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Abstract. We establish connections between four approaches to inverse spec-
tral problems: the classical Gelfand–Levitan theory, the Simon theory, the ap-
proach proposed by Remling, and the Boundary Control method. We show
that the Boundary Control approach provides simple and physically motivated
proofs of the central results of other theories. We demonstrate also the con-
nections between the dynamical and spectral data and derive the local version
of the classical Gelfand–Levitan equations.

In this paper we consider the Schrödinger operator

(0.1) H = −∂2
x + q (x)

on L2 (R+) ,R+ := [0,∞), with a real-valued locally integrable potential q and
Dirichlet boundary condition at x = 0. Let dρ(λ) be the spectral measure cor-
responding to H, and m(z) be the (principal or Dirichlet) Titchmarsh-Weyl m-
function.

1. Three approaches to inverse spectral theory

In this section we give a brief review of three different approaches to inverse
problems for the operator (0.1): the Gelfand–Levitan theory, the Simon theory
and the Remling approach. In the next section we describe the Boundary Control
method and its connections with the other approaches.

1.1. Gelfand–Levitan theory. Determining the potential q from the spec-
tral measure is the main result of the seminal paper by Gelfand and Levitan [16].
To formulate the result let us define the following functions:

σ(λ) =
{

ρ(λ)− 2
3π λ

3
2 , λ > 0,

ρ(λ), λ < 0
(1.1)

F (x, t) =
∫ ∞

−∞

sin
√

λx sin
√

λt

λ
dσ(λ).(1.2)

Let ϕ(x, λ) be a solution to the equation

−ϕ′′ + q(x)ϕ = λϕ, x > 0,(1.3)

1991 Mathematics Subject Classification. 34B20, 34E05, 34L25, 34E40, 47B20, 81Q10.
Key words and phrases. Schrödinger operator, boundary control method, Titchmarsh-Weyl

m−function.

1



2 SERGEI AVDONIN AND VICTOR MIKHAYLOV

with the Cauchy data

(1.4) ϕ(0, λ) = 0, ϕ′(0, λ) = 1.

The so-called transformation operator transforms the solutions of (1.3), (1.4) with
zero potential to the functions ϕ(x, λ):

(1.5) ϕ(x, λ) =
sin
√

λx√
λ

+
∫ x

0

K(x, t)
sin
√

λt√
λ

dt.

The kernel K(x, t) satisfies the integral (Gelfand–Levitan) equation

(1.6) F (x, t) + K(x, t) +
∫ x

0

K(x, s)F (s, t) ds = 0 , 0 6 t < x,

and the potential can be recovered by the rule

(1.7) q(x) = 2
d

dx
K(x, x).

1.2. Simon approach. In [21] Barry Simon proposed a new approach to in-
verse spectral theory which has got a further development in the paper by Gesztesy
and Simon [18] (see also an excellent survey paper [17]). The inverse data in this
approach is the Titchmarsh–Weyl m-function which is equivalent to the knowledge
of the spectral measure. It was shown in [21] that there exists a unique real valued
function A ∈ L1

loc (R+) (the A−amplitude) such that

(1.8) m(−k2) = −k −
∫ ∞

0

A(t)e−2tk dt .

The absolute convergence of the integral was proved for q ∈ L1 (R+) and q ∈
L∞ (R+) in [18] for sufficiently large <k. In general situation one has an asymptotic
equality

(1.9) m(−k2) = −k −
∫ a

0

A(t)e−2tk dt +O(e−2ak)

(see [21, 18] for details).
So, if we know the m−function, we know the A−amplitude. Then the following

local approach for solving the inverse problem was put forward in [21]. Locality
means that the A−amplitude on [0, a] completely determines q on the same interval
(and vice versa). Based on representation (1.9) Simon proved the local version of
the Borg–Marchenko uniqueness theorem: m1(−k2)−m2(−k2) = O(e−2ak) if and
only if q1(x) = q2(x) for x ∈ [0, a].

If A(·, x) denotes the A−amplitude of the problem on [x,∞), then this family
satisfies the nonlinear integro-differential equation

(1.10)
∂A(t, x)

∂x
=

∂A(t, x)
∂t

+
∫ t

0

A(s, x)A(t− s, x) ds = 0 .

If one solve this equation with the initial condition A(t, 0) = A(t) in the domain
{(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤ a− x}, then the potential on [0, a] is determined by

(1.11) lim
t↓0

A(t, x) = q(x) , 0 ≤ x ≤ a.
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The A−amplitude has the explicit representation through the spectral measure
by the formula derived in [18]:

(1.12) A(t) = −2 lim
ε→0

∫

R
e−ελ sin(2t

√
λ)√

λ
dρ(λ) a.e.

Without the Abelian regularization the integral need not be convergent (even con-
ditionally) [18].

