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Abstract: The classical Weyl-von Neumann theorem states that for any self-
adjoint operator A in a separable Hilbert space H there exists a (non-unique)
Hilbert-Schmidt operator C = C∗ such that the perturbed operator A + C
has purely point spectrum. We are interesting whether this result remains
valid for non-additive perturbations by considering self-adjoint extensions of
a given densely defined symmetric operator A in H and fixing an extension
A0 = A∗0. We show that for a wide class of symmetric operators the absolutely
continuous parts of extensions Ã = Ã∗ and A0 are unitarily equivalent provided
that their resolvent difference is a compact operator. Namely, we show that
this is true whenever the Weyl function M(·) of a pair {A,A0} admits bounded
limits M(t) := w-limy→+0M(t + iy) for a.e. t ∈ R. This result is applied to
direct sums of symmetric operators and Sturm-Liouville operators with operator
potentials.
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1 Introduction

Let A0 be a self-adjoint operator in a separable Hilbert space H and let C = C∗

be a trace class operator in H, C ∈ S1(H). Recall, that according to the Kato-
Rosenblum theorem, cf. [19, 29] the absolutely continuous parts Aac

0 and Ãac, in
short the ac-parts, of the operators A0 and Ã = A0 +C are unitarily equivalent.
In other words, the absolutely continuous spectrum, in short ac-spectrum, ofA0

and its spectral multiplicity are stable under additive trace class perturbations.
At the same time, the Weyl-von Neumann-Kuroda theorem [1, Theorem 94.2],
[30], [24] shows that the condition C ∈ S1(H) cannot be replaced by C ∈ Sp(H)
with p ∈ (1,∞] (where Sp(H) denotes the Neumann-Schatten operator ideals).

Theorem 1.1 ([20, Theorem 10.2.1 and Theorem 10.2.3]) For any oper-
ator A0 = A∗0 in H and any p ∈ (1,∞] there exists an operator C = C∗ ∈ Sp(H)
such that the perturbed operator Ã = A0 +C has purely point spectrum. In par-
ticular, σac(A0 + C) = ∅.

The Kato-Rosenblum theorem was generalized by Birman [4] and Birman and
Krein [6] to the case of non-additive perturbations. Namely, it was shown that
Aac

0 and Ãac still remain unitary equivalent whenever

(Ã− i)−1 − (A0 − i)−1 ∈ S1(H).

In particular, this is true if A0 = A∗0 and Ã = Ã∗ are self-adjoint extensions
of a symmetric operator A (in short A0, Ã ∈ Ext A). This rises the following
Weyl-von Neumann problem for extensions: Given p ∈ (1,∞] and a self-adjoint
extension A0 of A. Does there exist a self-adjoint extension Ã of A such that Ã
has purely point spectrum and the difference (Ã− i)−1 − (A0 − i)−1 belongs to
Sp(H)? To the best of our knowledge this problem was not investigated.

In the present paper we show that the Weyl-von Neumann theorem for exten-
sions becomes false in general. We show that under an additional assumption
on the symmetric operator A the ac-part of a certain extension A0 = A∗0 is
unitarily equivalent to the ac-part of any extension Ã = Ã∗ of A provided that
their resolvent difference is compact, that is,

K eA := (Ã− i)−1 − (A0 − i)−1 ∈ S∞(H). (1.1)

The additional assumption on the pair {A,A0} is formulated in terms of the
Weyl function of the pair {A,A0}. The latter is the main object in the boundary
triplet approach to the extension theory developed in the last three decades, see
[12, 13, 17] and references therein.

The core of this approach is the following abstract version of Green’s formula

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (A∗), (1.2)
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where H is an auxiliary Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear
mappings. A triplet Π = {H,Γ0,Γ1} is called a boundary triplet for the operator
A∗ if (1.2) holds and the mapping Γ := {Γ0,Γ1} : dom (A∗) → H ⊕ H is
surjective.

With a boundary triplet Π for A∗ one associates in a natural way the Weyl
function M(·) = MΠ(·) (see Definition 2.10), which is the key object of this
approach. It is an operator-valued Nevanlinna function with values in [H] (i.e.
RH-function) and its role in the extension theory is similar to that of the classical
Weyl function in the spectral theory of Sturm-Liouville operators. In particular,
if A is simple, then M(·) determines the pair {A,A0}, where A0 := A∗ � ker Γ0,
uniquely, up to unitary equivalence. Moreover, M(·) is regular (holomorphic)
precisely on the resolvent set %(A0) of A0 and the spectral properties of A0 are
described in terms of the limits M(t+ i0) at the real line (see [9]).

One of our main results (Theorem 4.3) reads now as follows.

Theorem 1.2 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ such that the
corresponding Weyl function M(·) has weak limits

M(t+ i0) := w-lim
y↓0

M(t+ iy) for a.e. t ∈ R. (1.3)

If a self-adjoint extension Ã of A satisfies condition (1.1), then the ac-parts
Ãac and Aac

0 of Ã and A0 (= A∗ � ker (Γ0)) are unitarily equivalent.

We apply this result to direct sums A := ⊕∞n=1Sn of symmetric operators
Sn with equal and finite deficiency indices n±(Sn). Let S0n be a self-adjoint
extension of Sn for each n ∈ N. We show that the ac-part of A0 := ⊕∞n=1S0n

is unitarily equivalent to the ac-part of any other extension Ã = Ã∗ ∈ Ext A

provided that condition (1.1) is satisfied and the symmetric operators Sn are
unitarily equivalent to S1 for any n ∈ N.

The second part of the paper is concerned with a spectral extremal property
of certain self-adjoint extensions of A described by the following definition.

Definition 1.3 (i) Let Tj = T ∗j ∈ C(Hj), j = 1, 2. We say that T1 is a part of
T2 if there is an isometry V from H1 into H2 such that V T1V

∗ ⊆ T2.

(ii) Let A0 = A∗0 be an extension of A. We say that A0 is ac-minimal if Aac
0

is a part of any self-adjoint extension Ã of A.

(iii) Let σ0 := σac(A0). We say that A0 is strictly ac-minimal if for any
extension Ã = Ã∗ of A the parts Aac

0 and ÃacE eA(σ0) are unitarily equivalent.

In particular, if A0 is ac-minimal, then σac(Ã) ⊇ σac(A0). Note that an ac-
minimal extension of A is not unique. For any two ac-minimal extensions their
ac-parts are unitarily equivalent.
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We show (cf. Theorem 5.12) that if n±(Sn) < ∞, then the ac-part Aac
0

of any direct sum extension A0 = ⊕∞n=1S0n of A := ⊕∞n=1Sn is ac-minimal.
In particular, σac(Ã) ⊇ σac(A0) for any Ã = Ã∗ ∈ Ext A. This result looks
surprising with respect to Theorem 1.1. Indeed, in this case Aac

0 is still a part of
Ãac for any Ã ∈ Ext A though the resolvent difference K eA (see (1.1)) is not even
compact. In other words, in this case the ac-spectrum of A0 (but not its spectral
multiplicity) remains stable under (non-additive) compact perturbations K eA
though both σac(A0) and its multiplicity can only increase, whenever K eA /∈ S∞.

Moreover, we apply our technique to minimal symmetric non-negative Sturm-
Liouville operator A with an unbounded operator potential

(Af)(x) = −f ′′(x) + Tf(x). (1.4)

We show that the Friedrichs extension AF is ac-minimal and under a simple
additional assumption is even strictly ac-minimal.

The paper is organized as follows. In Section 2 we give a short introduction
into the theory of ordinary and generalized boundary triplets and the corre-
sponding Weyl functions. In Section 3 we express the spectral multiplicity
function of the ac-part Ãac of Ã = Ã∗(∈ Ext A) by means of the corresponding
Weyl function. In Section 4 we apply this technique to prove Theorem 1.2 as
well as to give a simple proof of the Kato-Rosenblum theorem.

In Section 5 direct sums of boundary triplets Πn = {Hn,Γ0n,Γ1n} for op-
erators S∗n adjoint to symmetric operators Sn are investigated. We show that
though, in general, Π = ⊕∞n=1Πn is not a boundary triplet for the direct sum
A∗ := ⊕∞n=1S

∗
n, it is always possible to modify the triplets Πn in such a way

that a new sequence Π̃n = {Hn, Γ̃0n, Γ̃1n} of boundary triplets for S∗n satisfies
the following properties: Π̃ = ⊕∞n=1Π̃n forms a boundary triplet for A∗ such
that S0n := S∗n � ker (Γ0n) = S∗n � ker (Γ̃0n) =: S̃0n, n ∈ N. In particular, the
corresponding Weyl function M(·) is block-diagonal (see Theorem 5.3). Our
spectral applications to direct sums are substantially based on this result. In
particular, it is used in proving of Theorem 5.12 mentioned above.

Finally, in Section 6 we apply the technique (and abstract results) to operators
(1.4) with bounded and unbounded operator potentials. In particular, we
investigate the ac-spectrum of self-adjoint realizations of Schrödinger operator

L = −

 ∂2

∂t2
+

n∑
j=1

∂2

∂x2
j

+ q(x). (t, x) ∈ R+ × Rn, q ∈ L∞(Rn),

in L2(R+ × Rn), n ≥ 1. For instance, we show that if q(·) ≥ 0 and

lim
|x|→∞

∫
|x−y|≤1

|q(y)|dy = 0, (1.5)

then the Dirichlet realization LD is absolutely continuous, strictly ac-minimal
and σ(LD) = σac(LD) = [0,∞).
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Notations In the following we consider only separable Hilbert spaces which
are denoted by H, H etc. The symbols C(H1,H2) and [H1,H2] stand for the set
of closed densely defined linear operators and the set of bounded linear operators
from H1 to H2, respectively. We set C(H) := C(H,H) and [H] := [H,H]. The
symbols dom (·), ran (·), %(T ) and σ(T ) stand for the domain, the range, the
resolvent set and the spectrum of an operator T ∈ C(H), respectively; T ac and
σac(T ) stand for the ac-part and the ac spectrum of an operator T = T ∗ ∈ C(H).

Sp(H), p ∈ [1,∞], stand for the Schatten-von Neumann ideals in H. Denote
by B(R) the Borel σ-algebra of the line R and by Bb(R) the algebra of bounded
subsets in Bb(R). The Lebesgue measure of a set δ ∈ B(R) is denoted by |δ|.

2 Preliminaries

2.1 Operator measures

Definition 2.1 LetH be a separable Hilbert space. A mapping Σ(·) : Bb(R) →
[H] is called an operator (operator-valued) measure if

(i) Σ(·) is δ-additive in the strong sense and

(ii) Σ(δ) = Σ(δ)∗ ≥ 0 for δ ∈ Bb(R).

The operator measure Σ(·) is called bounded if it extends to the Borel algebra
B(R) of R, i.e. Σ(R) ∈ [H]. Otherwise, it is called unbounded. A bounded
operator measure Σ(·) = E(·) is called orthogonal if, in addition the conditions

(iii) E(δ1)E(δ2) = E(δ1 ∩ δ2) for δ1, δ2 ∈ B(R) and E(R) = IH

are satisfied.

Setting in (iii) δ1 = δ2, one gets that an orthogonal measure E(·) takes its
values in the set of orthogonal projections on H. Every orthogonal measure
E(·) defines an operator T = T ∗ =

∫
R λdE(λ) in H with E(·) being its spectral

measure. Conversely, by the spectral theorem, every operator T = T ∗ in H
admits the above representation with the orthogonal spectral measure E =: ET .

By Σac, Σs, Σsc and Σpp we denote absolutely continuous, singular, singular
continuous and pure point parts of the measure Σ, respectively. The Lebesgue
decomposition of Σ is given by Σ = Σac + Σs = Σac + Σsc + Σpp.

The operator measure Σ1 is called subordinated to the operator measure Σ2,
in short Σ1 ≺ Σ2, if Σ2(δ) = 0 yields Σ1(δ) = 0 for δ ∈ Bb(R). If the measures
Σ1 and Σ2 are mutually subordinated, then they are called equivalent, in short
Σ1 ∼ Σ2. Note, that there are always exists a scalar measure ρ defined on Bb(R)
such that Σ ∼ ρ, see [27, Remark 2.2]. In particular, there is always a scalar
measure such that Σ ≺ ρ.
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Usually, with the operator-valued measure Σ(·) one associates a distribution
operator-valued function Σ(·) defined by

Σ(t) =


Σ([0, t)) t > 0
0 t = 0
−Σ([t, 0)) t < 0

(2.1)

which is called the spectral function of Σ. Clearly, Σ(·) is strongly left continu-
ous, Σ(t− 0) = Σ(t), and satisfies Σ(t) = Σ(t)∗, Σ(s) ≤ Σ(t), s ≤ t.

Definition 2.2 ([27, Definition 4.5]) Let Σ be an operator measure in H
and let ρ be a scalar measure on B(R) such that Σ ≺ ρ. Further, let e = {ej}∞j=1

be an orthonormal basis in H. Let

Σij(t) :=
(
Σ(t)ei, ej

)
, Ψij(t) := dΣij(t)/dρ,

Ψe
n(t) :=

(
Ψij(t)

)n
i,j=1

, Ψe(t) :=
(
Ψij(t)

)∞
i,j=1

.

We call
Ne

Σ(t) := rank (Ψe(t)) := sup
n≥1

rank (Ψe
n(t)) (mod(ρ)) (2.2)

and
NΣ(t) := ess sup

e
Ne

Σ(t) (mod(ρ))

the multiplicity function and the total multiplicity of Σ, respectively.

By [27, Proposition 4.6] Ne
Σ(·) does not depend on the orthogonal basis e.

Therefore one always has NΣ(t) := Ne
Σ(t) and one can omit the index e in (2.2).

When applying this definition to the absolutely continuous part Σac of Σ the
scalar measure ρac can be chosen to be the Lebesgue measure | · | on B(R).

The concept of the multiplicity function allows one to introduce the following
definitions.

Definition 2.3 Let Σ1 and Σ2 be two operator measures.

(i) The operator measure Σ1 is called spectrally subordinate to the operator
measure Σ2, in short Σ1 ≺≺ Σ2, if Σ1 ≺ Σ2 and NΣ1(t) ≤ NΣ2(t) (mod(Σ2)).

(ii) The operator measures Σ1 and Σ2 are called spectrally equivalent, in short
Σ1 ≈ Σ2, if Σ1 ∼ Σ2 and NΣ1(t) = NΣ2(t)(mod(Σ2)).

Crucial for us in the sequel is the following theorem.

Theorem 2.4 Let Tj be self-adjoint operators acting in Hj with corresponding
spectral measures ETj (·), j = 1, 2. Let D ∈ B(R).
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(i) T1ET1(D) is a part of T2ET2(D) if and only if ET1,D ≺≺ ET2,D, where
ETj ,D(δ) := ETj (δ ∩ D), j = 1, 2.

(ii) The parts T1ET1(D) and T2ET2(D) are unitarily equivalent if and only if
ET1,D ≈ ET2,D.

The proof is immediate from [7, Theorem 7.5.1]. For D = R Theorem 2.4
gives conditions for T1 to be unitarily equivalent either to a part of T2 or to T2

itself.

2.2 R-Functions

Let H be a separable Hilbert space. We recall that an operator-valued function
F (·) with values in [H] is called to be a Herglotz, Nevanlinna or R-function
[1, 3, 17, 23], if it is holomorphic in C+ and its imaginary part is non-negative,
i.e. Im(F (z)) := (2i)−1

(
F (z)− F (z)∗

)
≥ 0, z ∈ C+. In what follows we prefer

the notion of R-function. The class of R-functions with values in [H] will be
denoted by (RH). Any (RH)-function F (·) admits an integral representation

F (z) = C0 + C1z +
∫ ∞

−∞

(
1

t− z
− t

1 + t2

)
dΣF , z ∈ C+, (2.3)

(see, for instance, [1, 3, 23]), where C0 = C∗0 , C1 ≥ 0 and ΣF is an operator-
valued Borel measure on R satisfying

∫
R(1 + t2)−1dΣF ∈ [H]. The integral is

understood in the strong sense.

In contrast to spectral measures of self-adjoint operators the measure ΣF

is not necessarily orthogonal. However, the operator-valued measure ΣF is
uniquely determined by the R-function F (·). It is called the spectral measure
of F (·). The associated spectral function is denoted by ΣF (t), t ∈ R, cf. (2.1).

Let us calculateNΣac
F

(t), t ∈ R. For any Hilbert-Schmidt operatorD ∈ S2(H)
satisfying ker (D) = ker (D∗) = {0} let us consider the modified RH-function

(FD)(z) := D∗F (z)D, z ∈ C+.

For FD(·) the strong limit FD(t) := FD(t+ i0) := s-limy→+∞ FD(t+ iy) exists
for a.e. t ∈ R. We set

dF D (t) := dim(ran (Im(FD)(t))), for a.e. t ∈ R. (2.4)

Proposition 2.5 Let F (·) ∈ (RH), D ∈ S2(H) and ker (D) = ker (D∗) = {0}.
Then NΣac

F
(t) = dF D (t) for a.e. t ∈ R.

Proof. It follows from (2.3) that

Im(F (λ+ iy)) = yC1 +
∫ ∞

−∞

y

(t− λ)2 + y2
dΣF , λ ∈ R. (2.5)
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By Berezanskii-Gel’fand-Kostyuchenko theorem [3, 7] the derivative
ΨD∗ΣF D(t) := d

dtD
∗ΣF (t)D exists for a.e. t ∈ R and the representation

D∗Σac
F (δ)D =

∫
δ

ΨD∗ΣF D(t)dt, δ ∈ Bb(R)

holds. Applying the Fatou theorem (see [23]) to (2.5) and using (2.4) we obtain

Im((FD)(λ)) = πΨD∗ΣF D(λ) for a.e. λ ∈ R. (2.6)

By [27, Corollary 4.7] NΣac
F

(λ) = rank (ΨD∗ΣF D(λ)) = dim(ran (ΨD∗ΣF D(λ)))
for a.e. λ ∈ R. Finally, using (2.6) we get NΣac

F
(λ) = dF D (λ) for a.e. λ ∈ R. �

Notice that Proposition 2.5 implies that DF D (t) does not dependent on D.
Assuming the existence of the limit F (t) := s-limy→+0 F (t+ iy) for a.e. t ∈ R,
we set

dF (t) := rank (Im(F (t)) = dim(ran (Im(F (t))))

for a.e. t ∈ R. In this case Proposition 2.5 can be modified as follows.

Corollary 2.6 Let F (·) ∈ (RH). If the limit F (t) := s-limy→+0 F (t+ iy) exists
for a.e. t ∈ R, then NΣac

F
(t) = dF (t) for a.e. t ∈ R.

