
ON THE EVOLUTION OF A REFLECTION COEFFICIENT
UNDER THE KDV FLOW

ALEXEI RYBKIN

Abstract. We are concerend with the KdV equation on the full-line with real
non-decaying initial pro�le. We �nd the time evolution of a (relative) re�ection
coe¢ cient. An inverse spectral formalism is also considered for a certain mixed
problems on the full-line.

1. Introduction

Consider the initial value problem (Cauchy problem) for the Korteweg-de Vries
(KdV) equation on the domain �1 < x <1; t � 0:�

@tq � 6q@xq + @3xq = 0
q (x; 0) = q0 (x)

(1.1)

where q0, called an initial pro�le, is a real-valued Schwarz function. It was discov-
ered by Gardner-Greene-Kruskal-Miura in 1965 that equation (1:1) can be linearized
using a procedure commonly referred to as the Inverse Scattering Transform (IST)
or inverse scattering formalism. To agree upon our notation we brie�y outline some
of the principal ideas of IST (see, e.g. the 1991 book [1] by Ablowitz-Clarkson or
the 2005 concise survey [2] by Aktosun).
The inverse scattering formalism goes as follows. Consider the one-dimensional

Schrodinger equation

�@2xu+ q0 (x)u = k2u; k 2 R; (1.2)

where q0 (x), called a potential, is the same Schwarz function as the initial pro�le in
(1:1). The operator H = �@2x+ q0(x) de�ned on L2 (R) has a simple �nite negative
spectrum f��2ngNn=1 and a twofold purely absolutely continuous (a.c.) spectrum
�lling R+ := [0;1). Equation (1:2) has the so-called Jost (scattering) solution1
 � (x; k) subject to�

 � (x; k) = T (k) e�ikx + o (1) ; x! �1;
 � (x; k) = e�ikx +R�(k)e

�ikx + o (1) ; x! �1: (1.3)
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The coe¢ cients R�(k) and T (k) are called right (left) re�ection and transition re-
spectively. Upon solving problem (1:2)�(1:3) (called the direct scattering problem)
one �nds the scattering data:

S� := fR�(k); k 2 R; f��2n; c�n gNn=1g; (1.4)

where c�n are the so-called morning constants:

c�n :=

�Z
R

�
T (i�n)

�1
 � (x; i�n)

�2
dx

��1
:

Consider now the one-parametric set

S� (t) := fR�(k; t); k 2 R; f��2n; c�n (t)gNn=1g;S� (0) = S�; (1.5)

where

R�(k; t) := R�(k)e
�8ik3t; �n(t) = �n; c

�
n (t) := c�n e

�8ik3t: (1.6)
It is the crucial fact of the inverse scattering formalism that the set S� (t) is the
scattering data for

�@2xu+ q (x; t)u = k2u (1.7)
where q (x; t) is the solution to (1:1) : Now one solves the inverse problem with the
scattering data S (t) to recover the potential q(x; t) by means of the Marchenko
procedure2. More speci�cally, consider the function

F� (x; t) :=

NX
n=1

c�n (t) e
��nx +

1

2�

Z
R
e�ikxR�(k; t)dk;

which is made of scattering data S� (t) and form the Marchenko (essentially linear
of Volterra type) equation,

K� (x; y; t) + F� (x+ y; t)�
Z �1

x

F� (s+ y; t)K� (x; s; t) ds = 0; (1.8)

y 2 (x;�1) :
Solve (1:8) for K� (x; y; t). The function

q(x; t) = �2 d
dx
K� (x; x; t) (1.9)

solves (1:1); q(x; t) being independent of the choice of � .
The IST formalism can be extended to any short-range initial pro�le q0:Z

R
(1 + jxj) jq0 (x)j dx <1: (1.10)