1.3. Remling approach. Remling [19, 20] proposed another local approach
to inverse spectral problems based on the theory of de Branges spaces. He intro-
duced the integral operator K acting in the space FT := L2(0, T ) :

(1.13) (Kf)(x) =
∫ T

0

k(x, t) f(t) dt ,

where

(1.14) k(x, t) =
1
2
[φ(x− t)− φ(x + t)] , φ(x) =

∫ |x|/2

0

A(t) dt .

Remling proved that given a function A ∈ L1(0, T ), there exists a unique q ∈
L1(0, T ) such that A is the A−amplitude of this q if and only if the operator I +K
is positive definite in FT . The same positivity condition was proved in [20] to be
necessary and sufficient for solvability of the equation (1.10).

He proved the following representation of the A−amplitude through the regu-
larized spectral measure dσ:

(1.15) A(t) = −2
∫

R

sin(2t
√

λ)√
λ

dσ(λ)

with the convergence in the sense of distributions.
Remling derived also two linear integral equations,

(1.16) y(x, t) +
∫ x

0

k(t, s)y(x, s) ds = t ,

(1.17) z(x, t) +
∫ x

0

k(t, s)z(x, s) ds = ψ(t) ,

where 0 ≤ t ≤ x ≤ T and ψ(t) = −1 − ∫ t

0
φ(s) ds. The potential q(x) on [0, T ] is

uniquely determined by any of the functions y or z.

2. The Boundary Control method.

The Boundary Control (BC) method in inverse problems was developed about
two decades ago by M. Belishev and his colleagues [7, 14, 13, 11, 2]. As well
as methods of Simon and Remling, the BC method provides the local approach
to inverse problems developing ideas of A. Blagoveshchenskii [15] who seems to
have been the first proposed the local approach to the 1d wave equation. It is
worth to notice that the papers by Simon, Gesztesy and Remling are based on the
spectral approach, and locality is proved there using hard analysis, power analytical
tools. In the BC method locality naturally follows from the finite speed of the front
propagation in the wave equation.
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The BC method uses the deep connection between inverse problems of mathe-
matical physics, functional analysis and control theory for partial differential equa-
tions and offers an interesting and powerful alternative to previous identification
techniques based on spectral or scattering methods. This approach has several
advantages, namely: (i) it maintains linearity (does not introduce spurious non-
linearities); (ii) it is applicable to a wide range of linear point and/or distributed
systems and reconstruction situations; (iii) it can identify coefficients occurring in
highest order terms; (iv) it is, in principle, dimension-independent; and, finally,
(v) it lends itself to straightforward algorithmic implementations. Being originally
proposed for solving the boundary inverse problem for the multidimensional wave
equation, the BC method has been successfully applied to all main types of linear
equations of mathematical physics (see the review papers [9, 10] and references
therein). In this paper we use this method in 1d situation applying it to inverse
problems for the operator (0.1) and demonstrate its connections with the methods
described above. We do not give the detailed proofs of our results here, they will
be provided in a forthcoming paper.

2.1. The main operators of the BC method. The main ideas of the BC
method can be explained on the example of the 1d wave equation

(2.1)
{

utt(x, t)− uxx(x, t) + q(x)u(x, t) = 0, x > 0, t > 0,
u(x, 0) = ut(x, 0) = 0, u(0, t) = f(t).

Here q ∈ L1
loc (R+) and f is an arbitrary L2

loc (R+) function referred to as a boundary
control. The solution uf (x, t) of the problem (2.1) can be written in terms of the
integral kernel w(x, s) which is the unique solution to the Goursat problem:

(2.2)
{

wtt(x, t)− wxx(x, t) + q(x)w(x, t) = 0, 0 < x < t,
w(0, t) = 0, w(x, x) = −1/2

∫ x

0
q(s) ds.

Using the successive approximations, one can prove the following

Proposition 1. (a) If q ∈ L1
loc(R+), then the Goursat problem (2.2) has

a unique generalized solution w(x, t) which is an absolutely continuous
function and

(2.3) wx(·, t), wt(·, t), wx(x, ·), wt(x, ·) ∈ L1, loc(R+).

The equation in (2.2) holds almost everywhere and boundary conditions
are satisfied in the classical sense.

(b) If q ∈ C1
loc(R+), then the solution to the Goursat problem (2.2) is classical,

all its derivatives up to second order are continuous.

The Goursat problem was studied in [22, Sec. II.4] for smooth q, but the
method works for q ∈ L1(0, a) as well (see [4, 5, 6, 3]).

The next proposition can be proved by direct calculations.