2.3 Boundary triplets and self-adjoint extensions

In this section we briefly recall the basic facts on boundary triplets and the
corresponding Weyl functions, cf. [11, 12, 13, 17].

Let A be a densely defined closed symmetric operator in the separable Hilbert
space H with equal deficiency indices n±(A) = dim(ker (A∗ ∓ i)) ≤ ∞.

Definition 2.7 ([17]) A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary
Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear mappings, is called an
(ordinary) boundary triplet for A∗ if the ”abstract Green’s identity”

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (A∗), (2.7)

holds and the mapping Γ := (Γ0,Γ1)> : dom (A∗) → H⊕H is surjective.

Definition 2.8 ([17]) A closed extension A′ of A is called a proper extension,
in short A′ ∈ Ext A, if A ⊂ A′ ⊂ A∗;

Two proper extensions A′, A′′ are called disjoint if dom (A′) ∩ dom (A′′) =
dom (A) and transversal if in addition dom (A′) + dom (A′′) = dom (A∗).

Clearly, any self-adjoint extension Ã = Ã∗ is proper, Ã ∈ Ext A. A boundary
triplet Π = {H,Γ0,Γ1} for A∗ exists whenever n+(A) = n−(A). Moreover, the
relations n±(A) = dim(H) and ker (Γ0)∩ker (Γ1) = dom (A) are valid. Besides,
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Γ0,Γ1 ∈ [H+,H], where H+ denotes the Hilbert space obtained by equipping
dom (A∗) with the graph norm of A∗.

With any boundary triplet Π one associates two extensions Aj := A∗ �
ker (Γj), j ∈ {0, 1}, which are self-adjoint in view of Proposition 2.9 below.
Conversely, for any extension A0 = A∗0 ∈ Ext A there exists a (non-unique)
boundary triplet Π = {H,Γ0,Γ1} for A∗ such that A0 := A∗ � ker (Γ0).

Using the concept of boundary triplets one can parameterize all proper, in
particular, self-adjoint extensions of A. For this purpose denote by C̃(H) the
set of closed linear relations in H, that is, the set of (closed) linear subspaces of
H⊕H. The adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ in H is defined by

Θ∗ =
{(

k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.

The multivalued part mul (Θ) of Θ ∈ C̃(H) is mul (Θ) = {h ∈ H : {0, h} ∈
Θ}. Setting H∞ := mul (Θ) and Hop := H⊥∞ we get H = Hop ⊕ H∞. This
decomposition yields an orthogonal decomposition Θ = Θop⊕Θ∞ where Θ∞ :=
{0} ⊕ mul (Θ) and Θop := {{f, g} ∈ Θ : f ∈ dom (Θ), g ⊥ mul (Θ)}. For the
definition of the inverse and the resolvent set of a linear relation Θ we refer to
[14].

Proposition 2.9 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the
mapping

(Ext A 3) Ã→ Γdom (Ã) = {{Γ0f,Γ1f} : f ∈ dom (Ã)} =: Θ ∈ C̃(H) (2.8)

establishes a bijective correspondence between the sets Ext A and C̃(H). We put
AΘ := Ã where Θ is defined by (2.8). Moreover, the following holds:

(i) AΘ = A∗Θ if and only if Θ = Θ∗;

(ii) The extensions AΘ and A0 are disjoint if and only if Θ ∈ C(H). In this case
(2.8) becomes

AΘ = A∗ � ker (Γ1 −ΘΓ0);

(iii) The extensions AΘ and A0 are transversal if and only if Θ = Θ∗ ∈ [H].

In particular, Aj := A∗ � ker (Γj) = AΘj
, j ∈ {0, 1} where Θ0 := {0}×H and

Θ1 := H× {0}. Hence Aj = A∗j since Θj = Θ∗j . In the sequel the extension A0

is usually regarded as a reference self-adjoint extension.

2.4 Weyl functions and γ-fields

It is well known that Weyl functions give an important tool in the direct and
inverse spectral theory of singular Sturm-Liouville operators. In [11, 12, 13] the
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concept of Weyl function was generalized to the case of an arbitrary symmetric
operator A with n+(A) = n−(A). Following [11, 12, 13] we recall basic facts on
Weyl functions and γ-fields associated with a boundary triplet Π.

Definition 2.10 ([11, 12]) Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗.
The functions γ(·) : %(A0) → [H,H] and M(·) : %(A0) → [H] defined by

γ(z) :=
(
Γ0 � Nz

)−1 and M(z) := Γ1γ(z), z ∈ %(A0), (2.9)

are called the γ-field and the Weyl function, respectively, corresponding to Π.

It follows from the identity dom (A∗) = ker (Γ0)+̇Nz, z ∈ %(A0), where A0 =
A∗ � ker (Γ0), and Nz := ker (A∗ − z), that the γ-field γ(·) is well defined and
takes values in [H,H]. Since Γ1 ∈ [H+,H], it follows from (2.9) that M(·) is
well defined too and takes values in [H]. Moreover, both γ(·) and M(·) are
holomorphic on %(A0) and satisfy the following relations (see [12])

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), z, ζ ∈ %(A0), (2.10)

and
M(z)−M(ζ)∗ = (z − ζ̄)γ(ζ)∗γ(z), z, ζ ∈ %(A0). (2.11)

The last identity yields that M(·) is a RH-function, that is, M(·) is a [H]-valued
holomorphic function on C\R satisfying

M(z) = M(z)∗ and
Im (M(z))

Im (z)
≥ 0, z ∈ C\R.

Moreover, it follows from (2.11) that M(·) satisfies 0 ∈ %(Im (M(z))), z ∈ C\R.

If A is a simple symmetric operator, then the Weyl function M(·) determines
the pair {A,A0} uniquely up to unitary equivalence (see [13, 22]). Therefore
M(·) contains (implicitly) full information on spectral properties of A0. We
recall that a symmetric operator is said to be simple if there is no non-trivial
subspace which reduces it to a self-adjoint operator.

For a fixed A0 = A∗0 a boundary triplet Π = {H,Γ0,Γ1} satisfying dom (A0) =
ker (Γ0) is not unique. Let Πj = {Hj ,Γ

j
0,Γ

j
1}, j ∈ {1, 2}, be two such triplets.

Then the corresponding Weyl functions M1(·) and M2(·) are related by

M2(z) = R∗M1(z)R+R0, (2.12)

where R0 = R∗0 ∈ [H2] and R ∈ [H2,H1] is boundedly invertible.

According to Proposition 2.9 the extensions AΘ and A0 are not disjoint when-
ever mul (Θ) 6= {0}. Considering AΘ and A0 as extensions of an intermediate
extension S := A0 � (dom (A0) ∩ dom (AΘ)) we can avoid this inconvenience.

Lemma 2.11 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) the cor-
responding Weyl function, Θ = Θ∗ ∈ C̃(H) and Θ = Θop ⊕ Θ∞ its orthogonal
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decomposition. Further let S := A0 � (dom (A0) ∩ dom (AΘ)). Then the triplet
Π̂ = { Ĥ , Γ̂ 0, Γ̂ 1}, defined by

Ĥ := Hop = dom (Θ), Γ̂ 0 := Γ0 � dom (S∗), Γ̂ 1 := πopΓ1 � dom (S∗),

is a boundary triplet for S∗, where πop is the orthogonal projection from H onto
Hop, A0 = S∗ � ker ( Γ̂ 0) and AΘ = SΘop . The corresponding Weyl function is

M̂ (z) := πopM(z) � Hop, z ∈ C±. (2.13)

The proof can be found in [10]. Hence without loss of generality we can very
often assume that the “coordinate” Θ := ΓÃ of an extension Ã = AΘ = A∗Θ ∈
Ext A corresponds to the graph of a self-adjoint operator.

In what follows, without loss of generality, we always assume that the closed
symmetric A is simple and, due to Lemma 2.11, the “coordinate” Θ of the
extension AΘ = A∗Θ ∈ Ext A is the graph of a self-adjoint operator.

2.5 Krein type formula for resolvents and comparability

With any boundary triplet Π = {H,Γ0,Γ1} for A∗ and any proper (not neces-
sarily self-adjoint) extension AΘ ∈ Ext A it is naturally associated the following
(unique) Krein type formula (cf. [11, 12, 13])

(AΘ−z)−1−(A0−z)−1 = γ(z)(Θ−M(z))−1γ(z)∗, z ∈ %(A0)∩%(AΘ). (2.14)

Formula (2.14) is a generalization of the known Krein formula for resolvents.
We note also, that all objects in (2.14) are expressed in terms of the boundary
triplet Π (cf. [11, 12, 13]). In other words, (2.14) gives a relation between Krein-
type formula for canonical resolvents and the theory of abstract boundary value
problems (framework of boundary triplets).

The following result is deduced from formula (2.14) (cf. [12, Theorem 2]).

Proposition 2.12 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, Θi = Θ∗i ∈
C̃(H), i ∈ {1, 2}. Then for any Schatten-von Neumann ideal Sp, p ∈ (0,∞],
and any z ∈ C \ R the following equivalence holds

(AΘ1 − z)−1 − (AΘ2 − z)−1 ∈ Sp(H) ⇐⇒
(
Θ1 − z

)−1 −
(
Θ2 − z

)−1 ∈ Sp(H)

In particular, (AΘ1 − z)−1 − (A0 − z)−1 ∈ Sp(H) ⇐⇒
(
Θ1 − i

)−1 ∈ Sp(H).

If in addition Θ1,Θ2 ∈ [H], then for any p ∈ (0,∞] the equivalence holds

(AΘ1 − z)−1 − (AΘ2 − z)−1 ∈ Sp(H) ⇐⇒ Θ1 −Θ2 ∈ Sp(H).

11



2.6 Generalized boundary triplets and proper extensions

In applications the concept of boundary triplets is too restrictive. Here we recall
some facts on generalized boundary triplets following [13].

Definition 2.13 ([13, Definition 6.1]) A triplet Π = {H,Γ0,Γ1} is called a
generalized boundary triplet for A∗ if H is an auxiliary Hilbert space and Γj :
dom (Γj) → H, j = 0, 1 are linear mappings such that dom (Γ) := dom (Γ0) ∩
dom (Γ1) is a core for A∗, Γ0 is surjective, A0 := A∗ � ker (Γ0) is self-adjoint
and the following Green’s formula holds

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (A∗), (2.15)

where A∗ := A∗ � dom (Γ).

By definition, A∗ := A∗ � dom (Γ) and A∗ ⊆ A∗ = A∗ and (A∗)∗ = A.
Clearly, every ordinary boundary triplet is a generalized boundary triplet.

Lemma 2.14 ([13, Proposition 6.1]) Let A be a densely defined closed sym-
metric operator and let Π = {H,Γ0,Γ1} be a generalized boundary triplet for
A∗. Then the following assertions are true:

(i) N∗
z := dom (A∗) ∩ Nz is dense in Nz and dom (A∗) = dom (A0) + N∗

z;

(ii) Γ1dom (A0) = H;

(iii) ker (Γ) = dom (A) and ran (Γ) = H⊕H.

Lemma 2.15 Let A be a densely defined closed symmetric operator and let
Π = {H,Γ0,Γ1} be a generalized boundary triplet for A∗. Then the mapping
Γ = {Γ0,Γ1}> is closable and Γ ∈ C(H+,H).

Proof. The Green’s formula can be rewritten as (A∗f, g)−(f,A∗g) = (JΓf,Γg)

where Γ := (Γ0,Γ1)> and J :=
(

0 I
−I 0

)
. Let fn ∈ dom (Γ0) ∩ dom (Γ1) =

dom (A∗), ‖fn‖H+ → 0 and Γfn = {Γ0fn,Γ1fn} → {ϕ,ψ} as n→∞. Hence

0 = lim
n→∞

[(A∗fn, g)− (fn, A∗g)] = (Jf∞,Γg) , where f∞ := {ϕ,ψ}>.

Since ran (Γ) is dense in H ⊕H one has Jf∞ = 0. Thus, ϕ = ψ = 0 and Γ is
closable. �

For any generalized boundary triplet Π = {H,Γ0,Γ1} we set Aj := A∗ �
ker (Γj), j ∈ {0, 1}. The extensions A0 and A1 are disjoint but not necessarily
transversal. The latter holds if and only if Π is an ordinary boundary triplet.
In general, the extension A1 is only essentially self-adjoint.

Starting with Definition 2.13, one easily extends the definitions of γ-field and
Weyl function to the case of a generalized boundary triplet Π by analogy with
Definition 2.10 (cf. [13, Definition 6.2]).
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Definition 2.16 Let Π = {H,Γ0,Γ1} be a generalized boundary triplet for A∗.
Then the operator valued functions γ(·) and M(·) defined by

γ(z) :=
(
Γ0 � N∗

z

)−1 : H → Nz and M(z) := Γ1γ(z), z ∈ %(A0), (2.16)

are called the (generalized) γ-field and the Weyl function associated with the
generalized boundary triplet Π, respectively.

It follows from Lemma 2.14(i) that γ(·) takes values in [H,H], ran (γ(z)) =
N∗

z := dom (A∗)∩Nz and it satisfies the identity similar to that of (2.10) which
shows that γ(z) is a holomorphic operator valued function on %(A0).

Further, one has dom (M(z)) = H since ran γ(z) ⊂ dom (Γ1), z ∈ %(A0). By
(2.16) M(z) is closable since γ(z) is bounded and Γ1 is closable, by Lemma
2.15. Hence, by the closed graph theorem M(·) takes values in [H]. Moreover,
it is holomorphic on %(A0), because so is γ(·), and satisfies the relation (2.11).
It follows that ker (ImM(z)) = {0}, z ∈ C+, though the stronger condition
0 ∈ %(ImM(i))(⇐⇒ ran (γ(i)) = Ni) is satisfied if and only if Π is an ordinary
boundary triplet (in the sense of Definition 2.7).

In the sequel we need the following simple but useful statement.

Proposition 2.17 Let Π = {H,Γ0,Γ1} be an ordinary boundary triplet for
A∗, M(·) the corresponding Weyl function, B = B∗ ∈ C(H) and AB = A∗ �
ker (Γ1 −BΓ0). Let ΓB

1 := Γ0 and ΓB
0 := BΓ0 − Γ1. Then

(i) ΠB = {H,ΓB
0 ,Γ

B
1 } is a generalized boundary triplet for A∗ such that it holds

dom (A∗) := dom (Γ) := dom (A0) + dom (AB) ⊆ dom (A∗), A∗∗ = A;

(ii) the corresponding (generalized) Weyl function MB(·) is

MB(z) = (B −M(z))−1
, z ∈ C±;

(iii) ΠB is an (ordinary) boundary triplet if and only if B = B∗ ∈ [H]. In this
case MB(·) is an ordinary Weyl function in the sense of Definition 2.7.

Note, an analogon of Proposition 2.9 does not hold for generalized boundary
triplets. Nevertheless, since the corresponding Weyl function determines the
pair {A,A0} uniquely, up to unitary equivalence, it is possible to describe the
spectral properties of A0 in terms of the (generalized) Weyl function M(·).

3 Weyl function and spectral multiplicity

Throughout of this section A is a densely defined simple closed symmetric oper-
ator in H with n+(A) = n−(A). Let Π = {H,Γ0,Γ1} be a generalized boundary
triplet for A∗, and let M(·) be the corresponding generalized Weyl function.
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Since M(·) ∈ (RH) it admits representation (2.3). Since A is densely defined
(see [13, 26]), one gets C1 = 0, i.e.

M(z) = C0 +
∫ ∞

−∞

(
1

t− z
− t

1 + t2

)
dΣM .

Proposition 3.1 Let A be a densely defined, simple closed symmetric operator
and let Π = {H,Γ0,Γ1} be a generalized boundary triplet for A∗(⊆ A∗), A∗∗ = A,
and let M(·) be the corresponding Weyl function. If EA0 is the spectral measure
of A0 := A∗ � ker (Γ0), then ΣM ≈ EA0 and Σac

M ≈ Eac
A0

.

Proof. Alongside ΣM (·) we introduce the bounded operator measure Σ0
M (·),

Σ0
M (δ) =

∫
δ

1
1 + t2

dΣM , δ ∈ Bb(R).

Clearly, Σ0
M (·) ≈ ΣM (·). According to [2, formula (2.16)] one has

Σ0
M (δ) = γ(i)∗EA0(δ)γ(i), δ ∈ B(R), (3.1)

where γ(·) is the generalized γ-field of Π. Note, that though formula (3.1) is
proved in [2] for ordinary boundary triplets, the proof remains valid for gener-
alized boundary triplets. Due to the simplicity of A one has

span
{
(A0 − z)−1ran (γ(i)) : z ∈ C+ ∪ C−

}
= H.

Hence the subspace Ni := N∗
i , where N∗

i := ran (γ(i)) is cyclic for A0. Next, let
Pi be the orthogonal projection from H onto Ni. We set Σ̃0

M (·) := PiEA0(·) � Ni.

Clearly, Σ̃0
M (·) is an operator measure. Since the linear manifold N∗

i is cyclic
for A0, one gets from [27, Theorem 4.15] that the measures Σ̃0

M and EA0 are
spectrally equivalent.

Note that Σ0
M (·) = γ(i)∗Σ̃0

M (·)γ(i). Since ran (γ(i)) is dense in Ni, the latter
yields Σ0

M ∼ Σ̃0
M . Let D ∈ S2(H) and ker (D) = ker (D∗) = {0}. We set

ΨD∗Σ0
M D(t) :=

dD∗Σ0
M (t)D

dρ(t)
and Ψ eD∗eΣ0

M
eD(t) :=

dD̃∗Σ̃0
M (t)D̃

dρ(t)

where ρ is a scalar measure such that Σ̃0
M ∼ ρ and D̃ := γ(i)D : H −→ Ni. We

note that ker (D̃) = ker (D̃∗) = {0}. By [27, Corollary 4.7] we have

NΣ0
M

(t) = rank (ΨD∗Σ0
M D(t)) and NeΣ0

M
(t) = rank (Ψ eD∗eΣ0

M
eD(t))

for a.e. t ∈ R (mod(ρ)). Since ΨD∗Σ0
M D(t) = Ψ eD∗eΣ0

M
eD(t) for a.e. t ∈ R

(mod(ρ)) we get NΣ0
M

(t) = NeΣ0
M

(t) for a.e. t ∈ R (mod(ρ)). Hence Σ̃0
M and

Σ0
M are spectrally equivalent. Since Σ̃0

M and EA0 are spectrally equivalent the
measures Σ0

M and EA0 are spectrally equivalent. This proves the first statement.
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The second statement follows from the equality Σ0,ac
M (δ) = γ(i)∗Eac

A0
(δ)γ(i),

δ ∈ B(R) where Σ0,ac
M is the absolutely continuous part of Σ0

M . �

The proof of Proposition 3.1 leads to the following computing procedure for
NΣac

M
(t): choosing D ∈ S2(H) such that ker (D) = ker (D∗) = {0} we introduce

the sandwiched Weyl function MD(·),

(MD)(z) := D∗M(z)D, z ∈ C+.

