Inverse resistivity problem: geoelectric uncertainty principle and
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Abstract. Mathematical model of vertical electrical sounding by using resistivity method is studied. The model leads to
an inverse problem of determination of the unknown leading coefficient (conductivity) of the elliptic equation in R? in a slab.
The direct problem is obtained in the form of mixed BVP in axisymmetric cylindrical coordinates. The additional (available
measured) data is given on the upper boundary of the slab, in the form of tangential derivative. Due to ill-conditionedness of
the considered inverse problem the logarithmic transformation is applied to the unknown coefficient and the inverse problem is
studied as a minimization problem for the cost functional, with respect to the reflection coefficient. The Conjugate Gradient
(CGM) method is applied for the numerical solution of this problem. Computational experiments were performed with noise

free and random noisy data.
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1. Introduction

Construction of nondestructive control technologies and determination of material parameters al-
ways play an essential practical and theoretical interests (see, [4,11-14, 17] and references therein).
Concerning to mineral exploration, this is an interpretation problem of surface or near-surface
prospecting. One of the popular methods of exploration is the vertical electric sounding (VES) [11,12].
The main distinguished feature of this method is that it may provide the larger depth, and it is the
most convenient for computer realization.

The problem related to the medium response with respect to electromagnetic field perturbation
goes back to 1930s, in particular to the works of Slihter [20], Stefanescu and Shlumberger [21], Steven-
son [22], A.N.Tikhonov [23-25]. The main scope of these initial works were limited to simple models of
medium. Specifically, horizontally layered medium, local inclusion of the spherical form, an inclined
layer and vertical contact.

We consider the following inverse coefficient problem: Find the function o(z) via the solution of
the boundary value problem
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Here Q = {(r,z) € R? : 0 <r < o0, 0 < 2 < H}. The function o(z) satisfies the following
conditions: o(z) € C[0,H](C?(0,H) and o2 > o(z) > o1 > 0. The boundary condition at z = H is
the approximation of the limiting value at the infinity. The additional condition (2) has the form of
the tangential derivative of the potential u(r, z), which is rather realistic for measured data [1,9-11].
The problem (1)-(2) will be defined as a VES-inverse problem. Correspondingly, the boundary value
problem (1) will be defined as a direct (or forward) problem. The function ¢ (r) is defined to be the

measured output data, and function o(z) is defined to be the input data [7-8].

Similar mathematical models related to inverse conductivity problems for finite dimensional bodies
have been considered by many authors (see, for instance, [4, 19] and references therein). In the case
of nearly constant conductivity coefficient a method of determination with geophysical applications
have been given in [3], by using the Dirichlet-to-Neumann mapping. In all these studies the domain
) is assumed to be a bounded one. The considered here inverse problem can also be considered as
a continuation of the study started in [1]. Here the domain Q has the form of a slab and the direct
problem represents a mixed elliptic problem. In addition, on the upper boundary z = 0 the source
term is given in the form of a pointwise flux.

Let u = u(r, z; o) be the unique solution of the direct problem (1) for a given coefficient o(z) € S,
where S C C%(0, H)NC[0, H] is the set of admissible coefficients which will be defined below. Further,
we introduce the trace operator

ou(r, z;0)

Alo] := ——|. 0. 3
[U] 67“ |Z—0 ( )
In view of this definition above inverse problem can be formulated in the following operator form:

Alo](r) =4(r), 7 €[0,00). (4)

Therefore the inverse problem (1)-(2) with the given measured output data (r) can be reduced
to the solution of the nonlinear equation (4) or to inverting the coefficient-data (or input-output) map
A : S — U, where ¥ is the set of measured data which will be defined below. Note that the main
uniqueness result for this problem has been obtained by Tikhonov in [24]. Namely, if o(z),5(z) € S
and Afo] = A[d], then o(z) = 6.

Due to measurements errors the inverse problem (4) may not have a solution in any suitable class
of admissible coefficients. For this reason we introduce the following auxiliary (cost) functional

J(o) = /OOO[A[U](T) —(r)Prdr, o €S, (5)

according to [27], and consider the following minimization problem:

J(ox) =inf J(o), o€S.

Due to the physical meaning of the problem the source term has the form of the Dirac Delta
function, and the above form of the functional J(o) is not convenient for numerical implementation.
On the other hand, the unknown coefficient o(z) depends only on the variable z € [0, H]. This
permits one to apply Bessel transformation with respect to the variable r € [0,00). As a result the
direct problem is reduced to the boundary value problem for the second order ordinary differential
equation, which can easily be solved by any standard method.

Since a direct problem is a part of the inverse problem, one needs, first of all, to construct an
effective algorithm for the numerical solution of the direct problem. For the case of simple layered
medium an analytical solution of the considered above direct problem (1) has been given in [9, 11,
26]. Further, for simplest cases when conductivity functions o(z) has the form horst, ledge or graben,
numerical solutions of the direct problem have been given in [12]. Some numerical results obtained in
[17] for two-dimensional inverse problem are based on synthetic output data. Specifically, a database



for the output data here is based on numerical solutions of the corresponding forward problem for
various input parameters.

