictly increasing for x ≥ y.
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Figure 9. In both figures, the blue area represents the domain of (λ, γ), where there is
a superconducting phase at zero temperature for µ = 1 and h = 0. The two increasing
straight lines (green and brown) are γ = 4λ and γ = 2λ for γ ≥ 1. In particular,
between these two lines (2λ < γ < 4λ), there is a superconducting-Mott-Insulator
phase transition by tuning µ.

Now, by combining Corollaries 3.4, 3.7, 3.9 and 3.11, we are in position to extract the set of
parameters corresponding to insulating or superconducting phases:

1. For any γ > 0 and µ, λ ∈ R such that

|µ− λ| > max{γ/2, λ + |h|},
observe first that there are no superconductivity (r∞ = 0), either no electrons or no holes (see (3.9))
and, in any case, no magnetization since m∞ = 0. It is a standard (non ferromagnetic) insulator.

The next step is now to analyze the thermodynamic behavior for

|µ− λ| < max{γ/2, λ + |h|}, (3.11)

which depends on the strength of γ > 0. From 2. to 4., we assume that (3.11) is satisfied.

2. If the BCS coupling constant γ satisfies

0 < γ ≤ Γλ+|h|,λ+|h| = 2(λ + |h|),
then from (3.10) combined with Corollary 3.4 there is no Cooper pair for any µ and any λ. In
particular, under the condition (3.11) there are a perfect magnetization, i.e., m∞ = sgn(h), and
exactly one electron or one hole per site since d∞ = 1 and w∞ = 0. In other words, we obtain a
ferromagnetic Mott insulator phase.

3. Now, if γ > 0 becomes too strong, i.e.,

γ > Γ0,λ+|h| = 4(λ + |h|),
then for any µ ∈ R such that |µ−λ| < γ/2 there are Cooper pairs because r∞ = rmax > 0, an electron
density d∞ equal to (3.3) and no magnetization (m∞ = 0). In this case, observe that all quantities
are continuous at |µ− λ| = γ/2. This is a superconducting phase.

4. The superconducting–Mott insulator phase transition only appears in the intermediary regime
where

Γλ+|h|,λ+|h| = 2 (λ + |h|) < γ < Γ0,λ+|h| = 4 (λ + |h|) , (3.12)
cf. figure 9. Indeed, the function Γx,λ+|h| = γ has two solutions

x1 :=
γ1/2

2
{4 (λ + |h|)− γ}1/2 and x2 :=

γ

2
> x1.
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In particular, for any µ ∈ R such that |µ − λ| ∈ (x1, γ/2), the BCS coupling constant γ is strong
enough to imply the superconductivity (r∞ = rmax > 0), with an electron density d∞ equal to (3.3)
and no magnetization (m∞ = 0). We are in the superconducting phase. However, for any µ ∈ R such
that |µ− λ| < x1, the BCS coupling constant γ becomes too weak and there is no superconductivity
(r∞ = 0), exactly one electron per site, i.e., d∞ = 1 and w∞ = 0, and a pure magnetization if h 6= 0,
i.e., m∞ = sgn(h). In this regime, one gets a ferromagnetic Mott insulator phase. All quantities are
continuous at |µ− λ| = γ/2 but not for |µ− λ| = x1. In other words, we get a superconductor–Mott
insulator phase transition by tuning in the chemical potential µ. An illustration of this phase transition
is given in figure 10, see also figure 8.
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Figure 10. Here λ = 0.575, γ = 2.6, and h = 0.1. In the two figures on the left, we
plot the electron density dβ (blue line), the Cooper pair condensate density rβ (red line)
and the magnetization density mβ (green line) as functions of µ for β = 7 (left figure)
or 30 (low temperature regime, figure on the center). Observe the superconducting-Mott
Insulator phase transition which appears in both cases. In the right figure, we illustrate
as a function of µ the corresponding critical temperature θc. The blue line corresponds
to a second order phase transition, whereas the red dashed line represents the domain
of µ with first order phase transition. The black dashed line is the chemical potential
µ = λ corresponding to an electron density per site equal to 1.

3.6 Mean–energy per site and the specific heat

To conclude, low–Tc superconductors and high–Tc superconductors differ from the behavior of their
specific heat. The first one shows a discontinuity of the specific heat at the critical point whereas the
specific heat for high–Tc superconductors is continuous. It is therefore interesting to give now the
mean–energy per site in the thermodynamic limit in order to compute next the specific heat.

Theorem 3.12 (Mean-energy per site).
For any β, γ > 0 and real numbers µ, λ, h outside any critical point, the (infinite volume) mean energy
per site is equal to

lim
N→∞

{
N−1ωN (HN )

}
= εβ := −µdβ − hmβ + 2λwβ − γrβ,

see Theorems 3.1, 3.6, 3.8, 3.10 and figure 11.

At zero–temperature, Corollaries 3.4, 3.7, 3.9 and 3.11 imply an explicit computation of the mean
energy per site:

Corollary 3.13 (Mean-energy per site at zero–temperature).
The (infinite volume) mean energy per site ε∞ = ε∞(µ, λ, γ, h) at zero–temperature is equal to

ε∞ := lim
β→∞

εβ = −µ +
λ + |λ− µ|

1 + δ|µ−λ|,λ+|h| (1 + δh,0)
χ[λ+|h|,∞) (|µ− λ|)

− |h|
1 + δ|µ−λ|,λ+|h|

χ[0,λ+|h|] (|µ− λ|) ,
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Figure 11. In the two figures on the left, we give the mean energy per site εβ as a
function of β at h = 0 for λ = 0 (figure on the left, second order BCS phase transition)
or λ = 0.575 (figure on the center, first order phase transition). The dashed line in
both figures is the mean energy per site with zero Cooper pair condensate density. On
the right figure, εβ is given as a function of β and h at λ = 0.575. The color from
red to blue reflects the decrease of the temperature and the plateau corresponds to the
superconducting phase. In all figures, µ = 1 and γ = 2.6.

for γ < Γ|µ−λ|,λ+|h| whereas for γ > Γ|µ−λ|,λ+|h|

ε∞ := lim
β→∞

εβ = −γ

4
+ (λ− µ)

(
1 + γ−1 (µ− λ)

)
,

cf. Corollary 3.4.

Note that the critical magnetic field h(c)
∞ (3.5) has a direct interpretation in terms of the zero–

temperature mean energy per site ε∞. Indeed, if |µ− λ| < λ + |h|, i.e., d∞ /∈ {0, 2}, by equating
ε∞ in the superconducting phase with the mean energy ε∞ = −µ − |h| in the non–superconducting
(ferromagnetic) state, we directly get that the magnetic field should be equal to |h| = h(c)

∞ (3.5). In
other words, the critical magnetic field h(c)

∞ corresponds to the point where the mean energies at zero-
temperature in both cases are equal to each other, as it should be. Note that this phenomenon is not
true at non–zero temperature since the mean energy per site can be discontinuous as a function of h
(even if λ = 0), see figure 11.

Now, the specific heat at finite volume equals

cN,β := −β2∂β

{
N−1ωN (HN )

}
= N−1β2ωN

(
[HN − ωN (HN )]2

)
. (3.13)

However, its thermodynamic limit

cβ := lim
N→∞

cN,β = −β2∂βεβ + Cβ (3.14)

cannot be easily computed because one cannot exchange the limit N → ∞ and the derivative ∂β,
i.e., Cβ = Cβ(µ, λ, γ, h) may be non–zero. For instance, Griffiths arguments [20, 22, 23] (Section
8) would allow to exchange any derivative of the pressure pN and the limit N → ∞ by using the
convexity of pN . To compute (3.14) in this way, we would need to prove the (piece–wise) convexity of
εN,β := N−1ωN (HN ) as a function β > 0. As suggested by figure 11, this property of convexity might
be right but it is not proven here.

Observe however that if experimental measurements of the specific heat comes from a discrete
derivative of the mean energy per site εβ, it is then clear that it corresponds to forget about the term
Cβ. In this case, i.e., assuming Cβ = 0, we find again the well–known BCS–type behavior of the
specific heat in presence of a second order phase transition, see figure 12. In addition, if Cβ = 0, then
for any µ, λ, h and γ > Γ|µ−λ|,λ+|h| (Corollary 3.4), we explicitly obtain via direct computations the
well–known exponential decay of the specific heat at zero-temperature for s–wave superconductors:

cβ =
1
4

(
2λγ + γ2 − 4λ2

)
β2e−βγ + o

(
β2e−βγ

)
as β →∞. (3.15)
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Figure 12. Here µ = 1, γ = 2.6 and h = 0. Assuming Cβ = 0, we give 3 plots of
the specific heat cβ as a function of the ratio θ/θc between θ := β−1 and the critical
temperature θc for λ = 0, 0.5 (both left figure, respectively blue and red lines, second
order phase transition), and λ = 0.575 (figure on the center, blue line, first order phase
transition). The dashed red line in the figure on the center indicates what the specific
heat at finite volume might be since cθ−1

c
= +∞. The right figure is a plot as a function

of λ of the relative specific heat jump, i.e., the ratio ∆c/cmax between the jump ∆c at
θ = θc and the maximum value cmax of cθ−1

c
at the same point. The yellow colored area

indicates that this ratio numerically computed is formally infinite due to a first order
phase transition.

(Note that this asymptotic could give access to γ and also λ, see discussions in Section 5.) However, if a
first order phase transition appears, then the (infinite volume) mean energy per site εβ is discontinuous
at the critical temperature θc (cf. figure 11) and the specific heat cθ−1

c
is infinite. In figure 12 we give

an illustration of the ratio ∆c/cmax between the jump ∆c at θ = θc and the maximum value cmax of
cθ−1

c
. For most of standard superconductors13 note that the measured values are between 0.6 and 0.7.

Numerical computations suggest that this ratio ∆c/cmax may always be bounded in our model by one
as soon as a second order phase transition appears.

4. Phase diagram at fixed electron density per site

In any finite volume, the electron density per site is strictly increasing as a function of the chemical
potential µ by strict convexity of the pressure. Therefore, for any fixed electron density ρ ∈ (0, 2)
there exists a unique µN,β = µN,β(ρ, λ, γ, h) such that

ρ =
1
N

∑

x∈ΛN

ωN (nx,↑ + nx,↓) , (4.1)

where ωN represents the (finite volume) grand–canonical Gibbs state (1.5) associated with HN and
taken at inverse temperature β and chemical potential µ = µN,β . The aim of this section is now to
analyze the thermodynamic properties of the model for a fixed ρ instead of a fixed chemical potential
µ. We start by investigating it outside any critical point.

4.1 Thermodynamics outside any critical point

In the thermodynamic limit and away from any critical point, the chemical potential µN,β converges
to a solution µβ = µβ(ρ, λ, γ, h) of the equation

ρ = dβ (µ, λ, γ, h) , (4.2)

see Theorem 3.6. For instance, if ρ = 1, the chemical potential µβ is simply given by λ, i.e.,
µβ(1, λ, γ, h) = λ. At least outside any critical point, this chemical potential µβ is always uniquely
defined.

13at least for the following elements: Hg, In, Nb, Pb, Sn, Ta, Tl, V.



EFFECT OF A LOCALLY REPULSIVE INTERACTION ON S–WAVE SUPERCONDUCTORS 21

Indeed, outside the superconducting phase (see Section 3.1), the electron density dβ given by The-
orem 3.6 is a strictly increasing continuous function of the chemical potential µ at fixed β > 0. In
other words, for any fixed electron density ρ ∈ (0, 2), the equation (4.2) has a unique solution µβ, i.e.,
the chemical potential µβ is the inverse of the electron density dβ taken as a function of µ ∈ R.

On the other hand, inside the superconducting phase, from (3.3) the chemical potential µβ is also
unique and equals

µβ =
γ

2
(ρ− 1) + λ, (4.3)

see figures 5 and 10. In particular, µβ does not depend on h or β as soon as rβ > 0. The gap equation
(2.5) then equals

tanh (βγgr) = 2gr

(
1 +

eλβ cosh (βh)
cosh (βγgr)

)
, with gr :=

1
2
{(ρ− 1)2 + 4r}1/2,

and
0 ≤ rβ ≤ max {0, ρ (2− ρ) /4} ,

for any fixed electron density ρ ∈ (0, 2).

Hence, the thermodynamic behavior of the strong coupling BCS–Hubbard model HN is simply
given for any ρ ∈ (0, 2), outside any critical point, by setting µ = µβ in Section 3. In particular, the
superconducting phase can appear by tuning in each parameter: the BCS coupling constant γ (see
(2.6)), the inverse temperature β > 0 (see Corollary 3.4), the coupling constant λ, the magnetic field
h (see Section 3.3), the chemical potential µ or the electron density ρ (see Section 3.5). Therefore,
to explain the phase diagram at fixed electron density, it is sufficient to give the behavior of the
Cooper pair condensate density rβ as a function of ρ ∈ (0, 2). Everything can be easily performed via
numerical methods, see figure 13. We restrict our rigorous analysis to the zero–temperature limit of
rβ, which is a straightforward consequence of Corollary 3.4 and (4.3).
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Figure 13. Illustrations of the Cooper pair condensate density rβ as a function of the
inverse temperature β for γ = 2.6, h = 0, and densities ρ = 1, 1.7 (respectively left and
right figures), with λ = 0 (blue line), 0.5 (red line), 0.75 (green line), and 1 (orange
line). The dashed line indicates the value of r∞.

Corollary 4.1 (Zero–temperature Cooper pair condensate density).
At zero–temperature, fixed electron density ρ ∈ (0, 2) and λ, h ∈ R, the Cooper pair condensate density
rβ converges as β →∞ towards r∞ = ρ(2− ρ)/4 when γ > max{Γ̃ρ,λ+|h|, 0}. Here

Γ̃x,y :=
4y

x (x− 2) + 2
χ[0,∞) (y)

is a function defined for any x, y ∈ R.

Remark 4.2. The case 0 < γ < Γ̃ρ,λ+|h| is more subtle than its analogous with a fixed chemical
potential µ, because phase mixtures can take place. See Section 4.2.
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As explained above, as soon as γ > Γ̃ρ,λ+|h| we can extract from this corollary all the zero–
temperature thermodynamics of the strong coupling BCS–Hubbard model by using Corollaries 3.4,
3.7, 3.9, and 3.11.

If λ + |h| > 0 and γ satisfy the inequalities

γ > min
ρ∈(0,2)

{
Γ̃ρ,λ+|h|

}
= Γ̃0,λ+|h| = Γ̃2,λ+|h| = 2 (λ + |h|)

and
γ < max

ρ∈(0,2)

{
Γ̃ρ,λ+|h|

}
= Γ̃1,λ+|h| = 4 (λ + |h|) ,

it is also clear that the superconductor–Mott insulator phase transition appears by tuning the electron
density ρ in the same way as described in Section 3.5 for µ. See figures 10. In this case however, we
recommend Section 4.2 for more details because of the subtlety mentioned in Remark 4.2. See figures
15-16 below.

From (4.3) combined with Corollary 4.1, note that the asymptotics (3.15) of the specific heat at
zero-temperature is still valid at fixed electron density ρ as soon as γ > max{Γ̃ρ,λ+|h|, 0}. Meanwhile,
from Corollary 4.1 the zero–temperature Cooper pair condensate density r∞ does not depend on λ, γ,
or h, as soon as γ > Γ̃ρ,λ+|h| is satisfied. Indeed, the chemical potential µβ in the case where rβ > 0
is renormalized, cf. (4.3). In other words, at zero–temperature, the thermodynamic behavior of the
strong coupling BCS–Hubbard model for γ > Γ̃ρ,λ+|h| is equal to the well–known behavior of the BCS
theory in the strong coupling approximation (λ = h = 0). This phenomenon is also seen by using
renormalization methods where it is believed that the Coulomb interaction simply modifies the mass
of electrons by creating quasi–particles (which however do not exist in our model).