It turns out that the limit (MD)(t) := s-limy→+0M
D(t + iy) exists for a.e.

t ∈ R. We define in accordance with (2.13) the function dMD (·) : R → N∪{∞},

dMD (t) := rank (Im(MD(t))) = dim(ran (Im(MD(t))))

which is well-defined for a.e. t ∈ R.

For a measurable non-negative function ξ : R −→ R+ defined for a.e. t ∈ R
we introduce its support supp (ξ) := {t ∈ R : ξ(t) > 0}. By clac(·) we denote
the absolutely continuous closure of a Borel set of R., cf. Appendix.

Proposition 3.2 Let A be as in Proposition 3.1, let Π = {H,Γ0,Γ1} be
a generalized boundary triplet for A∗(⊆ A∗), A∗∗ = A, and let M(·) be the
corresponding Weyl function. Further, let EA0(·) be the spectral measure of
A0 = A∗ � ker (Γ0) = A∗0. If D ∈ S2(H) and satisfies ker (D) = ker (D∗) = {0},
then NEac

A0
(t) = dMD (t) for a.e. t ∈ R and σac(A0) = clac(supp (dMD )).

If, in addition, the limit M(t) := s-limy→+0M(t + iy) exists for a.e. t ∈ R,
then NEac

A0
(t) = dM (t) for a.e. t ∈ R and σac(A0) = clac(supp (dM )).

Proof. The relation NEac
A0

(t) = dMD (t) follows from Theorem 2.5 and Theorem
3.1. Further, let {gk}N

k=1, 1 ≤ N ≤ ∞, be a total set in H. We set hk := Dgk.
One easily verifies that {hn}N

n=1 is a total set. We set Mhn(z) := (M(z)hn, hn),
z ∈ C+. Clearly, Mhn(z) is R-function for every n ∈ {1, 2, . . . , N} and

Mhn(t) := lim
y→+0

Mhn(t+ iy) = (M(t)hn, hn)

exists for a.e. t ∈ R. Set

Ωac(Mhn) := {t ∈ R : 0 < Im(Mhn(t)) <∞}.

Combining [9, Proposition 4.1] with Lemma A.3 we obtain

σac(A0) =
N⋃

k=1

clac(Ωac(Mhn
)) = clac

(
N⋃

k=1

Ωac(Mhn
)

)
. (3.2)

If t ∈ supp (dMD ), then Im((MD)(t)) 6= 0. Hence t ∈ Ωac(Mhn) for some
n ∈ {1, 2, . . . , N}. Therefore supp (dMD ) ⊆

⋃N
k=1 Ωac(Mhn) which yields

clac(supp (dMD )) ⊆ clac

(
N⋃

k=1

Ωac(Mhn
)

)
. (3.3)

15



Conversely, if t ∈ Ωac(Mhn
) ∩ EMD , where EMD := {t ∈ R : ∃ (MD)(t)}, for

some n, then 0 < dMD (t). Hence Ωac(Mhn
) ∩ EMD ⊆ supp (dMD ) which yields⋃N

k=1 Ωac(Mhn) ∩ EMD ⊆ supp (dMD ). Hence

clac

(
N⋃

k=1

Ωac(Mhn
) ∩ EM

)
= clac

(
N⋃

k=1

Ωac(Mhn
)

)
⊆ clac(supp (dMD ))

Combining this equality with (3.2) and (3.3) we obtain σac(A0) =
clac(supp (dMD )). �

Corollary 3.3 Let A be as in Proposition 3.2, let Π = {H,Γ0,Γ1} be an ordi-
nary boundary triplet for A∗ and let M(·) be the corresponding Weyl function.
Further, let B = B∗ ∈ C(H), AB = A∗ � ker (Γ1−BΓ0) and EAB

(·) the spectral
measure of AB. If D ∈ S2(H) and satisfies ker (D) = ker (D∗) = {0}, then
NEac

AB
(t) = dMD

B
(t) for a.e. t ∈ R and σac(AB) = clac(supp (dMD

B
)).

If, in addition, the limit MB(t) := s-limy→+0MB(t+iy) exists for a.e. t ∈ R,
then NEac

AB
(t) = dMB

(t) for a.e. t ∈ R and σac(AB) = clac(supp (dMB
)).

Proof. By Proposition 2.17 ΠB = {H,ΓB
0 ,Γ

B
1 } is a generalized boundary triplet

for A∗ := A∗ � dom (A∗), dom (A∗) = dom (A0) + dom (AB), and MB(z) =
(B −M(z))−1, z ∈ C+, the corresponding generalized Weyl function. Clearly,
AB = A∗ � ker (ΓB

0 ). It remains to apply Proposition 3.2. �

This leads to the following theorem.

Theorem 3.4 Let A be a densely defined closed symmetric operator, let Π =
{H,Γ0,Γ1} be an ordinary boundary triplet for A∗ and let M(·) be the cor-
responding Weyl function. Further, let AB := A∗ � ker (Γ1 − BΓ0), B =
B∗ ∈ C(H), and EAB

(·) the spectral measure of AB. Let D ∈ S2(H) and
ker (D) = ker (D∗) = {0}. Then

(i) A0E
ac
A0

(D) is a part of ABE
ac
AB

(D) if and only if dMD (t) ≤ dMD
B

(t) for a.e.
t ∈ D.

(ii) A0E
ac
A0

(D) and ABE
ac
AB

(D) are unitarily equivalent if and only if dMD (t) =
dMD

B
(t) for a.e. t ∈ D.

Proof. Without loss of generality we assume that A is simple since the self-
adjoint part of A is contained as a direct summand in any self-adjoint extension
of A. We to show that Σac

M (δ) = 0 for some δ ∈ Bb(R) if and only if dMD (t) = 0
for a.e t ∈ δ. By the Berezanskii-Gel’fand-Kostyuchenko theorem [3, 7] the
derivative ΨD∗ΣM D(t) := d

dtD
∗Σ(t)D exists and the relation

D∗Σac
M (δ ∩ D)D =

∫
δ∩D

ΨD∗ΣM D(t)dt, δ ∈ Bb,
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holds. One has Σac
M (δ) = 0 if and only if ΨD∗ΣM D(t) = 0 for a.e. t ∈ δ. Since

dMD (t) = dim(ran (ΨD∗ΣM D(t))) for a.e. t ∈ R we find that Σac
M (δ ∩ D) = 0 if

and only if dMD (t) = 0 for a.e. t ∈ δ∩D. Similarly we prove that Σac
MB

(δ∩D) = 0
if and only if dD∗MBD(t) = 0 for a.e. t ∈ δ ∩ D.

(i) Since by assumption dMD (t) ≤ dMD
B

(t) for a.e. t ∈ D, one gets by the
considerations above that Σac

M (δ ∩ D) ≺ Σac
MB

(δ ∩ D). By Theorem 2.5 we have
NΣac

M
(t) = dMD (t) and NΣac

MB
(t) = dMD

B
(t) for a.e t ∈ R. Hence NΣac

M
(t) ≤

NΣac
MB

(t) for a.e. t ∈ D which proves that the restricted measures Σac
M (· ∩ D)

is spectrally subordinated to Σac
MB

(· ∩ D), cf. Definition 2.3(i). Since Σac
M ≈

Eac
A0

and Σac
MB

≈ Eac
AB
, by Theorem 3.1, we get that Eac

A0
(· ∩ D) is spectrally

subordinated to Eac
AB

(· ∩ D). Applying Theorem 2.4(i) we complete the proof.

(ii) If dMD (t) = dD∗MBD(t) for a.e. t ∈ D, then Σac
M (· ∩ D) ∼ Σac

MB
(· ∩ D).

By Theorem 2.5, NΣac
M

(t) = dMD (t) and NΣac
MB

(t) = dMD
B

(t) for a.e t ∈ R which
implies that the operator measures Σac

M (· ∩ D) and Σac
MB

(· ∩ D) are spectrally
equivalent, cf. Definition 2.3(ii). By Theorem 3.1, Eac

A0
(·∩D) and Eac

AB
(·∩D) are

spectrally equivalent. Applying Theorem 2.4(ii) we prove that the absolutely
continuous parts A0E

ac
A0

(D) and ABE
ac
AB

(D) are unitarily equivalent. �

Theorem 3.4 reduces the problem of unitary equivalence of ac-parts of certain
self-adjoint extensions of A to investigation of the functions dMD (·) and dMD

B
(·).

Corollary 3.5 Let A be as in Theorem 3.4. If the self-adjoint extensions Ã
and Ã′ of A are ac-minimal, then their ac-parts are unitarily equivalent.

4 Unitary equivalence

4.1 Preliminaries

In what follows we assume that A is a densely defined simple closed symmetric
operator in H. By A0 we denote a self-adjoint extension of A which is fixed.
Alongside A0 we consider Ã = Ã∗ ∈ Ext A. Usually we assume that

(Ã− i)−1 − (A0 − i)−1 ∈ S∞(H). (4.1)

It is known (see [12] that there exists a boundary triplet Π := {H,Γ0,Γ1} for
A∗ such that A0 := A∗ � ker (Γ0). Of course, the boundary triplet Π is not
uniquely determined by the assumption A0 := A∗ � ker (Γ0). If Π1 and Π2 are
two such boundary triplets of A∗, then their Weyl functions M1(·) and M2(·)
are related by (2.12) (cf. [12]).

Fix a boundary triplet Π := {H,Γ0,Γ1} for A∗ such that A0 = A∗ker (Γ0).
By Proposition 2.9 there is a linear relation Θ = Θ∗ ∈ C̃(H) such that Ã = AΘ.
In general, Θ is not the graph of an operator, Θ 6∈ C(H). However, let us assume
that Θ is the graph an operator B. By Proposition 2.12 we get that (B−i)−1 ∈
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S∞(H), that means, that B is a self-adjoint operator with discrete spectrum.
Hence, %(B)∩R 6= ∅. In what follows we assume without loss of generality that
0 ∈ %(B). According to the polar decomposition we have B−1 = DJD where

D := |B|−1/2 = D∗ ∈ S∞(H) and J := sign(B) = J∗ = J−1. (4.2)

Clearly, D ∈ S∞(H), ker (D) = {0}, and D commutes with J . We set

G(z) := J −MD(z), z ∈ C+, (4.3)

MD(z) := DM(z)D, z ∈ C+, as usually. Obviously, MD(z) and −G(z) are
R-functions. We have ker (G(z)) = {0} for every z ∈ C+. Indeed, if G(z)f = 0,
then Jf = DM(z)Df. Hence, Im(M(z)Df,Df) = Im(Jf, f) = 0 which yields
Df = 0 or f = 0. Since J is a Fredholm operator satisfying ker (J) = ker (J∗) =
{0} we find by [20, Theorem 5.26] that G(z) is boundedly invertible for z ∈ C+.
We set T (z) := G(z)−1, z ∈ C+ and note that T (·) is a Nevanlinna function
because so is MD(·). Moreover, T (z)− J = T (z)MD(z)J ∈ S∞(H) for z ∈ C+.

4.2 Trace class perturbations: Rosenblum-Kato theorem

Here we apply the Weyl function technique in order to obtain a simple and quite
different proof of the classical Rosenblum-Kato theorem. In fact, we prove a gen-
eralization of the Rosenblum-Kato theorem due to Birman and Krein [6] which
includes non-additive (trace class) perturbations. Our proof demonstrates the
main idea of the proof of more general results contained in the next subsection.

Theorem 4.1 Let A0 and Ã be self-adjoint operators in H satisfying

(Ã− i)−1 − (A0 − i)−1 ∈ S1(H). (4.4)

Then the absolutely continuous parts Ãac and Aac
0 of Ã and A0, respectively, are

unitarily equivalent.

Proof. To include the operators Ãac and Aac
0 in the framework of extension

theory we set

A := A0 � dom (A), dom (A) = {f ∈ dom (Ã) ∩ dom (A0) : A0f = Ãf}.

Obviously, we have A := Ã � dom (A). Clearly, A is a closed symmetric operator
in H with equal deficiency indices and A0, Ã ∈ Ext A.

First we assume that A is densely defined. Let Π = {H,Γ0,Γ1} be a (ordi-
nary) boundary triplet for A∗, such that A0 := A∗ � ker (Γ0), and M(·) the
corresponding Weyl function. By definition Ã = Ã∗ ∈ Ext A and Ã and A0 are
disjoint, that is, dom (A) = dom (A0) ∩ dom (Ã). Hence, by Proposition 2.9(ii),
there exists an operator B = B∗ ∈ C(H) such that Ã = AB .
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It follows from (2.14) and (4.4) that MB(z) := (B − M(z))−1 ∈ S1(H)
for z ∈ C+. In accordance with [5, Lemma 2.4], see also [31], the limits
MB(t) := limy→+0MB(t + iy) exist in S2(H), for a.e t ∈ R. By Theorem 3.4
it is it suffices to calculate the multiplicity function dMB

(t) := rank (MB(t)) =
dim(ran (Im(MB(t)))).

It follows from (4.2) and (4.3) that

T (z) = G(z)−1 =
(
J −MD(z)

)−1 =
(
J −DM(z)D

)−1 (4.5)

= D−1
(
D−1JD−1 −M(z)

)−1
D−1 = |B|1/2

(
B −M(z)

)−1|B|1/2, z ∈ C+.

Combining this relation with (4.2) yields

MB(z) := (B −M(z))−1 = DT (z)D, z ∈ C+.

In turn, this equality implies

Im(MB(z)) = DT (z)∗ Im(MD(z))T (z)D, z ∈ C+. (4.6)

Moreover, since MD(z) ∈ S1(H) and T (z)−J ∈ S1 for z ∈ C+, by [5, Lemma
2.4] (see also [31]), for a.e t ∈ R and y → 0 there exist the limits MD(t) and
T (t) in S2(H)-norm of the Nevanlinna operator functions MD((t+ iy)) and
T (t+ iy), respectively. Therefore passing to the limit in (4.6) as y → 0 we get

Im(MB(t)) = DT (t)∗ Im(MD(t))T (t)D for a.e. t ∈ R. (4.7)

Therefore we find

dMB
(t) = dim(ran (Im(MB(t)))) (4.8)

= dim(ran (
√

Im(MB(t)) )) = dim(ran (
√

Im(MD(t))T (t)D)).

Since (J − MD(t))T (t) = T (t)(J − MD(t)) = I for a.e. t ∈ R, we find
ran (T (t)) = H for a.e. t ∈ R. Combining this relation with ran (D) = H
and (4.8) we obtain

dMB
(t) = dim(ran (

√
Im(MD(t)) )) = dim(ran (Im(MD(t)))) = dMD (t) (4.9)

for a.e. t ∈ R. Applying Theorem 3.4(ii) we complete this part of the proof.

If A is not densely defined one can repeat the above reasonings applying only
the boundary triplet technique for non-densely defined symmetric operators
developed in [13, 26]. It turns out that the proof above can easily be carried
over to this case. �

In the following corollary we show that in proving of unitary equivalence of
A0 and Ã ∈ Ext A it suffices to restrict the consideration to disjoint extensions.

Corollary 4.2 Let A be a densely defined closed symmetric operator in H, let
Π = {H,Γ0,Γ1} be an ordinary boundary triplet for A∗, and let M(·) be the
corresponding Weyl function. Let also A0 := A∗ � ker (Γ0) and D ∈ B(R).
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(i) If Aac
0 EA0(D) is a part of ÃacE eA(D) for any extension Ã = Ã∗ ∈ Ext A

disjoint with A0, then Aac
0 EA0(D) is a part of ÃacE eA(D) for any extension

Ã = Ã∗ ∈ Ext A.

(ii) If Aac
0 EA0(D) is unitarily equivalent to ÃacE eA(D) for any extension Ã =

Ã∗ ∈ Ext A disjoint with A0, then Aac
0 EA0(D) is unitarily equivalent to the

absolutely continuous part ÃacE eA(D) of any extension Ã = Ã∗ ∈ Ext A.

Proof. By Proposition 2.9 an extension Ã ∈ Ext A which is not disjoint with
A0 admits a representation ÃΘ with Θ = Θ∗ ∈ C̃(H) \ C(H). However, Θ
admits a decomposition H = Hop ⊕ H∞, Θ = Θop ⊕ Θ∞ where Θop is the
graph of the operator Bop = B∗op ∈ C(Hop) (cf. Section 2). Denoting by πop the
orthogonal projection from H onto Hop and Mop(z) := πopM(z) � Hop, we get
(Θ−M(z))−1 = (Bop−Mop(z))−1πop. Therefore formula (2.14) takes the form

(AΘ − z)−1 − (A0 − z)−1 = γ(z)(Bop −Mop(z))−1πopγ(z)∗, z ∈ C±.

Choose an operator B∞ = B∗∞ ∈ C(H∞) such that (B∞ − i)−1 ∈ S1(H∞) and
put B = Bop ⊕B∞. It follows from Proposition 2.12 that

(AΘ − z)−1 − (AB − z)−1 ∈ S1(H),

since (B∞ − i)−1 ∈ S1(H∞). By Theorem 4.1 the absolutely continuous parts
Aac

Θ and Aac
B of AΘ and AB , respectively, are unitarily equivalent.

(i) Since by assumption Aac
0 EA0(D) is a part of Aac

B EAB
(D) and Aac

B is uni-
tarily equivalent to Aac

Θ we get that Aac
0 EA0(D) is a part of Aac

Θ EAΘ(D).

(ii) Since, by assumption, Aac
0 EA0(D) is unitarily equivalent to Aac

B EAB
(D)

and Aac
B is unitarily equivalent to AΘ, we get that Aac

0 EA0(D) is unitarily equiv-
alent to Aac

Θ EAΘ(D). �

4.3 Compact non-additive perturbations

Here we generalize the Rosenblum-Kato theorem for the case of compact per-
turbations. To this end we assume that the maximal normal function

m+(t) := sup
0<y≤1

‖M(t+ iy)‖

is finite for a.e. t ∈ R. This is the case if and only if the normal limits M(t) :=
w-limy→+0M(t + iy) exist and are bounded operators for a.e. t ∈ R. Indeed,
let D = D∗ be a Hilbert-Schmidt operator such that ker (D) = {0} and let
MD(z) := DM(z)D, z ∈ C+. Since the limit MD(t) := o-limy→+0M

D(t+ iy)
exists and is a bounded operator for a.e. t ∈ R, see [5, 31], we find that

lim
y→+0

(M(t+ iy)Df,Dg) = (MD(t)f, g), f, g ∈ H, for a.e. t ∈ R.
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Hence the limit limy→+0(M(t+ iy)h, k) exists for a.e. t ∈ R and h, k ∈ ran (D)
which yields the existence of M(t) := w-limy→+0M(t+ iy) for a.e. t ∈ R. The
converse statement is obvious.