The paper is organized as follows. Bessel-Fourier transformation of the direct problem and the
auxiliary functional is derived in Section 2. This section contains also formula for the gradient of the
transformed auxiliary functional. Results of computational experiments with noise free and noisy data
are derived in the final Section 3. In Appendix we describe an influence of the reflection coefficient to
the output data.

2. Bessel-Fourier transformation and gradient of the cost functional in terms of reflection
coefficient

For the numerical solution of the considered inverse problem (1)-(2) we will use the gradient method
[2,28]. For this aim we first need to derive the gradient of the auxiliary functional.

Note that in existing literature [see, for example,[1],[11], [18],[19]), numerical methods are based
on the direct reconstruction of the unknown conductivity or resistivity coefficient. This leads to well-
known difficulties. For example, in [1] authors use the smoothing procedure for o(z) at each iteration.
The main distinguished feature of the presented here approach is that the reflection factor is recovered
at the first step. For this aim the inverse problem (1)-(2),as well as the auxiliary functional, are
reformulated by using Bessel-Fourier transformation. Then the gradient V.J[p] of the cost functional
(5) is derived in terms of the transformed reflection coefficient p(z). This function will be defined also
as a reflection factor function, due to its physical meaning.

To define the reflection factor function p(z), let us first introduce the uniform grid wy = {z; €
[0,H] : 2z; = ih, h = H/N., i = 0,N.}, with the grid step h > 0, and consider an analogue
of this function at the grid point 2z; € wy. This analogue can be defined via the discrete values
o; = o(z;) of the conductivity o(z), according the definition of the the reflection coefficient (or
reflection factor) p, defined as p = (01 — 02)/(01 + 02), at the transmission boundary between the
inclusion and the surrounding medium (see, Appendix). Thus, the reflection factor u; at grid point
z;i € wy, can be defined as follows: y; = (0; — 0iy1)/(0; + 0iy1). Since 0y — 0441 = —ho'i1/2 + O(h?),
(0i 4+ 0i41)/2 = 04112 + O(h?), we have

i1
+0(h?) = —% / (Ino(2))dz + O(h?).

i
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Therefore the discrete analogue of the reflection factor at grid point z; € wy can approximately be
defined as follows:
(Inoit1/2)

o = (6)
Formula (6) (see also explanation given in Appendix) suggests that the function p(z) = (In(o(2))" can
be defined as the reflection factor function, and the inverse resistivity problem can be reformulated
in terms of this function. Evidently, the conductivity function o(z) can be defined via the reflection
factor function p(z) as follow:

o(z) = 0(0) exp /p(z)dz . (7)

Below we will use the following representation of the solution wu(r, z) of problem (1)-(2) (see [23]),
which has the singularity at the point (0,0):
1

u u = r2+z - 7,2 — 00
u(r,z)z—m—l—u(r,z), u(r,z) =0(vr2+22 ), 72— oo. (8)



Evidently, u(r,z) is a bounded and regular at infinity function. The first term of the right hand
side of (8) is the potential of the pointwise source. The current density for the pointwise source can
be modelled by the delta function 4(r), given in (1). As a result, the function u(r,z) satisfies the
homogeneous flux boundary condition:

ou
0(0)5 o = 0
Let us define the set of measured data as follow:
1 T
= O = oz + 70, [ BIVrdr < 00,0 <r < oc). )
0

As it was mentioned above, we will use the Bessel-Fourier transformation with respect to the
variable r > 0. For this aim let us denote by V() z) the image of the function u(r, z). Using (8) and
Lipschitz integral formula we get

o0

¥ —Az
V(N 2) = [ u(r,z)Jo(Ar)rdr = — c + [ alr,z)Jo(Ar)rdr. (10)
0/ a(0)A 0/
Hence,
V(A 2) = —:(_(:)A LT 2). (1)

It was shown in [24] that the last integral in the formula (10) exists and converges uniformly.
Further, it was established also that the function V' (), z) satisfies the parameter-dependent ordinary
differential equation

Sl -roev=o (12)

with the following condition on the upper boundary z = 0:

av

—1. (13)

z2=0

By the boundary condition u(r, z)|.—g = 0 on the lower boundary for z = H we get:

Vl].=m =0. (14)

Thus, the Bessel-Fourier image V(A,z) of the function wu(r, z) satisfies the two-point boundary
value problem (12)-(14) in the bounded interval [0, H]. Having the function V' (), z) we can derive the
solution of problem (1) by the following inversion formula:

3 —Az
/ V(A 2)Jo(Ar)AdA = / < ST V(A,z)) Jo(Ar)AdA.
0

To define the output data (r), we use representation (8), and calculate the derivative

ou(r,0)/0r(r,0):

ou(r,0) __ ou(r,0) __ P AJo(Ar
CS)T’ ) = (0 )r2 + ( = 0(01)r2 + {V()‘70) (:3(7' ))\d)\




Hence,

Y(r) = 2470 = e 4 [ AV(X,0)71 (Ar)AdA. (15)
0
Further we define the transformed output measured data
A) = /¢(T)Jl (Ar)rdr,
0
Then, according to (15) we have:
1 o0
50( = ——0 +/ Jl A'I’ rdr. (16)
0

Taking into account formulas (10) and (15) we can rewrite the functional (5) in the following form:

<

(o) = j? SL(r,0;0))%rdr =
0

W(r) — (r 0;0))2rdr.