Similar approach has been discovered for many other physically important evolution
equations (see, e.g. [1] for a fairly complete account of integrable equations). The
historically second equation was nonlinear Schrodinger which inverse scattering
approach is based upon a Dirac system. The IST method can also be described in
terms of the Riemann-Hilbert problem (see, e.g. [1]).
Relaxation of condition (1:10) leads to serious complications. In-depth discus-

sions of this interesting topic are beyond the scope of our short note and we restrict
ourselves to mentioning just a few well-established trends. We mention �rst the pe-
riodic initial value problem (see, e.g. the 1999 survey [9] by Krichever-Noviko and

2This procedure is also referred to as the Gelfand-Levitan-Marchenko.
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the 2003 book [4] by Gesztesy-Holden). The IST methods in the periodic context
are quite di¤erent from the standard IST assuming (1:10) and based upon the Bloch-
Floquet spectral theory of the Hill operator, Riemann surfaces, and theta-function.
Another important direction is the IST for step-like initial pro�les (see, e.g. the 1994
detailed survey [7] by Khruslov-Kotlyarov). The original Gardner-Greene-Kruskal-
Miura inverse scattering formalism admits a fairly direct modi�cation in this case
but shows a striking new phenomenon related to a possible �nite interval of simple
a.c. spectrum of the underlying Schrodinger operator This simple a.c. spectrum
causes an in�nite train of non-interacting solitons (even in the absence of eigenval-
ues). And last but not least we mention a spectral class of slowly decaying solutions
called positons3 (we refer, e.g. to the 2002 paper [11] by Matveev and the detailed
2005 paper [8] by Kovalyov where a comprehensive review of positon solutions and
further extensive literature is given). Positon solutions are related to so-called
Wigner-von Neumann potentials q0 in (1:1), i.e. q0 (x) = O (1= jxj) ; x! �1; and
oscillatory The main feature of the Schrodinger operator with Wigner-von Neu-
mann potentials is embedded eigenvalues4. The problem with the IST for such
solutions is that there always appear stable strong local singularities and the very
de�nition of the associated Schrodinger operator becomes problematic (see also the
interesting 1999 paper [10] by Kurasov-Packalen ).
The present paper is concerned with the KdV equation with quite general initial

pro�les q0: We do not challenge here the intriguing problem of understanding how
far beyond (1:10) one can go. Instead we show that there exists a natural general-
ization of the re�ection coe¢ cient, a central ingredient of the IST, which is de�ned
for an extremely broad class of initial pro�les q0 but still has a relatively simple
time evolution. Our approach is based upon the study of the so-called Titchmarsh-
Weylm-function, a central object of spectral theory of one-dimensional Schrodinger
operator. In the short-range case the Titchmarsh-Weyl m-function5 m� can be in-
troduced by

m�
�
k2
�
:=

@x � (0; k)

 � (0; k)
; Im k2 > 0; (1.11)

where  � is the Jost solution satisfying (1:3). Note that the Titchmarsh-Weyl
m-function does have much of physical sense and in the context of short-range
scattering the Titchmarsh-Weyl m-function is not useful as it is easier to work
directly with the scattering quantities R� and T . However, de�nition (1:11) of m�
can be easily extended to virtually any real potential for which scattering theory
(and hence R� and T ) does not make much sense. To this end, one replaces the
Jost solutions in (1:11) with the so-called Weyl solution 	� which we can think of
as a generalization of the Jost solution  �. With the Titchmarsh-Weyl m-function
in hand one, following Gesztesy-Nowell-Pötz [5], can de�ne scattering quantities R�
and T in terms of m� for very large classes of potentials. Due in part to this fact
the Titchmarsh-Weyl m-function has recently enjoyed a spike of renewed interest
(see, e.g. the recent paper [6] by Gesztesy-Zinchenko which has a excellent review of
the Titchmarsh-Weyl m-function and extensive literature). However in the soliton
community the advantage of the m-function approach has not been fully utilized.