Now we are ready to prove the main result of this section.

Theorem 4.3 Let A be a densely defined, closed symmetric operator in H,
let Π = {H,Γ0,Γ1} be an ordinary boundary triplet for A∗, and let M(·) be
the corresponding Weyl function. Let Ã be a self-adjoint extension of A and
A0 := A∗ � ker (Γ0). If the maximal normal function m+(t) is finite for a.e.
t ∈ R and condition (4.1) is satisfied, then the absolutely continuous parts Ãac

and Aac
0 of Ã and A0, respectively, are unitarily equivalent.

Proof. We divide the proof into several steps.

(i) First we assume that the extensions Ã and A0 are disjoint, that is Ã = AB

where B = B∗ ∈ C(H). We define the operator D ∈ S∞(H) in accordance
with (4.2), D := |B|−1/2, and investigate the function MD(z) := MD(z) :=
DM(z)D, z ∈ C+. Let MD(t) := DM(t)D. Since the (weak) limit M(t) :=
w-limy→+0M(t + iy) exists for a.e. t ∈ R, by [31, Lemma 6.1.4], the following
limit exists

o- lim
y→+0

‖MD(t+ iy)−MD(t)‖ = 0 for a.e. t ∈ R. (4.10)

Let δa := {t ∈ R : ‖M(t)‖ ≤ a}. Since D = D∗ is a a non-negative compact
operator, it admits the spectral decomposition

D =
∑
l∈N

µlQl

where {µl}∞l=1, is the decreasing sequence of eigenvalues of D, {Ql}l∈N the
corresponding sequence of eigenprojections, dim{Ql} <∞.

Since µl → 0 as l→∞, there exists a number la ∈ N such that µla < 1/
√

2a.
We put H1 :=

⊕∞
l=la+1QlH and H2 :=

⊕la
l=1QlH. Clearly, H = H1 ⊕H2 and

dim(H2) < ∞. Moreover, the operator D admits the following decomposition
D = D1 ⊕D2 where

D1 :=
∞∑

l=la+1

µlQl and D2 :=
la∑

l=1

µlQl.

Since µla < 1/
√

2a, we have ‖D1‖ < 1/
√

2a. Hence

‖D1M(t)D1‖ < 1/2, t ∈ δa. (4.11)

Denote by P1 and P2 the orthogonal projections from H onto H1 and H2,
respectively. Note that P1J = JP1 and P2J = JP2.
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(ii) Our next aim is to show that the operator function G(z) := J −MD(z) is
invertible in C+ and that T (z) := G(z)−1 has the limits T (t) := s-limy→+0 T (t+
iy) for a.e. t ∈ δa. For this purpose we consider the decompositions

MD(z) :=
(
DiM(z)Dj

)2

i,j=1

:=
(
MD

11(z) MD
12(z)

MD
21(z) MD

22(z)

)
:
H1

⊕
H2

−→
H1

⊕
H2

,

z ∈ C+, and

G(z) = J −MD(z) =
(
J1 −MD

11(z) −MD
12(z)

−MD
21(z) J2 −MD

22(z)

)
, z ∈ C+,

where J1 := JP1 and J2 := JP2.

(ii)1 Let us prove that ker (J1 −MD
11(z)) = {0} for z ∈ C+. Indeed, from

0 = J1g −MD
11(z)g = J1g − D1M(z)D1g one gets that 0 = Im(MD

11(z)g, g) =
(Im(M(z)D1g,D1g). Hence 0 = D1g = Dg which yields g = 0. Since 0 ∈ %(J1)
and MD

11(·) ∈ S∞, we obtain that the operator J1−MD
11(z) = J1(I1−J1M

D
11(z))

is boundedly invertible for every z ∈ C+. Since MD
11(z) is a RH1-function, we

get that Ξ(z) := (J1 −MD
11(z))

−1, z ∈ C+, is a RH1-function too.

(ii)2 We show that for a.e. t ∈ δa, a > 0, the limit Ξ(t) := o-limy→+0 Ξ(t+iy)
exists in the operator norm and the following representation holds

Ξ(t) = (J1 −MD
11(t))

−1. (4.12)

First we note that J1 − MD
11(z) = J1(I1 − J1M

D
11(z). Using (4.11) we get

‖J1M
D
11(t)‖ < 1 for t ∈ δa. Hence the inverse operator (I1 − J1M

D
11(t))

−1

exists for t ∈ δa. Using (J1 −MD
11(t))

−1 = (I1 − J1M
D
11(t))

−1J1 we find that
the inverse operator (J1 −MD

11(t))
−1 exist for t ∈ δa. Since MD

11(z) has limits
MD

11(t) for a.e. t ∈ R one gets that J1M
D
11(t) = o-limy→+0 J1M

D
11(t + iy) for

a.e. t ∈ R. Fix any such t0 ∈ δa. Then due to estimate (4.11) there exists
η = η(t0) such that supy∈(0,η) ‖J1M

D
11(t0 + iy)‖ ≤ 1/2. Therefore, the family

{‖(I1 − J1M
D
11(t0 + iy))−1‖}y∈(0,η) is uniformly bounded for any fixed t0 ∈ δa.

Using this fact and (4.10) we can pass to the limit as y → 0 in the identity

(I1 − J1M
D
11(t0 + iy))−1 − (I1 − J1M

D
11(t0))

−1

= (I1 − J1M
D
11(t0 + iy))−1(J1M

D
11(t0 + iy))− J1M

D
11(t0))(I1 − J1M

D
11(t0))

−1.

We obtain o-limy→+0((I1−J1M
D
11(t+ iy))

−1 = (I1−J1M
D
11(t))

−1 for a.e. t ∈ δa
which yields the existence of Ξ(t) := o-limy→+0 Ξ(t + iy) and proves represen-
tation (4.12).

(ii)3 Next we set

∆(z) := MD
22(z) +MD

21(z)(J1 −MD
11(z))

−1MD
12(z), z ∈ C+.

and show that the function T2(·) := (J2 −∆(·))−1 is RH2-function.
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Clearly, ∆(·) is holomorphic in C+ and it acts in a finite dimensional Hilbert
space H2. Since det(J2 − ∆(·)) is also holomorphic in C+, the determinant
det(J2−∆(·)) has only a discrete set of zeros in C+. Hence the inverse operator
T2(·) := (J2−∆(·))−1 exists for z ∈ Ω ⊂ C+ where C+ \Ω is at most countable
discrete set, that is, T2(·) is meromorphic in C+.

As we just mentioned the inverse operator (J2 −∆(z))−1 exists for z ∈ Ω ⊂
C+. Choose any z ∈ Ω. Then, by the Frobenius formula,

T (z) := (J −MD(z))−1 =
(

T1(z) Ξ(z)MD
12(z)T2(z)

T2(z)MD
21(z)Ξ(z) T2(z)

)
(4.13)

where
T1(z) := Ξ(z) + Ξ(z)MD

12(z)T2(z)MD
21(z)Ξ(z). (4.14)

Hence
T2(z) = P2T (z) � H2, z ∈ Ω.

Since T (·) is a RH-function, we get that Im (T2(z)) > 0 for z ∈ Ω. Since in
addition T2(·) is meromorphic in C+, we conclude that it is holomorphic. Thus,
T2(·) = (J2 −∆(·))−1 is RH2-function, too.

(ii)4 In this step we show that for any a > 0 the limit T (t) := o-limy→+0 T (t+
iy) exists in the operator norm for a.e. t ∈ δa. Since T2(·) is the matrix RH2-
function, the limit T2(t) = o-limy→+0 T2(t+ iy) exists for a.e. t ∈ R. Besides,
(4.10) yields

lim
y→+0

‖MD
12(t+ iy)−MD

12(t)‖ = 0 and lim
y→+0

‖MD
21(t+ iy)−MD

21(t)‖ = 0

for a.e. t ∈ R. Combining these relations with (4.12) and (4.14) yields
the existence of the limit T1(t) := o-limy→+0 T1(t + iy) for a.e t ∈ δa. Finally,
combining all these relations with the block-matrix representation (4.13) we
complete the proof of (ii).

(iii) Using the results of (ii) we are now going to complete the proof of the
theorem. We set δn := {t ∈ R : m+(t) ≤ n} and note that

⋃
n∈N δn differs

from R by a set of Lebesgue measure zero. By step (ii) the limit T (t) :=
o-limy→+0 T (t+ iy) exists for a.e. t ∈

⋃
n∈N δn in the operator norm. Hence the

limit T (t) := o-limy→+0 T (t+ iy) exist for a.e. t ∈ R. Combining this fact with
(4.10) we can pass to the limit in the identity (J −MD(t + iy))T (t + iy) = I
as y → 0. We get

(J −MD(t))T (t) = T (t)(J −MD(t)) = I for a.e. t ∈ R (4.15)

The rest of the proof is similar to that of Theorem 4.1. First we assume that
Ã is disjoint with A0, hence, it admits a representation Ã = AB with B ∈
C(H). Therefore, setting MB(·) := (B −M(·))−1 and assuming without loss of
generality that 0 ∈ %(B) we arrive at the representation (4.7) with D = |B|−1/2
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for a.e. t ∈ R. Moreover, (4.15) yields ran (T (t)) = H for a.e. t ∈ R. Therefore
arguing as in (4.8) and (4.9) we obtain

dMB
(t) = dim(ran (

√
Im(MD(t)) )) = dim(ran (

√
Im(M(t))D ))

= dim(ran (
√

Im(M(t)) )) = dim(ran (Im(M(t)))) = dM (t)

for a.e. t ∈ R. Applying Theorem 3.4(ii) we complete the proof.

Finally, we apply Corollary 4.2 to extend the proof for extensions Ã not
disjoint with A0. �

Remark 4.4 The result as well as the proof remains valid if A is non-densely
defined. In this case it suffices to use the boundary triplet technique for non-
densely defined operators developed in [13, 26], cf. proof of Theorem 4.1. How-
ever, the assumptions on the Weyl function are indispensable.

The following result is immediate from Theorem 3.4(ii) and Theorem 4.3.

Corollary 4.5 Let the assumptions of Theorem 4.3 be satisfied and let

F := {t ∈ R : m+(t) <∞}. (4.16)

If condition (4.1) holds, then the parts ÃacE eAac(F) and Aac
0 EAac

0
(F) of Ã and

A0, respectively, are unitarily equivalent.

Remark 4.6 Let us define the invariant maximal normal function

m+(t) := sup
y∈(0,1]

∥∥∥Im(M(i))−1/2 (M(t+ iy)− Re(M(i))) Im(M(i))−1/2
∥∥∥ ,
(4.17)

for t ∈ R. For Weyl functions one easily proves that m+(t) is finite if and only
if m+(t) is finite.

(i) The quantity m+(t) has the advantage that it is invariant: Let A be a densely
defined closed symmetric operator, Π = {H,Γ0,Γ1} a boundary triplet for A∗,
and M(·) the corresponding Weyl function. Further, let Π̃ = {H̃, Γ̃0, Γ̃1} be
another boundary triplet for A∗ with the Weyl function M̃(·) and let A0 :=
A∗ � ker (Γ0) = A∗ � ker (Γ̃0). In this case M(·) and M̃(·) are related by (2.12)
However, m̃+(t) = m+(t) for t ∈ R, where m+(t) is obtained by replacing in
(4.17) M(·) by M̃(·).

(ii) Further, if the Weyl function M(·) satisfies M(i) = i, then m+(t) = m+(t)
for t ∈ R.
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(iii) Let π be an orthogonal projection onto a subspace Ĥ of H. If m+(t) is
finite, then the invariant maximal normal function m̂

+(t), obtained from (4.17)
replacing M(·) by M̂ (·) := πM(·) � Ĥ , is also finite and satisfies m̂

+(t) ≤
m+(t) for t ∈ R.

5 Direct sums of symmetric operators

5.1 Boundary triplets for direct sums

Let Sn be a closed densely defined symmetric operators in Hn, n+(Sn) =
n−(Sn), and let Πn = {Hn,Γ0n,Γ1n} be a boundary triplet for S∗n, n ∈ N. Let

A :=
∞⊕

n=1

Sn, dom (A) :=
∞⊕

n=1

dom (Sn). (5.1)

Clearly, A is a closed densely defined symmetric operator in the Hilbert space
H :=

⊕∞
n=1 Hn with n±(A) = ∞. Consider the direct sum Π := ⊕∞n=1Πn =:

{H,Γ0,Γ1} of (ordinary) boundary triplets defined by

H :=
∞⊕

n=1

Hn, Γ0 :=
∞⊕

n=1

Γ0n and Γ1 :=
∞⊕

n=1

Γ1n. (5.2)

Clearly,

A∗ =
∞⊕

n=1

S∗n, dom (A∗) =
∞⊕

n=1

dom (S∗n). (5.3)

We note that the Green’s identity

(S∗nfn, gn)− (fn, S
∗
ngn) = (Γ1nfn,Γ0ngn)Hn − (Γ0nfn,Γ1ngn)Hn ,

fn, gn ∈ dom (S∗n), holds for every S∗n, n ∈ N. This yields the Green’s identity
(2.15) for A∗ := A∗ � dom (Γ), dom (Γ) := dom (Γ0) ∩ dom (Γ1) ⊆ dom (A∗),
that is, for f = ⊕∞n=1fn, g = ⊕∞n=1gn ∈ dom (Γ) we have

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (Γ), (5.4)

where A∗ and Γj are defined by (5.3) and (5.2), respectively. However, the
Green’s identity (5.4) cannot be extended to dom (A∗) in general, since dom (Γ)
is smaller than dom (A∗) generically. It might even happen that Γj are not
bounded as mappings from dom (A∗) equipped with the graph norm into H.
Counterexamples for the direct sum Π = ⊕∞n=1Πn, which does not form a
boundary triplet, firstly appeared in [21]).

In this section we show that it is always possible to modify the boundary
triplets Πn in such a way that a new sequence Π̃n = {Hn, Γ̃0, Γ̃1} of boundary
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triplets for S∗n satisfies the following properties: Π̃ = ⊕∞n=1Π̃n forms a boundary
triplet for A∗ and the following relations hold

S̃0n := S∗n � ker (Γ̃0n) = S∗n � ker (Γ0n) =: S0n, n ∈ N. (5.5)

Hence Ã0 := ⊕∞n=1S̃0n = ⊕∞n=1S0n =: A0. We note that the existence of a
boundary triplet Π′ = {H,Γ′0,Γ′1} for A∗ satisfying ker (Γ′0) = dom (A0) is
known (see [17, 12]). However, we emphasize that in applications we need a
special form (5.2) of a boundary triplet for A∗ because it leads to the block-
diagonal form of the corresponding Weyl function (cf. Sections 5.2, 5.3 below).

We start with a simple technical lemma.

Lemma 5.1 Let S be a densely defined closed symmetric operator with equal
deficiency indices, Π = {H,Γ0,Γ1} a boundary triplet for S∗, and M(·) the cor-
responding Weyl function. Then there exists a boundary triplet Π̃ = {H, Γ̃0, Γ̃1}
for S∗ such that ker (Γ̃0) = ker (Γ0) and the corresponding Weyl function M̃(·)
satisfies M̃(i) = i.

Proof. Let M(i) = Q+ iR2 where Q := Re(M(i)), R :=
√

Im(M(i)). We set

Γ̃0 := RΓ0 and Γ̃1 := R−1(Γ1 −QΓ0). (5.6)

A straightforward computation shows that Π̃ := {H, Γ̃0, Γ̃1} is a boundary
triplet for A∗. Clearly, ker (Γ̃0) = ker (Γ0). The Weyl function M̃(·) of Π̃ is
given by M̃(·) = R−1(M(·)−Q)R−1 which yields M̃(i) = i. �

If S is a densely defined closed symmetric operator in H, then by the first v.
Neumann formula the direct decomposition dom (S∗) = dom (S)

.
+ Ni

.
+ N−i

holds where N±i := ker (S∗ ∓ i). Equipping dom (S∗) with the inner product

(f, g)+ := (S∗f, S∗g) + (f, g), f, g ∈ dom (S∗), (5.7)

one obtains a Hilbert space denoted by H+. The first v. Neumann formula leads
to the following orthogonal decomposition

H+ = dom (S)⊕Ni ⊕N−i.

Lemma 5.2 Let S be as in Lemma 5.1, let Π = {H,Γ0,Γ1} be a (ordinary)
boundary triplet for S∗, and M(·) the corresponding Weyl function. If M(i) = i,
then the operator Γ : H+ −→ H⊕H, Γ := (Γ0,Γ1)> is a contraction. Moreover,
Γ isometrically maps N := Ni ⊕N−i onto H.

Proof. We show that

‖Γ(f + fi + f−i)‖2H⊕H = ‖fi + f−i‖2+ (5.8)
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where f
.
+ fi

.
+ f−i ∈ dom (S)

.
+ Ni

.
+ N−i = dom (S∗). Indeed, since

dom (S) = ker (Γ0) ∩ ker (Γ1), we find

‖Γ(f + fi + f−i)‖2H⊕H = ‖Γ0(fi + f−i)‖2H + ‖Γ1(fi + f−i)‖2H.

Clearly,

‖Γj(fi+f−i)‖2H = ‖Γjfi‖2+2 Re((Γjfi,Γjf−i))+ ‖Γjf−i‖2, j ∈ {0, 1}. (5.9)

Using Γ1fi = M(i)Γ0fi = iΓ0fi and Γ1f−i = M(−i)Γ0f−i = −iΓ0f−i we obtain

‖Γ1(fi + f−i)‖2H = (Γ0fi,Γ0fi)− 2 Re((Γ0fi,Γ0f−i)) + (Γ0f−i,Γ0f−i) (5.10)

Taking a sum of (5.9) and (5.10) we get

‖Γ0(fi + f−i)‖2H + ‖Γ1(fi + f−i)‖2H = 2‖Γ0fi‖2H + 2‖Γ0f−i‖2H. (5.11)

Combining equalities Γ1f±i = ±iΓ0f±i with Green’s identity (2.7) we obtain
‖Γ0fi‖H = ‖fi‖ and ‖Γ0f−i‖H = ‖f−i‖. Therefore (5.11) takes the form

‖Γ0(fi + f−i)‖2H + ‖Γ1(fi + f−i)‖2H = 2‖fi‖2 + 2‖f−i‖2. (5.12)

A straightforward computation shows ‖fi + f−i‖2+ = 2‖fi‖2 + 2‖f−i‖2 which
together with (5.12) proves (5.8). Since ‖fi + f−i‖2+ ≤ ‖f‖2+ + ‖fi + f−i‖2+ =
‖f + fi + f−i‖2+, we get from (5.8) that Γ is a contraction.

