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Abstract

We consider limits of equilibrium distributions as temperature ap-
proaches zero, for systems of infinitely many particles, and the char-
acterization of the support of such limiting distributions. Such results
are known for particles with positions on a fixed lattice; we extend
these results to systems of particles on R

n, with restrictions on the
interaction.

1 Introduction

We were looking for an explanation of the “solidity” of equilibrium states at
low temperature and/or high pressure. We are very far from that goal. Below
we will state some conjectures, and present proofs of some special cases.
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We will be concerned with classical Gibbs states µβ, which are grand
canonical probability distributions on a phase space Ω of infinitely many point
particles with positions in n-dimensional Euclidean space R

n, interacting
through a two-body potential. In principle the interaction may or may not
have a hard core. We are interested in the ground states µ∞, which can be
defined as the weak accumulation points of the family µβ, when the inverse
temperature β → ∞. The chemical potential λ will be held fixed (and
sometimes will be omitted in the notation). More precisely we would like to
characterize the “ground state configurations”, which constitute the union
of the supports of all such µ∞ = µ∞(λ). And we would like to determine
some simple qualitative geometric properties of these configurations. (We
take advantage of the fact that in many cases of interest the Gibbs state
factors into distributions on the momenta and on the position variables, and
that the distribution on the momenta is easily understood. Below we only
consider the “reduced” distribution on position variables.)

The study of ground states for (infinite) systems of particles with positions
on a fixed lattice was begun 30 years ago by Ruelle ([Ru]) and Schrader ([Sc]),
including a simple characterization of the support of such states. However no
analogous result was ever published for systems of particles with positions in
R

n. We provide this for the special case of strictly finite range interactions
with hard core, and make some conjectures about the more difficult case
without hard core.

2 Notation and Assumptions

Let U be some pair potential, which is translation and rotation invariant, i.e.
U (s, t) = U (|s − t|) . We suppose U to be superstable. The Lennard-Jones
potential is an example of such interaction. Let λ be some chemical potential.

Our initial modest goal was to prove that for all reasonable interactions
U the following holds:

Statement. Let βn → ∞ be a sequence of inverse temperatures, going

to infinity, and let µn be a weakly converging sequence of Gibbs states, corre-

sponding to the interaction U, chemical potential λ and inverse temperatures

βn, i.e. µn ∈ G (U, λ, βn) . Then for sufficiently negative λ the limiting state

µ∞ is supported by the set G of ground state configurations.

For every U, λ there exist a pair of constants R < R, such that for every
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ω = {ωk} ∈ G
inf
i<j

|ωi − ωj| > R, (1)

and every ball Br ⊂ Rn of radius r > R contains at least one particle ωi ∈ ω.

If true, these properties would be a zero-level approximation to the or-
dered structure which is expected (in some sense) to be formed by solids.

We have to say that we do not expect the above picture to hold without
extra assumptions, though these assumptions are expected to be mild and
physically natural. But first we will formulate some conjectures which appear
to us to be provable.

Let µ ∈ G (U, λ, β) be some random point field with inverse temperature
β. Denote by ρµ (x) the expected number of particles of the field µ in the
unit ball centered at the point x ∈ R

n.

Proposition 1 For every λ, β and U without hard core there exists a state

µ̄ ∈ G (U, λ, β) , such that the function ρµ̄ (·) is unbounded on R
n.

That statement means that the relation (1) can not hold in general.

Proposition 2 Suppose that the state µ̃ ∈ G (U, λ, β) has the density func-

tion ρµ̃ (·) , which is polynomially bounded, i.e. there exists a polynomial

P (·) , such that ρµ̃ (x) ≤ P (x) , x ∈ R
n. Then there exists a constant

C = C (U, λ) , such that ρµ̃ (x) ≤ C.

The proof of Proposition 2 can be obtained by the application of the tech-
nique of compact functions, developed by R. Dobrushin in ([D1]) , see also
([D2]) . Being proven, Proposition 2 can be used to deduce the existence of
the constants R, R above, under condition that the random fields we are deal-
ing with all have their density functions polynomially bounded (and hence,
uniformly bounded).