Thus, due to the unitary property of the Bessel-Fourier transformation, and formulas (9) and (16),
the cost functional has the form:

0) = [(p(\) = AV(X,050))2AdA. ()

We will consider the above minimization problem for the transformed functional (17) in the set of
admissible conductivity coefficients S. This set is defined as follows:

S:={o(2) € C*[0,H]: ¢'(0) =0, 6(0) =09, 0<o01<0(2) <0y <00} (18)

Physically conditions ¢'(0) = 0, 0(0) = 0 mean that in neighborhood of the surface z = 0 the
conductivity of a medium is almost the constant og > 0. In view of functions p(z), set of of admissible
(transformed) coefficients is defined as follows:

P = {p(z) C C'[0, H],p(2) = (In(0(2)))",0(2) € S}. (19)

Now we are going to show that the transformed auxiliary functional .J| (p) := J(o(p)) given by (17),
is a Frechet differentiable one. Note that a formula for Frechet derivative of the functional J(o) has
formally been given in [1], without any mathematical framework.

To prove Frechet differentiability of the transformed auxiliary functional J(p) := J(o(p)), first we
consider the following equation:
d*y 2.2
_ 2
Ir2 A s?(z)y(z) =0, (20)

which can be derived from equation (12) by using the following variable change

z

H
e _fac
w(z)_o/a(o, €0, /], H O/U(C)‘ (21)



Denote by s(x) the transformed conductivity function: s(z) := o(z(z)). Obviously, 0 < o1 < s(z) <
o2. It is known that equation (20) has two fundamental solutions y; (z) and y»(z). These solutions
have the following asymptoticses :

yra() = 572 exp(Ea()(1 4 22482),
(22)
|€172(ZL',)\)| S C, T € [O,Hl],)\ 2 AO >0

when A — oo [6, 29], and the constant C' > 0 does not depend on z and A. Differentiating the both
sides of (22) we get ([6, 29]):

Yh,2(2) = EAVEexp(EAz(2))(1 + 222,
(23)
|€3,4(:U,/\)| <C, =ze€ [07H1]7/\ > >0

Further we will use the common notation e(x, A) for the above functions ¢; ;(z, \), since they satisfy
the condition |g; ;(z, A)| < C.

The following result is related to the estimation of the integral depending on the first variation of
the solution V'(A, z;0) of the boundary value problem (12)-(14), via the norm |[|0p||c1(o, a1

Proposition 1. Let 6V :=V (A, z;0 + 05) — V(A z;0) be the first variation of the solution of the
boundary value problem (12)-(14) corresponding to the admissible coefficients 0,0 + o € S. Then 6V
can be estimated as follow:

[ R 0,0)A] < €0 DG (24)
0

where op € P can be expressed via do € P via formula (7).

Proof. By virtue of definition p(z) and formula (7) the variation dp(z) corresponds to the variation
do(2), that is

do(z) = o(z) ~/5p(t)dt. (25)
0

Denote by §V := V(A z;0 + do) — V(A, z;0) the variation of the solution of problem (12) - (14)
corresponding to the variation do(z). Let us write equation (12) in variation:

(60 -V +(0-6V") = X2(0 -6V + 60 -V) =0. (26)
Multiplying the both sides of (26) by (- V) and taking into account identities
V(o -V ==(V-V'-60) + V"0, —V(e-6V) =—(V-6V'-0) +V'e-5V',
we obtain
(V" + X2V2)s0 — (V-V'-60) = (V-6V' - 0) +V'o -6V’ + \26V§V = 0.
Integrating this equation on [0, H] , taking into account (25), and using do(0) = 0, we get:

H
/[(V'2 +A2V2)d0 + N2V OV + V' - 6V']dz = 0. 27

0



Now multiplying equation (12) by 8V, we have: A20V§V = o'V'6V + oV"6V. Substituting this
expression into (27) and integrating we get:

/ (V" + X2V2)50)dz + (0V'6V)|_, — (aV'6V)|__, =0.
Using here the boundary conditions (13)-(14) we obtain:
H
§V(A,0) = / (V2 (\, 2) + A2V2(A, 2))00(2)dz. (28)

0

Let us use now the variable change (21). Then the function y(z, ) = V(A z(z)) will satisfy equation
(20) and the following boundary conditions:

yl(ov/\) = ]-7 y(Hla)‘) =0. (29)

The function y(z,\) satisfying equation (20) and these boundary conditions, can be expressed in
explicit form as a linear combination of the fundamental solutions of equation (20). Using boundary
conditions we can easily derive the following explicit asymptotic formula for y(z, A):

_ 1 sinh A\(z(z) — H) e(z, \)
y(“)_wmm cosh \H [H A ] (30)

Note that the fulfillment of the boundary conditions (29) can be verified directly. Here e(z, \) < C,
uniformly for z, A\, for enough large A > \g. Taking into account the asymptotic formulas (22) and
(23), we obtain:

dVv(\z(z) _ /s(z) cosh M(z(x) — H) e(z, \)
V@A = 5(0)  coshAH [1 LY ] ‘ (31)