Obviously, Γ is an isometry from N into H⊕H. Since Π is a boundary triplet
for S∗, ran (Γ) = H⊕H. Hence Γ is an isometry from N onto H⊕H. �

Passing to direct sum (5.1), we equip dom (A∗n) and dom (A∗) with the graph’s
norms and obtain the Hilbert spaces H+n and H+, respectively. Clearly, the
corresponding inner products (f, g)+n and (f, g)+ are defined by (5.7) with S
replaced by Sn and A, respectively. Obviously, H+ =

⊕∞
n=1 H+n.

Theorem 5.3 Let {Sn}∞n=1 be a sequence of densely defined closed symmetric
operators, dom (Sn) ⊂ Hn, n+(Sn) = n−(Sn), and let S0n = S∗0n ∈ Ext Sn .
Further, let A and A0 be given by (5.1) and

A0 :=
∞⊕

n=1

S0n, (5.13)

respectively. Then there exist boundary triplets Πn := {Hn,Γ0n,Γ1n} for S∗n
such that S0n = S∗n � ker (Γ0n), n ∈ N, and the direct sum Π = ⊕∞n=1Πn defined
by (5.2) forms an ordinary boundary triplet for A∗ satisfying A0 = A∗ � ker (Γ0).
Moreover, the corresponding Weyl function M(·) and the γ-field γ(·) are given
by

M(z) =
∞⊕

n=1

Mn(z) and γ(z) =
∞⊕

n=1

γn(z) (5.14)

where Mn(·) and γn(·) are the Weyl functions and the γ-field corresponding to
Πn, n ∈ N. In addition, the condition M(i) = iI holds.
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Proof. For every S0n = S∗0n ∈ ExtSn there exists a boundary triplet Πn =
{Hn,Γ0n,Γ1n} for S∗n such that S0n := A∗n � ker (Γ0n) (see [12]). By Lemma 5.1
we can assume without loss of generality that the corresponding Weyl function
Mn(·) satisfies Mn(i) = i. By Lemma 5.2 the mapping Γn := (Γ0n,Γ1n)> :
H+n −→ Hn ⊕Hn, is contractive for each n ∈ N. Hence ‖Γj‖ = supn ‖Γjn‖ ≤
1, j ∈ {0, 1}, where Γ0 and Γ1 are defined by (5.2). It follows that the mappings
Γ0 and Γ1 are well-defined on dom (Γ) = dom (A∗) =

⊕∞
n=1 dom (S∗n). Thus,

the Green’s identity (5.4) holds for all f, g ∈ dom (A∗).

Further, we set N±in := ker (S∗n∓ i), Nn := Nin

.
+ N−in, N±i := ker (A∗∓ i)

and N := Ni

.
+ N−i. By Lemma 5.2 the restriction Γn � Nn is an isometry

from Nn, regarded as a subspace of H+n, onto Hn⊕Hn. Since N regarded as a
subspace of H+ admits the representation N =

⊕∞
n=1 Nn, the restriction Γ � N,

Γ :=
⊕∞

n=1 Γn, isometrically maps N onto H ⊕ H. Hence ran (Γ) = H ⊕ H.
Equalities (5.14) are immediate from Definition 2.10. �

Remark 5.4 Kochubei [21] proved that Π = ⊕∞n=1Πn forms a boundary triplet
whenever any pair {Sn, S0n}, S0n := S∗n � ker (Γ0n), n ∈ N, is unitarily equiva-
lent to {S1, S01}.

Recall, that for any non-negative symmetric operator A the set of its non-
negative self-adjoint extensions Ext A(0,∞) is non-empty (see [1, 20]). The set
Ext A(0,∞) contains the Friedrichs (the biggest) extension AF and the Krein
(the smallest) extension AK . These extensions are uniquely determined by the
following extremal property in the class Ext A(0,∞) :

(AF + x)−1 ≤ (Ã+ x)−1 ≤ (AK + x)−1, x > 0, Ã ∈ Ext A(0,∞).

Corollary 5.5 Assume conditions of Theorem 5.3. Let Sn ≥ 0, n ∈ N, and
let SF

n and SK
n be the Friedrichs and the Krein extensions of Sn, respectively.

Then
AF = ⊕∞n=1S

F
n and AK = ⊕∞n=1S

K
n . (5.15)

Proof. Let us prove the second of relations (5.15). The first one is proved
similarly. By Theorem 5.3 there exists a boundary triplet Πn = {Hn,Γ0n,Γ1n}
for S∗n such that SK

n = S0n and Π = ⊕∞n=1Πn is a boundary triplet for A∗.

Fix any x2 ∈ R+ and put C2 := ‖M(−x2)‖. Then any h = ⊕∞n=1hn ∈ H can
be decomposed by h = h(1) ⊕ h(2) with h(1) ∈ ⊕p

n=1Hn and h(2) ∈ ⊕∞n=p+1Hn

such that ‖h(2)‖ < C
−1/2
2 . Hence |(M(−x2)h(2), h(2))| < 1. Due to the

monotonicity of M(·) we get(
M(−x)h(2), h(2)

)
>

(
M(−x2)h(2), h(2)

)
> −1, x ∈ (0, x2).

Since S0n = SK
n , the Weyl function Mn(·) satisfies

lim
x↓0

(
Mn(−x)gn, gn

)
= +∞, gn ∈ Hn \ {0}, (5.16)
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cf. [12, Proposition 4]. Since M(·) = ⊕∞n=1Mn(·) is block-diagonal, cf. (5.14),
we get from (5.16) that for any N > 0 there exists x1 > 0 such that(

M(−x)h(1), h(1)

)
=

p∑
n=1

(
Mn(−x)hn, hn

)
> N for x ∈ (0, x1). (5.17)

Combining (5.16) with (5.17) and using the diagonal form of M(·), we get

(M(−x)h, h) = (M(−x)h(1), h(1)) + (M(−x)h(2), h(2)) > N − 1

for 0 < x ≤ min(x1, x2). Thus, limx↓0(M(−x)h, h) = +∞ for h ∈ H \ {0}.
Applying [12, Proposition 4] we prove the second relation of (5.15). �

Remark 5.6 Another proof can be obtained by using characterization of AF

and AK by means of the respective quadratic forms.

5.2 Summands with arbitrary equal deficiency indices

Here we apply Theorem 4.3 to direct sums of symmetric operators (5.1), allowing
summands Sn to have arbitrary (finite or infinite) equal deficiency indices. We
start with a simple general proposition.

Proposition 5.7 Let {Sn}∞n=1 be a sequence of densely defined closed symmet-
ric operators, dom (Sn) ⊂ Hn, n+(Sn) = n−(Sn), and let S0n = S∗0n ∈ Ext Sn .
Further, let A and A0 be given by (5.1) and (5.13), respectively. If Ã is a
self-adjoint extension of A such that condition (4.1) is satisfied, then

σac(A0) =
⋃
σac(S0n) ⊆ σ(Ã) and σac(Ã) ⊆

⋃
σ(S0n) = σ(A0). (5.18)

Proof. By the Weyl theorem, condition (4.1) yields σess(Ã) = σess(A0). Hence⋃
σac(S0n) = σac(A0) ⊆ σess(A0) = σess(Ã) ⊆ σ(Ã)

and
σac(Ã) ⊆ σess(Ã) = σess(A0) ⊆ σ(A0) =

⋃
σ(S0n).

�

Our further considerations are substantially based on Theorem 5.3.

Theorem 5.8 Let {Sn}∞n=1 be a sequence of densely defined closed symmetric
operators, dom (Sn) ⊂ Hn, n+(Sn) = n−(Sn), and let S0n = S∗0n ∈ Ext Sn .
Further, let Πn = {Hn,Γ0n,Γ1n} be an ordinary boundary triplet for S∗n such
that S0n = S∗n � ker (Γ0n), n ∈ N, and let Mn(·) be the corresponding Weyl func-
tion. Moreover, let m+

n (t), n ∈ N, be the invariant maximal normal function
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obtained from (4.17) by replacing M(·) by Mn(·). If supn∈N m+
n (t) < +∞ for

a.e. t ∈ R, then for any self-adjoint extension Ã of A defined by (5.1), which
satisfies the condition (4.1), the absolutely continuous parts Ãac and Aac

0 are
unitarily equivalent. In particular, instead of (5.18) we have σac(A0) = σac(Ã).

Proof. Let Π̃n = {Hn, Γ̃0n, Γ̃1n} be a boundary triplet for S∗n, n ∈ N, defined
according to (5.6), that is Γ̃0n := RnΓ0n and Γ̃1n := R−1

n

(
Γ1n−Re(Mn(i))Γ0n

)
,

where Rn :=
√

ImMn(i)). The corresponding Weyl function M̃n(·) is

M̃n(z) = R−1
n

(
Mn(z)− ReMn(i)

)
R−1

n , n ∈ N.

Since M̃n(i) = i, n ∈ N, by Theorem 5.3, Π̃ = ⊕∞n=1Π̃n =: {H, Γ̃0, Γ̃1} is a
boundary triplet for A∗ = ⊕∞n=1Sn

∗ satisfying A∗ � ker Γ̃0 = A0 := ⊕∞n=1S0n.
By definition of m+

n (·) and due to Remark 4.6 one has m+
n (t) = m̃+

n (t) :=
supy∈(0,1] ‖M̃n(t + iy)‖ for t ∈ R, n ∈ N. Since A0 = ⊕∞n=1S0n we get that
m̃+(t) = supnm

+
n (t), where m̃+(t) := supy∈(0,1] ‖M̃(t + iy)‖, t ∈ R. Since,

by assumption, the maximal normal function m̃+(t) is finite, we obtain from
Theorem 4.3 that Ãac and Aac

0 are unitarily equivalent. �

Corollary 5.9 Let the assumptions of Theorem 5.8 be satisfied and let

N := {t ∈ R : sup
n∈N

m+
n (t) <∞}. (5.19)

If condition (4.1) holds, then the parts ÃacE eA(N ) and Aac
0 EA0(N ) of the oper-

ators Ã and A0, respectively, are unitarily equivalent.

Let T and T ′ be densely defined closed symmetric operators in H and let T0 and
T ′0 be self-adjoint extensions of T and T ′, respectively. It is said that the pairs
{T, T0} and {T ′, T ′0} are unitarily equivalent if there exists a unitary operator
U in H such that T ′ = UTU−1 and T ′0 = UT0U

−1.

Corollary 5.10 Assume the conditions of Theorem 5.8. Let also the pairs
{Sn, S0n}, n ∈ N, be unitarily equivalent to the pair {S1, S01}. If the maximal
normal function m+

1 (t) is finite for a.e. t ∈ R and condition (4.1) is satisfied,
then the absolutely continuous parts Ãac and Aac

0 are unitarily equivalent.

Proof. Since the symmetric operators Sn are unitarily equivalent, we assume
without loss of generality that Hn = H for each n ∈ N. Let Un be a unitary
operator such that A1 = UnSnU

−1
n and A01 = UnS0nU

−1
n . A straightforward

computation shows that Π′n := {H,Γ′0n,Γ
′
1n}, Γ′0n := Γ01Un and Γ′1n := Γ1nUn,

defines a boundary triplet for S∗n. The Weyl function M ′
n(·) corresponding to Π′n

is M ′
n(z) = M1(z). Hence m+

n (·) = m′+n (·) and m+
1 (t) = m′+n (t) for t ∈ R, where

m+
n (t) and m′+n (t) are the invariant maximal normal functions corresponding to

the triplets Πn and Π′n, respectively. By Remark 4.6(i), m+
1 (t) = m+

n (t) for
t ∈ R and n ∈ N. Applying Theorem 5.8 we complete the proof. �
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5.3 Finite deficiency summands: ac-minimal extensions

Here we improve the previous results assuming that n±(Sn) < ∞. First, we
show that extensions A0 = ⊕∞n=1S0n(∈ Ext A) of the form (5.13) posses a certain
spectral minimality property. To this end we start with the following lemma.

Lemma 5.11 Let H be a bounded non-negative self-adjoint operator in a sep-
arable Hilbert space H and let L be a bounded operator in H. Then

(i) dim(ran (H)) = dim(ran (
√
H)).

(ii) If L∗L ≤ H, then dim(ran (L)) ≤ dim(ran (H)).

(iii) If P is an orthogonal projection, then dim(ran (PHP )) ≤ dim(ran (H)).

Proof. The assertion (i) is obvious.

(ii) If L∗L ≤ H, then there is a contraction C such that L = C
√
H. Hence

dim(ran (L)) = dim(ran (C
√
H)) ≤ dim(ran (

√
H)) = dim(ran (H)).

(iii) Clearly, dim(ran (PHP )) ≤ dim(ran (HP )) ≤ dim(ran (H)). �

Theorem 5.12 Let {Sn}∞n=1 be a sequence of densely defined closed symmetric
operators, dom (Sn) ⊂ Hn, with n+(Sn) = n−(Sn) < ∞, n ∈ N and let S0n =
S∗0n ∈ Ext Sn . Let also A and A0 be given by (5.1) and (5.13), respectively.
Then A0 is ac-minimal, in particular, σac(A0) ⊆ σac(Ã).

Proof. By Theorem 5.3 there is a sequence of boundary triplets Πn :=
{Hn,Γ0n,Γ1n}, n ∈ N, for S∗n such that S0n = S∗n � ker (Γ0n), n ∈ N, and the di-
rect sum Π = {H,Γ0,Γ1} =

⊕∞
n=1 Πn of the form (5.1) is a boundary triplet for

A∗ satisfying A0 = A∗ � ker (Γ0). By Proposition 2.9, any Ã = Ã∗ ∈ Ext A ad-
mits a representation Ã = AΘ with Θ = Θ∗ ∈ C̃(H). By Corollary 4.2(i), we can
assume that Ã and A0, are disjoint, that is Θ = B = B∗ ∈ C(H). Consider the
generalized Weyl function MB(·) := (B −M(·))−1, where M(·) =

⊕∞
n=1Mn(·),

cf. (5.14). Clearly,

Im (MB(z)) = MB(z)∗Im (M(z))MB(z), z ∈ C+.

Denote by PN , N ∈ N, the orthogonal projection from H onto the subspace
HN :=

⊕N
n=1Hn. SettingMPN

B (z) := PNMB(z) � HN , and taking into account
the block-diagonal form of M(·) and the inequality Im (M(z)) > 0 we obtain

Im (MPN

B (z)) = Im (PNMB(z)PN ) (5.20)

= PNMB(z)∗Im (M(z))MB(z)PN ≥MPN

B (z)∗Im (MPN (z))MPN

B (z),

where MPN (z) := PNM(z) � HN =
⊕N

n=1Mn(z). Since PN is a finite
dimensional projection the limits MPN

B (t) := s-limy→+0M
PN

B (t + iy) and
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MPN (t) := s-limy→+0M
PN (t+ iy) exist for a.e. t ∈ R. From (5.20) we get

Im (MPN

B (t)) ≥MPN

B (t)∗Im (MPN (t))MPN

B (t) for a.e. t ∈ R. (5.21)

Since MB(·) is a generalized Weyl function, it is a strict RH-function, that
is, ker (Im (MB(z))) = {0}, z ∈ C+. Therefore, MPN

B (·) is also strict. Hence
0 ∈ %(MPN

B (z)), z ∈ C+, and GN (·) := −(MPN

B (·))−1 is strict. Since both
GN (·) and MPN

B (·) are matrix-valued R-functions, the limits MPN

B (t + i0) :=
limy→+0M

PN

B (t+ iy) and GN (t+ i0) := limy→+0GN (t+ iy) exist for a.e. t ∈ R.
Therefore, passing to the limit in the identity MPN

B (t+ iy)GN (t+ iy) = −I as
y → 0, we get MPN

B (t + i0)GN (t + i0) = −I for a.e. t ∈ R. Hence MPN

B (t) :=
MPN

B (t+ i0) is invertible for a.e. t ∈ R.

Further, combining (5.21) with Lemma 5.11(ii) we get

dim

(
ran

(√
ImMPN (t)MPN

B (t)
))

≤ d
M

PN
B

(t) for a.e. t ∈ R.

Since MPN

B (t) is invertible for a.e. t ∈ R, we find

dMPN (t) := dim

(
ran

(√
ImMPN (t)

))
≤ d

M
PN
B

(t) for a.e. t ∈ R. (5.22)

Let DN = PN⊕D0 where D0 ∈ S2(H⊥N ) and satisfy ker (D0) = ker (D∗0) = {0}.
Then ker (DN ) = ker (D∗N ) = {0} and PN = PNDN = DNPN . By Lemma
5.11(iii), dMPN (t) ≤ d

M
DN
B

(t) for a.e. t ∈ R. Further, for any D ∈ S2(H)
and satisfying ker (D) = ker (D∗) = {0}, dMD

B
(t) = d

M
DN
B

(t) for a.e. t ∈ R.
Combining this equality with (5.22) we get dMPN (t) ≤ dMD

B
(t) for a.e. t ∈ R

and N ∈ N. Since

dMPN (t) =
N∑

n=1

dMn(t) and dMD (t) =
∞∑

n=1

dMn(t) (5.23)

for a.e. t ∈ R, we finally prove that dMD (t) ≤ dMD
B

(t) for a.e. t ∈ R. One
completes the proof by applying Theorem 3.4(i). �

Corollary 5.13 Let the assumptions of Theorem 5.12 be satisfied and let
Sn ≥ 0, n ∈ N. Further, let A and A be given by (5.1) and (5.13), respectively.
Then the Friedrichs and the Krein extensions AF and AK of A are ac-minimal.
In particular, (AF )ac and (AK)ac are unitarily equivalent.

Proof. Combining Theorem 5.12 and Corollary 5.5 yields the assertion. �

Corollary 5.14 Let the assumptions of Theorem 5.12 be satisfied and let

D := {t ∈ R :
∑
n∈N

dMn(t) = ∞}. (5.24)
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If, in addition, condition (4.1) holds, then the parts ÃacE eA(D) and Aac
0 EA0(D)

of the operators Ã and A0, respectively, are unitarily equivalent.