3or harmonic breathers
4I.e. positive eigenvalues embedded into a.c. spetrum �lling (0;1) :
5For the full-line case two m-functions are typically introduced m� and m+ associated with

�1 and +1 respectively.
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In Section 2 we therefore introduce this concept and describe its main properties
pertinent to our consideration.
In Section 3 we study the time evolution of the so-called Weyl matrix, a 2 � 2

matrix made in a certain way of m�, under the KdV �ow. This consideration
o¤ers an inverse spectral formalism to solve a mixed type problem for the KdV
on the full-line. While much more involved than the standard IST, each step in
our formalism remains linear. This section was motivated by the 2001 book [3]
by Freiling-Yurko where a similar algorithm was put forward for a mixed problem
for the KdV equation on the domain x � 0; t � 0 under stronger (short-range)
assumptions on q.
Section 4 is central and devoted to a derivation of the law of evolution of a

suitably de�ned re�ection coe¢ cient.
The last Section 5 discusses how the Weyl matrix and re�ection coe¢ cient de-

pend on a particular choice of the partition (�1;1) = (�1; x0] [ [x0;1).
Notation. A0 stands for the transpose of a matrix A, C is the complex plane,

C� := fz 2 C : � Im z > 0g, Ra� := [a;�1); Lp (S; d�) ; 1 � p � 1, is the usual
Lebesgue space of measurable on a set S � R functions f :Z

S

jf jp d� <1 for 1 � p <1; ess sup
S
jf j <1 for p =1:

� (H) stands for the spectrum of an operator H and �ac (H) is its absolutely con-
tinuous (a.c.) component.

2. Weyl�s Solution, Titchmarsh-Weyl�s m-function and Weyl�s
Matrix

In this section we review Weyl-Titchmarsh theory for Schrodinger operators.
The literature on the subject is very extensive and we refer the reader to [6] where
this material is summarized in a nice concise form connivent for our purposes.
Consider the di¤erential expression

L = �@2x + q (x) ; x 2 R;

with real-valued locally integrable potentials q, i.e.

q = q 2 L1loc (R) : (2.1)

Pick up on the real line R an arbitrary point x0, called a reference point. x0 is
commonly taken 0 but it is important to us to trace dependence of our formulas
on x0. Let � (x; x0; z) and � (x; x0; z) be the usual fundamental solutions to the
Schrodinger equation

�@2x + q (x)u = zu; x 2 R; z 2 C; (2.2)

satisfying the following boundary conditions at the point x = x0

� (x0; x0; z) = 1; @x� (x0; x0; z) = 0 (2.3)

� (x0; x0; z) = 0; @x� (x0; x0; z) = 1: (2.4)

Under conditions (2:1) � (x; x0; z) and � (x; x0; z) uniquely exist for any x 2 R, are
entire functions of z and real for z 2 R. It is a cornerstone fact of Titchamarsh-Weyl
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theory that (2:2) has a solution 6	�, called Weyl, subject to

	� (x0; x0; z) = 1; (2.5)

	� (x; x0; z) 2 L2
�
Rx0�

�
for any z 2 C+ (2.6)

(here Rx0� abbreviates [x0;�1)). 	� need not be unique. In the sequel we assume
that q is in the so-called limit point case at �1. I.e., there is only one Weyl
solution which we call the Weyl solution. It should be emphasized that the limit
point condition is very mild and most of realistic potentials7 q are limit point case.
Necessary and su¢ cient conditions on q to be the limit point case at �1 are not
known but loosely speaking the limit point case does not like q which go to �1 as
x! �1 too fast.
Due to (2:3) ; (2:4)

	� (x; x0; z) = � (x; x0; z) +m�� (x; x0; z) (2.7)

with a unique coe¢ cientm� = m� (x0; z) commonly referred to as the Titchmarsh-
Weyl m-function8.
The following properties of the Titchmarsh-Weyl m-function will be particularly

important in our consideration:

m� (x0; z) is analytic with respect to to z on C n R and m� : C+ ! C+ (2.8)

m� (x0; z) = m� (x0; z) : (2.9)