4.2 Coexistence of ferromagnetic and superconducting phases

Observe that the electron density dβ given by Theorem 3.6 can have discontinuities as a function
of the chemical potential µ. This phenomenon appears at the superconductor–Mott insulator phase
transition, see Section 3.5 and figure 10. Because of electron–hole symmetry (Section 3.2), without
loss of generality we can restrict our study to the case where dβ ∈ [0, 1], i.e., ρ ∈ [0, 1] and µβ ≤ λ.

In this regime, the electron density dβ has, at most, one discontinuity point at the so-called critical
chemical potential µ

(c)
β ≤ λ. In particular, there are two critical electron densities

d±β := dβ(µ(c)
β ± 0, λ, γ, h) with d+

β > d−β .

Similarly, we can also define two critical Cooper pair condensate densities r±β , two critical magnetization
densities14 m±

β and two critical Coulomb correlation density w±β . Of course, since r+β > r−β = 0, we are
here on a critical point, i.e.,

(β, µ
(c)
β , λ, γ, h) ∈ ∂S

(see (2.7)), with β, γ > 0 and λ, h ∈ R such that this critical chemical potential µ
(c)
β = µ

(c)
β (λ, γ, h)

exists.

The thermodynamics of the model for ρ 6∈ [d−β , d+
β ] is already explained in Section 4.1 because the

solution rβ of (2.4) is unique at µ = µβ. When ρ ∈ [d−β , d+
β ], the chemical potential µN,β converges to

µβ = µ
(c)
β , where the variational problem (2.4) has exactly two maximizers r±β . The thermodynamic

behavior of the system in this regime is not, a priori, clear except for the obvious fact that

lim
N→∞

1
N

∑

x∈ΛN

ωN (nx,↑ + nx,↓) = ρ

14If h = 0, then m±
β = 0.
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per definition. In particular, it cannot be deduced from the above results. We handle this situa-
tion within a much more general framework in Theorem 6.15. As a consequence of this study (see
discussions after Theorem 6.15), all the extensive quantities can be obtained in the thermodynamic
limit:

Theorem 4.3 (Densities in coexistent phases).
Take β, γ > 0 and real numbers λ, h in the domain of definition of the critical chemical potential µ

(c)
β .

For any ρ ∈ [d−β , d+
β ], all densities are uniquely defined:

(i) The Cooper pair condensate density equals

lim
N→∞





1
N2

∑

x,y∈ΛN

ωN

(
a∗x,↑a

∗
x,↓ay,↓ay,↑

)


 = τρr+β , with τρ :=

ρ− d−β
d+

β − d−β
∈ [0, 1].

(ii) The magnetization density equals

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑ − nx,↓)



 = (1− τρ)m−

β + τρm+
β .

(iii) The Coulomb correlation density equals

lim
N→∞





1
N

∑

x∈ΛN

ωN (nx,↑nx,↓)



 = (1− τρ)w−β + τρw+

β .

(iv) The mean energy per site equals

lim
N→∞

{
N−1ωN (HN )

}
= (1− τρ) ε−β + τρε

+
β ,

with ε±β := −µ
(c)
β ρ− hm±

β + 2λw±β − γr±β .

As a consequence of this theorem, as soon as the magnetic field h 6= 0, there is a coexistence of
ferromagnetic and superconducting phases at low temperatures for ρ ∈ (d−β , d+

β ). In other words, the
Meißner effect is not valid in this interval of electron densities. An illustration of this is given in
figure 14. Such phenomenon was also observed in experiments and from our results, it should occur
rather near half–filling (but not exactly at half–filling) and at strong repulsion. Additionally, observe
that this coexistence of thermodynamic phases can also appear at the critical magnetic field h(c)

β (see
Section 3.3).
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Figure 14. In the two figures on the left, we give illustrations of the Cooper pair
condensate density rβ and the magnetization density mβ as functions of the inverse
temperature β for densities ρ = 0.6 (orange line), 0.7 (magenta line), 0.8 (red line),
0.9 (cyan line). In the figure on the right, we illustrate the coexistence of ferromagnetic
and superconducting phases via graphs of rβ, mβ and the chemical potential µβ as
functions of ρ for β = 30 (low temperature regime). In all figures, λ = 0.575, γ = 2.6,
and h = 0.1. (The small discontinuities around ρ = 1 in the right figure are numerical
anomalies)
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Remark 4.4. Coexistence of ferromagnetic and superconducting phases has already been rigorously
investigated, see, e.g., [29, 30]. For instance, in [29] such phenomenon is shown to be impossible in
the ground state of the Vonsovkii–Zener model applied to s–wave superconductors15, whereas at finite
temperature, numerical computations [30] suggests the contrary. This last analysis [30] is however not
performed in details.

The second interesting physical aspects related to densities ρ lying between the critical densities d−β
and d+

β is a smoothing effect of the extensive quantities (magnetization density, Cooper pair condensate
density, etc.) as functions of the inverse temperature β. Indeed, since the critical chemical potential
µ

(c)
β only exists when a first order phase transition occurs, one could expect that the extensive quantities

are not continuous as functions of β > 0. In fact, for ρ ∈ (d−β , d+
β ), there is a convex interpolation

between quantities related to the solutions r−β = 0 and r+β > 0 of (2.4), see Theorem 4.3. The continuity
of the extensive quantities then follows, see figure 14. It does not imply however, that all densities
become always continuous at fixed ρ as a function of the inverse temperature β. For instance, in figure
13, the green and orange graphs give two illustrations of a discontinuity of the order parameter rβ
at fixed electron density ρ = 1 where µβ = λ. To understand this first order phase transition, other
extensive quantity should be additionally fixed, see discussions in Section 5 and figure 17.

Following these last results, we give now in figure 15 other plots of the critical temperature θc =
θc(ρ, λ, γ, h), which is defined as usual such that rβ > 0 if and only if β > θ−1

c . In this figure, observe
that a positive λ, i.e., a one–site repulsion, can never increase the critical temperature if the electron
density ρ is fixed instead of the chemical potential µ, compare with figure 2. We also show in figure
15 (right figure) that if the density of holes equals the density of electrons, i.e., ρ = 1, then we have
a Mott insulator, whereas a small doping of electrons or holes implies either a superconducting phase
(blue area) or a superconductor–Mott insulator (ferromagnetic) phase (yellow area) related to the
superconductor–Mott insulator phase transition described in Section 3.5 and figure 10.
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Figure 15. Illustration, as a function of λ (the two figures on the left) or ρ (figure on
the right), of the critical temperature θc = θc(ρ, λ, γ, h) for γ = 2.6, h = 0.1 and with
ρ = 1 (left figure), ρ = 0.7 (figure on the center) and λ = 0.575 (right figure). The
blue and yellow area correspond respectively to the superconducting and ferromagnetic–
superconducting phases, whereas the red dashed line indicates the domain of λ with a
first order phase transition as a function of β or the temperature θ := β−1 (It only
exists in the left figure). The dashed green line (left figure) is the asymptote when
λ → −∞. In the right figure, observe that there is no phase transition for ρ = 1.

To conclude, the figure 16 illustrates various thermodynamic features of the system at fixed ρ. First,
as a function of β > 0, εβ is continuously differentiable only for ρ = 1. In other words, there is no
phase transition by opposition to the cases with ρ = 0.7, 0.9 or ρ = 1.1, 1.3. This is the Mott insulator
phase transition illustrated in figure 10. As in figure 10, we also observe the electron–hole symmetry
implying that ρ = 0.7 and ρ = 1.3, or ρ = 0.9 and ρ = 1.1, has same phase transitions at exactly
the same critical points. As explained in Section 3.1, the mean energy per site εβ for ρ = 0.7, 1.3, or

15It is a combination of the BCS interaction (1.2) with the Zener s–d exchange interaction.
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ρ = 0.9, 1.1, differs by a constant, i.e., in absolute value by |2λ−µβ|. At high temperatures, i.e., when
β → 0, the function εβ diverges to ±∞ if ρ = 1 ∓ ε with ε ∈ (0, 1) whereas it stays finite at ρ = 1.
Indeed, when β → 0 the electron density dβ converges to 1 at fixed µ, λ, γ, h, see Theorem 3.6 and
figure 5. If ρ = 1 ∓ ε, it follows that the chemical potential µβ diverges to ∓∞ as β → 0, implying
that εβ → ±∞. In other words, it is energetically unfavorable to fix an election density ρ 6= 1 at high
temperatures. Finally, the specific heat cβ has only one jump in the case of one phase transition and
two jumps when there are two phase transitions, namely when the superconductor–Mott insulator
(ferromagnetic) phase and the purely superconducting phase appear.
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Figure 16. In the two figures on the left, we give illustrations of the mean energy per
site εβ as a function of the inverse temperature β for densities ρ = 0.7 (magenta line),
0.9 (cyan line), 1 (green line), 1.1 (blue line) and 1.3 (red line). For ρ = 1, there
is no phase transition and for ρ = 0.9 or 1.1 only a ferromagnetic-superconducting
phase appears, whereas for ρ = 0.7 or 1.3 this last phase is followed for larger β by a
superconducting phase. In the figure on the right, assuming Cβ = 0, we give two plots
of the specific heat cβ as a function of the ratio θ/θc between θ := β−1 and the critical
temperature θc for densities ρ = 0.7 (magenta line) and 0.9 (cyan line). In all figures,
λ = 0.575, γ = 2.6, and h = 0.1.

5. Concluding remarks

1. First, it is important to observe that two different physics can be extracted from the strong
coupling BCS–Hubbard model HN : a first physics at fixed chemical potential µ and a second one
at fixed electron density ρ ∈ (0, 2). This does not mean that the canonical and grand–canonical
ensembles are not equivalent for this model. But, the influence of the direct interaction with coupling
constant λ drastically changes from the case at fixed µ to the other one at fixed ρ. For instance, via
Corollary 4.1 (see also figure 15), any one–site repulsion between pairs of electrons is in any case
unfavorable to the formation of Cooper pairs, as soon as the electron density ρ is fixed. This property
is however wrong at fixed chemical potential µ, see figure 2. In other words, fixing the electron density
ρ is not equivalent16 to fixing the chemical potential µ in the model. Physically, a fixed electron
density can be modified by doping the superconductor. Changing the chemical potential may be more
difficult. One naive proposition would be to impose an electric potential on a superconductor which
is coupled to an additional conductor serving as a reservoir of electrons or holes at fixed chemical
potential.

2. A measurement of the asymptotics as β → ∞ of the specific heat cβ (see (3.14) with Cβ = 0)
in a superconducting phase would determine, by using (3.15), first the parameter γ > 0 via the
exponential decay and then the coupling constant λ. Next, the measurement of the critical magnetic
field at very low temperature would allow to obtain via (3.5) the chemical potential µ and hence
the electron density at zero–temperature. Since the inverse temperature β as well as the magnetic

16”Equivalent” is not taken here in the sense of the equivalence of ensembles.
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field h can directly be measured, all parameters of the strong coupling BCS–Hubbard model HN

(1.1) would be experimentally found. In particular, its thermodynamic behavior, explained in
Sections 2–4, could finally be confronted to the real system. One could for instance check if the
critical temperature θc given by HN in appropriate dimension corresponds to the one measured in
the real superconductor. Such studies would highlight the thermodynamic impact of the kinetic energy.

3. In Section 4, the electron density is fixed but one could have fixed each extensive quantity: the
Cooper pair condensate density, the magnetization density, the Coulomb correlation density or the
mean–energy per site. For instance, if the magnetization density m ∈ R is fixed, by strict convexity
of the pressure there is a unique magnetic field hN,β = hN,β(µ, λ, γ, m) such that

m =
1
N

∑

x∈ΛN

ωN (nx,↑ − nx,↓) .

In the thermodynamic limit, we then have hN,β converging to hβ solution of the equation mβ = m
at fixed β, γ > 0 and µ, λ ∈ R. By using Theorem 6.15, we would obtain the thermodynamics of
the system for any β, γ > 0 and µ, λ, m ∈ R. More generally, when one of the extensive quantities
rβ, dβ, mβ, wβ, or εβ is discontinuous at a critical point, then the thermodynamic limit of the local
Gibbs states ωN can be uniquely determined by fixing one of the corresponding extensive quantity
between its critical values. The other extensive quantities are determined in this case by an obvious
transcription of Theorem 4.3 for the considered discontinuous quantity at the critical point. Observe,
however, that rβ, dβ, mβ, wβ, and εβ should be related respectively to the parameters γ, µ, h, λ and
β. For instance, the existence of a magnetic field hN,β solution of (4.1) at fixed ρ ∈ (0, 2) is not clear
at finite volume.

Figure 17 gives an example of an electron density always equal to 1 for µ = λ together with discon-
tinuity of all other extensive quantities. In order to get well–defined quantities at the thermodynamic
limit in this example for parameters allowing a first order phase transition, it is not sufficient to have
the electron density fixed. At the critical point we could for instance fix the magnetization density
m ∈ R in the ferromagnetic case (h = 0.1) or in any case, the Coulomb correlation density w ≥ 0
which determines a coupling constant λN,β converging to λβ, see the right illustrations of figure 17
with the existence of a critical magnetic field and a critical coupling constant.
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Figure 17. In the two figures on the left, we give illustrations of the Cooper pair con-
densate density rβ (blue line), the magnetization density mβ (green line), the Coulomb
correlation density wβ (red line), and the mean–energy per site εβ (orange line) as func-
tions of the inverse temperature β for h = 0 (figure on the left) and h = 0.1 (figure on
the center) whereas µβ = λ = 0.375, i.e., ρ = 1. In the figure on the right, we illustrate
mβc (green line) and wβc (red line) respectively as functions of h with µ = λ = 0.375
and λ with (µ, h) = (0.375, 0.1) at the critical inverse temperature βc := θ−1

c ' 3.04.

4. To conclude, as explained in the introduction, for a suitable space of states it is possible to define
a free energy density functional F (1.4) associated with the Hamiltonians HN . The states minimizing
this functional are equilibrium states and implies all the thermodynamics of the strong coupling BCS–
Hubbard model discussed in Sections 3–4. Indeed, the weak–∗ limit ω∞ of the local Gibbs state ωN
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as N → ∞ exists and belongs to our set of equilibrium states for any β, γ > 0 and µ, λ, h ∈ R, cf.
Theorem 6.15. In Section 6.2, we prove in particular the following properties of equilibrium states:

(i) Any pure equilibrium state ω satisfies ω(ax,↓ax,↑) = r1/2
β eiφ for some φ ∈ [0, 2π). In particular,

if rβ 6= 0 they are not U(1)–gauge invariant and show off diagonal long range order [28]
(ODLRO), cf. Theorems 6.10, 6.13 and Corollary 6.11.

(ii) All densities are uniquely defined: the electron density of any equilibrium states ω is given
by ω(nx,↑ + nx,↓) = dβ, its magnetization density by ω(nx,↑ − nx,↓) = mβ, and its Coulomb
correlation density equals ω(nx,↑nx,↓) = wβ, cf. Theorem 6.14.

(iii) The Cooper fields Φx := a∗x,↓a
∗
x,↑ + ax,↑ax,↓ and Ψx := i(a∗x,↓a

∗
x,↑ − ax,↑ax,↓) for pure states

become classical in the limit γβ → ∞, i.e., their fluctuations go to zero in this limit, cf.
Theorem 6.16.