Proof. By (5.23) and (5.24), dMD (t) = +∞ for a.e. t ∈ D. Applying Theorem
5.12 and Theorem 2.4(ii) we complete the proof. �

Corollary 5.15 Let the assumptions of Theorem 5.12 be satisfied and let N
and D be given by (5.19) and (5.24), respectively. If condition (4.1) is valid,
then the parts ÃacE eA(D ∪N ) and Aac

0 EA0(D ∪N ) are unitarily equivalent.

Proof. By Corollary 5.9, the parts ÃacE eA(N ) and Aac
0 EA0(N ) are unitarily

equivalent. Corollary 5.14 yields the unitary equivalence of the parts ÃacE eA(D)
and Aac

0 EA0(D). Hence the parts ÃacE eA(D ∪ N ) and Aac
0 EA0(D ∪ N ) are

unitarily equivalent too. �

Corollary 5.16 Assume conditions of Theorem 5.12. Then
⋃

n∈N σac(S0n) ⊆
σac(Ã). If, in addition, condition (4.1) is valid and the extensions S0n, n ∈ N,
are purely absolutely continuous, then

σac(Ã) =
⋃
n∈N

σac(S0n). (5.25)

Proof. The first statement immediately follows from Theorem 5.12. Relation
(5.25) is implied by Proposition 5.7. �

Corollary 5.17 Assume the conditions of Theorem 5.12. Let also the pairs
{Sn, S0n}, n ∈ N, be pairwise unitarily equivalent. If condition (4.1) holds ,
then for any Ã ∈ Ext A the ac-parts Ãac and Aac

0 are unitarily equivalent.

Remark 5.18 (i) For the special case n±(Sn) = 1, n ∈ N, Theorem 5.12 com-
plements [2, Corollary 5.4] where the inclusion σac(A0) ⊆ σac(Ã) was proved.
Moreover, Corollary 5.17 might be regarded as a substantial generalization of
[2, Theorem 5.6(i)] to the case n±(Sn) > 1. However, in the case n±(Sn) = 1,
Corollary 5.17 is implied by [2, Theorem 5.6(i)] where the unitary equivalence of
Ãac = Ãac

B and Aac
0 was proved under the weaker assumption that B is purely

singular. Indeed, by Proposition 2.12 condition (4.1) with Ã = AB is equivalent
to discreteness of B.

(ii) The inequality NEac
A0

(t) ≤ NEaceA (t) in Theorem 5.12 might be strict even
for t ∈ σac(A0). Indeed, assume that (α, β) is a gap for all except for the
operators S1, . . . , SN . Set S1 := ⊕N

n=1Sn and S2 := ⊕∞n=N+1Sn. Then n±(S2) =
∞ and (α, β) is a gap for S2. By [8] there exists S̃2 = S̃∗2 ∈ Ext S2 having ac-
spectrum within (α, β) of arbitrary multiplicity. Moreover, even for operators
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A = ⊕∞n=1Sn satisfying assumptions of Corollary 5.17 with n±(Sn) = 1 the
inclusion σac(A0) ⊆ σac(Ã) might be strict whenever condition (4.1) is violated,
cf. [8] or [2, Theorem 4.4] which guarantees the appearance of prescribed
spectrum either within one gap or within several gaps of A0.

6 Sturm-Liouville operators with operator
potentials

6.1 Bounded operator potentials

Let H be a separable Hilbert space. As usual, L2(R+,H) := L2(R+)⊗H stands
for the Hilbert space of (weakly) measurable vector-functions f(·) : R+ → H
satisfying

∫
R+
‖f(t)‖2Hdt < ∞. Denote also by W 2,2(R+,H) := W 2,2(R+) ⊗H

the Sobolev space of vector-functions taking values in H.

Let T = T ∗ ≥ 0 be a bounded operator in H. Denote by A := Amin the
minimal operator generated on H := L2(R+,H) by a differential expression
A = − d2

dx2 ⊗ IH + IL2(R+) ⊗ T . It is known (see [17, 28]) that A is given by

(Af)(x) = −f ′′(x) + Tf(x), f ∈ dom (A) = W 2,2
0 (R+,H), (6.1)

where W 2,2
0 (R+,H) := {f ∈W 2,2(R+,H) : f(0) = f ′(0) = 0}.

The operator A is closed, symmetric and non-negative. It can be proved
similarly to [9, Example 5.3] that A is simple. The adjoint operator A∗ is given
by [17, Theorem 3.4.1]

(A∗f)(x) = −f ′′(x) + Tf(x), f ∈ dom (A∗) = W 2,2(R+,H). (6.2)

By [25, Theorem 1.3.1] the trace operators Γ0, Γ1 : dom (A∗) → H,

Γ0f = f(0) and Γ1f = f ′(0), f ∈ dom (A∗), (6.3)

are well defined Moreover, the deficiency subspace Nz(A) is

Nz(A) = {eix
√

z−Th : h ∈ H}, z ∈ C±. (6.4)

Lemma 6.1 A triplet Π = {H,Γ0,Γ1}, with Γ0 and Γ1 defined by (6.3), forms
a boundary triplet for A∗. The corresponding Weyl function M(·) is

M(z) = i
√
z − T = i

∫ √
t+ iy − λ dET (λ), z = t+ iy ∈ C+. (6.5)

Proof. One obtains the Green formula integrating by parts. The surjectivity
of the mapping Γ := (Γ0,Γ1)> : dom (A∗) → H ⊕ H is immediate from (6.3)
and [25, Theorem 1.3.2]. Formula (6.5) is implied by (6.4). �
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Lemma 6.2 Let T be a bounded non-negative self-adjoint operator in H and
let A and Π = {H,Γ0,Γ1} be defined by (6.1) and (6.3), respectively. Then

(i) the invariant maximal normal function m+(t) of the Weyl function M(·) is
finite for all t ∈ R and satisfies

m+(t) ≤ 2(1 + t2)1/4, t ∈ R. (6.6)

(ii) The limit M(t+ i0) := s-limy→+0M(t+ iy) exists, is bounded and equals

M(t+ i0) = i

∫
R

√
t− λdET (λ) for any t ∈ R. (6.7)

(iii) dM (t) = dim(ran (ET ([0, t)))) for any t ∈ R.

Proof. (i) It is immediate from (6.5) and definition (4.17) of m+(·) that

m+(t) ≤ sup
y∈(0,1]

sup
λ≥0

∣∣∣∣√t+ iy − λ− Re (
√
i− λ)

Im (
√
i− λ)

∣∣∣∣ .
Clearly,

√
i− λ = (1 + λ2)1/4ei(π−ϕ)/2 where ϕ := arccos

(
λ√

1+λ2

)
. Hence

∣∣∣∣Re(
√
i− λ)

Im(
√
i− λ)

∣∣∣∣ = tan(
ϕ

2
) =

1
λ+

√
1 + λ2

≤ 1, λ ≥ 0.

Furthermore, we have∣∣∣∣√t+ iy − λ

Im(
√
i− λ)

∣∣∣∣ ≤ √2

√√
(λ− t)2 + y2

λ+
√

1 + λ2
≤ 23/4(1 + t2)1/4

for λ ≥ 0, t ∈ R and y ∈ (0, 1] which yields (6.6).

(ii) From (6.5) we find M(t) := M(t + i0) := s-limy→+0 i
√
t+ iy − T =

i
√
t− T , for any t ∈ R, which proves (6.7). Clearly, M(t) ∈ [H] since T ∈ [H].

(iii) It follows that Im(M(t)) =
√
t− TET ([0, t)), which yields dM (t) =

dim(ran (Im(M(t)))) = dim(ran (ET ([0, t)))). �

With the operator A = Amin it is naturally associated a (closable) quadratic
form t′F [f ] := (Af, f), dom (t′) = dom (A). Its closure tF is given by

tF [f ] :=
∫

R+

{
‖f ′(x)‖2H + ‖

√
Tf(x)‖2H

}
dx, (6.8)

f ∈ dom (tF ) = W 1,2
0 (R+,H), where W 1,2

0 (R+,H) := {W 1,2(R+,H) : f(0) =
0}. By definition, the Friedrichs extension AF of A is a self-adjoint operator
associated with tF . Clearly, AF = A∗ � (dom (A∗) ∩ dom (tF )).
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Theorem 6.3 Let T ≥ 0, T = T ∗ ∈ [H], and t0 := inf σ(T ). Let A be defined
by (6.1) and Π = {H,Γ0,Γ1} the boundary triplet for A∗ defined by (6.3). Then

(i) the Friedrichs extension AF coincides with A0 that is

dom (AF ) = dom (A∗)∩dom (tF ) = {f ∈W 2,2(R+,H) : f(0) = 0} = dom (A0),

and AF corresponds to the Dirichlet problem. Moreover, AF is absolutely
continuous, AF = (AF )ac, and σ(AF ) = σac(AF ) = [t0,∞).

(ii) the Krein extension AK is given by

dom (AK) = {f ∈W 2,2(R+,H) : f ′(0) +
√
Tf(0) = 0}. (6.9)

Moreover, ker (AK) = H0 := H′0, H′0 := {e−x
√

Th : h ∈ ran (T 1/4)} and the
restriction AK � dom (AK)∩H⊥0 is absolutely continuous, that is H⊥0 = Hac(AK)
and AK = 0H0 ⊕ (AK)ac.

(iii) The extension A1 := A∗ � ker (Γ1), coincides with AN , dom (AN ) :=
{f ∈W 2,2(R+,H) : f ′(0) = 0}, i.e. A1 corresponds to the Neumann boundary
condition. Moreover, AN is absolutely continuous (AN )ac = AN and σ(AN ) =
σac(AN ) = [t0,∞).

(iv) The operators AF , (AK)ac and AN are unitarily equivalent.

Proof. (i) Let Π = {H,Γ0,Γ1} be the boundary triplet defined in Lemma 6.1.
We show that AF = A0 := A∗ � ker (Γ0). It follows from (6.2) and (6.3) that
dom (A0) = {f ∈ W 2,2(R+,H) : f(0) = 0}. Since dom (A0) ⊂ W 1,2

0 (R+,H) =
dom (tF ), we have A0 = AF (see [1, Section 8] and [20, Theorem 6.2.11]).

It follows from (6.7) and [9, Theorem 4.3] that σp(A0) = σsc(A0) = ∅. Hence
A0 is absolutely continuous. Taking into account Lemma 6.2(iii) and Proposition
3.2 we get σ(A0) = σac(A0) = clac(supp (dM )) = [t0,∞) which proves (i).

(ii) By [12, Proposition 5] AK is defined by AK = A∗ � ker (Γ1 −M(0)Γ0). It
follows from (6.5) that M(0) = −

√
T . Therefore, AK is defined by (6.9).

It follows from the extremal property of the Krein extension that ker (AK) =
ker (A∗). Clearly, fh(x) := exp(−x

√
T )h ∈ L2(R+,H), h ∈ ran (T 1/4), since∫ ∞

0

‖ exp(−x
√
T )h‖2Hdx =

∫ ‖T‖

0

dρh(t)
∫ ∞

0

e−2x
√

tdx =
∫ ‖T‖

0

1
2
√
t
dρh(t) <∞,

where ρh(t) :=
(
ET (t)h, h

)
. Thus, H′0 ⊂ ker (A∗). It is easily seen that H′0 is

dense in H0. To investigate the rest of the spectrum of AK consider the Weyl
function MK(·) corresponding to AK . It follows from (6.5) and Proposition 2.17
that

MK(z) = M−
√

T (z) = −
(√
T +M(z)

)−1

= −(
√
T + i

√
z − T )−1 =

1
z
(i
√
z − T −

√
T ) = −2

√
T

z
+ Φ(z).
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where Φ(z) := 1
z [i
√
z − T +

√
T ]. It follows that for t > 0

ImMK(t+ i0) = Im Φ(t+ i0) = t−1
√
t− TET ([0, t)). (6.10)

Hence, by [9, Theorem4.3], σp(AK)∩ (0,∞) = σsc(AK)∩ (0,∞) = ∅. It follows
from (6.10) that Im (MK(t+ i0)) > 0 for t > t0. By Proposition 3.2 σac(AK) =
[t0,∞). Further, it follows from (6.7) and (6.10) that for any t > t0

dM (t) = rank (Im(M(t)))
= rank (ET ([0, t))) = rank (Im(MK(t))) = dMK

(t)

Combining this equality with σac(AK) = σac(AF ) = [t0,∞), we conclude that
AF and (AK)ac are unitarily equivalent.

(iii) By Proposition 2.17 the Weyl function corresponding to A1 = A∗ �
ker (Γ1 − 0Γ0) is

M0(z) := (0−M(z))−1 = i(z − T )−1/2 = i

∫
1√
z − λ

dET (λ), z ∈ C+.

Since M0(·) is regular within (−∞, t0), we have (−∞, t0) ⊂ %(A1). Further, let
τ > t0. We set Hτ := ET ([t0, τ))H and note that for any h ∈ Hτ and t > τ

(
M0(t+ i0)h, h

)
= i
(
(t− T )−1/2h, h

)
= i

∫ τ

t0

1√
t− λ

d(ET (λ)h, h). (6.11)

Hence for any h ∈ Hτ \ {0} and t > τ

0 < (t− t0)−1/2‖h‖2 ≤ Im (M0(t+ i0)h, h) =
∫ τ

t0

(t− λ)−1/2d(ET (λ)h, h) <∞.

By [9, Proposition 4.2], σac(A1) ⊇ [τ,∞) for any τ > t0, which yields σac(A1) =
[t0,∞). It remains to show that A1 is purely absolutely continuous. Since
M0(t + i0) 6∈ [H] we cannot apply [9, Theorem 4.3] directly. Fortunately, to
investigate the ac-spectrum of A1 we can use [9, Corollary 4.7]. For any t ∈ R,
y > 0, and h ∈ H we set

Vh(t+ iy) := Im(M0(t+ iy)h, h) =
∫

Im
(

1√
λ− t− iy

)
d(ET (λ)h, h).

Obviously, one has

Vh(t+ iy) ≤
∫

1
((λ− t)2 + y2)1/4

d(ET (λ)h, h), t ∈ R, y > 0, h ∈ H.

Hence

Vh(t+ iy)p ≤ ‖h‖2(p−1)

∫
1

((λ− t)2 + y2)p/4
d(ET (λ)h, h), p ∈ (1,∞).
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We show that for p ∈ (1, 2) and −∞ < a < b <∞

Cp(h; a, b) := sup
y∈(0,1]

∫ b

a

Vh(t+ iy)p dt <∞.

Clearly,∫ b

a

Vh(t+ iy)pdt ≤ ‖h‖2(p−1)

∫ ‖T‖

0

d(E(λ)h, h)
∫ b

a

1
((λ− t)2 + y2)p/4

dt

= ‖h‖2(p−1)

∫ ‖T‖

0

d(E(λ)h, h)
∫ b−λ

a−λ

1
(t2 + y2)p/4

dt.

Note, that for p ∈ (1, 2) and −∞ < a < b <∞∫ b−λ

a−λ

1
(t2 + y2)p/4

dt ≤
∫ b

a−‖T‖

1
tp/2

dt =: κp(b, a− ‖T‖) <∞,

Hence Cp(h; a, b) ≤ κp(b, a − ‖T‖)‖h‖2p < ∞ for p ∈ (1, 2), −∞ < a < b < ∞
and h ∈ H. By [9, Corollary 4.7], A1 is purely absolutely continuous on any
bounded interval (a, b). Hence A1 is purely absolutely continuous.

(iv) It follows from (6.7) and (6.10) that dM (t) = dMK
(t) = rank (

√
t− T )

for t > t0. Combining this equality with σac(AK) = σac(AF ) = [t0,∞), we
conclude that AF and (AK)ac are unitarily equivalent.

Passing to A1, we assume that 1 ≤ dim(ran (ET ([0, s)))) = p1 <∞ for some
s > 0. Let λk, k ∈ {1, . . . , p}, p ≤ p1, be the set of distinct eigenvalues
within [0, s). Since M0(t + iy)ET ([0, t)) is the p × p matrix-function, the limit
M0(t+ i0)ET ([0, t)) exists for t ∈ [0, s) \

⋃p
k=1{λk}. It follows from (6.11) that

Im(M0(t)) = |T − t|−1/2ET ([0, t)), t ∈ [0, s) \
p⋃

k=1

{λk}.

This yields

dM0(t)) := dim(ran (Im(M0(t)))) = dim(ran (ET ([0, t)))) = dM (t)

for a.e t ∈ [0, s) \
⋃p

k=1{λk}, that is, for a.e. t ∈ [0, s).

If dim(ET ([t0, s))) = ∞, then there exists a point s0 ∈ (0, s), such that
dim(ET ([0, s0])) = ∞ and dim(ET ([0, s))) < ∞ for s ∈ [0, s0). For any t ∈
(s0, s) choose τ ∈ (s0, t) and note that dim(ran (ET ([0, τ)))) = ∞. We set
Hτ := ET ([0, τ))H and H∞ := ET ([τ,∞))H as well as Tτ := TET ([0, τ)) and
T∞ := TET ([τ,∞)). Further, we choose Hilbert-Schmidt operators Dτ and
D∞ in Hτ and H∞, respectively, such that ker (Dτ ) = ker (D∗τ ) = ker (D∞) =
ker (D∗∞) = {0}. According to the decomposition H = Hτ ⊕ H∞ we have
M0 = Mτ ⊕M∞, D = Dτ ⊕ D∞ and dMD

0
(t) = dMDτ

τ
(t) + dMD∞

∞
(t) for a.e.

t ∈ [0,∞). Hence dMD
0

(t) ≥ dMDτ
τ

(t) for a.e. t ∈ [0,∞). Clearly, Mτ (t + iy) =
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i(t + iy − Tτ )−1/2. If t > τ , then t ∈ %(Tτ ) and M(t) := s-limy→+0M(t + i0)
exists and

Mτ (t) := s-lim
y→0

Mτ (t+ iy) = i(t− Tτ )−1/2ET ([0, τ)).

Hence dMDτ
τ

(t) = dim(ran (ET ([0, τ)))) = ∞ for t > s0. Hence dMD
0

(t) =
dM (t) = ∞ for a.e. t > s0 which yields dMD

0
(t) = dM (t) for a.e. t ∈ [0,∞).

Using Theorem 3.4(ii) we obtain that Aac
0 and Aac

1 are unitarily equivalent which
shows A0 and A1 are unitarily equivalent. �

Next we describe the spectral properties of any self-adjoint extension of A. In
particular, we show that the Friedrichs extension AF of A is ac-minimal, though
A does not satisfy conditions of Theorem 5.12.