Proposition 2. (a) If q ∈ C1
loc(R+) and f ∈ C2

loc(R+), f(0) = f ′(0) =
0, then the classical solution uf (x, t) to the initial-boundary value problem
(2.1) admits the representation

(2.4) uf (x, t) =
{

f(t− x) +
∫ t

x
w(x, s)f(t− s) ds, x < t,

0, x > t.
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(b) If q ∈ L1
loc(R+) and f ∈ FT , the formula (2.4) represents a unique gen-

eralized solution to the initial-boundary value problem (2.1) and
uf ∈ C([0, T ];HT ), where

H = L2
loc(0,∞) and HT := {u ∈ H : supp u ⊂ [0, T ] }.

The response operator (the dynamical Dirichlet-to-Neumann map) RT for
the system (2.1) is defined in FT by

(2.5) (RT f)(t) = uf
x(0, t), t ∈ (0, T ),

with the domain {f ∈ C2([0, T ]) : f(0) = f ′(0) = 0}. According to (2.4) it has a
representation

(2.6) (RT f)(t) = −f ′(t) +
∫ t

0

r(s)f(t− s) ds,

where r(t) := wx(0, t) is called the response function.
The response operator RT is completely determined by the response function

on the interval [0, T ], and the dynamical inverse problem can be formulated as
follows. Given r(t), t ∈ [0, 2T ], find q(x), x ∈ [0, T ].

Notice that from (2.2) one can derive the formula

(2.7) r(t) = −1
2
q
( t

2

)
− 1

2

∫ t

0

q
( t− ζ

2

)
v(ζ, t) dζ. ,

where
v(ξ, η) = w

(η − ξ

2
,
η + ξ

2

)
.

To solve the dynamical inverse problem by the BC method let us introduce
a couple more operators. Proposition 2 implies in particular that the control
operator WT ,

WT : FT 7→ HT , WT f = uf (·, T ),
is bounded. The next statement claims that the operator WT is boundedly invert-
ible.

Proposition 3. Let q ∈ L1
loc(R+) and T > 0, then for any function z ∈ HT ,

there exists a unique control f ∈ FT such that

(2.8) uf (x, T ) = z(x).

Proof. According to (2.4), condition (2.8) is equivalent to the following inte-
gral Volterra equation of the second kind

(2.9) z(x) = f(T − x) +
∫ T

x

w(x, τ)f(T − τ) dτ x ∈ (0, T ) .

The kernel w(x, t) is continuous and therefore equation (2.9) is uniquely solvable,
which proves the proposition. ¤

The connecting operator CT : FT 7→ FT , plays a central role in the BC
method. It connects the outer space (the space of controls) of the dynamical system
(2.1) with the inner space (the space of waves) being defined by its bilinear product:

(2.10)
〈
CT f, g

〉
FT =

〈
uf (·, T ), ug(·, T )

〉
HT

In other words,

(2.11) CT = (WT )∗WT ,
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and Propositions 2, 3 imply that this operator is positive definite, bounded and
boundedly invertible on FT . The remarkable fact is that CT can be explicitly
expressed through R2T (or through r(t), t ∈ [0, 2T ]).

Proposition 4. For q ∈ L1
loc(0,∞) and T > 0,

(2.12) (CT f)(t) = f(t) +
∫ T

0

[p(2T − t− s)− p(|t− s|)]f(s) ds , 0 < t < T ,

where

(2.13) p(t) :=
1
2

∫ t

0

r(s) ds .

Proof. One can easily check that for any f, g ∈ C∞0 (0, T ) the function U(s, t) :=(
uf (·, s), ug(·, t))H satisfies the equation

Utt − Uss = (RT f(s)g(t)− f(s)(RT g)(t) , s, t > 0 ,

with the boundary and initial conditions

U(0, t) = 0 , U(s, 0) = Ut(s, 0) = 0 .

Using the D’Alambert formula gives representation (2.12). ¤
2.2. The Gelfand–Levitan type equations. Let us consider the Cauchy

problem:

(2.14) −y′′ + q(x)y = 0, x > 0 ; y(0) = α , y′(0) = β ,

and let fT be a solution of the control problem

(2.15) (WT fT )(x) =
{

y(x), 0 < x < T,
0, x > T.

For any g ∈ C∞0 (0, T ) the identity

ug(x, T ) =
∫ T

0

κT (t)ug
tt(x, t) dt , κT (t) := T − t

is valid, and we have

(CT fT , g) =
∫ T

0

y(x)ug(x, T ) dx =
∫ T

0

y(x)
∫ T

0

κT (t)ug
tt(x, t) dt dx

=
∫ T

0

κT (t) [y(x)ug
x(x, T )− yx(x)ug(x, T )]T0 ) dt

=
∫ T

0

βκT (t)g(t)− ακT (t)(RT g)(t) dt = (βκT − α(RT )∗κT , g).

Here (RT )∗ is the operator adjoint to RT in FT :

(2.16) ((RT )∗f)(t) = f ′(t) +
∫ T

t

r(s− t)f(s) ds.