Any weak–∗ limit point of equilibrium states with diverging inverse temperature is (by definition)
a ground state. For γ > 0 and µ, λ, h ∈ R, most of ground states inherit the properties (i)-(iii) of
equilibrium states. In particular, within the GNS–representation [31] of pure ground states, Cooper
fields are exactly c–numbers, see Corollary 6.17. In this case, correlation functions can explicitly be
computed at any order in Cooper fields. Furthermore, notice that even in the case h = 0 where the
Hamiltonian HN is spin invariant, there exist ground states breaking the spin SU(2)–symmetry. For
more details including a precise formulation of these results, we recommend Section 6, in particular
Section 6.2.

6. Mathematical foundations of the thermodynamic results

The aim of this section is to give all the detailed proofs of the thermodynamics of the strong
coupling BCS–Hubbard model HN (1.1). The central result of this section is the thermodynamic limit
of the pressure, i.e., the proof of Theorem 2.1. The main ingredient in this analysis is the celebrated
Størmer Theorem [1], which we adapt here for the CAR algebra (see Lemma 6.9). We orient our
approach on the Petz–Raggio–Verbeure results in [21], but we would like to mention that the analysis
of permutation invariant quantum systems in the thermodynamic limit (with Størmer’s theorem in
the background) is carried out for different classes of systems also by other authors. See, e.g., [19, 32].
Finally, we introduce in Section 6.2 a notion of equilibrium and ground states by a usual variational
principle for the free energy density. The thermodynamics of the strong coupling BCS-Hubbard model
described in Sections 3–4 is encoded in this notion and the thermodynamic limits of local Gibbs states
used above for simplicity are special cases of equilibrium and ground states defined in Section 6.2.
Before going further, we first define some basic mathematical objects needed in our analysis.

Let I be the set of finite subsets of Zd≥1. For any Λ ∈ I we then define UΛ as the C∗–algebra generated
by {ax,↑, ax,↓}x∈Λ and the identity. Choosing some fixed bijective map κ : N → Zd, N := {1, 2, . . .},
UN denotes the local C∗–algebra U{κ(1),...,κ(N)} at fixed N ∈ N, whereas U is the full C∗–algebra, i.e.,
the closure of the union of all UN for any integer N ≥ 1. Note that

nκ(l),↑ := a∗κ(l),↑aκ(l),↑ and nκ(l),↓ := a∗κ(l),↓aκ(l),↓

are the electron number operators on the site κ(l), respectively with spin up ↑ and down ↓. To simplify
the notation, as soon as a statement clearly concerns the one–site algebra U1 = U{κ(1)}, we replace
aκ(1),↑, aκ(1),↓ and nκ(1),↑, nκ(1),↓ respectively by a↑, a↓ and n↑, n↓, whereas any state on U1 is denoted
by ζ and not by ω, which is by definition a state on more than one site (on UΛ, UN or U). Important
one–site Gibbs states in our analysis are the states ζc associated for any c ∈ C with the Hamiltonian
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H1(c) (2.1) and defined by

ζc(A) :=
Trace

(
Aeβ{(µ−h)n↑+(µ+h)n↓+γ(ca∗↓a

∗
↑+c̄a↑a↓)−2λn↑n↓})

Trace
(
eβ{(µ−h)n↑+(µ+h)n↓+γ(ca∗↓a

∗
↑+c̄a↑a↓)−2λn↑n↓}) , (6.1)

for any A ∈ U1. Finally, recall that our notation for the “Trace” does not include the Hilbert space
where it is evaluated, but using the isomorphisms UΛ ' B

(∧
CΛ×{↑,↓}) of C∗–algebras it should be

deduced from the local algebra where the operators involved in each statement are living.

Now, we are in position to start the proof of Theorem 2.1. It is followed by a rigorous analysis of
the corresponding equilibrium and ground states.

6.1 Thermodynamic limit of the pressure: proof of Theorem 2.1

Since we have already shown the lower bound (2.2) in section 2, to finish the proof of Theorem 2.1
it remains to obtain

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ sup
c∈C

{−γ|c|2 + p (c)
}

. (6.2)

We break this proof in several lemmata. But first, we need some additional definitions.

We define the set of all S–invariant even states. Let S be the set of bijective maps from N to N
which leaves invariant all but finite elements. It is a group w.r.t. the composition. The condition

ηs : aκ(l),# 7→ aκ(s(l)),#, s ∈ S, l ∈ N, (6.3)

defines a group homomorphism η : S → Aut(U), s 7→ ηs uniquely. Here, # stands for a spin up ↑ or
down ↓. Then, let

ES,+
U :=

{
ω ∈ EU : ω ◦ ηs = ω for any s ∈ S, and

ω(a∗κ(l1),#...a∗κ(lt),#
aκ(m1),#...aκ(mτ ),#) = 0 if t + τ is odd

}

be the set of all S–invariant even states, where EU is the set of all states on U . The set ES,+
U is weak–∗

compact and convex. In particular, the set of extremal points of ES,+
U , denoted by ES,+

U , is not empty.

Remark 6.1. Any permutation invariant (p.i.) state on U is in fact automatically even, see, e.g.,
Example 5.2.21 of [16]. We explicitly write the evenness of states in the definition of ES,+

U because
this property is essential in our arguments below.

Now, to fix the notation and for the reader convenience, we collect well–known results about the
so–called relative entropy, cf. [16, 33]. Let ω(1) and ω(2) be two states on the local algebra UΛ, with
ω(1) being faithful. Define the relative entropy17

S(ω(1)|ω(2)) := Trace (Dω(2) lnDω(2))− Trace (Dω(2) lnDω(1)) ,

where Dω(j) is the density matrix associated to the state ω(j) with j = 1, 2. The relative entropy is
super–additive: for any Λ1, Λ2 ∈ I, Λ1 ∩ Λ2 = ∅, and for any even states ω(1), ω(2), ω(1,2) respectively
on UΛ1 , UΛ2 and UΛ1∪Λ2 , ω(1) and ω(2) faithful, we have

S(ω(1) ⊗ ω(2) |ω(1,2)) ≥ S(ω(1)|ω(1,2)|UΛ1
) + S(ω(2) |ω(1,2)|UΛ2

). (6.4)

For even states ω(1) and ω(2), respectively on UΛ1 and UΛ2 with Λ1∩Λ2 = ∅, the even state ω(1)⊗ω(2)

is the unique extension of ω(1) and ω(2) on UΛ1∪Λ2 satisfying for all A ∈ UΛ1 and all B ∈ UΛ2 ,

ω(1) ⊗ ω(2)(AB) = ω(1)(A)ω(2)(B).

17As in [33] we use the Araki–Kosaki definition, which has opposite sign than the one given in [16].
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The state ω(1)⊗ω(2) is called the product of ω(1) and ω(2). The product of even states is an associative
operation. In particular, products of even states can be defined w.r.t. any countable set {UΛn}n∈N of
subalgebras of U with Λm ∩ Λn = ∅ for m 6= m.

Observe that the relative entropy becomes additive w.r.t. product states: if ω(1,2) = ω̂(1) ⊗ ω̂(2),
where ω̂(1) and ω̂(2) are two even states respectively on UΛ1 and UΛ2 , then (6.4) is satisfied with
equality. The relative entropy is also convex: for any states ω(1), ω(2), and ω(3) on UΛ, ω(1) faithful,
and for any τ ∈ (0, 1)

S(ω(1) | τω(2) + (1− τ)ω(3)) ≤ τS(ω(1) |ω(2)) + (1− τ)S(ω(1) |ω(3)). (6.5)

Meanwhile

S(ω(1) | τω(2) + (1− τ)ω(3)) ≥ τ log τ + (1− τ) log(1− τ) + τS(ω(1) |ω(2))

+(1− τ)S(ω(1) |ω(3)), (6.6)

for any τ ∈ (0, 1). Note that the relative entropy makes sense in a class of states on U much larger
than that of even states on UΛ (cf. [33]), but this is not needed here.

The condition
σ : aκ(l),# 7→ aκ(l+1),#

uniquely defines a homomorphism σ on U called right–shift homomorphism. Any state ω on U such
that ω = ω ◦σ is called shift–invariant and we denote by Eσ

U the set of shift–invariant states on U . An
important class of shift–invariant states are product states ωζ obtained by “copying” some even state
ζ of the one–site algebra U1 on all other sites, i.e.,

ωζ :=
∞⊗

k=0

ζ ◦ σk. (6.7)

Such product states are important and used below as reference states. More generally, a state ω is
L–periodic with L ∈ N if ω = ω ◦ σL. For each L ∈ N, the set of all L–periodic states from EU is
denoted by EσL

U .

Let ζ be any faithful even state on U1 and let ω be any L–periodic state on U . It immediately
follows from super–additivity (6.4) that for any N,M ∈ N

S(ωζ |U(M+N)L
|ω|U(M+N)L

) ≥ S(ωζ |UML
|ω|UML

) + S(ωζ |UNL
|ω|UNL

).

In particular, the following limit exists

S̃(ζ, ω) := lim
N→∞

S(ωζ |UNL
|ω|UNL

)
NL

= sup
N∈N

S(ωζ |UNL
|ω|UNL

)
NL

(6.8)

and is the relative entropy density of ω w.r.t. the reference state ζ. This functional has the following
important properties:

Lemma 6.2 (Properties of the relative entropy density).
At any fixed L ∈ N, the relative entropy density functional ω 7→ S̃(ζ, ω) is weak–∗ lower semicontinu-
ous, i.e., for any faithful even state ζ ∈ EU1 and any r ∈ R, the set

Mr :=
{

ω ∈ EσL

U : S̃(ζ, ω) > r
}

is open w.r.t. the weak–∗ topology. It is also affine, i.e., for any faithful state ζ ∈ EU1 and states
ω, ω′ ∈ EσL

U
S̃(ζ, τω + (1− τ)ω′) = τ S̃(ζ, ω) + (1− τ)S̃(ζ, ω′),

with τ ∈ (0, 1).
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Proof: Without loss of generality, let L = 1. From the second equality of (6.8),

Mr =
⋃

N∈N
{ω ∈ Eσ

U : S(ωζ |UN
|ω|UN

) > rN} .

As the maps ω 7→ S(ωζ |UN
|ω|UN

) are weak–∗ continuous for each N , it follows that Mr is the union
of open sets, which implies the weak–∗ lower semicontinuity of the relative entropy density functional.
Moreover from (6.5) and (6.6) we directly obtain that S̃(ζ, ω) is affine. ¤

Notice that any p.i. state is automatically shift–invariant. Thus, the mean relative entropy density
is a well–defined functional on ES,+

U . Now, we need to define on ES,+
U the functional ∆ (ω) relating to

the mean BCS interaction energy per site:

Lemma 6.3 (BCS energy per site for p.i. states).
For any ω ∈ ES,+

U , the mean BCS interaction energy per site in the thermodynamic limit

∆(ω) := lim
N→∞

γ

N2

N∑

l,m=1

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)

= γω
(
a∗κ(1),↑a

∗
κ(1),↓aκ(2),↓aκ(2),↑

)

is well–defined and the affine map ∆ : ES,+
U → C, ω 7→ ∆(ω) is weak–∗ continuous.

Proof: First,

N∑

l,m=1

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)
=

N∑

l=1

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(l),↓aκ(l),↑

)

+
N∑

l,m=1
l 6=m

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)
.

(6.9)

Since ω ∈ ES,+
U , for any l 6= m observe that

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)
= ω

(
a∗κ(1),↑a

∗
κ(1),↓aκ(2),↓aκ(2),↑

)
, (6.10)

whereas
ω

(
a∗κ(l),↑a

∗
κ(l),↓aκ(l),↓aκ(l),↑

)
= ω

(
a∗κ(1),↑a

∗
κ(1),↓aκ(1),↓aκ(1),↑

)
. (6.11)

Therefore, by combining (6.9) with (6.10) and (6.11), the lemma follows. ¤
Now, we define by

ωH (A) :=
Trace

(
A e−βH

)

Trace (e−βH)
, A ∈ UΛ, (6.12)

the Gibbs state associated with any self–adjoint element H of UΛ at inverse temperature β > 0. This
definition is of course in accordance with the Gibbs state ωN (1.5) associated with the Hamiltonian18

HN (1.1) since ωN = ωHN for any N ∈ N. Note however, that the state ωN is seen either as defined
on the local algebra UN or as defined on the whole algebra U by periodically extending it (with period
N).

Next we give an important property of Gibbs states (6.12):

18with the appropriate numbering of sites defined by the bijective map κ.
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Lemma 6.4 (Passivity of Gibbs states).
Let H0, H1 be self–adjoint elements from UΛ and define for any state ω on UΛ

FΛ(ω) := −ω(H1)− β−1S(ωH0 |ω) + PH0 ,

where PH := β−1 lnTrace
(
e−βH

)
for any self–adjoint H ∈ UΛ. Then PH1+H0 ≥ FΛ(ω) for any state

ω on UΛ with equality if ω = ωH0+H1. Note that −FΛ(ω) is the free energy associated with the state
ω.

Proof: For any self–adjoint H ∈ UΛ and any state ω on UΛ observe that

Trace (Dω ln DωH ) = Trace
(
Dω ln

(
exp

(−βPH − βH
)))

= −βω(H)− βPH , (6.13)

which implies that

PH1+H0 = −β−1 (Trace (DωH0+H1 ln DωH0+H1 )− Trace (DωH0+H1 ln DωH0 ))

−ωH0+H1(H1) + PH0 , (6.14)

i.e., PH1+H0 = FΛ(ωH0+H1). Without loss of generality take any faithful state ω on UΛ. In this case,
there are positive numbers λj with

∑
j λj = 1 and vectors 〈j| from the Hilbert space

∧HΛ such that
ω(·) =

∑
j λj 〈j| · |j〉. In particular, from (6.13) we have

−βω(H1)− S(ωH0 |ω) + βPH0 =
∑

j

λj (− lnλj − β 〈j|H0 + H1 |j〉) .

Consequently, by convexity of the exponential function combined with Jensen inequality we obtain
that

exp
(
− βω(H1)− S(ωH0 |ω) + βPH0

)

≤
∑

j

λj exp (− ln λj − β 〈j|H0 + H1 |j〉)

≤ Trace (exp (−β(H0 + H1))) = exp
(
βPH1+H0

)
.

Note that the last inequality uses the so–called Peierls–Bogoliubov inequality which is again a conse-
quence of Jensen inequality. ¤
This proof is standard (see, e.g., [16]). It is only given in detail here, because we also need later
equations (6.13) and (6.14).

Observe that Lemma 6.4 applied to ω = ωH0 gives the Bogoliubov (convexity) inequality [20]. We
can also deduce from this lemma that the pressure pN (β, µ, λ, γ, h) (1.3) associated with HN equals

pN (β, µ, λ, γ, h) =
γ

N2

N∑

l,m=1

ωN

(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)

− 1
βN

S (ωζ0 |UN
|ωN ) + pN (β, µ, λ, 0, h) , (6.15)

for any β, γ > 0 and real numbers µ, λ, h. Recall that ωζ0 is the shift–invariant state obtained by
“copying” the state ζ0 (6.1) of the one–site algebra U1, see (6.7).