Theorem 6.4 Let T ≥ 0, T = T ∗ ∈ [H], and t1 := inf σess (T ). Let also A be
the symmetric operator defined by (6.1) and Ã = Ã∗ ∈ Ext A. Then

(i) the absolutely continuous part ÃacE eA([t1,∞)) of ÃE eA([t1,∞)) is unitarily
equivalent to AFEAF ([t1,∞)) = (AF )acEAF ([t1,∞));

(ii) the Friedrichs extension AF is ac-minimal and σac(AF ) ⊆ σac(Ã);

(iii) the absolutely continuous part Ãac of Ã is unitarily equivalent to AF when-
ever either (Ã−i)−1−(AF −i)−1 ∈ S∞(H) or (Ã−i)−1−(AK−i)−1 ∈ S∞(H).

Proof. By Corollary 4.2 it suffices to assume that the extension Ã = Ã∗

is disjoint with A0, that is, by Proposition 2.9(ii) it admits a representation
Ã = AB with B ∈ C(H).

(i) Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ defined by (6.3). In
accordance with Theorem 3.4 we calculate dMK

B
(t) whereMB(·) := (B−M(·))−1

is the generalized Weyl function of the extension AB . Clearly,

Im(MB(z)) = MB(z)∗ Im(M(z))MB(z), z ∈ C+. (6.12)

Since Re(
√
z − λ) > 0 for z = t+ iy, y > 0, it follows from (6.5) that

Im(M(z)) =
∫

[0,∞)

Re(
√
z − λ) dET (λ) ≥

∫
[0,τ)

Re(
√
z − λ) dET (λ), (6.13)

where z = t+ iy. It is easily seen that

Re(
√
z − λ) ≥

√
t− λ ≥

√
t− τ , λ ∈ [0, τ), t > τ. (6.14)

Combining (6.12) with (6.13) and (6.14) we get

Im(MB(t+ iy)) ≥
√
t− τMB(t+ iy)∗ET ([0, τ))MB(t+ iy), t > τ > 0.

39



Let Q be a finite-dimensional orthogonal projection, Q ≤ ET ([0, τ)). Hence

Im(MB(t+ iy)) ≥
√
t− τMB(t+ iy)∗QMB(t+ iy), t > τ > 0, y > 0.

Setting H1 = ran (Q), H2 := ran (Q⊥), and choosing K2 ∈ S2(H2) and
satisfying ker (K2) = ker (K∗

2 ) = {0}, we define a Hilbert-Schmidt operator
K := Q⊕K2 ∈ S2(H). Clearly, ker (K) = ker (K∗) = {0} and,

Im(K∗MB(t+ iy)K) ≥ (6.15)√
t− τK∗MB(t+ iy)∗QMB(t+ iy)K, t > τ > 0.

Since MB(·) ∈ (RH) and Q, K ∈ S2(H), the limits

K∗MB(t)∗Q := s- lim
y→+0

K∗MB(t+ iy)∗Q and

(QMBK)(t) := s- lim
y→+0

QMB(t+ iy)K

exist for a.e. t ∈ R (see [5]). Therefore passing to the limit as y → 0 in (6.15),
we arrive at the inequality

Im(MK
B (t)) ≥

√
t− τ(K∗MB(t)∗Q)(QMBK(t)), t > τ > 0, y > 0.

It follows that

dim(ran ((QMBK)(t))) ≤ dim(ran
(
ImMK

B (t)
)
) = dMK

B
(t), t > τ. (6.16)

We set M̃Q
B (z) := QMB(z)Q � H1. Since dim(H1) < ∞ the limit M̃Q

B (t) :=
s-limy→+0 M̃

Q
B (t + iy) exists for a.e. t ∈ R. Since (QMBK)(t) � H1 =

ran
(
(M̃Q

B )(t)
)
, (6.16) yields the inequality

dim(ran
(
M̃Q

B (t)
)
) ≤ dim(ran ((QMBK)(t))) ≤ dMK

B
(t) (6.17)

for a.e. t ∈ [τ,∞).

Since dim(H1) <∞ and ker (M̃Q
B (z)) = {0}, z ∈ C, we easily get by repeating

the corresponding reasonings of the proof of Theorem 5.12 that ran
(
M̃Q

B (t)
)

=
H1 for a.e. t ∈ R. Therefore (6.17) yields dim(H1) ≤ dMK

B
(t) for a.e. t ∈ [τ,∞).

If τ > t1, then dim(ET ([0, τ))H) = ∞ and the dimension of a projection
Q ≤ ET ([0, τ)) can be arbitrary. Thus, dMK

B
(t) = ∞ for a.e. t > τ . Since

τ > t1 is arbitrary we get dMK
B

(t) = ∞ for a.e. t > t1. By Theorem 3.4(ii) the

operator ÃacE eA([t1,∞)) is unitarily equivalent to A0EA0([t1,∞)).

(ii) If τ ∈ (t0, t1), then dim(ET ([0, τ))H) =: p(τ) < ∞. Hence, dim(QH) ≤
p(τ) which shows that dMK

B
(t) ≥ p(τ) for a.e. t ∈ (τ, t1). Since τ is arbitrary,

we obtain dMK
B

(t) ≥ p(τ) for a.e. t ∈ [0, t1). Using Theorem 3.4(i) we prove (ii).
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(iii) By Lemma 6.2 the invariant maximal normal function m+(t) is finite for
t ∈ R. By Theorem 4.3 Ãac and (AF )ac are unitarily equivalent. Similarly we
prove that Ãac and (AK)ac are unitarily equivalent. To complete the proof it
remains to apply Theorem 6.3(iv). �

Corollary 6.5 Let the assumptions of Theorem 6.4 be satisfied. If dim(H) = ∞
and t0 := inf σ(T ) = inf σess (T ) =: t1, then the Friedrichs extension AF is
strictly ac-minimal.

Remark 6.6 Let dim(ET ([t0, t1))H) = ∞. Then there are self-adjoint exten-
sions Ã = Ã∗ ∈ Ext A of A such that σac(Ã) = σ(AF ) = σac(AF ) but Ã is not
unitarily equivalent to AF .

6.2 Unbounded operator potentials

In this subsection we consider the differential expression (6.1) with unbounded
T = T ∗ ≥ 0, T ∈ C(H),

(AT f)(x) = − d2

dx2
f(x) + Tf(x). (6.18)

The minimal operator A := AT,min is defined as the closure of the operator A′T
generated on H := L2(R+,H) by expression (6.18) on the domain

D′0 :=

 ∑
1≤j≤k

φj(x)hj : φj ∈W 2,2
0 (R+), hj ∈ dom (T ), k ∈ N

 , (6.19)

that is A′T f = AT f, dom (A′T ) = D′0. Clearly, A is non-negative, since T ≥ 0
and AT,min := A′T coincides with A defined by (6.1) provided that T is bounded.

Let HT be the Hilbert space which is obtained equipping the set dom (T )
with the graph norm of T . Following [25] we introduce the Hilbert spaces
W k,2

T (R+;H) := W k,2(R+;H) ∩ L2(R+,HT ), k ∈ N, equipped with the Hilbert
norms

‖f‖2
W k,2

T

=
∫

R+

(
‖f (k)(t)‖2H + ‖f(t)‖2H + ‖Tf(t)‖2H

)
dt.

Obviously, we have W 2,2
0,T (R+,H) := {f ∈ W 2,2

T (R+;H) : f(0) = f ′(0) = 0} ⊆
dom (AT,min).

Lemma 6.7 Let T = T ∗ be a non-negative operator in H. Then dom (AT,min)
and W 2,2

0,T (R+,H) coincide algebraically and topologically.
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Proof. Obviously, for any f ∈ D′0 we have

‖AT f‖2H =
∫

R+

‖f ′′(x)‖2H dx

+
∫

R+

‖Tf(x)‖2Hdx− 2Re

{∫
R+

(f ′′(x), T f(x))H dx

}
.

Integrating by parts we find∫
R+

(f ′′(x), T f(x)) dx = −
∫

R+

∥∥∥√Tf ′(x)∥∥∥2

H
dx.

Combining these equalities yields

‖AT f‖2H =
∫

R+

‖f ′′(x)‖ dx+
∫

R+

‖Tf(x)‖2dx+ 2
∫

R+

∥∥∥√Tf ′(x)∥∥∥2

H
dx

for any f ∈ D′0. Hence

‖f‖2
W 2,2

T

≤ ‖AT f‖2H + ‖f‖2, f ∈ D′0.

Furthermore, by the Schwartz inequality,

2

∣∣∣∣∣Re

{∫
R+

(f ′(x), T f(x))H dx

}∣∣∣∣∣ ≤ ‖f‖2W 2,2
T

, f ∈ D′0.

which gives
‖AT f‖2H + ‖f‖2 ≤ 2‖f‖2

W 2,2
T

, f ∈ D′0.

Thus, we arrive at the two-sided estimate

‖f‖2
W 2,2

T

≤ ‖AT f‖2H + ‖f‖2H ≤ 2‖f‖2
W 2,2

T

f ∈ D′0.

Since D′0 is dense in W 2,2
0,T too, we obtain that dom (AT,min) coincides with W 2,2

0,T

algebraically and topologically. �

Since A is non-negative it admits the Friedrichs extension AF and the Krein
extension AK . We define the extension AN as the self-adjoint operator associ-
ated with the closed quadratic form tN ,

tN [f ] :=
∫ ∞

0

{
‖f ′(x)‖2H + ‖

√
Tf(x)‖2H

}
dx = ‖u‖2

W 1,2√
T

− ‖u‖2L2(R+,H), (6.20)

dom (tN ) := W 1,2√
T
(R+,H). The definition makes sense for T ∈ [H]. In this case

AN = A1 with A1 defined in Theorem 6.3(iii).

We also put tF := tN � dom (tF ), dom (tF ) := {f ∈W 1,2√
T
(R+;H) : f(0) = 0}.
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Proposition 6.8 Let T = T ∗ ∈ C(H), T ≥ 0, and let A := AT,min be defined
by (6.18)-(6.19). Let also Hn := ran

(
ET ([n − 1, n))

)
, Tn := TET ([n − 1, n))

and let Sn be the closed minimal symmetric operator defined by (6.1) in Hn :=
L2(R+,Hn) with T replaced by Tn. Then

(i) the following decompositions hold

A =
∞⊕

n=1

Sn, AF =
∞⊕

n=1

SF
n , AK =

∞⊕
n=1

SK
n , AN =

∞⊕
n=1

SN
n . (6.21)

(ii) The domain dom (AF ) equipped with the graph norm is a closed subspace of
W 2,2

T (R+,H),

dom (AF ) = {f ∈W 2,2
T (R+,H) : f(0) = 0}.

(iii) The domain dom (AN ) equipped with the graph norm is a closed subspace
of W 2,2

T (R+,H), dom (AN ) = {f ∈W 2,2
T (R+,H) : f ′(0) = 0}.

Proof. (i) We introduce the sets

D′′0 :=

 ∑
1≤j≤k

φj(x)hj : φj ∈W 2,2
0 (R+), hj ∈ Hn, k, n ∈ N


and D′′0n := {f ∈ D′′0 : f(x) ∈ Hn} , n ∈ N. Obviously, we have D′′0 =⊕∞

n=1D′′0n ⊆ D′0. Setting A′′T := A′T � D′′0 we find A′′T = A′T = AT,min. More-
over, setting A′′n := An � D′′0n, n ∈ N, we have A′′n = An, n ∈ N. Since
A′′T =

⊕∞
n=1A

′′
n ⊆ A′T , we obtain

AT,min = A′′T =
∞⊕

n=1

A′′n =
∞⊕

n=1

An ⊆ AT,min

which proves the first relation of (6.21). The second and the third relations are
implied by Corollary 5.5.

To prove the last relation of (6.21) we set SN :=
⊕∞

n=1 S
N
n . Since SN

n =
(SN

n )∗ ∈ Ext Sn
and A = ⊕∞n=1Sn, S

N is a self-adjoint extension of A, SN ∈
Ext A. Let f = ⊕∞n=1fn ∈ dom (SN ). Then integrating by parts we obtain

(SNf, f) =
∞∑
1

(SN
n fn, fn) =

∞∑
n=1

∫ ∞

0

{
‖f ′n(x)‖2Hn

+ ‖
√
Tnfn(x)‖2Hn

}
dx

=
∫ ∞

0

{
‖f ′(x)‖2H + ‖

√
Tf(x)‖2H

}
dx = tN [f ].

Since, by definition, AN is associated with the quadratic form tN , the last
equality yields SN ⊂ AN . Hence SN = AN , since both SN and AN are self-
adjoint extensions of A.
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(ii) Following the reasoning of Lemma 6.7 we find

‖fn‖2W 2,2
Tn

≤ ‖SF
n fn‖2Hn

+ ‖fn‖2Hn
≤ 2‖fn‖2W 2,2

Tn

, n ∈ N, (6.22)

where fn ∈ dom (SF
n ) = {gn ∈ W 2,2(R+,Hn) : gn(0) = 0}. Using representa-

tion (6.21) for AF and setting fm := ⊕m
n=1fn, fn ∈ dom (Fn), we obtain from

(6.22)

‖fm‖2
W 2,2

T

≤ ‖AF fm‖2H + ‖fm‖2H ≤ 2‖fm‖2
W 2,2

T

, m ∈ N. (6.23)

Since the set {fm = ⊕m
n=1fn : fn ∈ dom (SF

n ), m ∈ N}, is a core for AF ,
inequality (6.23) remains valid for f ∈ dom (AF ). This shows that dom (AF ) =
{f ∈W 2,2

T (R+,H) : f(0) = 0}. Moreover, due to (6.23) the graph norm of AF

and the norm ‖ · ‖W 2,2
T

restricted to dom (AF ) are equivalent.

(iii) Similarly to (6.22) one gets

‖fn‖2W 2,2
Tn

≤ ‖SN
n fn‖2Hn

+ ‖fn‖2 ≤ 2‖fn‖2W 2,2
Tn

for fn ∈ dom (SN
n ) = {gn ∈ W 2,2(R+,Hn) : g′n(0) = 0}, n ∈ N. It remains to

repeat the reasonings of (ii) �

To extend Theorem 6.3 to the case of unbounded operators T = T ∗ ≥ 0 we
first construct a boundary triplet for A∗, using Theorem 5.3 and representation
(6.21) for A.

Lemma 6.9 Assume conditions of Proposition 6.8. Then there is a sequence
of boundary triplets Π̂ n = {Hn, Γ̂ 0n, Γ̂ 1n} for S∗n such that Π := ⊕∞n=1 Π̂ n =:
{H, Γ̂ 0, Γ̂ 1} forms an ordinary boundary triplet for A∗. Moreover, AF = A∗ �
ker ( Γ̂ 0) and the corresponding Weyl function is

M̂ (z) =
i
√
z − T + Im(

√
i− T )

Re(
√
i− T )

. z ∈ C+, (6.24)

Proof. For any n ∈ N we define a boundary triplet Πn = {Hn,Γ0n,Γ1n} for S∗n
with Γ0n,Γ1n defined by (6.3). By Theorem 6.3(i) SF

n = S0n = S∗n � ker (Γ0n)
and by Lemma 6.1 the corresponding Weyl function is Mn(z) = i

√
z − Tn.

Following Lemma 5.1, cf. (5.6), we define a sequence of regularized boundary
triplets Π̂ n = {Hn, Γ̂ 0n, Γ̂ 1n} for S∗n by setting Rn := (Re(

√
i− Tn))1/2,

Qn := − Im(
√
i− Tn) and

Γ̂ 0n := RnΓ0n, Γ̂ 1n := R−1
n (Γ1n −QnΓ0n), n ∈ N. (6.25)

Hence SF
n = S0n and the corresponding Weyl function M̂ n(·) is given by

M̂ n(z) =
i
√
z − Tn + Im(

√
i− Tn)

Re(
√
i− Tn)

, z ∈ C+, n ∈ N. (6.26)
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By Theorem 5.3 the direct sum Π̂ :=
⊕∞

n=1 Π̂ n = {H, Γ̂ 0, Γ̂ 1} forms a bound-
ary triplet for A∗ and the corresponding Weyl function is

M̂ (z) =
⊕
n∈N

M̂ n(z) z ∈ C+. (6.27)

Combining (6.27) with (6.26) we arrive at (6.24).

Combining Theorem 5.3 (cf. (5.13)) with Corollary 5.5 we get

A0 = A∗ � ker ( Γ̂ 0) =
∞⊕

n=1

S∗n � ker ( Γ̂ 0n) =
∞⊕

n=1

S0n =
∞⊕

n=1

SF
n = AF (6.28)

which proves the second assertion. �

Next we generalize Theorem 6.3 to the case of unbounded operator potentials.

Theorem 6.10 Let T = T ∗ ≥ 0, t0 := inf σ(T ), and A := AT,min, cf. (6.18)-
(6.19). Let also Π̂ = {H, Γ̂ 0, Γ̂ 1} be the boundary triplet for A∗ defined by
Lemma 6.9 and M̂ (·) the corresponding Weyl function (cf. (6.24)). Then

(i) The Friedrichs extension AF coincides with A0 := A∗ � ker ( Γ̂ 0). Moreover,
AF is absolutely continuous, AF = (AF )ac, and σ(AF ) = σac(AF ) = [t0,∞).

(ii) The Krein extension AK is given by ABK := A∗ � ker (Γ1 −BKΓ0), where

BK =
1

√
2
√
T +

√
T +

√
1 + T 2

1√
T +

√
1 + T 2

. (6.29)

Moreover, ker (AK) = H0 := H′0, H′0 := {e−x
√

Th : h ∈ ran (T 1/4)}, the restric-
tion AK � dom (AK) ∩ H⊥0 is absolutely continuous, and AK = 0H0 ⊕ (AK)ac.

(iii) The extension AN is given by AN = A∗ � ker ( Γ̂ 1 −BN Γ̂ 0) where BN :=√
T +

√
1 + T 2. Moreover, AN is absolutely continuous, AN = (AN )ac and

σ(AN ) = σac(AN ) = [t0,∞).

(iv) The operators AF , (AK)ac and and AN are unitarily equivalent.

Proof. (i) This statement is implied by combining Theorem 6.3 with (6.28).