Proposition 1 can be derived from Proposition 2 and the following con-
struction. We will consider the 1D case; the generalization to higher dimen-
sions is obvious. Let us suppose that r1 < 1, r2 > 2. Let In be the unit
segment centered at the integer point n ∈ R

1. Let ̟−1, ̟1 be two configura-
tions in the segments I−1, I1, and consider the conditional Gibbs distribution
q (ω0|̟−1, ̟1) in I0, given configuration ̟−1∪ ̟1 outside. Let K > 0 be
fixed. Clearly, there exists a number N (1) , such that if |̟−1| > N (1) ,
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|̟1| > N (1) , then 2K > E (|ω0|) > K. Let now ̟−2, ̟2 be two configura-
tions in the segments I−2, I2, and consider the conditional Gibbs distribution
q (ω|̟−2, ̟2) in I−1 ∪ I0 ∪ I1, given configuration ̟−2∪ ̟2 outside. Clearly,
there exists a number N (2) , such that if |̟−2| > N (2) , |̟2| > N (2) , then
E (|ω1|) > N (1) , E (|ω−1|) > N (1) , and so again E (|ω0|) > K. Here we
denote by ωk the restriction of ω on the segment Ik. If the number N (2) is
not too big, then we have in addition that E (|ω0|) < 2K. We can repeat this
construction inductively in n. As a result, by taking a limit point we get an
infinite volume Gibbs state on R

1, such that E (|ω0|) > K. If K is chosen
large enough: K > C (U, λ) , then the so constructed state has the function
ρ (·) unbounded, due to Proposition 2.

In what follows we present a proof of our Statement, restricted to the
case of interaction with hard core. This assumption only plays a technical
role, and with an extra effort we expect it can be removed.

3 Convergence to Ground State Configura-

tions

First some notation and assumptions. We assume a two-body interaction
U(s, t) dependent only on the separation of the point particles at positions
s, t in R

n, with a hard core at separation 1, and diverging as the separation
decreases to 1. We assume U has strictly finite range R > 1, and that
U ≥ −m, m > 0. Denote the chemical potential by λ. We only consider
λ ≤ 0.

We denote by Ω the set of all finite or countably infinite configurations
ω ⊂ R

n of particles which are separated by a distance at least 1. By ωj we
denote the positions of the particles in ω, and by b1(ω) the set of balls b1(ωj)
of diameter 1 centered at positions ωj. For A ⊂ R

n we denote by ΩA the set
of configurations ω = ωA ≡ ω ∩ A, which have all their particles in A. The
number of particles in ωA will be denoted by |ωA| .

With the usual topology Ω is compact. For β > 0 we denote by µ
β

any
Gibbs measure for our interaction at inverse temperature β. We note without
proof that any such measure gives probability 1 to the set of configurations
in which no two particles are at distance 1.
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For every bounded A and ω ∈ ΩA we define the energy:

H(ω) =
∑

i<j

U(ωi, ωj) + λ |ω| . (2)

For two collections of particles, ω′ ∈ ΩA, ω′′ ∈ Ω, we define the interaction
between them as

H(ω′, ω′′) =
∑

i,j

U(ω′
i, ω

′′
j ). (3)

and the sum
H(ω′|ω′′) = H(ω′) + H(ω′, ω′′). (4)

Let the set G of “ground state configurations” be defined as:

G = {ω ∈ Ω : for every bounded Λ ⊂ R
n and every ω′ = (ω′

Λ, ωΛc) ,

H(ω′
Λ|ωΛc) − H (ωΛ|ωΛc) ≥ 0},

where Λc denotes the complement of Λ. We note without proof that G is
compact.

Our main result is the following

Theorem 3 The set G is nonempty. Let µ∞ be any limit point of the family

of Gibbs states µβ as β → ∞. Then µ∞ (G) = 1.

(The fact that G is nonempty was proved somewhat more generally in
([Ra]).)

Our claim is equivalent to the

Theorem 4 Assume that ω ∈ Gc. Then there exists an open neighborhood

W of ω such that
∫

W
dµ

β
(σ) → 0 as β → ∞.

Proof. Before giving the formal proof we present its simple idea. If
ω ∈ Gc then the following holds: there exists a finite volume B, inside which
the configuration ω ≡ (ωB, ωBc) can be modified into ω̄ ≡ (ω̄B, ωBc) in such
a way that

∆ (ω) ≡ H (ωB|ωBc) − H (ω̄B|ωBc) > 0. (5)

We will be done if we can find open neighborhoods W, W̄ of the configurations
ω and ω̄ and show that

µβ (W )

µβ

(

W̄
) → 0 (6)
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as β → ∞. So we need to find an upper bound for µβ (W ) and a lower bound
for µβ

(

W̄
)

. To do this we will use the following simple

Lemma 5 For every value of the chemical potential λ < 0 there exists a

distance ρ (λ) > 1 such that the following holds for all ρ in the interval

(1, ρ (λ)):
Let M ⊂ R

n be any bounded volume and ξ ∈ ΩMc – any “boundary

condition”. Denote by ΩM,ρ (ξ) ⊂ ΩM the subset

{

σ ∈ ΩM : two particles of σ are separated by < ρ, or a particle of σ
is at distance < ρ from a particle of ξ

}

.