Let us rewrite now the variation formula (28) in transformed form, having dV () z)/dz =

(1/s(x))dV (A, z(x))/dx:
H,
SV (N, 0) = / <822—x)y'2(x,)\)+/\2y2(x,)\)> 55(z)s(x)da. (32)

Here ds(z) = do(z(x)). Substituting in (32) expressions (30)-(31) we get:

Hy

1 cosh? A(z(z) — H) + sinh® X\(z(z) — H) [ e(z, /\)}
OV (A0) = —— 1 1) dx.
*.0) 5(0) 0/ cosh® \H + A s(z)de

Hence,
9 ' cosh2A(2(x) — H) (2, \)
cos e(z,
VA0 =15 / g 2cosh2)\H [1 LY ] 0s(x)dz.
0

Now we return to the variable z:

H

2 cosh2\(z — H) e(z,A)] 1
W0 =5 /1+2cosh2/\H [H py }cr d(z)dz.
0




Using formula (25) we can rewrite this integral in the following form:

SV(A0) = — /HCOS“A(Z‘ H) [1+‘€("‘A’A)} / op(#)dtdz.

5(0) / 1+2cosh2)\H

Changing the integration order we get:

H

H
SV (\,0) = 8(2—0) / 3p(t) / cosh2M(z — H) [1+ E(Z’A)} dzdt. (33)
0

1+ 2cosh2)\H A
t

We can estimate the right hand side of (33) by using the following inequalities:

1+ 558 a0 TR < e
We have
|6V (A, 0)] < M f|5p(t | fcoshQ/\(z— H)dzdt .
Hence
|6V (2, 0)] < SRl 0f|<sp(t)| exp 2A(H — t)dt (34)

It follows from (18) that dp(0) = 0, which yields

[op(t)| < tllop(t)lcr(o,m)
Substituting this estimation into (34) we get:

H

C 1
ll6p() o (0, ) /texp(—Q/\t)dt < —2)\0(0)||5p(t)||01([0,H]) oV
0

10V(X,0)] <

Cy
2Xc(0)
Thus

02
BV (X,0))* < WH@( M jo,m)-

Multiplying the both sides by A%, where A > A\g and A\ > 0 is large enough parameter, and integrating
on [Ag,00) we obtain:

/ XV (A, 0)2dA| < €0, DISPI o.rm) (35)

Ao

This implies the proof for the case A > Aq.

To prove the required estimation (24) for the case A < Ag, we need to show that the function
V (A, z) has the following property:

V(A z2) <0, Vze[0,H], YA>0. (36)
Indeed, multiplying the both sides of equation (12) by (—V), integrating on [0,H], and using the
boundary conditions (13)-(14) we obtain the following energy identity
H
/a(v’2 +A2V2)dz = —V (), 0). (37)

0



Since the left hand side is positive, we get V(A,0) < 0, VA > 0. Let us prove that V(A z) < 0, for
all z € (0, H]. We assume that there exists such a point zo € (0, H] that V(\,z9) > 0. Due to the
continuity of V(},-), there exists a point z; € (0, z0) such that V(A,z;) = 0. Since V(A\,H) = 0,
the function V' (A, 2) has a positive maximum at a some point 2o € (21, H). As a result, V'()\, 2z2) =
0, V"(A, z2) <0. Using these conditions in equation (12) we have:

NV (N, 22) = 0(2)V"(\, 22) + 0/ (22)V'( N, 22) = 0(22) V" (N, 22) <0
The contradiction V (A, z2) > 0 shows that V(A,2) <0, Vze€ [0, H].

Let us use properties (36) and (37) to estimate the function V(A, z(z)) on the interval [0, H]. For
this aim, first we compare the function y(z, A) := V (A, z(z)) with the linear function yo(z) := z — H;.
The function y(z, \) satisfies equation (20) with the following boundary conditions:

y'(0,A) =1, y(H,\)=0. (38)
Then, by (20) and (36) we get
Ay 2.2
= <
2 = A s @)y <0,
for the difference Ay(z) = y(x,\) — (x — Hy). This yields
dAy dAy

— < — =0.
dz (z) < dx (0)=0
Using this inequality and the second boundary condition (38), we have
dAy
= > 0.
Ay / @) >0

T

This means that V(z,A) > x(z) — Hy. Taking into account (36) we obtain:
VX 2)| = =V(A 2).

Then the function V (], z) is estimated as follows:

H
H
V) <H —az)= [ -2 <H

2 C [0, H]. (39)

Now we can estimate 6V (A,0). Substituting the function do(z) from (25) into (28) and changing
the integration order we get:

oV (A,0) = 7 2V (A, 2) + X2V2(N, 2))o (2 )fap(t)dtdz
0 0
= fép( )7(0( W2 (A, 2) + A2V2(), 2))dzdt.
0 t

Thus

0

6V (0, 0)] < (7 |6p<t>|dt> Fove (2 + V20, 2)d-.
0

Taking into account identity (37) and estimation (39) we finally have

16V (X, 0) < L flop(t)lle o,y < Callop®)llen o, -



This yields

Ao

/ A2V (X, 0)AdA
0

1., .
< Z)\3022||5P(t)||2*1([0,H])'