(ii) Using the polar decomposition i − λ =
√

1 + λ2eiθ(λ) with θ(λ) = π −
arctan(1/λ), λ ≥ 0 we get

Re(
√
i− T ) =

∫ ∞

0

4
√

1 + λ2 cos(θ(λ)/2)dET (λ). (6.30)

Setting ϕ(λ) = arctan(1/λ), λ ≥ 0 and noting that cos(ϕ(λ)) = λ(1 + λ2)−1/2,
we find cos(θ(λ)/2) = 2−1/2(1 + λ2)−1/4(λ +

√
1 + λ2)−1/2. Substituting this

expression in (6.30) yields

Re(
√
i− T ) = 2−1/2(T +

√
1 + T 2 )−1/2. (6.31)
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Similarly, taking into account sin(θ(λ)/2) = cos(ϕ(λ)/2) and cos(ϕ(λ)/2) =
2−1/2(1 + λ2)−1/4(λ+

√
1 + λ2)1/2, we get

Im(
√
i− T ) =

∫ ∞

0

4
√

1 + λ2 cos(ϕ(λ)/2)dET (λ) =
1√
2

√
T +

√
1 + T 2. (6.32)

It follows from (6.24) with account of (6.31) and (6.32) that M(0) :=
s-limx→+0M(−x) =: BK where BK is defined by (6.29). Therefore, by
[12, Proposition 5(iv)] the Krein extension AK is given by ABK := A∗ �
ker (Γ1 −BKΓ0). The second statement follows from Proposition 6.8 and The-
orem 6.3(ii).

(iii) It is easily seen that in the boundary triplet Π̂ n = {Hn, Γ̂ 0n, Γ̂ 1n} de-
fined by (6.25) the extension AN

n admits a representation AN
n = ABn where

Bn :=
√
Tn +

√
1 + T 2

n , n ∈ N. By Proposition 6.8, AN = ⊕∞n=1A
N
n = ABN

where BN = ⊕∞n=1Bn. The remaining part of (iii) follows from the representa-
tion AN =

⊕∞
n=1A

N
n and Theorem 6.3(iii).

(iv) The assertion follows from Theorem 6.3(iv) and (6.21). �

Next we generalize Theorem 6.4 to the case of unbounded T ≥ 0.

Theorem 6.11 Let T = T ∗ ≥ 0 and t1 := inf σess(T ). Further, let A :=
AT,min, cf. (6.18)-(6.19), and Ã = Ã∗ ∈ ExtA. Then

(i) the absolutely continuous part ÃacE eA([t1,∞)) is unitarily equivalent to the
part AFEAF ([t1,∞)) = (AF )acEAF ([t1,∞));

(ii) the Friedrichs extension AF is ac-minimal and σac(AF ) ⊆ σac(Ã);

(iii) the ac-part Ãac of Ã is unitarily equivalent to AF if either (Ã − i)−1 −
(AF − i)−1 ∈ S∞(H) or (Ã− i)−1 − (AK − i)−1 ∈ S∞(H).

Proof. By Corollary 4.2 it suffices to assume that the extension Ã = Ã∗ is
disjoint with A0, that is, it admits a representation Ã = AB with B ∈ C(H).

(i) We consider the boundary triplet Π̂ = {H, Γ̂ 0, Γ̂ 1} defined in Lemma
6.9. By Proposition 2.17 the generalized Weyl function corresponding to the
generalized boundary triplet Π̂ B is defined by M̂ B(z) = (B − M̂ (z))−1,
z ∈ C+, where M̂ (z) is given by (6.24). Clearly,

Im( M̂ B(z)) = M̂ B(z)∗ Im( M̂ (z)) M̂ B(z), z ∈ C+. (6.33)

It follows from (6.24) that
(
Re(

√
i− T )

)−1 ≥
√

2. Therefore (6.31) yields

Im( M̂ (z)) ≥
√

2 Im(M(z)), z ∈ C+, where M(z) = i
√
z − T , (6.34)

cf. (6.5). Following the line of reasoning of the proof of Theorem 6.4(i) we obtain
from (6.34) that d cM D (t) = ∞ for a.e. t ∈ [t1,∞), where D = D∗ ∈ S2(H) and
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kerD = {0}. Moreover, it follows from (6.33) that d cM D

B

(t) = d cM D (t) = ∞ for
a.e. t ∈ [t1,∞). One completes the proof by applying Theorem 3.4.

(ii) To prove (ii) we use again estimates (6.34) and follow the proof of Theorem
6.4(ii). We complete the proof by applying Theorem 3.4.

(iii) The Weyl function M̂ (·) is given by (6.24). Taking into account (6.27)
one obtains supn∈N m+

n < ∞, where m+
n is the maximal normal invariant func-

tion defined by (4.17). Indeed, this follows from (6.6) because this estimate
shows that m+

n does not depend on n ∈ N. Applying Theorem 4.3 and Remark
4.6 we complete the proof.

To prove the second statement we note that the operator BK defined by (6.29)

is bounded. Therefore, by Proposition 2.17 a triplet Π̂ BK := {H, Γ̂
BK

0 , Γ̂
BK

1 }

with Γ̂
BK

1 := Π̂ 0 and Γ̂
BK

0 := BK Γ̂ 0 − Γ̂ 1, is a boundary triplet for A∗ such

that AK := A∗ � ker ( Γ̂
BK

0 ). The corresponding Weyl function is

M̂ BK (z) = (BK − M̂ (z))−1, z ∈ C+.

Inserting expression (6.29) into this formula we get

M̂ BK (z) = − 1√
2

1√
T + i

√
z − T

1√
T +

√
1 + T 2

=
1

z
√

2

√
T − i

√
z − T√

T +
√

1 + T 2
.

It follows that the limit M̂ BK (t+ i0) exists for any t ∈ R \ {0} and

M̂ BK (t) := s- lim
y→∗0

MBK (t+ iy) = − 1
t
√

2

√
T − i

√
t− T√

T +
√

1 + T 2
.

Clearly, M̂ BK (t) ∈ [H] for any t ∈ R \ {0}. By Theorem 4.3 the ac-parts of
Ã and AK are unitarily equivalent whenever (Ã− i)−1 − (AK − i)−1 ∈ S∞(H).
This completes the proof. �

Finally, we generalize Corollary 6.5 to unbounded operator potentials.

Corollary 6.12 Assume conditions of Theorem 6.11. If dim(H) = ∞ and
t0 := inf σ(T ) = inf σess (T ) =: t1, then the Friedrichs extension AF and the
Krein extension AK are strictly ac-minimal.

6.3 Application

In this subsection we apply previous results of this section to Schroedinger op-
erator in the half-plane. To this end we denote by L = Lmin the minimal elliptic
operator associated in L2(Ω), Ω := R+ × Rn, with the differential expression

L := −∆ + q(x) := −
( ∂2

∂t2
+

n∑
j=1

∂2

∂x2
j

)
+ q(x), (t, x) ∈ Ω, (6.35)
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where q = q̄ ∈ L∞(R), x := (x1, . . . , xn) and n ≥ 1.

Recall that Lmin is the closure of L, defined on C∞0 (Ω). It is known that
dom (Lmin) = H2

0 (Ω). Clearly, L is symmetric. The maximal operator Lmax is
then defined by Lmax = (Lmin)∗. We emphasize that H2(Ω) ⊂ dom (Amax) ⊂
H2

loc(Ω), while dom (Lmax) 6= H2(Ω).

Next we define the trace mappings γj : C∞(Ω) → C∞(∂Ω), j ∈ {0, 1}, by
setting γ0u := u � ∂Ω and γ1u := γ0(∂u/∂n) where n stands for the interior
normal to ∂Ω. Denote by DL(Ω) the domain dom (Lmax) equipped with the
graph norm. It is known (see [25, 18]) that γj can be extended by continuity to
the operators mapping DL(Ω) continuously onto H−j−1/2(∂Ω), j ∈ {0, 1}.

Let us define the following extensions of Lmin (realizations of L):

(i) LDf := L[f ], f ∈ dom (LD) := {ϕ ∈ H2(R+ × R) : γ0ϕ = 0};

(ii) LNf := L[f ], f ∈ dom (LN ) := {ϕ ∈ H2(R+ × R) : γ1ϕ = 0};

(iii) LKf := L[f ], f ∈ dom (LK) := {ϕ ∈ dom (Amax) : γ1ϕ + Λγ0ϕ =
0}, where Λ :=

√
−∆x + q(·) : H−1/2(∂Ω) → H−3/2(∂Ω).

To treat the operator Lmin as the Sturm-Liouville operator with (unbounded)
operator potential we denote by T the (closed) minimal operator associated in
H := L2(Rn) with the Schrödinger expression

−∆x + q(x) := −
n∑

j=1

∂2

∂x2
j

+ q(x). (6.36)

Since q = q̄ ∈ L∞(R), the operator T is self-adjoint and semibounded. More-
over, T ≥ 0 if q(·) ≥ 0. Let A := AT,min be the minimal operator associated
with (6.18) where T is defined by (6.36).

Proposition 6.13 Let q(·) ∈ L∞(R), q(·) ≥ 0, and let T be the minimal (self-
adjoint) operator associated in L2(R) with the Schrödinger expression (6.36).
Let also t0 := inf σ(T ) and t1 := inf σess (T ). Then:

(i) the operator AT,min coincides with L = Lmin and dom (AT,min) = H2
0 (Ω);

(ii) the Friedrichs extension AF coincides with LD, hence LD is absolutely con-
tinuous, σ(LD) = σac(LD) = [t0,∞) and NLD (t) = ∞ for a.e. t ∈ [t0,∞);

(iii) the Krein extension AK coincides with LK , in particular, LK admits the
decomposition LK = 0H0 ⊕ (LK)ac, H0 := ker (LK), and σac(LK) = [t0,∞);

(iv) the extension AN defined by (6.21), coincides with LN , in particular, LN

is absolutely continuous and σ(AN ) = σac(AN ) = [t0,∞);

(v) the operators LD, LN , and (LK) are ac-minimal, in particular, LD, LN ,
and (LK)ac are pairwise unitarily equivalent. If, in addition, t0 = t1, then the
operators LD, LN , and (LK) are strictly ac-minimal;
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(vi) if L̃ is a self-adjoint extension of L and (L̃− i)−1− (LD− i)−1 ∈ S∞, then
L̃ac and LD are unitarily equivalent. If L̃ satisfies (L̃− i)−1−(LK− i)−1 ∈ S∞,
then L̃ac and LD are unitarily equivalent.

Proof. (i) We introduce the set

D′∞ :=

 ∑
1≤j≤k

φj(x)hj(ξ) : φj ∈ C∞0 (R+), hj ∈ C∞0 (R), k ∈ N


We note that D′∞ ⊆ D′0 and D′∞ ⊆ C∞0 (R+×R). Moreover, AT,min � D′∞ = L �
D′∞. Since D′∞ is a core for both AT,min and Lmin, we have AT,min = Lmin.

It is clear (after applying the Fourier transform) that dom (T ) = dom (∆x) =
H2(Rn). Therefore, by Lemma 6.7, dom (AT,min) = W 2,2

0,T = H2
0 (Ω).

(ii) Since dom (T ) = H2(Rn), we have W 2,2
T (R+;H) = H2(Ω). Therefore by

Proposition 6.8 AF = LD. The second assertion follows from Theorem 6.10(i).

(iii) It is proved in [12, Section 9.7] that LK is the Krein extension of Lmin. The
rest of the statements is implied by Theorem 6.10(ii).

(iv) The equality AN = LN is immediate from Proposition 6.8(iii). The second
statement follows from Theorem 6.10(iii).

(v) By Theorem 6.11(ii) the extension LD(= AF ) is ac-minimal. By Theorem
6.10(iv) LD, LN (= AN ), and (LK)ac(= (AK)ac) are pairwise unitarily equiva-
lent, hence LN , and LK are ac-minimal too. The last statement is immediate
from Corollary 6.12.

(vi) The statement is immediate from (ii), (iii) and Theorem 6.11(iii). �

Remark 6.14 Let T be the (closed) minimal non-negative operator associated
in H := L2(Rn) with general uniformly elliptic operator

−
n∑

j,k=1

∂

∂xj
ajk(x)

∂

∂xj
+ q(x), ajk ∈ C1(Ω), q ∈ C(Ω) ∩ L∞(Ω), (6.37)

where the coefficients ajk(·) are bounded with their C1-derivatives, q ≥ 0. If the
coefficients have some additional ”good” properties, then dom (T ) = H2(Rn)
algebraically and topologically. By Lemma 6.7, dom (AT,min) = W 2,2

0,T (R+,H) =
H2,2

0 (Ω) and Proposition 6.13 remains valid with T in place of the Schrödinger
operator (6.36).

Note also that the Dirichlet and the Neumann realizations LD and LN are
always self-adjoint ((cf. [25, Theorem 2.8.1], [18])).

Corollary 6.15 Assume the conditions of Proposition 6.13. If, in addition,

lim
|x|→∞

∫
|x−y|≤1

|q(y)|dy = 0, (6.38)

49



then the operators LD, LN , and (LK) are strictly ac-minimal,

σ(LD) = σac(LD) = σac(LK) = σ(LN ) = σac(LN ) = [0,∞),

and NELD
(t) = NELN

(t) = NEac
LK

(t) = ∞ for a.e. t ∈ [0,∞).

Proof. By [16, Section 60] condition (6.38) yields the equality σc(T ) = R+, in
particular 0 ∈ σc(T ) and t1 = 0. Since q ≥ 0, we have 0 ≤ t0 ≤ t1 = 0, that is
t0 = t1 = 0. It remains to apply Proposition 6.13 (ii)-(v). �

Remark 6.16 Condition (6.38) is satisfied whenever lim|x|→∞ q(x) = 0. Thus,
in this case the conclusions of Corollary 6.15 are valid. However, it might happen
that σ(LF ) = σac(LK) = σ(LN ) = [t0,∞), t0 > 0 though inf q(x) = 0.

A Appendix: Absolutely continuous closure

Let us recall some basic facts of the ac-closure of a Borel set of R introduced
in[9], see also [15].

Definition A.1 ([9]) Let δ ∈ B(R). The set clac(δ) defined by

clac(δ) := {x ∈ R : |(x− ε, x+ ε) ∩ δ| > 0 ∀ ε > 0}.

is called the absolutely continuous closure of the Borel set δ ∈ B(R).

Obviously, two Borel sets δ1, δ2 ∈ B(R) have the same ac-closure if their
symmetric difference δ1 4 δ2 has Lebesgue measure zero. Moreover, the set
clac(δ) is always closed and clac(δ) ⊆ δ. In particular, if we have two measurable
non-negative functions ξ1 and ξ2 which differ only on a set of Lebesgue measure
zero, then clac(supp (ξ1)) = clac(supp (ξ2)).

Lemma A.2 If δ ∈ B(R), then |δ \ clac(δ)| = 0.

Proof. Since clac(δ) is closed the set ∆ := R \ clac(δ) is open. The open set
∆ is decomposed as ∆ =

⋃L
l=1 ∆l, 1 ≤ L ≤ ∞, where ∆l = (al, bl) are disjoint

open intervals. We set ∆l = δ ∩∆l, l = 1, 2, . . . , L. Obviously,

δ \ clac(δ) = δ ∩∆ =
L⋃

l=1

∆l.

We note that ∆l ∩ clac(δ) = ∅, l = 1, 2, . . . , L. Hence for each t ∈ ∆l there is
a sufficiently small neighborhood Ot such that |Ot ∩ δ| = 0. If η is sufficiently
small, then [al + η, al − η] ⊆ (al, bl) and {Ot}t∈∆l

performs a covering of [al +
η, al − η]. Since [al + η, al − η] is compact we can chosen a finite covering
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{Otm}M
m=1 of [al +η, al−η]. By [al +η, al−η] ⊆

⋃M
m=1Otm we find |[al +η, al−

η] ∩ δ| = 0 for each sufficiently small η > 0. Using that we get

|(al, bl) ∩ δ| = |(al, al + η) ∩ δ|+ |(bl − η, bl) ∩ δ| =
|(al, al + η) ∩ δ|+ |(bl − η, bl) ∩ δ| ≤ 2η

for sufficiently small η > 0. Hence |∆l| = |(al, bl) ∩ δ| = 0 which yields that
|δ \ clac(δ)| = 0. �

Lemma A.3 If {δk}k∈N, δk ⊆ R, is a sequence of Borel subsets, then

clac(δ) =
⋃
k∈N

clac(δk), δ =
⋃
k∈N

δk. (A.1)

Proof. We set δ̂ k = δk ∩ clac(δk) and ∆k := δk \ clac(δk). We have δ = δ̂ ∪∆,
where δ̂ :=

⋃
k∈N δ̂ k and ∆ :=

⋃
k∈N ∆k. By Lemma A.2, |∆k| = 0, k ∈ N,

which yields |∆| = 0. Hence clac(δ) = clac( δ̂ ). Similarly one gets clac(δk) =
clac( δ̂ k), k ∈ N. Notice that δ̂ k ⊆ clac( δ̂ k), k ∈ N. We have

clac( δ̂ ) ⊇
⋃
k∈N

clac( δ̂ k) ⊇
⋃
k∈N

δ̂ k = δ̂ .

Hence
clac( δ̂ ) = clac( δ̂ ) ⊇

⋃
k∈N

clac( δ̂ k) ⊇ δ̂ ⊇ clac( δ̂ )

which yields clac( δ̂ ) =
⋃

k∈N clac( δ̂ k). Since clac( δ̂ ) = clac(δ) and clac( δ̂ k) =
clac(δk), k ∈ N, we prove (A.1). �
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[7] M. Š. Birman and M. Z. Solomjak. Spectral theory of selfadjoint operators in
Hilbert space. Mathematics and its Applications (Soviet Series). D. Reidel
Publishing Co., Dordrecht, 1987.

[8] J. F. Brasche. Spectral theory for self-adjoint extensions. In Spectral theory
of Schrödinger operators, volume 340 of Contemp. Math., pages 51–96.
Amer. Math. Soc., Providence, RI, 2004.

[9] J. F. Brasche, M. M. Malamud, and H. Neidhardt. Weyl function and
spectral properties of self-adjoint extensions. Integral Equations Operator
Theory, 43(3):264–289, 2002.

[10] V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo. Generalized
resolvents of symmetric operators and admissibility. Methods Funct. Anal.
Topology, 6(3):24–55, 2000.

[11] V. A. Derkach and M. M. Malamud. On the Weyl function and Hermite
operators with lacunae. Dokl. Akad. Nauk SSSR, 293(5):1041–1046, 1987.

[12] V. A. Derkach and M. M. Malamud. Generalized resolvents and the bound-
ary value problems for Hermitian operators with gaps. J. Funct. Anal.,
95(1):1–95, 1991.

[13] V. A. Derkach and M. M. Malamud. The extension theory of Hermitian
operators and the moment problem. J. Math. Sci., 73(2):141–242, 1995.
Analysis. 3.

[14] A. Dijksma and H. S. V. de Snoo. Symmetric and selfadjoint relations in
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1992.

[27] M. M. Malamud and S. M. Malamud. Spectral theory of operator measures
in a Hilbert space. Algebra i Analiz, 15(3):1–77, 2003.

[28] F. S. Rofe-Beketov. Selfadjoint extensions of differential operators in
a space of vector-valued functions. Teor. Funkcĭı Funkcional. Anal. i
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