Lemma 6.5 (From S to the relative entropy density S̃ at finite N).
Let ω̃N be the shift–invariant state defined by

ω̃N :=
1
N

(
ωN + ωN ◦ σ + · · ·+ ωN ◦ σN−1

)
,

where σ is the right–shift homomorphism. Then S (ωζ0 |UN
|ωN ) = NS̃ (ζ0, ω̃N ), cf. (6.8).
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Proof: By Lemma 6.2 combined with (6.8), the relative entropy density S̃ (ζ0, ω̃N ) equals

S̃ (ζ0, ω̃N ) = lim
M→∞

{
1

MN

N−1∑

k=0

1
N

S
(
ωζ0 |UMN

|ωN ◦ σk|UMN

)}
, (6.16)

for any fixed N ∈ N. By using now the additivity of the relative entropy for product states observe
that

S
(
ωζ0 |UMN

|ωN ◦ σk|UMN

)
= (M − 1)S (ωζ0 |UN

|ωN |UN
) + S (ωζ0 |Uk

|ωN |Uk
)

+S
(
ωζ0 |UN−k

|ωN |UN−k

)
, (6.17)

for any k ∈ {0, · · · , N − 1} , with S (ωζ0 |U0 |ωN |U0) := 0 by definition. Therefore the equality
S (ωζ0 |UN

|ωN ) = NS̃ (ζ0, ω̃N ) directly follows from (6.16) combined with (6.17). ¤
We are now in position to give a first general upper bound for the pressure pN (β, µ, λ, γ, h) by using

the equality (6.15) together with Lemmata 6.3 and 6.5.

Lemma 6.6 (General upper bound of the pressure pN ).
For any β, γ > 0 and µ, λ, h ∈ R, one gets that

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ p (β, µ, λ, 0, h) + sup
ω∈ES,+

U

{
∆(ω)− β−1S̃ (ζ0, ω)

}
,

where we recall that ES,+
U is the non empty set of extremal points of ES,+

U .

Proof: By (6.15) combined with Lemma 6.5 one gets

pN (β, µ, λ, γ, h) =
γ

N2

N∑

l,m=1

ωN

(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)

−β−1S̃ (ζ0, ω̃N ) + pN (β, µ, λ, 0, h) . (6.18)

The last term of this equality is independent of N ∈ N since

pN (β, µ, λ, 0, h) =
1
β

lnTrace
(
eβ[(µ−h)n↑+(µ+h)n↓−2λn↑n↓]

)
=: p (β, µ, λ, 0, h) , (6.19)

cf. (2.3).

However, the other terms require the knowledge of the states ωN and ω̃N in the limit N → ∞.
Actually, because the unit Ball in U is a metric space w.r.t. the weak–∗ topology, the sequence {ω̃N}
converges in the weak–∗ topology along a subsequence towards ω∞. Meanwhile, it is easy to see that
for all A ∈ UΛ, Λ ∈ I,

lim
N→∞

{ωN (A)− ω̃N (A)} = 0.

Thus, the sequences of states ωN and ω̃N have the same limit points. Since ωN is even and permutation
invariant w.r.t. the N first sites, the state ω∞ belongs to ES,+

U . We now estimate the first term (6.18)
as in Lemma 6.3 to get

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ p (β, µ, λ, 0, h) + γω∞
(
a∗κ(1),↑a

∗
κ(1),↓aκ(2),↑aκ(2),↓

)

+β−1lim sup
N→∞

{
−S̃ (ζ0, ω̃N )

}
. (6.20)

From Lemma 6.2 the relative entropy density is lower semicontinuous in the weak–∗ topology, which
implies that

lim sup
N→∞

{
−S̃ (ζ0, ω̃N )

}
≤ −S̃ (ζ0, ω∞) .
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By combining this last inequality with (6.20) we then find that

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ p (β, µ, λ, 0, h) + ∆ (ω∞)− β−1S̃ (ζ0, ω∞) , (6.21)

with ω∞ ∈ ES,+
U .

Now, from Lemma 6.3 the functional ω 7→ ∆(ω) is affine and weak–∗ continuous, whereas by Lemma
6.2 the map ω 7→ S̃(ζ0, ω) is affine and weak–∗ lower semicontinuous. The free energy functional
ω 7→ ∆(ω)−β−1S̃(ζ0, ω) is, in particular, convex and weak–∗ upper semicontinuous. Meanwhile recall
that ES,+

U is a weak–∗ compact and convex set. Therefore, from the Bauer maximum principle [31,
Lemma 4.1.12] it follows that

sup
ω∈ES,+

U

{
∆(ω)− β−1S̃ (ζ0, ω)

}
= sup

ω∈ES,+
U

{
∆(ω)− β−1S̃ (ζ0, ω)

}
. (6.22)

Together with (6.21), this last inequality implies the upper bound stated in the lemma. ¤
Since even states on U are entirely determined by their action on even elements from U , observe that

we can identify the set of even p.i. states of U with the set of p.i. states on the even sub–algebra U+.
We want to show next that the set of extremal points ES,+

U belongs to the set of strongly clustering
states on the even sub–algebra U+ of U . By strongly clustering states ω w.r.t. U+, we mean that for
any B in U+, there exists a net {Bj} ⊆ Co{ηs(B) : s ∈ S} such that for any A ∈ U+,

lim
j
|ω (Aηs (Bj))− ω (A) ω (B)| = 0

uniformly in s ∈ S. Here, CoM denotes the convex hull of the set M .

Lemma 6.7 (Characterization of the set of extremal states of ES,+
U ).

Any extremal state ω ∈ ES,+
U is strongly clustering w.r.t. the even sub–algebra U+ and conversely.

Proof: We use some standard facts about extremal decompositions of states which can be found in
[31, Theorems 4.3.17 and 4.3.22]. To satisfy the requirements of these theorems, we need to prove
that the C∗–algebra U+ of even elements of U is asymptotically abelian w.r.t. the action of the group
S. This is proven as follows. For each l ∈ N define the map π(l) : N→ N by

π(l)(k) :=





k + 2l−1 , if 1 ≤ k ≤ 2l−1.
k − 2l−1 , if 2l−1 + 1 ≤ k ≤ 2l.
k , if k > 2l.

(6.23)

In other words, the map π(l) exchanges the block {1, · · · , 2l−1} with {2l−1 + 1, · · · , 2l}, and leaves the
rest invariant. For any A,B ∈ UΛ ∩ U+ with Λ ∈ I, it is then not difficult to see that

lim
l→∞

[A, ηπ(l) (B)] = 0

in the norm sense. Recall that the map ηπ(l) is defined via (6.3). By density of local elements of U+

the limit above equals zero for all A,B ∈ U+. Therefore, by using now [31, Theorems 4.3.17 and
4.3.22] all states ω ∈ ES,+

U are then strongly clustering w.r.t. U+ and conversely. ¤
We show next that p.i. states, which are strongly clustering w.r.t. the even sub–algebra U+, have

clustering properties w.r.t. the whole algebra U .

Lemma 6.8 (Extension of the strongly clustering property).
Let ω ∈ ES,+

U be any strongly clustering state w.r.t. U+. Then, for any A,B ∈ U and ε > 0, there are
Bε ∈ Co{ηs(B) : s ∈ S} and lε such that for any l ≥ lε,

|ω(Aηπ(l)(Bε))− ω(A)ω(B)| < ε.
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Proof: By density of local elements it suffices to prove the lemma for any A,B ∈ UN and N ∈ N.
The operators A and B can always be written as sums A = A+ + A− and B = B+ + B−, where A+

and B+ are in the even sub–algebra U+ whereas A− and B− are odd elements, i.e., they are sums of
monomials of odd degree in annihilation and creation operators. Since ω is assumed to be strongly
clustering w.r.t. U+, for any ε > 0 there are positive numbers λ1, . . . , λk with λ1 + · · ·+ λk = 1, and
maps s1, . . . , sk ∈ S such that for any l ∈ N,∣∣∣∣∣∣

ω
(
A+ ηπ(l)

( k∑

j=1

λkηsj (B
+)

))
− ω(A+)ω(B+)

∣∣∣∣∣∣
< ε. (6.24)

By parity and linearity of ω observe that ω(A+)ω(B+) = ω(A)ω(B), whereas

ω(Aηπ(l)(Bε)) = ω
(
A+ ηπ(l)

( k∑

j=1

λkηsj (B
+)

))
(6.25)

for large enough l with the operator Bε ∈ Co{ηs(B) : s ∈ S} defined by

Bε :=
k∑

j=1

λkηsj (B). (6.26)

The equality (6.25) follows from parity and the statement

ω(Aηπ(l)(B̃−)) = 0

for any ω ∈ ES,+
U , A, B̃− ∈ UN , B̃− odd, and sufficiently large l. This can been seen as follows.

Since any element of UN with defined parity can be written as a linear combination of two self–adjoint
elements with same parity, we assume without loss of generality that (B̃−)∗ = B̃−. Choose l′ ∈ N
large enough such that B̃−

l := π(l)(B̃−) /∈ UN for all l ≥ l′, with the map π(l) : N → N defined in
(6.23). Define B̃−

l,m := σm2l+1
(B̃−

l ), m ∈ N0 := {0, 1, 2, . . .}, where σ is the right–shift homomorphism.
For any J ∈ N

ω
( J∑

m=0

AB̃−
l,m

)
= (J + 1)ω(AB̃−

l,0)

by symmetry of ω. Use now the Cauchy–Schwarz inequality for states to get

(J + 1)|ω(AB̃−
l,0)| ≤

√
ω(A∗A)

√√√√
J∑

m,m′=0

ω(B̃−
l,mB̃−

l,m′).

Since per construction, B̃−
l,m and B̃−

l,m′ anti–commute if m 6= m′,

J∑

m,m′=0

ω(Bl,mBl,m′) =
J∑

m=0

ω(Bl,mBl,m).

By symmetry of ω, the right–hand side of the equation above equals (J + 1)ω((B̃−
l,0)

2). Hence, we
conclude that

|ω(AB̃−
l,0)| ≤ (J + 1)−1/2

√
ω(|A|2)ω((B̃−

l,0)
2),

for any J ∈ N, i.e., ω(AB̃−
l,0) = 0 for all l ≥ l′.

Therefore, the lemma follows from (6.24)–(6.25) with Bε ∈ Co{ηs(B) : s ∈ S} defined by (6.26)
for any ε > 0. ¤

We now identify the set of clustering states on U with the set of product states by the following
lemma, which is a non–commutative version of de Finetti Theorem of probability theory. Størmer [1]
was the first to show the corresponding result for infinite tensor products of C∗–algebras.
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Lemma 6.9 (Strongly clustering p.i. states are product states).
Any p.i. and strongly clustering (in the sense of Lemma 6.8) state ω is a product state (6.7) with the
one–site state ζ = ζω := ω|U1 being the restriction of ω on the local (one–site) algebra U1.

Proof: Let l1, . . . , lk ∈ N with li 6= lj whenever i 6= j, and for any j ∈ {1, . . . , k} take Aj ∈ U1. To
prove the lemma we need to show that

ω(σl1(A1) . . . σlk(Ak)) = ζω(A1) . . . ζω(Ak). (6.27)

The proof of this last equality for any k ≥ 1 is performed by induction. First, for k = 1 the equality
(6.27) immediately follows by symmetry of the state ω. Now, assume the equality (6.27) verified at
fixed k ≥ 1. The state ω is strongly clustering in the sense of Lemma 6.8. Therefore for each ε > 0
there are q ∈ N, positive numbers λ1, . . . , λq with λ1 + · · ·+λq = 1, and maps s1, . . . , sq ∈ S such that

∣∣∣
∑q

j=1
λjω

(
σl1 (A1) . . . σlk (Ak) ηπ(l)◦sj

(
σlk+1 (Ak+1)

))

−ω
(
σl1 (A1) . . . σlk (Ak)

)
ω

(
σlk+1 (Ak+1)

) ∣∣∣ < ε,
(6.28)

for any l ∈ N. Fix N sufficiently large such that the operators σlm(Am) and ηsj (σ
lk+1 (Ak+1)) belong

to UN for any m ∈ {1, · · · , k + 1} and j ∈ {1, · · · , q}. We can choose l sufficiently large such that
ηπ(l)◦sj

(σlk+1 (Ak+1)) /∈ UN for any j ∈ {1, · · · , q}, which by symmetry of ω implies that

ω
(
σl1 (A1) . . . σlk (Ak) ηπ(l)◦sj

(
σlk+1 (Ak+1)

))

= ω
(
σl1 (A1) . . . σlk (Ak) σlk+1 (Ak+1)

)
.

Combined with (6.28) and λ1 + · · ·+ λq = 1, it yields
∣∣∣ω

(
σl1 (A1) . . . σlk (Ak) σlk+1 (Ak+1)

)
− ω

(
σl1 (A1) . . . σlk (Ak)

)
ζω (Ak+1)

∣∣∣ < ε.

Since the equality (6.27) is assumed to be verified at fixed k ≥ 1, it follows that
∣∣∣ω

(
σl1(A1) . . . σlk+1(Ak+1)

)
− ζω(A1) . . . ζω(Ak+1)

∣∣∣ < ε,

for any ε > 0. In other words, by induction the equality (6.27) is proven for any k ≥ 1. ¤
As soon as the upper bound is concerned, we combine Lemma 6.6 with Lemmata 6.7–6.9 to obtain

that

lim sup
N→∞

{pN (β, µ, λ, γ)} ≤ p (β, µ, λ, 0, h) + sup
ζ∈E+

U1

{
γ|ζ(a∗↑a

∗
↓)|2 − β−1S(ζ0|ζ)

}
. (6.29)

Here E+
U1

denotes the set of even states on the (one–site) algebra U1. Now the proof of the upper
bound (6.2) easily follows from the passivity of Gibbs states on U1. Indeed, we apply Lemma 6.4 to
the one–site Hamiltonians H0 = H1(0) (see (2.1)) and

H1 = − c

2
a∗↑a

∗
↓ −

c̄

2
a↑a↓

in order to bound the relative entropy S(ζ0 | ζ). More precisely, it follows that

p (β, µ, λ, 0, h)− β−1S(ζ0 | ζ) ≤ p (c/(2γ))− xRe {ζ (a↑a↓)}
−y Im {ζ (a↑a↓)} , (6.30)
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for any state ζ ∈ E+
U1

and any c ∈ C with x := Re{c} and y := Im{c}. Consequently, from (6.29) we
deduce that

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ sup
ζ∈E+

U1

{
inf

x,y∈R

{
γ(Re{ζ(a↑a↓)}2 + Im{ζ(a↑a↓)}2)

−xRe{ζ(a↑a↓)} − y Im{ζ(a↑a↓)}
+p ((x + iy)/(2γ))

}}

≤ sup
t,s∈R

{
inf

x,y∈R

{
γ

(
t2 + s2

)− tx− sy

+p ((x + iy)/(2γ))
}}

.

In particular, by fixing x = 2tγ and y = 2sγ in the infimum we finally obtain

lim sup
N→∞

{pN (β, µ, λ, γ, h)} ≤ sup
t,s∈R

{−γ
(
t2 + s2

)
+ p (t + is)

}
,

i.e., the upper bound (6.2) for any β, γ > 0 and µ, λ, h ∈ R.

6.2 Equilibrium and ground states of the strong coupling BCS-Hubbard model

It follows immediately from the passivity of Gibbs states that

p (β, µ, λ, γ, h) ≥ ∆(ω)− β−1S̃ (ζ0, ω) + p (β, µ, λ, 0, h) , (6.31)

for any ω ∈ ES,+
U , cf. (6.1) and Lemmata 6.3–6.4. Therefore, by using Lemma 6.6 with (6.22) the

(infinite volume) pressure can be written as

p (β, µ, λ, γ, h) = sup
ω∈ES,+

U

{
∆ (ω)− β−1S̃ (ζ0, ω)

}
+ p (β, µ, λ, 0, h) .