We have used the fact that the solution ug(x, t) is classical and ug(T, T ) = ug
x(T, T ) =

0 (see (2.4)).
Let us denote by yi, fT

i , i = 0, 1, the functions corresponding the cases α = 0,
β = 1 and α = 1, β = 0. Since g is an arbitrary smooth function, the functions fT

0

and fT
1 satisfy the equations

(2.17) (CT fT
0 )(t) = T − t , (CT fT

1 )(t) = −((RT )∗κT )(t) , t ∈ [0, T ] .
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Using (2.12) these equations can be rewritten in more detail:

(2.18) fT
0 (t) +

∫ T

0

cT (t, s) fT
0 (s) ds = T − t , t ∈ [0, T ] ,

(2.19) fT
1 (t) +

∫ T

0

cT (t, s) fT
1 (s) ds = 1−

∫ T

t

r(s− t) (T − s) ds , t ∈ [0, T ] ,

where cT (t, s) := p(2T − t− s)− p(|t− s|).
Using any of functions one can easily find the potential q in the following

way. From equation (2.4) it follows that uf (t − 0, t) = f(+0), and in particular,
yi(T ) = fT

i (+0). Let us denote fT
i (+0) by µi(T ). Then

(2.20) q(T ) =
µ′′i (T )
µi(T )

.

Equations (2.17)–(2.20) were obtained for a matrix valued q of a class C1

in [2]. Using Proposition 1 we prove that they are valid also for q ∈ L1
loc(R+).

The remarkable fact that a small modification of these equations holds valid in
multidimensional situation [8].

In [6] we showed that the Titchmarsh–Weyl m-function (the spectral Dirichlet-
to-Neumann map) and the response operator (the dynamical Dirichlet-to-Neumann
map) are connected by the Laplace (or Fourier) transform and established the
relation between the A−amplitude and the response function:

(2.21) A(t) = −2r(2t) .

Using this relation it is easy to check that the positivity condition of Remling’s
operator I + K is equivalent to the fact that the operator CT is positive definite.
Equations (2.18), (2.19) are reduced by simple changes of variables to equations
(1.16), (1.17).

The fact that the positivity of CT give the necessary and sufficient conditions
of the solvability of the inverse problem was known in the BC community for a
long time. A. Blagoveshchenskii [15] in 1971 obtained the necessary and sufficient
conditions of the solvability of the inverse problem for the 1d wave equation (with
smooth density) which are equivalent to the positivity of CT . (Certainly these con-
ditions were in other terms — the BC method and the operator CT were proposed
fifteen years later). Belishev and Ivanov [12] considered the two velocity system
with smooth matrix-valued potential. In a particular case when two velocities are
equal, their necessary and sufficient condition is the positivity of CT . In [1] neces-
sary and sufficient condition for solvability of a nonselfadjoint inverse problem with
a matrix-valued potential in terms of CT was formulated.

We proved that given r ∈ L1(0, 2T ), there exists a unique q ∈ L1(0, T ) such
that r is the response function corresponding to the problem (2.1) with this q if
and only if the operator CT constructed by this r according to (2.12) is positive
definite. The fact that r and q belong to the same functional class is confirmed by
formula (2.7).

2.3. Gelfand-Levitan equations. Spectral representation of r and cT .
Using the BC approach we derive the local version of the classical Gelfand-Levitan
equations (1.6). The proof is based on the fact that the kernel K of the transforma-
tion operator (1.5) satisfies a Goursat problem. On the other hand, we show that
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the kernel v of the operator (WT )−1 (which is inverse to WT ) satisfies a similar
Goursat problem. The BC version of the Gelfand-Levitan equations reads as

(2.22) v(x, t) + cT (x, t) +
∫ T

x

v(x, s)cT (s, t) ds = 0, 0 < x < t < T.

We demonstrate that the kernel v is connected with K by the rule v(T −x, T − t) =
K(x, s) and cT is similarly related to F defined in (1.2): cT (T −x, T − t) = F (x, t).
Therefore, equations (2.22) can be rewritten in a classical form (1.6). On the other
hand, equations (2.22) have clearly a local character since v(x, t) and cT (x, t) are
completely determined by q(x) on the interval [0, T ].

To complete the review of the connections between four approaches to inverse
spectral problems, we derive spectral representations of the functions r and cT . The
next proposition refines the similar statement of Remling about the A−amplitude.

Proposition 5. For the response function r the representation formula

(2.23) r(t) =
∫ ∞

−∞

sin
√

λt√
λ

dσ(λ),

holds almost everywhere on R+.

The last our statement demonstrates relation of cT to the classical object, the
function F defined by (1.2).

Proposition 6. The kernel cT (s, t) admits the following representation:

(2.24) cT (s, t) =
∫ ∞

−∞

sin
√

λ(T − t) sin
√

λ(T − s)
λ

dσ(λ), s, t ∈ (0, T ),
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