This estimate with (35) complete the proof. O

Proposition 2. The functional J(p) := J(c(p)) is a Frechet differentiable one with respect to the
variable p and has the following Frechet gradient:

¢

VJ[pl(z2) 2/ (AV (X, 0) — (X)) /(V’2(/\ ¢) + XN2V2(\, () (0) exp (/p(t)dt) dCA?d).  (40)

0

Proof. We need to show that the increment of the functional can be represented as follows:

H
AJ = J(p+6p) = J(p) =< VJ,0p > +o(||0p])) = /q(2)5p(Z)dz + o([lépllc(po,m)) (41)

0

for some function ¢(z). It follows from (17) that

AJ J(p+5p) J(p)

= g‘[go (V(X,0) + 6V (A, 0))2AdA — f — AV (X, 0))2AdA 2)

= QT(AV(A, 0) — p(A)AZ - 6V (X, 0)d\ + f A2 5VZ(X, 0)Ad.

Substituting (28) we obtain that the linear part of (42) can be represented in the following form:
00 H
6 = 2/(/\V(/\,0) —p(A)A? /(V’Q()\,z) + N2V2(X, 2))d0(2)dzdA.
0

Thus

H 00
57 =2 / { / (V' 2)2 + A2V2(A, 2)) AV (A, 0) — @(A))Asz} 5o(2)dz. (43)

0 0

Further we use the formal notation

520 =2 [OV,0) - pNI(0,0) + MV, )N (44)
0

for the inner integral in the formula (43). Note that this expression coincides with the formula given
in [1]. Rewrite formula (43) using (25) and changing the integration order:

H

ﬁe/——dc/w@w% // () (¢)dCop(2)dz

Therefore the increment (42) of the functional J(p) can be rewritten as follow:

H H
aJ
AJ = ¢)d¢op(z)dz + /\3 SV2(X,0)dA. (45)

0'

10



The second term of increment (45) vanishes, when ||6p||c1 0,7y — 0, due to Proposition 1. This
means that the considered functional is Frechet differentiable. Substituting here (44) and taking into
account (7) and (41), we obtain the required formula (40). O

3. Computational experiments and their interpretation

Due to ill-posedness of the considered inverse problem, the inverse map A~1is not continuous. This
means that very close measured output data 1(r) and (r) may correspond to different conductivity
coefficients o(z) and &(z). On the other hand, iteration process of the the Conjugate Gradient Method
(CGM), which is used for the numerical solution of the considered inverse problem, may not converge
for any initial iteration. But, if even this process converges for some value of the conductivity ratio,
an increase of this value may lead to divergence. Hence, one also needs to find out an admissible
values of the conductivity coeflicient o(z) of media, for which the inverse problem can accurately will
be solved.

This section consists of the following subsections: convergence of the iteration process depending
on initial iteration and accuracy of the inverse problem solution in the case of noisy free synthetic
data; noise simulation; computational results for noisy data and their interpretation.

3.1. Convergence of the iteration process depending on initial iteration. For the given function
os(2) = exp(—922) + 0.1 the transformed direct problem was solved numerically to generate the
synthetic data p(A) = AV (A, 0). For this data the minimization problem

J(p«) =1}I€1£,J(p),

was solved by the CGM [28]. Here J(p) = J(o(p)), J(o(p)) is the transformed functional given by

(17) and P C C'[0, H] is the set of admissible (transformed) coefficients. Since the set of admissible

coefficients is given by the values ¢(0), and ¢/ (0) = 0 of the conductivity coefficient, in the first case the
(0)

function oy ' = 04(0) was taken as an initial iteration. Convergence of the iteration process in this case

was achieved at 4500 iterations. For the next initial iteration U§O) = 0.5(c(0)+04(2)), the convergence
of the same iteration process was achieved at 2700 iterations. In the both cases the parameter £; > 0
in the stopping condition J(pgln)) < g7 was taken to be ¢; = 1075. For the value x := g9/0; = 11
of the conductivity ratio the obtained results, corresponding to the both cases shown, are illustrated
in Figures 1 (left figure). The maximum relative error £, > 0 in values of conductivity coefficient
were about 2%. For lower values k = 5 of the conductivity ratio, with os(z) = 0.4exp(—922) + 0.1
the same results were obtained at 2500 iterations. However, by increasing the parameter x the loss
of accuracy was observed. Thus, for the value k = 3092 of the conductivity ratio, and the function
os(2) = 500 exp(—922) + 0.1, worse result was obtained, even for very close to the analytical solution
initial iteration (right Figure 1) . This, in particular, means that for high values of the parameter
Kk = 02/07 the problem became severely ill-conditioned, even in the case of noisy free data.