Moreover, as shown above (see the upper bound in the proof of Lemma 6.6), any weak–∗ limit point
ω∞ of local Gibbs states ωN (1.5) when N →∞ satisfies (6.31) with equality.

Indeed, by using (6.13) one obtains for any state ω that

1
N

(−ω (HN )− β−1S (trN |ω|UN
)
)

=
γ

N2

N∑

l,m=1

ω
(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)

− 1
βN

S (ωζ0 |UN
|ω|UN

)

+pN (β, µ, λ, 0, h) , (6.32)

with pN being the (finite volume) pressure (1.3) associated with the Hamiltonian HN (1.1), ωζ0 being
the product state obtained by “copying” the state ζ0 (6.1) on the one–site algebra U1 (see (6.7)), and
with the trace state trN defined on the local algebra UN for N ∈ N by

trN ( · ) :=
Trace( · )

Trace(IUN
)
.

For any permutation invariant state ω it is straightforward to check that the limits

lim
N→∞

{
N−1S (ωζ0 |UN

|ω|UN
)
}

and
e (ω) := lim

N→∞
{
N−1ω (HN )

}
= ω (H1(0))−∆ (ω)
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exist for any fixed parameters β, γ > 0 and µ, λ, h ∈ R, see respectively (2.1) and Lemma 6.3 for the
definitions of H1(0) and ∆(ω). Combined with (6.19) and (6.32) it then follows that the usual entropy
density

S̃ (ω) := − lim
N→∞

{
N−1S (trN |ω|UN

)
}

= − lim
N→∞

{
1
N

Trace
(
Dω|UN

log Dω|UN

)}
< ∞

of the permutation invariant state ω also exists and

lim
N→∞

1
βN

S (ωζ0 |UN
|ω|UN

) = e(ω) + ∆(ω)− β−1S̃ (ω) + p(β, µ, λ, 0, h).

The set Ωβ = Ωβ(µ, λ, γ, h) of equilibrium states of the strong coupling BCS–Hubbard model is defined
by

Ωβ :=
{

ω ∈ ES,+
U : −e (ω) + β−1S̃ (ω) = p (β, µ, λ, γ, h)

= ∆ (ω)− β−1S̃ (ζ0, ω) + p (β, µ, λ, 0, h)
}

.

Note that Ωβ contains per construction all weak–∗ limit points of local Gibbs states ωN as N →∞.

Consequently, the equilibrium states are, as usual, the minimizers of the free energy functional

ω 7→ F(ω) := e(ω)− β−1S̃(ω) (6.33)

on the convex and weak–∗ compact set ES,+
U , cf. (1.4). They also maximize the upper semicontinuous

affine functional ω 7→ ∆(ω)−β−1S̃(ζ0, ω). It follows that Ωβ is a closed face of ES,+
U and we have in this

set a notion of pure and mixed thermodynamic phases (equilibrium states) by identifying purity with
extremality. In particular, it is convex and weak–∗ compact. Each weak–∗ limit ω of equilibrium states
ω(n) ∈ Ωβn(µn, λn, γn, hn) such that (µn, λn, γn, hn) → (µ, λ, γ, h) and βn →∞ is called a ground state
of the strong coupling BCS–Hubbard model. The set of all ground states with parameters γ > 0 and
µ, λ, h ∈ R is denoted by Ω∞ = Ω∞(µ, λ, γ, h). Extremal states of the weak–∗ compact convex set Ω∞
are called pure ground states.

We analyze now the set of pure equilibrium states, i.e., the equilibrium states ω ∈ Ωβ belonging
to the set ES,+

U of extremal points of ES,+
U , cf. (6.22). First, from Lemmata 6.7–6.9 recall that any

extremal state is a product state ωζ (6.7), i.e., it is obtained by “copying” a state ζ on the one–site
algebra U1 to the other sites. In particular, by combining (6.22) with (6.31) observe that

p (β, µ, λ, γ, h) = sup
ζ∈E+

U1

{
γ|ζ(a∗↑a

∗
↓)|2 − β−1S(ζ0|ζ)

}
+ p (β, µ, λ, 0, h) . (6.34)

Therefore, a product state ωζ is a pure equilibrium state if and only if ζ belongs to the set Gβ =
Gβ(µ, λ, γ, h) of one–site equilibrium states defined by

Gβ :=
{
ζ ∈ E+

U1
: γ|ζ(a∗↑a

∗
↓)|2 − β−1S(ζ0|ζ) = p (β, µ, λ, γ, h)− p (β, µ, λ, 0, h)

}
. (6.35)

In other words, the study of pure states of Ωβ can be reduced, without loss of generality, to the analysis
of Gβ. The first important statement concerns the characterization of the set Gβ in relation with the
variational problems (2.4) and (6.34).

Theorem 6.10 (Explicit description of one-site equilibrium states).
For any β, γ > 0 and µ, λ, h ∈ R, the set Gβ of one–site equilibrium states are given by the states ζcβ

(6.1) with cβ := r1/2
β eiφ for any order parameter rβ solution of (2.4) and any phase φ ∈ [0, 2π).
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Proof: Take any solution rβ of (2.4) and any φ ∈ [0, 2π). Then, from (6.14) observe that

−β−1S(ζ0 | ζcβ
) + p (β, µ, λ, 0, h) = −γζcβ

(cβa∗↑a
∗
↓ + c̄βa↓a↑) + p(cβ). (6.36)

Since ζcβ
(a↓a↑) = cβ and ζcβ

(a∗↑a
∗
↓) = c̄β, the last equality combined with Theorem 2.1 implies that

γ|ζcβ
(a↓a↑)|2 − β−1S(ζ0 | ζcβ

) = p (β, µ, λ, γ, h)− p (β, µ, λ, 0, h) . (6.37)

In other words, ζcβ
is a maximizer of the variational problem defined in (6.34) and hence, ζcβ

∈ Gβ.

On the other hand, any state ζ ∈ Gβ satisfies (6.37) and by combining Theorem 2.1 with the
inequality (6.30) for c = 2γζ(a↓a↑) it follows that

−γ|ζ(a↓a↑)|2 + p(ζ(a↓a↑)) ≥ sup
c∈C

{−γ|c|2 + p(c)}.

Hence, ζ(a↓a↑) = r1/2
β eiφ = cβ for some φ ∈ [0, 2π). It remains to prove that the equality ζ(a↓a↑) = cβ

uniquely defines the one–site equilibrium state ζ ∈ Gβ. It follows from ζ(a↓a↑) = ζcβ
(a↓a↑) = cβ with

ζ, ζcβ
∈ Gβ that S(ζ0|ζcβ

) = S(ζ0|ζ) and

γζ(cβa∗↑a
∗
↓ + c̄βa↓a↑)− β−1S(ζ0|ζ) = PH1(cβ) − PH1(0) (6.38)

because of (6.36), see (2.1) for the definition of H1(c). By Lemma 6.4, one obtains for any self–adjoint
A ∈ U1 that

−ζ(A) + γζ(cβa∗↑a
∗
↓ + c̄βa↓a↑)− β−1S(ζ0|ζ) ≤ PH1(cβ)+A − PH1(0). (6.39)

Consequently, we obtain by combining (6.38) and (6.39) that

PH1(cβ)+A − PH1(cβ) ≥ −ζ(A),

for any self–adjoint A ∈ U1 and ζ ∈ Gβ such that ζ(a↓a↑) = cβ. In other words, the functional {−ζ} is
tangent to the pressure at H1(cβ). Since the convex map A 7→ PH1(cβ)+A is continuously differentiable
and self–adjoint elements separate states, the tangent functional is unique and ζ = ζcβ

. ¤
It follows immediately from the theorem above that pure states of Ωβ solve the gap equation:

Corollary 6.11 (Gap equation for pure equilibrium states).
For any β, γ > 0 and µ, λ, h ∈ R, pure states from Ωβ are precisely the product states ωζcβ

satisfying

the gap equation ωζcβ
(aκ(l),↑, aκ(l),↓) = cβ for any l ∈ N and with cβ := r1/2

β eiφ being any maximizer of
the first variational problem given in Theorem 2.1.

If cβ 6= 0, observe that the gap equation ωζcβ
(aκ(l),↑, aκ(l),↓) = cβ with ζc defined in (6.1) corresponds

to the Euler–Lagrange equation satisfied by the solutions cβ := r1/2
β eiφ of the first variational problem

given in Theorem 2.1. The phase φ ∈ [0, 2π) is arbitrarily taken because of the gauge invariance of the
map c 7→ p(c), and the gap equation ωζcβ

(aκ(l),↑, aκ(l),↓) = cβ can be reduced to (2.5). In other words,
if cβ 6= 0, the gap equation can be written in two different ways: either ωζcβ

(aκ(l),↑, aκ(l),↓) = cβ in the
view point of extremal equilibrium states or (2.5) in the view point of the order parameter rβ.

From this last corollary observe also that the existence of non–zero maximizers cβ 6= 0 implies
the existence of equilibrium states breaking the U(1)–gauge symmetry satisfied by HN (1.1). This
breakdown of the U(1)–gauge symmetry for cβ 6= 0 is already explained by Theorem 3.3, which can
be proven by our notion of equilibrium states as follows.

Consider the upper semicontinuous convex map on ES,+
U defined for any α ≥ 0 and φ ∈ [0, 2π) by

ω 7→ −e (ω) + β−1S̃ (ω) + 2α Re
{

eiφω
(
a∗↓a

∗
↑
)}

. (6.40)
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From Section 6.1 it is straightforward to check that

pα,φ (β, µ, λ, γ, h) := lim
N→∞

{
1

βN
lnTrace

(
e−βHN,α,φ

)}

= sup
ω∈ES,+

U

{
−e (ω) + β−1S̃ (ω) + 2α Re

{
eiφω

(
a∗↓a

∗
↑
)}}

,

(6.41)

with the Hamiltonian HN,α,φ defined in (3.1). Moreover, any weak–∗ limits ω∞,α,φ of local Gibbs
states

ωN,α,φ (·) :=
Trace

( · e−βHN,α,φ
)

Trace
(
e−βHN,α,φ

) (6.42)

are equilibrium states (see the proof of Lemma 6.6 applied to HN,α,φ), i.e., the state ω∞,α,φ belongs
to the (non-empty) convex set Ωβ,α,φ = Ωβ,α,φ(µ, λ, γ, h) of maximizers of (6.40) at fixed α ≥ 0 and
φ ∈ [0, 2π). In fact, one gets the following statement, which implies Theorem 3.3.

Theorem 6.12 (Breakdown of the U(1)-gauge symmetry).
Take β, γ > 0 and real numbers µ, λ, h outside any critical point. Then at fixed phase φ ∈ [0, 2π),

lim
α↓0

lim
N→∞

1
N

N∑

l=1

ωN,α,φ

(
aκ(l),↓aκ(l),↑

)
= lim

α↓0
ω∞,α,φ(aκ(1),↓aκ(1),↑) = r1/2

β eiφ,

with ω∞,α,φ ∈ Ωβ,α,φ being the unique maximizer of (6.40) for sufficiently small α ≥ 0.

Proof : First we need to characterize pure states of Ωβ,α,φ as it is done in Corollary 6.11 for α = 0. By
convexity and upper semicontinuity, note that maximizers of (6.40) are taken on the set of extremal
states whereas the set of extremal maximizers is a face. Since extremal states are product states (cf.
Lemma 6.7-6.9), we get that

sup
ω∈ES,+

U

{
−e (ω) + β−1S̃ (ω) + α Re

{
eiφω

(
a∗↓a

∗
↑
)}}

= sup
c∈C

{
−γ|c|2 + p

(
c + αγ−1eiφ

)}
, (6.43)

as in the case α = 0 (see (2.3) for the definition of p(c)). If cβ,α,φ = cβ,α,φ(µ, λ, γ, h) ∈ C is a maximizer
of

−γ|c|2 + p(c + αγ−1eiφ), (6.44)
then observe that zβ,α,φ := cβ,α,φ + αγ−1eiφ maximizes the function

−γ|z − αγ−1eiφ|2 + p(z)

of the complex variable z ∈ C. By gauge invariance of the map z 7→ p(β, µ, λ, h; z), it follows that
zβ,α,φ ∈ eiφR and thus cβ,α,φ ∈ eiφR. Using this, we extend Corollary 6.11 to α ≥ 0 and φ ∈ [0, 2π). In
other words, for any β, γ > 0, α ≥ 0, φ ∈ [0, 2π) and µ, λ, h ∈ R, pure states of Ωβ,α,φ are product
states ωζcβ,α,φ

satisfying the gap equation

ωζcβ,α,φ
(aκ(l),↑, aκ(l),↓) = cβ,α,φ, (6.45)

for any l ∈ N and with cβ,α,φ ∈ eiφR being any maximizer of (6.44).

As |c| → ∞, notice that p (c) = O (|c|). So, by gauge invariance we obtain

sup
c∈C

{−γ|c|2 + p(c + αγ−1eiφ)} = max
s∈[−M,M ]

{
−γ|s eiφ|2 + p

(
[s + αγ−1]eiφ

)}

= max
s∈[−M,M ]

{−γs2 + p(s + αγ−1)},
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for any α ∈ (0, 1) and M < ∞ sufficiently large. Consequently, if the parameters β, µ, λ, γ, and h are
such that the maximizer rβ (2.4) is unique, then the maximizer cβ,α,φ ∈ eiφR of (6.44) is also unique
as soon as α > 0 is sufficiently small. Indeed the map s 7→ p (s) is continuous on the compact interval
[−M, M ]. In particular, from (6.45) there is a unique maximizer of (6.40), i.e.,

Ωβ,α,φ = {ωζcβ,α,φ
}. (6.46)

Moreover, cβ,α,φ converges to r1/2
β eiφ as α → 0. Therefore, it follows from (6.45) that

lim
α↓0

ωζcβ,α,φ

(
aκ(l),↓aκ(l),↑

)
= r1/2

β eiφ (6.47)

for any l ∈ N.

By permutation invariance

1
N

N∑

l=1

ωN,α,φ

(
a∗κ(l),↑a

∗
κ(l),↓

)
= ωN,α,φ

(
a∗κ(1),↑a

∗
κ(1),↓

)
.

Now, let {N (1)
j } and {N (2)

j } be two subsequences in N such that

lim
j→∞

ω
N

(1)
j ,α,φ

(
a∗κ(1),↑a

∗
κ(1),↓

)
= lim sup

N→∞
ωN,α,φ

(
a∗κ(1),↑a

∗
κ(1),↓

)
,

lim
j→∞

ω
N

(2)
j ,α,φ

(
a∗κ(1),↑a

∗
κ(1),↓

)
= lim inf

N→∞
ωN,α,φ

(
a∗κ(1),↑a

∗
κ(1),↓

)
.

We can assume without loss of generality that ω
N

(2)
j

and ω
N

(1)
j

both converge w.r.t. the weak–∗
topology as j →∞. Since any weak–∗ limits ω∞,α,φ of local Gibbs states ωN,α,φ (6.42) are equilibrium
states (see again the proof of Lemma 6.6), i.e., ω∞,α,φ ∈ Ωβ,α,φ, the theorem then follows from (6.46)
and (6.47). Indeed, for any β, γ > 0 and µ, λ, h ∈ R outside any critical point, the sequence ωN,α,φ

of local Gibbs state converges towards ω∞,α,φ = ωζcβ,α,φ
in the weak–∗ topology as soon as α ≥ 0 is

sufficiently small. ¤
From Corollary 6.11 note that the expectation values of Cooper fields

Φκ(l) := a∗κ(l),↓a
∗
κ(l),↑ + aκ(l),↑aκ(l),↓

Ψκ(l) := i(a∗κ(l),↓a
∗
κ(l),↑ − aκ(l),↑aκ(l),↓)

(6.48)

are
ωζcβ

(Φκ(l)) = 2 Re{cβ} and ωζcβ
(Ψκ(l)) = 2 Im{cβ} (6.49)

for any pure state ωζcβ
of Ωβ and l ∈ N, where we recall that cβ := r1/2

β eiφ is any maximizer of the
first variational problem given in Theorem 2.1. In particular, ω(Φκ(l)) 6= 0 or ω(Ψκ(l)) 6= 0 for any
pure state ω ∈ Ωβ is a manifestation of the breakdown of the U(1)–gauge symmetry.