Functions satisfying (2:8) are called Herglotz and by the Herglotz representation
theorem

�m� (x0; z) = a� (x0) + b� (x0) z +

Z
R

1 + tz

t� z
d�� (x0; t)

1 + t2
(2.10)

where a� 2 R, b� � 0, and �� is a non-negative measure on R:Z
R

d�� (x0; t)

1 + t2
<1:

The Titchmarsh-Weyl m-function plays a fundamental role in the spectral theory
of the half-line Schrodinger operator Hx0

� with the Dirichlet boundary condition at
x0:

Hx0
� = �@2x + q (x) on L2

�
Rx0�

�
(2.11)

Dom
�
Hx0
�
�
=

�
u;Hx0

� u 2 L2
�
Rx0�

�
: u (�x0) = 0

	
:

Due to the limit point case condition, Hx0
� is self-adjoint and its spectral measure

coincides with �� appearing in (2:10). By the Stieltjes inversion formula

�� (x0; (�1; �2)) +
1

2

�
�� (x0; f�1g) + �� (x0; f�2g)

�
= � 1

�

Z �2

�1

Imm� (x0; �) d�

(2.12)
and for its absolutely continuous part

d��;ac (x0; �) = �
1

�
Imm� (x0; �) d�:

6Recall our agreement on � statements.
7Particularly the ones associated with the KdV equation.
8Also called the Titchmarsh-Weyl m-coe¢ cient, Weyl function, m-function or any combination

of these names.
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Another reason why the Titchmarsh-Weyl m-function is fundamental in the spec-
tral theory of the half-line Schrodinger operator, is the Borg-Marchenko theorem
saying that m� (x0; z) uniquely determines q (x) on x ? x0 The actually proce-
dure is rather involved and based on the Gelfand-Levitan inverse spectral algorithm,
somewhat similar to the Marchenko inverse scattering procedure (1:8)� (1:9).
Note that it follows from (2:7) that

m� (x0; z) =
@x	� (x0; x0; z)

	� (x0; x0; z)
= @x	� (x0; x0; z) : (2.13)

Similarly to (2:13) ; we introduce now

m� (x; z) =
@x	� (x; x0; z)

	� (x; x0; z)
(2.14)

=
@x� (x; x0; z) +m� (x0; z) @x� (x; x0; z)

� (x; x0; z) +m� (x0; z)� (x; x0; z)
:

So de�ned m� (x; z) is the Titchmarsh-Weyl m-function associated with Hx
�. From

(2:14) one has

@xm� (x; z) = �m� (x; z)
2
+ q (x)� z (2.15)

which is a Riccati-type equation for m�.
Note if q is short-range then  � (x0;

p
z) is in L2

�
Rx0�

�
for any Im z > 0 and for

m� one has

m� (x0; z) =
@x � (x0;

p
z)

 � (x0;
p
z)

:

where  � satis�es (1:3) :
We now turn to the full line Schrodinger operator

H = �@2x + q (x) on L2 (R)
Dom (H) =

�
u;Hu 2 L2 (R)

	
:

Picking a reference point x0, one introduces the matrix

M (x0; z) =

�
m1 m12

m21 m2

�
(x0; z) (2.16)

where

m1 :=
m�m+

m� �m+
; m2 :=

1

m� �m+

m12 = m21 :=
1

2

m� +m+

m� �m+

and m� (x0; z) is, as above, the Titchmarsh-Weyl m-function associated with H
x0
� :

The matrix-valued function M (x0; z) is called the Weyl matrix or the spectral
matrix associated with the full-line Schrodinger operator H. It has a Herglotz
property (2:8) and hence admits a similar to (2:10) representation with a matrix-
valued measure � (x0; t). It should be noticed thatM (x0; z) depends on x0 but the
essential support of � (x0; t) does not and the spectrum of H can be expressed in
terms of the elements of the matrix M . In particular,