3.2. Noise simulation. To analyze the inverse problem for noisy data, first of all, one needs to
simulate noisy data. It is known that (see, for example, [11]) the measured output data (r) is
usually generated at some discrete points of the surface z = 0. Then based on these discrete data
the corresponding interpolant is constructed on the interval [rpmin, Tmaz], Tmin > 0, in logarithmic
scale, where r,in ~ 0.01H ez, "maz ~ 10Hmaz » Hmae 1S @ desired penetration depth. During this
interpolation the data v (r) needs to be smoothed by using high-frequency filter. Note that in practice
the number of sampling points is about 20-30. To obtain noisy measured output data we assume that
the measured values Ou/0r(zy,0), k = 1,...,m, of the derivative are given on a uniform logarithmic
grid with the grid points z; = kh,h = In(1 + rpee)/m. We define the measurement error as the
function xx = x(zx), with continuation o := x(2¢) = 0 . Then the random noise can be simulated
by the following Fourier sum (finite combination of harmonics):

Ui kx
- in (22 —In(1 L=1n(1+rpas).
x(z) kz::lak:ﬂn(L), z=1In(l+7), n(1 4+ rmaz)
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The coefficients a; here are assumed to be random variables, uniformly distributed on the interval
[—d1,01], where 1 > 0 is defined to be a noise level.

The second source of noise occurs from the value o9 = o(0) of the conductivity at the surface
z = 0 of a medium. As it follows from formula (16) the difference d» between the noisy free and noisy
transformed data is the constant:

1 1
0g = ————— — —.
oo + Aoy oo
Therefore, the second noise can be generated by adding the constant to the transformed measured
output data ¢(\). Thus, the parameters d;,d2 > 0 will be defined to be noise levels.

The typical noisy data x(r) and its Bessel transformation () are presented on Figure 2 (left and
right figures, respectively).

3.3. Computational results for noisy data and their interpretation. The above introduced parame-
ters d1, 02 > 0 do not depend on the measured output data ¢(X). On the other hand, for real physical
problem one needs to take into account the relative noisy level

0y = max |[y(A) + 6| / max [p(N)], (46)

which depends on 4,02 and shows actual measurement error. Computational experiments were real-
ized for the following cases related to the conductivity function o(z):

cl) o(z) is a monotone decreasing function;
c2)
c3)

)

o(z) is a monotone increasing function;
o(z) has a local minimum or maximum;
c4) o(z) has several local minimum or maximum.

As computational experiments show, in all cases convergence of iteration process highly depends
on the conductivity ratio k. Further, there exists an interval for x, behind which the reconstruction
is inacceptable. Finally, the number of iterations n; monotonically depends on k; specifically, this
number increases by increasing the parameter x.

Table 1 shows the results of computational experiments related to the cases c¢1) and ¢2), and for
various values of noise parameters d;,d> and 5.

In the first case, when o, = 01 = 0.1 and opax = o9 = 1.1, the quality of reconstruction of
o(z) is high enough until the noise errors 6; = d» = 0.1, and 6, = 1.49% (Tablel, line 3). Further
increase of the noise parameters leads to the inacceptable result (line 4). Detoriations occur, when
the parameters o1 and o» increase (left Figure 3). Thus for o1 = 0.5 and 02 = 2.0, §; = 62 = 0.1,
0, = 9.10%, the relative recovery error for o(z) is about 16.22% (Table 1, line 5). For all values of
noise parameters, corresponding to relative noise level ¢, < 2% the iteration process converges up to
the value 10 of the parameter k.

In all cases the iterations process was stopped when the auxiliary function became significantly
less then the noise level, namely, when max |[A\V (X, 0) — ¢(A)| ~ 0.1 max |[y(\) + d2|.

Consider now the case ¢2). Here we compared an influences of the different noise levels ¢y, o
on computational results. It is clear from Table 1 that the influence of the parameter d, on the
reconstruction quality is significantly higher, than the influence of é;. For example, for 6; = 0,02 =
—0.01, the relative reconstruction error is about 45.6% (Table 1, line 11), whereas for §; = 0.01, 55 = 0,
this error is 5,85% (line 9). Right figure 3 displays the reconstruction of the coefficient o(z) for these
cases. It follows from lines 13 and 14 of Table 1 that further increase of the noise level |J>| leads to
unacceptable results. Unlike the case ¢1), in the case of a monotone increasing o(z), reconstruction
was found to be possible in the interval [1, 30] of the conductivity ratio « (left Figure 4). Observe that
a further increase of the parameter x increases the degree of ill-conditionedness of the inverse problem.
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Figure 1: Reconstruction of the function o(z) = aexp(—922) + 0.1 with different initial iterations and

conductivity ratios: a = 1,k = 11 (left figure), a = 500, k = 3092 (right figure).
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Figure 2: The typical noisy distribution (left figure) and its Bessel transformation (right figure).

Thus, for & = 500, the relative reconstruction error is about 50%, even in the case, when the initial
iteration is chosen to be very close to the exact solution. Hence, for such values of the parameter k,
two output data, which are quite close to each other, may correspond to very different conductivity
functions (right Figure 4).

The case k = 500 also led to instablity. Different reconstructed coefficients were obtained for
different initial iterations, in the case when the conductivity function was drastically increasing with
the depth. Figure 5 displays two numerical examples corresponding to this case. A satisfactory
result was obtained when the initial guess was monotonically increasing function (right Figure 5). For
the value £; = 1079 of the stopping parameter the relative error o(z) 19% was achieved at 150000
iterations. However, in the case of wave-like function as an initial iteration, to obtain a satisfactory
resolution was unable, even at 700000 iterations and e; = 1078, as the left Figure 5 shows. The
stopping parameter for the gradient method in this case was taken to be 107!2.