Unfortunately, the operators Φκ(l) and Ψκ(l) do not correspond to any experiment, as they are not
gauge invariant. More generally, experiments only “see” the restriction of states ωζcβ

to the subalgebra
of gauge invariant elements. Consequently, the next step is to prove the so–called off diagonal long
range order (ODLRO) property proposed by Yang [28] to define the superconducting phase. Indeed,
one detects the presence of U(1)–gauge symmetry breaking by considering the asymptotics, as |l−m| →
∞, of the (U(1)–gauge symmetric) Cooper pair correlation function

Gω(l, m) := ω(a∗κ(l),↑a
∗
κ(l),↓aκ(m),↓aκ(m),↑) (6.50)

associated with some state ω. In particular, if Gω(l, m) converges to some fixed non–zero value
whenever |l−m| → ∞, the state ω shows off diagonal long range order (ODLRO). This property can
directly be analyzed for equilibrium states from our next statement.
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Theorem 6.13 (Cooper pair correlation function).
For any β, γ > 0 and µ, λ, h ∈ R outside any critical point, the Cooper pair correlation function
GωN (l, m) associated with the local Gibbs state ωN converges at fixed l 6= m towards

lim
N→∞

GωN (l, m) = Gω (l, m) = rβ,

for any equilibrium state ω ∈ Ωβ, and with rβ being the solution of (2.4).

Proof: By similar arguments as in the proof of Theorem 6.12, if Gω (l, m) = rβ for all equilibrium
states ω, then

lim
N→∞

GωN (l, m) = rβ.

By permutation invariance of ω ∈ Ωβ, note that

Gω(l,m) = Gω(1, 2) (6.51)

for any l 6= m. If ω = ωζcβ
is an extremal equilibrium state, then one clearly has

Gωζcβ
(1, 2) = ζcβ

(a∗↑a
∗
↓)ζcβ

(a↓a↑) = |cβ|2 = rβ.

On the other hand, the set Ωβ of equilibrium states for fixed parameters β, γ > 0, and µ, λ, h ∈ R
is weak–∗ compact. In particular, if ω ∈ Ωβ is not extremal, the function Gω(1, 2) is given, up to
arbitrarily small errors, by convex sums of the form

k∑

j=1

λjGω(j)(1, 2), λ1, . . . , λk ≥ 0, λ1 + . . . + λk = 1, (6.52)

where {ω(j)}j=1,...,k are extremal equilibrium states. Since any weak–∗ limit ω∞ of local Gibbs states
ωN (1.5) is an equilibrium state (see proof of Lemma 6.6), the theorem is then a consequence of
(6.51)–(6.52). ¤

Since

1
N2

N∑

l,m=1

ωN

(
a∗κ(l),↑a

∗
κ(l),↓aκ(m),↓aκ(m),↑

)

=
N(N − 1)

N2
ωN

(
a∗κ(1),↑a

∗
κ(1),↓aκ(2),↓aκ(2),↑

)
+O(N−1),

note that this theorem implies Theorem 3.1.

Therefore, outside any critical point, if an equilibrium state shows ODLRO then all pure equilibrium
states break the U(1)–gauge symmetry. Conversely, if all pure equilibrium states break the U(1)–
gauge symmetry, then all equilibrium state show ODLRO. This is due to the fact that the order
parameter rβ is unique outside any critical point. In particular, from Section 7, at sufficiently small
inverse temperature β there is no ODLRO and Ωβ = {ωζ0}, whereas for sufficiently large β and γ all
equilibrium states show ODLRO.

For any β, γ > 0 and real numbers µ, λ, h at some critical point, this property is not satisfied in
general. There are indeed cases where the phase transition is of first order, cf. figure 3. In this
situation, 0 and some rβ > 0 are maximizers at the same time, and hence, there are some equilibrium
states breaking the U(1)–gauge symmetry and other equilibrium states which do not show ODLRO
in this specific situation.

Now we would like to pursue this analysis of equilibrium states by showing that their definition is in
accordance with results of Theorems 3.6, 3.8 and 3.10. This statement is given in the next theorem.
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Theorem 6.14 (Uniqueness of densities for equilibrium states).
Take β, γ > 0 and real numbers µ, λ, h outside any critical point. Then, for any equilibrium state
ω ∈ Ωβ and l ∈ N, all densities are uniquely defined:
(i) The electron density is equal to

lim
N→∞

{
1
N

N∑

l′=1

ωN

(
nκ(l′),↑ + nκ(l′),↓

)
}

= ω(nκ(l),↑ + nκ(l),↓) = dβ,

cf. Theorem 3.6.
(ii) The magnetization density is equal to

lim
N→∞

{
1
N

N∑

l′=1

ωN

(
nκ(l′),↑ − nκ(l′),↓

)
}

= ω(nκ(l),↑ − nκ(l),↓) = mβ,

cf. Theorem 3.8.
(iii) The Coulomb correlation density is equal to

lim
N→∞

{
1
N

N∑

l′=1

ωN

(
nκ(l′),↑nκ(l′),↓

)
}

= ω(nκ(l),↑nκ(l),↓) = wβ,

cf. Theorem 3.10.

Proof: Suppose first that ω ∈ Ωβ is pure. Then, from Corollary 6.11 it follows that

ω
(
nκ(l),↑ + nκ(l),↓

)
= ωζcβ

(
nκ(l),↑ + nκ(l),↓

)
,

with cβ = r1/2
β eiφ for some φ ∈ [0, 2π). Thus, by using the gauge invariance of the map c 7→ p(c) we

directly get

ω
(
nκ(l),↑ + nκ(l),↓

)
= ∂µp(β, µ, λ, γ, h; cβ) = ∂µp(β, µ, λ, γ, h; r1/2

β ) = dβ. (6.53)

At fixed parameters β, γ > 0, µ, λ, h ∈ R, recall that the set Ωβ of equilibrium states is weak–∗
compact. In particular, if ω ∈ Ωβ is not pure, it is the weak–∗ limit of convex combinations of pure
states. Therefore, we obtain (6.53) for any ω ∈ Ωβ. Similarly one gets

ω(nκ(l),↑ − nκ(l),↓) = mβ and ω(nκ(l),↑nκ(l),↓) = wβ, (6.54)

for any equilibrium state ω ∈ Ωβ and l ∈ N. Moreover, since any weak–∗ limit ω∞ of local Gibbs
states ωN (1.5) is an equilibrium state, i.e., ω∞ ∈ Ωβ, we therefore deduce from (6.53)-(6.54), exactly
as in the proof of Theorem 6.12, the existence of the limits in the statements (i)-(iii). ¤

Observe that the weak–∗ limit ω∞ ∈ Ωβ of local Gibbs states ωN (1.5) can easily be performed,
even on critical points, by using the decomposition theory for states [31]:

Theorem 6.15 (Asymptotics of the local Gibbs state ωN as N →∞).
Recall that for any φ ∈ [0, 2π), cβ := r1/2

β eiφ is a maximizer of the first variational problem given
in Theorem 2.1, whereas the states ζc and ωζ are respectively defined by (6.1) and (6.7). Take any
β, γ > 0, µ, λ, h ∈ R, and let N →∞.
(i) Outside any critical point, the local Gibbs state ωN converges in the weak–∗ topology towards the
equilibrium state

ω∞ (·) =
1
2π

2π∫

0

ωζcβ
(·) dφ. (6.55)
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(ii) For each weak–∗ limit point ω∞ of local Gibbs states ωN with parameters (βN , γN , µN , λN , hN )
converging to any critical point (β, γ, µ, λ, h) ∈ ∂S (2.7), there is τ ∈ [0, 1] such that

ω∞ (·) = (1− τ) ωζ0 (·) +
τ

2π

2π∫

0

ωζcβ
(·) dφ.

Proof: By U(1)–gauge symmetry of the Hamiltonians HN (1.1) recall that any weak–∗ limit ω∞ of
local Gibbs states ωN (1.5) is a U(1)–invariant equilibrium state. So, in order to prove the first part
of the Theorem it suffices to show that the equilibrium state given in (i) is the unique U(1)–invariant
state in Ωβ. If the solution rβ of (2.4) is zero, then this follows immediately from Corollary 6.11.

Let rβ > 0 be the unique maximizer of (2.4), i.e., cβ := r1/2
β eiφ 6= 0 for any φ ∈ [0, 2π). Let

∂Ωβ = {ωζ : ζ ∈ Gβ}
be the set of all extremal states of Ωβ, see (6.35) for the definition of the set Gβ of one–site equilibrium
states. Observe that the closed convex hull of ∂Ωβ is precisely Ωβ and that ∂Ωβ is the image of
the torus [0, 2π) under the continuous map φ 7→ ωζcβ

, with cβ := r1/2
β eiφ. This last map defines a

homeomorphism between the torus and ∂Ωβ. In particular, the set ∂Ωβ is compact and for each
equilibrium state ω ∈ Ωβ there is a uniquely defined probability measure dm̂ω on the torus such that

ω (A) =

2π∫

0

ωζcβ
(A) dm̂ω (φ) , for all A ∈ U . (6.56)

See, e.g., Proposition 1.2 of [34]. By U(1)–invariance of ω∞, for any n ∈ N one has from (6.56) that

ω∞

(
n∏

l=1

aκ(l),↑aκ(l),↓

)
= rn/2

β

2π∫

0

einφdm̂ω∞ (φ) = 0.

Therefore, if rβ > 0, there is a unique probability measure allowing the U(1)–gauge symmetry of ω∞:
dm̂ω∞ (φ) must be the uniform probability measure on [0, 2π).

From Lemma 7.1 the cardinality of set of maximizers of (2.4) is at most 2. Indeed, outside any critical
point, it is 1 whereas at a critical point it can be either 1 (second order phase transition) or 2 (first order
phase transition). For more details, see Section 7. In both cases, we can use the same arguments as
above. By similar estimates as in the proof of Lemma 6.6 it immediately follows that all limit points
of the Gibbs states ωN with parameters (βN , γN , µN , λN , hN ) converging to (β, γ, µ, λ, h) ∈ ∂S as
N → ∞, belongs to Ωβ = Ωβ(µ, λ, γ, h). Since the set of all U(1)–invariant equilibrium states from
Ωβ is {ω(τ) for any τ ∈ [0, 1]} with

ω(τ) (·) := (1− τ) ωζ0 (·) +
τ

2π

2π∫

0

ωζcβ
(·) dφ, (6.57)

we obtain the second statement (ii). ¤
This theorem is a generalization of results obtained for the strong coupling19 BCS model [7]. Note

however, that Thirring’s analysis [7] of the asymptotics of local Gibbs states comes from explicit
computations, whereas we use the structure of sets of states, as explained for instance in [19].

Observe that Theorem 4.3 is a simple consequence of Theorem 6.15. Indeed, assume for instance
that the order parameter rβ = rβ(µ, λ, γ, h) and the electron density per site dβ = dβ(µ, λ, γ, h) jumps
respectively from r−β = 0 to r+β and from d−β to d+

β by crossing a critical chemical potential µ
(c)
β at

19See (1.1) with λ = 0 and h = 0.
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fixed parameters (β, λ, γ, h). An example of such behavior is given in figure 10 for an electron density
smaller than one. If ρ ∈ [d−β ,d+

β ], then the unique solution µN,β = µN,β(ρ, λ, γ, h) of (4.1) must

converge towards µ
(c)
β as N →∞. Meanwhile, at fixed (β, µ

(c)
β , λ, γ, h)

ωζ0 (n↑ + n↓) = d−β and ωζ
c+
β

(n↑ + n↓) = d+
β ,

with c+
β :=

√
r+β eiφ and φ ∈ [0, 2π). Any weak–∗ limit ω∞ of local Gibbs states ωN satisfies per

construction
ω∞ (n↑ + n↓) = ρ

and has the form ω(τ) (·) (6.57), by Theorem 6.15. Hence, the Gibbs state ωN converges in the weak–∗
topology towards ω(τρ) (·) with τρ defined in Theorem 4.3. Indeed, the existence of the limits (i)–(iii) in
Theorem 4.3 follows from the uniqueness of the limiting equilibrium state with fixed electron density
ρ ∈ [d−β , d+

β ].

We give now various important properties of densities in ground states, i.e., for β = ∞, which
immediately follow from Theorem 6.14. Recall that the set Ω∞ of ground states is the set of all
weak–∗ limit points as n → ∞ of all equilibrium state sequences {ω(n)}n∈N with diverging inverse
temperature βn →∞.

Take γ > 0 and parameters µ, λ, h such that |µ − λ| 6= λ + |h|. Then the electron and Coulomb
correlation densities equal respectively

d := ω(nκ(l),↑ + nκ(l),↓) = d∞ and w := ω(nκ(l),↑nκ(l),↓) = w∞, (6.58)

for any ground state ω ∈ Ω∞ and l ∈ N, cf. Corollaries 3.7 and 3.11.

If additionally γ > Γ|µ−λ|,λ+|h|, we are in the superconducting phase for ground states, cf. Corollary
3.4. Indeed, for any ϕ ∈ [0, 2π), there is a ground state ω ∈ Ω∞ such that for any l ∈ N,

ω(aκ(l),↓aκ(l),↑) = r1/2
maxe

iϕ.

In the superconducting phase, from Corollary 3.11 observe that d∞ = 2w∞, whereas the magnetization
density equals

m := ω(nκ(l),↑ − nκ(l),↓) = m∞ = 0, (6.59)
for any superconducting state ω ∈ Ω∞ and l ∈ N. This is the Meißner effect, see Corollary 3.9. In
particular, it yields that

ω(nκ(l),↑nκ(l),↓) = ω(nκ(l),↑) = ω(nκ(l),↓), (6.60)
for any ω ∈ Ω∞ and l ∈ N. On the other hand, from the Cauchy–Schwarz inequality for states note
that the inequalities

0 ≤ ω
(
nκ(l),↑nκ(l),↓

) ≤
√

ω
(
nκ(l),↑

)√
ω

(
nκ(l),↓

)
(6.61)

are always satisfied for any l ∈ N and ω ∈ E+
U . By (6.60) it then follows that in the superconducting

phase the second inequality of (6.61) is an equality for any ω ∈ Ω∞. It shows that 100% of electrons
form Cooper pairs in superconducting ground states.

In the case where h 6= 0 with γ > Γ|µ−λ|,λ+|h| and |µ − λ| 6= λ + |h|, the density vector (d,m, w)
defined by (6.58) and (6.59) is also unique as in the superconducting phase. It equals (d∞, m∞, w∞),
see Corollaries 3.7, 3.9 and 3.11. However, if h = 0 with γ < Γ|µ−λ|,λ, or γ = Γ|µ−λ|,λ+|h|, or
|µ− λ| = λ + |h|, then the density vector (d, m,w) belongs, in general, to a non trivial convex set. In
other words, there are phase transitions involving to these densities. In particular, even in the case
h = 0 where the Hamiltonian HN (1.1) is spin invariant, there are ground states breaking the spin
SU(2)–symmetry.