(7)
Then the conditional Gibbs probability

qM,T (ΩM,ρ (ξ) |ξ) (8)

goes to 0 as T → 0. This convergence, of course, is not uniform in M, but

for every M it is uniform in ξ. Therefore,

qM,T (ΩM \ ΩM,ρ (ξ) |ξ) = qM,T (ΩM |ξ) (1 − γ (T, M, ξ, ρ)) , (9)

where for every M, ρ the function γ (T, M, ξ, ρ) → 0 as T → 0, uniformly in

ξ.
The same statement holds for the subset

ΩM,ρ = {σ ∈ ΩM : two particles of σ are at distance < ρ} , (10)

since for every ξ we have ΩM,ρ ⊂ ΩM,ρ (ξ) .

Without the hard core condition Lemma 5 does not hold, and would
have to be replaced by a weaker statement. Our proof of Lemma 5 uses the
divergence of the repulsion near the hard core.

The proof of Theorem 4 proceeds now as follows. Let B̄ be the open
R-neighborhood of B. Without loss of generality we can assume that ω 6∈
ΩB̄,ρ(λ).

By an r-perturbation of a finite configuration ̟ ∈ Ω we will mean any
finite configuration κ with the same number of particles, such that for every
particle ̟j ∈ ̟ the intersection κ ∩ b1(̟j) consists of precisely one particle
κj ∈ κ, and dist(̟j, κj) < r.
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Now we define the open neighborhood W of ω by putting

W =
{

(κ, ξ) : κ ∈ Ωr

(

ω, B̄
)

, ξ ∈ ΩB̄c

}

, (11)

where Ωr

(

ω, B̄
)

is the set of all those r-perturbations κ of ωB̄ which also
belong to ΩB̄. It is easy to see that if r ≤ ρ(λ)/2 then for every (κ, ξ) ∈ W

|H (κB) − H (ωB)| < Cr,
∣

∣H
(

κB, κB̄\B

)

− H
(

ωB, ωB̄\B

)
∣

∣ < Cr,

for some C = C (B) . Let r be so small that Cr < ∆(ω)
10

. Then, by DLR,
∫

W

dµ
β
(κ, ξ)

=

∫

Ωr(ω,B̄)

1

ZB

(

κB̄\B

)

[

∫

Ωr(ω,κB̄\B)
exp

{

−βH
(

κB|κB̄\B

)}

dΠB(κB)

]

dµ
β
(κ, ξ)

≤ exp

{

−β

[

H (ωB|ωBc) −
∆ (ω)
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]}
∫

Ωr(ω,B̄)

1

ZB

(

κB̄\B

)dµ
β
(κ, ξ) ,

where
Ωr

(

ω, κB̄\B

)

=
{

κ̃ ∈ Ωr

(

ω, B̄
)

: κ̃B̄\B = κB̄\B

}

, (12)

ΠB denote the (free) Poisson measure in B with rate 1, and the ZB

(

κB̄\B

)

’s
are the normalization constants (partition functions).

In the same way, and recalling the meaning of ω̄, we put

W̄ =
{

(κ, ξ) : κ ∈ Ωr

(

ω̄, B̄
)

, ξ ∈ ΩB̄c

}

. (13)

Without loss of generality we can assume that for the same C and every
(κ, ξ) ∈ W̄

|H (κB) − H (ω̄B)| < Cr,
∣

∣H
(

κB, κB̄\B

)

− H
(

ω̄B, ωB̄\B

)
∣

∣ < Cr.

Then
∫

W̄

dµ
β
(κ, ξ)

=

∫

Ωr(ω,B̄)

1

ZV

(

κB̄\B

)

[

∫

Ωr(ω̄,κB̄\B)
exp

{

−βH
(

κB|κB̄\B

)}

dΠB(κB)

]

dµ
β
(κ, ξ)

≥ exp

{

−β

[

H (ω̄B|ωBc) +
∆ (ω)
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]}
∫

Ωr(ω,B̄)

1

ZV

(

κB̄\B

)

[

∫

Ωr(ω̄,κB̄\B)
dΠB(κB)

]

dµ
β
(κ, ξ) ,
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But the integral
∫

Ωr(ω̄,κB̄\B) dΠB(κB) is just the Poisson measure of the

set Ωr (ω̄) , so it is a positive number (not depending on β). The comparison
of the last two estimates proves our theorem. �

Proof of the Lemma. After the above discussion it is straightforward.
Let i (n) be the maximal number of particles with which any given particle
can interact. Suppose a particle ̟1 is ρ-close to ̟2. Then the interaction
U (̟1, ̟2) > λ + i (n) m + 1, provided ρ − 1 is small enough. But then if
we erase the particle ̟1, we gain at least one unit of energy. The rest of the
argument follows the same line as above. �
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