The above obtained computational results have precise physical meaning. When the conductivity
is increasing with the depth, layers with the larger resistance are located above the layers with smaller
resistance. Hence, top layers overshadow lower ones. This means that the impact of lower layers in
the output data on the surface is too small to be noticed. It is natural therefore that the residual
functional is not sensitive to variations of the conductivity of lower layers.

Acceptable results are obtained also for the cases ¢3)-c4). As in the cases c1)-c2), the algorithm
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Table 1: Relative errors for different noise level

relative relative reconstruction
cases No 0 02 noise level (4,) error (for o(z))
1 0 0 0.0% 2.44%
cl) o1 =0.1, 21 001 0.01 0.18% 2.36%
o, =1.1 3 0.1 0.1 1.49% 9.09%
4 0.2 0.2 4.82% 26.52%
C].) g1 = 05,
oy = 2.0 5 0.1 0.1 9.10% 16.22%
6 0 0 0.0% 2.00%
7 | 0.001 | 0.001 0.24% 2.27%
¢2), monotone 8 | 0.005 | 0.005 1.19% 15.13%
increasing o(z) 9| 0.01 0 0.17% 5.85%
10 0| 0.01 2.35% 31.01%
11 0| -0.01 2.12% 45.60%
12 | 0.05 0 0.86% 34.31%
13 0| 0.05 9.93% 55.24%
14 0| -0.05 12.77% 494.02%
2:5 25
exact (a)
By [ e restored (a)
2.0 ’:;\:\‘\ --—--exact (b) 2.0 A
N B restored (b)
15 - s _ 15
= =
© ©
1.0 1.0 A
0.5+ 0.5
0.0 e 0.0
0.00 0.25 0.50 075 =z 1.00 0.00 0.25 050 z 0.75 1.0

Figure 3: The comparison of recovered data with different o(2) distribution (left figure) and with
different noise level (right figure).
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Figure 4: The recovery of the monotone function o(z) corresponding to values of the ratio 2/01 =
1-10! (left figure) and o2 /0y = 5 - 10®(right figure).
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Figure 5: The comparison between recovered data for different initial iterations for conductivity ratio
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Figure 6: The recovered coefficient o(z) with extreme points: minimum (o2/0; = 2) and maximum
(02/0'1 = 10)

performs better when the contrast of the medium decreases, which corresponds to lower values of the
conductivity ratio k. Similarly, the iteration process diverges for large values of k.

In the case ¢3), an admissible result is obtained also for the conductivity function having a local
minimum, when & < 0.5-10!. For the conductivity function with local maximum, this ratio can be
increased until x < 3 - 10 (Figure 6).

The cases when the layers with the minimal conductivity are located far from the measurement
surface, were also unfavorable. The reason of this phenomenon is that, in this case we have an analogue
the same effect of ”overshadowing” described above. Indeed, in this case layers with low conductivity
are located above the ones with higher conductivity. Hence, the current simply almost does not reach
lower layers.

We have obtained correct result until the layers with the minimal conductivity, whereas the recovery
quality for lower layers was strongly decreasing (Figure 6).

Finally consider the case c4). Accurate results were obtained in the layers nearest to the surface,
and the function o(z) was recovered even for the rough initial iteration (Figure 7). However, in the case
of larger depths, the values of the o(z) moved away from the exact solution, even for the value k a2 6.0
of the conductivity ratio, although the values of the cost functional were decreasing, by increasing the
number of iterations. Acceptable results were obtained for the values k£ < 5.0. The solution of the
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Figure 7: The recovery of the wave-like coefficient o(z) with different ratio (o2/01 = 0.5 - 101) (left
figure) and (o2 /0y = 0.6 - 10!) (right figure).

inverse problem, corresponding to this case, is shown on the left Figure 7. The presented here results
include noise free data and the noisy data with the noise levels do =0, § = 1- 107!,

Thus for the medium with continuous conductivity function the analogue of the equivalence prin-
ciple (see, Appendix) is also observed. In particular, this phenomenon takes place for an increasing
function o(z) as well as for the case of minimal conductivity at large depth. It turns out that very close
output information (2) of the problem (1)-(2) can correspond to different conductivity distributions,
especially for the large conductivity ratio .

4. Conclusions

The goal of this paper is to construct a numerical method for the recovery of the unknown conduc-
tivity coefficient in the inverse resistivity problem. The mathematical model based on the transformed
measured data is proposed. The method is implemented numerically for various realistic values of
physical parameters of a layered medium. Computational results with noisy free and noise data
demonstrate that for some realistic conductivity values the unknown coefficient can be reconstructed
with enough accuracy.
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Appendix. An influence of the reflection coefficient to the output data

In this section we provide some explanations related to the reason of introducing the reflection
!

factor function p(z) = (In(o(z)))’.