For instance, take β, γ > 0 and parameters µ, λ such that |µ−λ| < λ and γ < Γ|µ−λ|,λ. Then for any
ω ∈ Ω∞ and l ∈ N, the electron density equals d = d∞ = 1, whereas the Coulomb correlation density



EFFECT OF A LOCALLY REPULSIVE INTERACTION ON S–WAVE SUPERCONDUCTORS 45

is w = w∞ = 0. In particular, the first inequality of (6.61) is an equality showing that 0% of electrons
forms Cooper pairs. However, even if the magnetic field vanishes, i.e., h = 0, for any x ∈ (−1, 1) there
exists a ground state ω(x) ∈ Ω∞ with magnetization density m = x (see (6.59) for the definition of m).

Therefore, all the thermodynamics of the strong coupling BCS–Hubbard model discussed in Sections
3.1–3.5 is encoded in the notion of equilibrium and ground states ω ∈ Ωβ with β ∈ (0,∞]. However,
there is still an important open question related to the thermodynamics of this model. It concerns the
problem of fluctuations of the Cooper pair condensate density (Theorem 3.1) or Cooper fields Φκ(l) and
Ψκ(l) (6.48) as a function of the temperature. Unfortunately, no result in that direction are performed
as soon as the thermodynamic limit is concerned. We give however an elementary statement about
fluctuations of Cooper fields for pure states from Ωβ in the limit γβ →∞.

Theorem 6.16 (Fluctuations of Cooper fields).
Take β, γ > 0 and real numbers µ, λ, h outside any critical point. Then, for any pure state ωζcβ

∈ Ωβ

and l ∈ N, the fluctuations of Cooper fields Φκ(l) and Ψκ(l) (6.48) are bounded by

0 ≤ ωζcβ

(
{Φκ(l) − ωζcβ

(Φκ(l))}2
)
≤ 2γ−1β−1,

0 ≤ ωζcβ

(
{Ψκ(l) − ωζcβ

(Ψκ(l))}2
)
≤ 2γ−1β−1,

i.e., they vanish in the limit γβ →∞.

Proof: Recall that properties of pure states are characterized in Corollary 6.11, i.e., they are product
states ωζcβ

with the one–site state ζcβ
being defined in (6.1). In particular, they satisfy (6.49). Now,

to avoid triviality, assume that cβ := r1/2
β eiφ 6= 0 and let f(τ) be the function defined for any τ ∈ R by

f (τ) := −γ|cβ + τ |2 + p(cβ + τ).

Since cβ 6= 0 is a maximizer of the function −γ|c| + p(c) of c ∈ C, one has ∂2
τ f (0) ≤ 0, i.e., ∂2

τ p(cβ +
τ)|τ=0 ≤ 2γ. From straightforward computations, observe that p(cβ + τ) is a convex function of τ ∈ R
with

β−1γ−2{∂2
τ p(cβ + τ)}|τ=0 = ωζcβ

(
{Φκ(l) − ωζcβ

(Φκ(l))}2
)
≥ 0.

From this last equality combined with {∂2
τ p(cβ + τ)}|τ=0 ≤ 2γ, we deduce the theorem for Φκ(l).

Moreover, from similar arguments using the function f̂ (τ) := f (iτ) instead of f, the fluctuations of the
Cooper field Ψκ(l) are also bounded by 2γ−1β−1. ¤

From Theorem 6.16, note that Cooper fields are c–numbers in the corresponding GNS–representation
[31] of pure ground states defined as weak–∗ limits of pure equilibrium states:

Corollary 6.17 (Cooper fields for pure ground states).
Let ω ∈ Ω∞ be any weak–∗ limit of pure equilibrium states and let (ψ, π,H) be the corresponding
GNS–representation of ω on bounded operators on the Hilbert space H with cyclic vacuum ψ. Then ω
is pure and for any l ∈ N, π(Φκ(l)) = ω(Φκ(l))IH and π(Ψκ(l)) = ω(Ψκ(l))IH.

Proof: A pure equilibrium state is a product state (6.7) and any weak–∗ limit of product states in
ES,+
U is also a product state. Thus, by Lemma 6.7, any ground state ω ∈ Ω∞ defined as the weak–∗

limit of pure equilibrium states is extremal in ES,+
U and hence extremal in Ω∞. Clearly, for such

ground state, π(ω(Φκ(l))) = ω(Φκ(l))IH for any l ∈ N. Let Φ̃ := Φκ(l) − ω
(
Φκ(l)

)
. From Theorem 6.16

combined with the Cauchy–Schwarz inequality we obtain for any A ∈ U that
∥∥∥π(Φ̃)π(A)ψ

∥∥∥
2

H
= ω(A∗Φ̃Φ̃A) ≤ ‖A‖

√
ω

(
Φ̃(Φ̃AA∗Φ̃2)

)

≤ ‖A‖2‖Φ̃‖3/2[ω(Φ̃2)]1/4 = 0.
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From the cyclicity of ψ, it follows that π(Φκ(l)) = ω(Φκ(l))IH. The proof of π(Ψκ(l)) = ω(Ψκ(l))IH is
also performed in the same way. We omit the details. ¤

In particular, for such pure ground states ω in Ω∞, correlation functions can explicitly be computed
at any order in Cooper fields. For instance, for all N ∈ N, all kj , lj ∈ N, mj , nj ∈ N0, j = 1, . . . , N ,
and any An ∈ U , n = 1, . . . , N + 1, one has

ω
(
A1Φm1

κ(k1)Ψ
n1

κ(l1)A2 . . . ANΦmN

κ(kN )Ψ
nN

κ(lN )AN+1

)

= ω(Φm1

κ(k1))ω(Ψn1

κ(l1)) . . . ω(ΦmN

κ(kN ))ω(ΨmN

κ(lN )) ω (A1 . . . AN+1) .

7. Analysis of the variational problem

The variational problem (2.4) is quite explicit but for the reader convenience, we collect here some
properties of its solution rβ w.r.t. β, γ > 0 and µ, λ, h ∈ R. We show in particular that rβ > 0 exists
in a non–empty domain of (β, γ, µ, λ, h) with some monotonicity properties as well as the existence
of both first and second order phase transitions. We conclude this section by giving the asymptotics
of rβ as β →∞, i.e., by proving Corollary 3.4.

1. We start by showing that rβ = 0 for sufficiently small inverse temperatures β at fixed γ, µ, λ and
h. Indeed, for any r ≥ 0 one computes that

∂rf (r) = γ

(
γ sinh (βgr)

2gr (eλβ cosh (βh) + cosh (βgr))
− 1

)
, (7.1)

cf. Theorem 2.1. Direct estimations show that if 0 < β < 2γ−1, then ∂rf(r) < 0 for any r ≥ 0, i.e.,
rβ = 0.

2. Fix now β > 0 and µ, λ, h ∈ R, then rβ > 0 for sufficiently large coupling constants γ. Indeed,
for large enough γ > 0 there is, at least, one strictly positive solution r̃β > 0 of (2.5). Since direct
computations using again (2.5) imply that

d

dγ
{f (β, µ, λ, γ, h; r̃β(γ))− f (β, µ, λ, γ, h; 0)} = r̃β(γ) > 0,

and
f (β, µ, λ, γ, h; r̃β)− f (β, µ, λ, γ, h; 0) = O (γ) as γ →∞,

for any fixed β > 0 and µ, λ, h ∈ R, there is a unique γc > 2|λ − µ| such that f(r̃β) > f(0), i.e.,
rβ > 0 for γ > γc. The domain of parameters (β, µ, λ, γ, h) where rβ is strictly positive is therefore
non–empty, cf. figures 3–4.

3. To get an intuitive idea of the behavior of the function f (r) (cf. Theorem 2.1), we analyze the
cardinality of the set S of strictly positive solutions of the gap equation (2.5):

Lemma 7.1 (Cardinality of the set S).
If βγ ≤ 6, the gap equation (2.5) has at most one strictly positive solution, whereas it has, at most,
two strictly positive solutions when βγ > 6.

Proof: From (7.1), any strictly positive maximizer rβ > 0 of (2.4) is solution of the equation

h1 (gr) = 0, with h1 (x) :=
γ

2x
sinh (βx)− eλβ cosh (βh)− cosh (βx) . (7.2)
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This last equation is equivalent to the gap equation (2.5). For any x > 0, observe that

∂xh1 (x) =
βγ

2x
cosh (xβ)−

( γ

2x2
+ β

)
sinh (xβ) = 0 (7.3)

if and only if

(2β−1γ−1)1/2y =
√

y

tanh(y)
− 1 =: C(y), y = βx > 0. (7.4)

The map y 7→ C(y) is strictly concave for y > 0, C(0) = 0, and ∂yC(0) = (2/6)1/2. Therefore,
if βγ > 6 there is a unique strictly positive solution ỹ = βx̃ > 0 of (7.4), and there is no strictly
positive solution of (7.4) when βγ < 6. Since h1(0) could be negative in some cases and h1 (x) diverges
exponentially to −∞ as x →∞, the cardinality of set of strictly positive solutions of the gap equation
(2.5) is at most two if βγ > 6, or at most one if βγ ≤ 6. ¤

Consequently, if the gap equation (2.5) has no solution, then f(r) is strictly decreasing for any
r ≥ 0. If the gap equation (2.5) has one unique solution rβ > 0, the function f(r) is increasing
until its (strictly positive) maximizer rβ > 0 and decreasing next for r ≥ rβ. Finally, when there are
two strictly positive solutions of (2.5), the lower one must be one local minimum whereas the larger
solution must be a local maximum. In this case the function f(r) decreases for r ≥ 0 until its local
minimum, then increases until its local maximum, and finally decreases again to diverge towards
−∞. Note that none of these cases can be excluded, i.e., they all appear depending on β, γ > 0 and
µ, λ, h ∈ R. See figures 3 and 18.
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Figure 18. Illustrations of the function f (r) for r ∈ [0, 1/4] at (µ, γ, h) = (1, 2.6, 0)
with inverse temperatures β = βc − 0.3 (orange line), β = βc (red line), β = βc + 0.5
(blue line), and with coupling constants λ = 0 (left figure), λ = 0.45 (figure on the
center) and λ = 0.575 (right figure). Here βc = θ−1

c is the critical inverse temperature
which, from left to right, equals 2.04, 3.46 and 6.35 respectively.

4. We study now the dependence of rβ > 0 w.r.t. variations of each parameter. So, let us fix the
parameters {β, µ, λ, γ, h}\{ν} with ν = β, µ, λ, γ, or h and consider the function ξ (r, ν) := ∂rf (r, ν)
for r ≥ 0 and ν in the open set of definition of f(r, ν) = f(β, µ, λ, γ, h; r), see (7.1). Recall that rβ > 0
is a solution at ν = ν0 of the gap equation (2.5), i.e., ξ(rβ, ν0) = 0.

Straightforward computations imply that

∂2
rf (r) =

γ4β

4g2
r (eλβ cosh (βh) + cosh (βgr))

h2 (gr) , (7.5)

for any r > 0 with

h2 (x) :=
eλβ cosh (βh) cosh (βx) + 1
eλβ cosh (βh) + cosh (βx)

− sinh (βx)
βx

. (7.6)

It yields that there is at most one strictly positive solution, r̃ ≥ 0 of ∂rξ(r, ν0) = 0 for each fixed set of
parameters. For instance, if eλβ cosh(βh) ≤ 1, then it is straightforward to check that ∂rξ (r, ν0) < 0
for any r > 0. In the situation where the gap equation (2.5) has two strictly positive solutions, rβ > 0
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cannot solve ∂rξ(r, ν0) = 0, since in this case the equation h2(x) = 0 would have at least two strictly
positive solutions, as rβ is a maximizer.

Consequently, to simplify our study we restrict on the very large set of parameters where
∂rξ(rβ, ν0) 6= 0. In this case, the derivative dξ of ξ has maximal rank at (rβ, ν0) and from the im-
plicit function theorem, there are ε > 0 and a smooth and strictly positive function20 rβ(ν) > 0
defined on the ball Bε(ν0) centered on the point ν0 and with radius ε such that ξ(ν, rβ(ν)) = 0 for
any ν ∈ Bε(ν0). By continuity of the function ∂rξ we can choose ε > 0 such that ∂rξ(ν, rβ(ν)) does
not change its sign for ν ∈ Bε(ν0). Thus rβ(ν) describes the evolution of the solution of (2.4) for
ν ∈ Bε(ν0). If rβ = rβ(ν0) > 0 is the unique maximizer of (2.4) with ∂rξ(rβ, ν0) 6= 0, then the function
rβ(ν) describes the smooth evolution of the Cooper pair condensate density w.r.t. small perturbations
of ν0. Observe that

∂νξ (rβ (ν) , ν) = {∂νrβ (ν)} {∂rξ (r, ν)} |r=rβ(ν) + {∂νξ (r, ν)} |r=rβ(ν) = 0

and {∂rξ (r, ν0)} |r=rβ(ν0) < 0 because rβ is a maximizer. Consequently, one obtains

sgn {∂νrβ (ν0)} = sgn
{
{∂ν∂rf (r, ν0)} |r=rβ(ν0)

}
.

In other words, the function rβ(ν) of ν ∈ Bε(ν0) is either increasing if

{∂ν∂rf (r, ν0)} |r=rβ(ν0) > 0,

or decreasing if

{∂ν∂rf (r, ν0)} |r=rβ(ν0) < 0,

as soon as rβ > 0 is the unique maximizer of (2.4) with ∂rξ(rβ, ν0) 6= 0.

5. By applying this last result respectively to ν0 = γ > Γ|µ−λ|,λ+|h| (Corollary 3.4) and ν0 = h ∈ R,
we obtain that rβ > 0 is an increasing function of γ > 0 and a decreasing function of |h| because via
(2.5) one has

{∂γ∂rf (r, γ)} |r=rβ
> 4γ−2 (µ− λ)2 ≥ 0

at fixed parameters (β, µ, λ, h) and

{∂h∂rf (r, h)} |r=rβ
= −2grβ

βeλβ sinh (βh)
sinh

(
βgrβ

)

at fixed (β, µ, λ, γ).

6. If γ > Γ|µ−λ|,λ+|h|, for any fixed (β, γ, λ, h) the order parameter rβ > 0 is a decreasing function of
|µ− λ| under the condition that eλβ cosh (βh) ≤ 1, as

{∂µ∂rf (r, µ)} |r=rβ
=

γ2β (µ− λ)
2g2

r

(
eλβ cosh (βh) + cosh

(
βgrβ

))h2

(
grβ

)
,

cf. (7.6). If eλβ cosh (βh) > 1, the behavior of rβ > 0 is not anymore monotone as a function of |µ−λ|
(λ being fixed), cf. figure 10.

The behavior of rβ as a function of λ or β is also not clear in general. But, at least as a function
of the inverse temperature β > 0, we can give simple sufficient conditions to get its monotonicity.

20If ν = β, then of course rβ(ν) := rν .
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Indeed, direct computations show that

{∂β∂rf (r, β)} |r=rβ
= (γ + 2λ) grβ

cosh
(
βgrβ

)

sinh
(
βgrβ

) −
(
λγ + 2g2

rβ

)

−2hgrβ

eλβ sinh (βh)
sinh

(
βgrβ

) .