�ac (H) = �ac
�
Hx0
+

�
[ �ac

�
Hx0
�
�

(2.17)
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3. Time Evolution of the Weyl Matrix under the KdV Flow

Throughout this section

L = �@2x + q (x; t) ; A = �4@3x + 6q (x; t) @x + 3@xq (x; t) (3.1)

is the Lax pair associated with the KdV equation

@tq � 6q@xq + @3xq = 0: (3.2)

Theorem 1. Assume that the Cauchy problem�
@tq � 6q@xq + @3xq = 0

q (x; 0) = q0 (x)
(3.3)

has a solution q (x; t) such that

q; @xq; @tq 2 L1 (R� [0; T ]) (3.4)

with some T 2 (0;1]. Then for any reference point x0 2 R the Weyl matrix
M (x0; t; z) associated with the operator �@2x + q (x; t) satis�es the linear evolution
equation �

@tM = PM +MP
0

M jt=0 =M0
(3.5)

for any Im z � 0 for which M (x0; t; z) exists9. In (3:5)

P (x0; t; z) : =

�
a c
b �a

�
(x0; t; z) (3.6)

a : = @xq (x0; t)

b : = 2 (q (x0; t) + 2z)

c : = 2 (q (x0; t)� z) (q (x0; t) + 2z)� @2xq (x0; t)
and M0 =M0 (x0; z) is the Weyl matrix associated with �@2x + q0 (x).

Proof. Assume �rst that z 2 C+. Let, as in Section 2, 	� (x0; t; z) be the Weyl
solution associated with Hx0

� . It is well-known that if q solves (3:2) and u solves
Lu = zu then @tu�Au also solves Lu = zu. So

@t	� �A	� (3.7)

is a solution. We now show that (3:7) is a Weyl solution. Note �rst that due to
conditions (3:4)

q	�; @xq	�; @xq	� 2 L2
�
Rx0� ; dx

�
if z 2 C+: (3.8)

By a direct computation

@t	� �A	� = @t	� � (@xq)	� � 2 (q + 2z) @x	� (3.9)

and one needs to demonstrate that each term of the right hand side of (3:9) is in
L2
�
Rx0� ; dx

�
if z 2 C+. From (3:8),

@2x	� = (q � z)	� 2 L2
�
Rx0� ; dx

�
: (3.10)

The latter implies that @x	� is also L2
�
Rx0� ; dx

�
. Di¤erentiating (q � z)	� with

respect to t yields
(H � z) @t	� = �@tq	�: (3.11)

9I.e. all Im z > 0 and almost all real z.
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Since 	�jx=x0 = 1 we have
@t	� (x0; x0; t; z) = 0 (3.12)

and (3:11) implies

@t	� = �
�
Hx0
� � z

��1
(@tq	�) 2 L2

�
Rx0� ; dx

�
since z =2 spec

�
Hx0
�
�
.

Each term on the right hand side of (3:9) is in L2
�
Rx0� ; dx

�
and hence

@t	� �A	� = �	� (3.13)

with some � = � (t; z). Following [3] we derive the time evolution of the Titchmarsh-
Weyl m-function under the KdV �ow. Setting in (3:13) x = x0 we get

� = �A	�jx=x0
= (@xq � 2 (q + 2z) @x	�) (x0; t)
= a� bm�

where a and b are de�ned in (3:6) and m� is de�ned by (2:13). Equation (3:13)
now reads

@t	� �A	� = (a� bm�)	�: (3.14)
Di¤erentiate (3:14) with respect to x. Due to (3:1) and (3:10), for the left hand
side we get

@t (@x	�) + @
2
xq	� + @xq@x	� � 2 (q + 2z) (q � z)	�

= �@t (@x	�)� @xq@x	� +
�
@2xq � 2 (q + 2z) (q � z)

�
	�:

For the right hand side we have (a� bm�) @x	� and hence

�@t (@x	�)� @xq@x	� +
�
@2xq � 2 (q + 2z) (q � z)

�
	� (3.15)

= (a� bm�) @x	�:

Setting in (3:15) x = x0 yields

@tm� � @xq (0; t)m� + @
2
xq (0; t) (3.16)

�2 (q (0; t) + 2z) (q (0:t)� z)
= @xq (0; t)m� � 2 (q (0; t) + 2z)m2

�:

In the short-hand notation (3:6) equation (3:16) reads�
@tm� = 2am� � bm2

� + c
m�jt=0 = m0

�
(3.17)

wherem0
� is the Titchmarsh-Weylm-function associated withH

x0
� . Equation (3:17)

is Riccati and can be easily linearized:8>><>>:
@t

�
��
��

�
=

�
a c
b �a

��
��
��

�
= P

�
��
��

�
�
��
��

�����
t=0

=

�
m0
�
1

�
:

(3.18)

For the solution to (3:17) one has

m� =
��
��

: (3.19)

Equation (3:18) was derived for z 2 C+. One can easily extend it to all real �
for which m0

� (�+ i0) exists. Indeed, due to condition (3:4) matrix P is a bounded



KORTEWEG-DE VRIES EQUATION 9

function of t 2 [0; T ] and an entire function (even linear) of z and hence (3:18)
has a unique solution

�
��; ��

�
continuously depending on initial condition. One

therefore can then pass in (3:18) to the non-tangential limit z ! � + i0 for every
real � for which m0

� (�+ i0) exists. Since the solution m� to (3:17) is related to�
��; ��

�
by (3:19), one can also pass in (3:17) to the non-tangential limit z ! �+i0

for every real � for which m0
� (�+ i0) exists.

With (3:17) in hand we are able to derive (3:5). Di¤erentiate the elements of
matrix M :

@tm1 =
@tm+m

2
� � @tm�m

2
+

(m� �m+)
2

= 2a
m+m�
m� �m+

+ c
m� +m+

m� �m+
:

I.e.,
@tm1 = 2am1 + 2cm12: (3.20)

Similarly

@tm12 = bm1 + cm2 (3.21)

@tm2 = �2am2 + 2bm12: (3.22)

Equations (3:20)� (3:22) can then be combined as

@tM =

�
a c
b �a

�
M +M

�
a b
c �a

�
and the evolution equation (3:5) follows. �

Remark 1. If q0 in (3:3) is from the Schwarz class then conditions (3:4) are au-
tomatically satis�ed with T =1.

Remark 2. Conditions (3:4) are far from being optimal. Indeed, (3:4) were used
only for proving that the right hand side of (3:9) is in L2

�
Rx0� ; dx

�
for any z 2 C+.

It is clear that the weaker conditions @tq (x; t) ; @xq (x; t) 2 L2loc (R) for any t 2 [0; T ]
and @tq (x; t) ; @xq (x; t) are bounded at in�nity would also do it.

Theorem 1 o¤ers an inverse spectral procedure for solving a mixed problem for
the KdV equation on the domain R� R+.

Algorithm 1. Assume that the mixed problem (x0 is �xed)8>>>><>>>>:
@tq � 6q@xq + @3xq = 0

q (x; 0) = q0 (x)
q (x0; t) = q1 (t)
@xq (x0; t) = q2 (t)
@2xq (x0; t) = q3 (t)

(3.23)

has a unique solution q (x; t) subject to

q; @xq; @tq 2 L1 (R� [0; T ]) for some T 2 (0;1] (3.24)

Then q (x; t) on R� [0; T ] can be obtained by the following procedure:
1. Find the Titchmarsh-Weyl m-functions m0

� (z) := m� (x0; z) ; z 2 C+, asso-
ciated with �@2x + q0 (x)
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2. Compose the Weyl matrix