In our earlier publications [15,16] we have considered the VES-direct problem. This problem
was concerned with the case when the surrounding medium, with the constant conductivity o > 0,
contains a homogeneous subregion g, with the conductivity o2 > 0. The corresponding mathematical
problem hase been formulated as follows: Find output data

ou
Elz:O =(r), (47)

via the solution of the boundary value problem

((Au(M) =0, M =(z,y,2) € U,
Qo C {(z,y,2)|z >0} C R?,Q; = {R*\ Qo} N{z > 0},

018 lmo = £ 3(r), 7 = VB

du

o9y on

ou
u - =u ag
|890 |8(23” Lan ooF

lim u(M)=0.
[ V2222200

The cross-section of the domain Qg with plane y = const not depends on y and it is a starshaped
surface in {(z,2) € R?,z > 0}, with a smooth boundary. The model (48) describe the distribution of
the electrical potential u(z,y, z) on the surface of a medium with piecewise constant conductivity.

An integral equation for an inclined plane bed has been obtained by Tikhonov in [23]. He has
proposed an iterative method for the solution of this integral equation and has proved convergence of
iterations. In [15-16] this method was developed for two- and three-dimensional cases. Specifically, in
the case of the non-homogeneous medium with the piecewise constant conductivity, the direct problem
can be modeled by the following integral equation:

V(M):%//FV(MI)(%< LI >dF(M1)-|-;¢F0(M). (49)

TMM, TMM,

The parameter u = (01 —03)/(01+02) has been defined to be the reflection coefficient (or the reflection
factor) at the transmission boundary between the inclusion and the surrounding medium. Further it
was shown that the function v(M) is the density of the simple layer potential:

uP) = 27T1¢71 //1“V(M) [TPIM - TPIM'
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Figure 8: Geometry of the cross-section of inclusion (left figure), and cross-section of the distribution
of the electrical potential u(M) at y=0 (right figure).

Here T' := 0Qy is the boundary of the homogeneous inclusion, Fy(M) is a given function, 7prpy, is the
distance between the points M and M;. The point M{ is the reflection of the point M; € T to the
half space {z < 0}. Differentiation in the integral equation (6) is taken in the direction of the outward
normal n to the surface I' at the point M.

Note, that the integral equation method [5] is a very effective one for solving direct problems
for stationary electromagnetic fields in homogenous media. The numerical method proposed in [15]
is based on the solution of the integral equation (49) by an iterative algorithm with the follow up
calculation of the function u(P) by the formula (50). The simplicity and effectiveness of this method
led to small computational times. Although estimates of [15] require some bounds with respect to
geometry of the inclusion, computational experiments have demonstrated that these bounds can be
weakened in practice.

To analyze an influence of the reflection coefficient p to the output data, we apply the algorithm
given in [15] to to equations (49)-(50). As a stopping criteria we use the relative error

[0 — w6y
f1i= )
[|u ”C(F)

)

between two consecutive iterations. 20 iterations were sufficient to achieve the accuracy e; < 1077.
The left Figure 8 illustrates the cross-section of the inclusion, given analytically by the function
r(0) = 1.8 + 0.4sin(36 + 7/8), in polar coordinates. The cross-section of the numerically computed
function u(z,0, 2) is shown in the right Figure 8.

The computational experiments show that for sufficiently small values of o2/07 << 1 as well as
for sufficiently high values o2/01 >> 1 of the conductivity ratio, the output data given by (47) is
not sensitive with respect to perturbations of the parameter 5. Therefore, in this case the inverse
problem is severely ill-conditioned one.

To explain this phenomenon, we consider next example for the inclusion which geometry is given
in the left Figure 8. For this aim we introduce the apparent resistivity r20u/dr, following to [11],
as the output measured data multiplied to 72. Further, we rewrite the reflection coefficient p =
(01 — 02)/(01 + 02) in terms of the above ratio &k = 02 /01, as follows p = (1 — k) /(1 + k). Evidently,
u € (—=1,1]. The upper and lower lines 6 and 1 in Figure 9 correspond to the used minimal and
maximal values of the ratio k. As show computational experiments increase or decrease of the ratio
k did not make the apparent resistivity lines outside of the lines 6 or 1. These lines we will defined
as an upper and lower (apparent resistivity) limit lines, respectively, and the area between these lines
will be defined as an distinguishability domain for the unknown coefficient o5. Based on these results
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Figure 9: Output data (apparent resistivities) corresponding to different values of the ratio o2 /01:
1-5%x10%2-1x%x10%3-1x10:4-1x10"%:5-1x10"2%,6—2x 1073

we can assert that, in the case of piecewise constant medium the measured output data ¢ (r) may
distinguish the unknown conductivity o only if the ratio k belong to [2 x 1073, 5 x 10%], i.e. from the
distinguishability domain. Further computational experiments show that distinguishability domain
depends also on the distance between the inclusion and the surface.

Thus we can conclude that in the neighborhood of the upper and lower limit lines, i.e. along
the boundary of the distinguishability domain, inclusions with different conductivities o can not be
distinguished by output data. In the geophysical sciences similar analogue of this phenomenon for
layered media is defined to be the principle of equivalency ([9-11]). Hence, we can expect that the
recovery of the reflection factor p can be more admissible, than the direct reconstruction of the os.
This is the main raison why we transformed the original inverse problem (1)-(2) to the problem of
recovering the above introduced reflection factor function p(z) = (In(o(2)))".
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