By combining this last equality with (2.5), we then get that

{∂β∂rf(r, β)}|r=rβ
≥ 0 (7.7)

with rβ > 0 if and only if

g2
rβ
≤ γ

(
γ cosh

(
βgrβ

)− 2eλβ cosh (βh) (λ + h tanh (βh))
)

4
(
cosh

(
βgrβ

)
+ eλβ cosh (βh)

) . (7.8)

From (2.5) combined with tanh(x) < 1, we also have

g2
rβ

<
γ2 cosh2

(
βgrβ

)

4
(
cosh

(
βgrβ

)
+ eλβ cosh (βh)

)2 . (7.9)

Therefore, a sufficient condition to satisfy the inequality (7.8) is obtained by bounding the r.h.s. of
(7.9) with the r.h.s. of (7.8). From (2.5) this implies the condition

grβ
≥ (λ + h tanh (βh)) tanh

(
βgrβ

)
,

under which rβ is an increasing function of β > 0. This inequality is also equivalent to

grβ
≤ tanh

(
βgrβ

)
(

γ

2
− eλβ cosh (βh)

cosh
(
βgrβ

) (λ + h tanh (βh))

)
.

In particular, by using again the gap equation (2.5), if

γ > 2 (λ + h tanh (βh))

(
1 +

eλβ cosh (βh)
cosh

(
βgrβ

)
)

,

then rβ > 0 is an increasing function of β > 0. Since tanhx ≤ 1, another sufficient condition to get
(7.7) is λ + |h| ≤ grβ

. In particular, if λ < |µ− λ| and γ > Γ|µ−λ|,λ+|h| with h sufficiently small, then
rβ > 0 is again an increasing function of β > 0.

Therefore, the domain of (µ, λ, γ, h) where rβ > 0 is proven to be an increasing function of β > 0
is rather large. Actually, from a huge number of numerical computations, we conjecture that rβ > 0
is always an increasing function of β > 0. In other words, this conjecture implies that the condition
expressed in Corollary 3.4 on (µ, λ, γ, h) should be necessary to obtain a superconductor at a fixed
temperature.

7. Observe that the order of the phase transition depends on the parameters. For instance, assume
λ ≤ 0, h = 0 and γ > Γ|µ−λ|,λ. Then, at any inverse temperature β > 0 it follows from (7.5) that
f(r) is a strictly concave function of r > 0. This property justifies the existence and uniqueness of the
inverse temperature βc solution of the equation

tanh (β|µ− λ|)
|µ− λ| =

2
γ

(
1 +

eλβ

cosh (β|µ− λ|)
)

,

i.e., (2.5) for λ ≤ 0, h = 0 and r = 0. In particular, βc is such that the Cooper pair condensate density
continuously goes from rβ = 0 for β ≤ βc to rβ > 0 for β > βc. In this case the superconducting phase
transition is of second order, cf. figure 3.
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The appearance of a first order phase transition at some fixed (µ, λ, γ, h) is also not surprising.
Indeed, recall that the function f(r) may have a local minimum and a local maximum, see discussions
below Lemma 7.1. For instance, assume now λ = µ > 0, h = 0 and 4λ = Γ0,λ < γ ≤ 6λ. Then, from
(7.1) for r = 0,

∂rf (0) =
γ

eλβ + 1

(
γβ

2
−

(
eλβ + 1

))
.

Since by explicit computations

min
x>0

{
ex + 1

x

}
> 3,

it follows that ∂rf(0) < 0 for any β > 0 whenever λ = µ > 0, h = 0 and 0 < γ ≤ 6λ. Therefore,
as soon as there is a superconducting phase transition, for instance if 4λ < γ ≤ 6λ (cf. Corollary
3.4), the function rβ of β > 0 must be discontinuous at the critical point. This case is an example of
a first order superconducting phase transition. Numerical illustrations of a similar first order phase
transition are also given in figure 3.

8. We conclude this section by doing the asymptotics of the order parameter rβ as β →∞. We prove
in particular Corollary 3.4.

From (2.6), we already know that rβ = 0 for any γ ≤ 2|µ̃λ| with µ̃λ := µ−λ. Therefore, we consider
here that γ > 2|µ̃λ| and we look for the domain where the parameter rβ is strictly positive in the limit
β →∞. Recall that rβ is solution of the variational problem (2.4), i.e.,

1
β

ln 2 + sup
r≥0

f (r) = −γrβ +
1
β

ln
{

eβh + e−βh + e
β
(
grβ

−λ
)

+ e
−β

(
grβ

+λ
)}

. (7.10)

When β →∞ the last exponential term can always be neglected for our analysis since grβ
≥ 0.

Now, assume first that g0 = |µ̃λ| > λ + |h|. Then gr > λ + |h| for any r ≥ 0 and when β → ∞ the
function f (r) converges to

w (r) := −γr + gr − λ.

In particular, the order parameter rβ converges towards the unique maximizer rmax (2.6) of the function
w (r) for r ≥ 0, i.e.,

r∞ := lim
β→∞

rβ = rmax, (7.11)

for any γ > 2|µ̃λ| and real numbers µ, λ, h satisfying |µ̃λ| > λ + |h|.
Assume now that |µ̃λ| ≤ λ + |h| and let rmin be the solution of gr = λ + |h|, i.e.,

rmin := γ−2
(
(λ + |h|)2 − µ̃2

λ

)
≥ 0. (7.12)

Then, for any r ∈ [0, rmin]
f (r) = −γr + |h|+ o (1) as β →∞.

In particular, since γ > 0,

sup
0≤r≤rmin

f (r) = f (δ) = |h|+ o (1) , with δ = o (1) as β →∞. (7.13)

The solution rβ of the variational problem (7.10) converges to either 0 or some strictly positive value
r∞ > rmin. In the case where r∞ > rmin, we would have

f (r∞) = w (r∞) + o (1) as β →∞. (7.14)

Now, if |µ̃λ| ≤ λ + |h| and γ ≤ 2(λ + |h|), then rmin ≥ rmax, cf. (2.6) and (7.12). In this regime,
straightforward computations show that

|h| − sup
r≥rmin

w (r) = |h| − w (rmin) = γ−1
(
(|h|+ λ)2 − µ̃2

λ

)
≥ 0. (7.15)
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In other words, the order parameter rβ converges towards

r∞ := lim
β→∞

rβ = 0, (7.16)

for any γ ≤ 2(λ + |h|) and real numbers µ, λ, h satisfying |µ̃λ| ≤ λ + |h|.
However, if |µ̃λ| ≤ λ + |h| and γ > 2(λ + |h|), then rmin < rmax. In particular one gets

|h| − sup
r≥rmin

w (r) = |h| − w (rmax) = − 1
4γ

(
γ − Γ̃|µ̃λ|,λ+|h|

) (
γ − Γ|µ̃λ|,λ+|h|

)
, (7.17)

with Γx,y ≥ 2y defined for any x ∈ R+ and y ∈ R in Corollary 3.4 and

Γ̃|µ̃λ|,λ+|h| := 2
(

λ + |h| −
√

(λ + |h|)2 − µ̃2
λ

)
≤ 2 |µ̃λ| .

In particular,
sup

r≥rmin

w (r) = w (rmax) > |h| , (7.18)

for any γ > Γ|µ̃λ|,λ+|h| ≥ 2|µ̃λ|. Therefore, by combining (7.13) with (7.14) and (7.18), we obtain

r∞ := lim
β→∞

rβ = rmax, (7.19)

for any γ > Γ|µ̃λ|,λ+|h| and real numbers µ, λ, h satisfying |µ̃λ| ≤ λ + |h|.
Finally, if γ = Γ|µ̃λ|,λ+|h| and |µ̃λ| < λ + |h|, observe that (7.17) is zero. So, we analyze the next

order term to know which number, 0 or rmax, maximizes the function f (r) when β →∞. On the one
hand, straightforward estimations imply that

f (0)− |h| = β−1
(
e−β(λ+|h|−|µ̃λ|) + e−2β|h|

)
(1 + o (1)) as β →∞. (7.20)

On the other hand, if γ = Γ|µ̃λ|,λ+|h| with |µ̃λ| < λ + |h|, then by using (2.6) one obtains

f (rmax)− |h| = β−1e
−β

√
(λ+|h|)2−µ̃2

λ (1 + o (1)) as β →∞. (7.21)

Therefore, if γ = Γ|µ̃λ|,λ+|h| and |µ̃λ| < λ + |h|, it is trivial to check from (7.20)-(7.21) that f(0) >
f(rmax) when β →∞.

Consequently, the limits (7.11), (7.16) and (7.19) together with (2.6) imply Corollary 3.4 for any
γ 6= Γ|µ−λ|,λ+|h|, whereas if γ = Γ|µ−λ|,λ+|h|, the order parameter rβ converges to r∞ = 0.

8. Appendix: Griffiths arguments

As we have an explicit representation of the pressure, it can be verified in some cases that rβ is a
C1–function21 of parameters implying that p (β, µ, λ, γ, h) is differentiable w.r.t. parameters. In this
particular situation, the proofs of Theorems 3.1, 3.3, 3.6, 3.8, 3.10 and 3.12 done in Section 6.2 could
also be performed without our notion of equilibrium states by using Griffiths arguments [20, 22, 23],
which are based on convexity properties of the pressure. We explain it shortly and we conclude with
a discussion of an alternative proof of Theorem 3.3.

Remark 8.1. Our method gives access to all correlation functions at once (cf. Theorem 6.15) and
is generalized in [14] to all translation invariant Fermi systems. However, computing all correlation
functions with Griffiths arguments [20, 22, 23] requires the differentiability of the pressure w.r.t. any
perturbation as well as the computation of its corresponding derivative. This is generally a very hard
task, for instance for correlation functions involving many lattice points.

21For instance, for special choices of parameters one could check that ∂rξ(rβ , ν0) 6= 0, see Section 7.
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1. Take self–adjoint operators PN acting on the fermionic Fock space and assume the existence of
the (infinite volume) grand–canonical pressure

pε (β, µ, λ, γ, h) := lim
N→∞

pN,ε (β, µ, λ, γ, h)

for any fixed ε in a neighborhood V of 0. In this case, observe that the finite volume pressure

pN,ε (β, µ, λ, γ, h) :=
1

βN
lnTrace

(
e−β(HN−εPN )

)

is convex as a function of ε ∈ V and

∂εpN,0 = N−1ωN (PN ) .

Consequently, the pointwise convergence of the function pN,ε towards pε implies that

lim inf
N→∞

{
lim

ε→0−
∂εpN,ε

}
≥ lim

ε→0−
∂εpε and lim sup

N→∞

{
lim

ε→0+
∂εpN,ε

}
≤ lim

ε→0+
∂εpε, (8.1)

see Griffiths lemma [22, 23] or [20, Appendix C]. In particular, one gets

lim
N→∞

{∂εpN,0} = lim
N→∞

{
N−1ωN (PN )

}
= ∂εpε=0, (8.2)

under the assumption that pε is differentiable at ε = 0.

2. Therefore, by taking
PN =

∑

x,y∈ΛN

a∗x,↑a
∗
x,↓ay,↓ay,↑,

we obtain from (8.2) that

lim
N→∞





1
N2

∑

x,y∈ΛN

a∗x,↑a
∗
x,↓ay,↓ay,↑



 = ∂γp (β, µ, λ, γ, h) ,

as soon as the (infinite volume) pressure p (β, µ, λ, γ, h) has continuous derivative w.r.t. γ > 0.
Combined with Theorem 2.1 and (2.5) we would obtain Theorem 3.1. Meanwhile, Theorem 3.6,
3.8, 3.10 and 3.12 could have been deduced in the same way from (8.2) combined with explicit
computations using (2.5).

3. A direct proof of Theorem 3.3 using Griffiths arguments is more delicate. One uses similar
arguments as in [20, 35]. We give them for the interested reader.

For any φ ∈ [0, 2π), first recall that the pressure pα,φ associated with HN,α,φ (3.1) in the thermo-
dynamic limit is given by (6.41), which equals (6.43). Additionally, if the parameters β, µ, λ, γ, and
h are such that (2.4) has a unique maximizer rβ, then the variational problem (6.43) has a unique
maximizer cβ,α,φ ∈ eiφR for α > 0 sufficiently small, and cβ,α,φ converges to r1/2

β eiφ as α → 0, see
proof of Theorem 6.12.

Now, let us denote by
NN :=

∑

x∈ΛN

(nx,↑ + nx,↓)

the full particle number operator. By straightforward computations observe that

[ax,↑, NN ] = ax,↑ and [ax,↓,NN ] = ax,↓, (8.3)

for any lattice site labelled by x ∈ ΛN , where [A, B] := AB − BA. Therefore the unitary operator
Uφ := e−

iφ
2

NN realizes a global gauge transformation because one deduces from (8.3) that

Uφax,↑U∗
φ = e

iφ
2 ax,↑ and Uφax,↓U∗

φ = e
iφ
2 ax,↓. (8.4)
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In particular the unitary transformation of the Hamiltonian HN,α,φ (3.1) equals

UφHN,α,φU∗
φ = HN,α,0.

It implies on the corresponding Gibbs states (6.42) that

ωN,α,φ (BN ) = eiφωN,α,0 (BN ) , (8.5)

with the operator BN be defined by

BN :=
∑

x∈ΛN

ax,↓ax,↑.

In other words, it suffices to prove Theorem 3.3 for φ = 0.

Take φ = 0. Observe that

0 = ωN,α,0 ([HN,α,0, NN ]) = αωN,α,0 (BN −B∗
N ) . (8.6)

Additionally, by using the positive semidefinite Bogoliubov–Duhamel scalar product

(X, Y )HN,α,0
:= β−1e−βNpN,α,0(β,µ,λ,γ,h)

∫ β

0
Trace

(
e−(β−τ)HN,α,0X∗e−τHN,α,0Y

)
dτ

w.r.t. the Hamiltonian HN,α,0 (see, e.g., [16, 20, 35]), one gets that

0 ≤ β ([NN ,HN,α,0] , [NN ,HN,α,0])HN,α,0

= ωN,α,0 ([NN , [HN,α,0,NN ]]) = αωN,α,0 (BN + B∗
N ) . (8.7)

So, by combining (8.6) with (8.7) it follows that

ωN,α,0 (BN ) = ωN,α,0 (B∗
N ) ≥ 0

for any α ≥ 0. In particular ωN,α,0 (BN ) = ωN,α,0 (B∗
N ) is a real number.

The function pN,α,0 is a convex function of α ≥ 0 because

β
(
{(BN + B∗

N )− ωN,α,0 (BN + B∗
N )} , {(BN + B∗

N )− ωN,α,0 (BN + B∗
N )}

)
HN,α,0

= ∂2
αpN,α,0 (β, µ, λ, γ, h) .

Then, under the assumption that pα,0 is differentiable at α = 0 outside any critical point, the equations
(8.2), with

PN = BN + B∗
N

and (6.43), imply that

lim
N→∞

(
1
N

ωN,α,0 (BN + B∗
N )

)
= lim

N→∞
∂α

(
1

βN
lnTrace

(
e−βHN,α,0

))

= ∂αpα,0 (β, µ, λ, γ, h)

= ζcβ,α,0

(
a∗↓a

∗
↑ + a↑a↓

)
,

for any α > 0 sufficiently small and with ζc(·) defined for any c ∈ C by (6.1).

Returning back to the original Hamiltonian HN,α,φ (3.1) for any φ ∈ [0, 2π), we conclude from (8.5)
combined with the last equalities that

2 lim
N→∞





1
N

∑

x∈ΛN

ωN,α,φ (ax,↑ax,↓)



 = eiφζcβ,α,0

(
a∗↓a

∗
↑ + a↑a↓

)
.

Therefore, by taking the limit α → 0, Theorem 3.3 would follow if one additionally checks that pα,0 is
differentiable at α = 0 outside any critical point.
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