M0 (z) =

�
m0
1 m0

12

m0
12 m0

2

�
(z)

where

m0
1 =

m0
�m

0
+

m0
� �m0

+

;m0
2 =

1

m0
� �m0

+

m0
12 =

1

2

m0
� +m

0
+

m0
� �m0

+

and the matrix

P (t; z) =

�
a c
b �a

�
(t; z)

where

a = 2q2 (t) ; b = 2 (q1 (t) + 2z) ;

c = 2 (q1 (t)� z) (q1 (t) + 2z)� q3 (t)
3. Solve the linear equation (3:6) or, equivalently, the linear initial value problem

@t

0@ m1

m12

m2

1A =

0@ 2a 2c 0
b 0 c
0 2b �2a

1A0@ m1

m12

m2

1A ;

0@ m1

m12

m2

1A������
t=0

=

0@ m0
1

m0
12

m0
2

1A
4. Find the time evolved m� (x0; t; z) by

m� = m�1
2 (m12 � 1=2)

5. Find q (x; t) for x � x0 by m� (x0; t; z) and q (x; t) for x � x0 by m+ (x0; t; z)
using the standard Gelfand-Levitan inverse spectral procedure. Namely, by (2:12)
�nd the spectral measures �� of Hx0

� and then construct and solve the Gelfand-
Levitan equation (somewhat similar to (1:8) integral equation).

It should be emphasized that the inverse spectral formalism put forward in Al-
gorithm 1 does not assume any decay of the initial pro�le q0 at �1. However it is
unclear how to �nd T in (3:24) for which the problem (3:23)-(3:24) is well-posed.
This question does not appear to have a satisfactory answer (weaker conditions
given in Remark 2 do not help much either). The main issue here is that one can
construct smooth decaying initial pro�les q0 (x) but not satisfying (1:10) such that
q (x; t) has strong local singularities. A relevant open problem is stated by Matveev
in [11]: does there exist a bounded q0 (x) subject to the conditions10

q0 (x) �
�� sin

�
��x+ ��

�
x

; x! �1;

such that q (x; t) remains bounded? In other words, does there exist a bounded
positon?
In the context of the KdV on the quarter-plane R+�R+ a similar to Algorithm

1 procedure was treated in great detail by Freiling-Yurko [3] under additional short-
range assumptions

q; @tq; @xq; @
2
xq; @

3
xq 2 L1 (R+; (1 + x) dx)) for all t 2 [0; T ] : (3.25)

10commonly called a Wigner-von Neumann potential
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Note that, being both inverse spectral, Algorithm 4.2.1. from [3] and our Algorithm
1 target di¤erent objectives. Algorithm 4.2.1 is concerned with the KdV on a half-
line but the assumptions on the decay at 1 are generous whereas Algorithm 1 is
concerned with the KdV on the full-line but without a priori decay at in�nity. Our
proof of Theorem 1 can actually be used to relax conditions (3:25) in Algorithm
4.2.1 of [3].
An equation for time evolution of certain spectral data for a matrix valued KdV

on R+ �R+ was also put forward in the short note [12] by Sakhnovich. No inverse
spectral procedure was discussed in [12].
It should be mentioned that both Algorithm 1 and 4.2.1 have a serious drawback:

they require too much data fqk (t)g3k=0 at one point.

4. Time Evolution of a Reflection Coefficient

The simple law of the time evolution of the re�ection coe¢ cient for short-range
initial pro�les is in the core of the IST. Our more general setting is far beyond the
scattering theoretical situation but, following [5], scattering quantities can actually
be de�ned as long as the underlying Schrodinger operator has some a.c. spectrum,
i.e. there is a non-trivial transmission.
Throughout this section we assume that the a.c. spectrum of Hx0

+ is non-empty
for some reference point x0 (and hence for any x0 2 R). By (2:17), �ac (H) 6= ?
but need not be of multiplicity 2.
For almost every � 2 �ac

�
Hx0
+

�
, the pair 	+ (x; x0; �+ i0) ;	+ (x; x0; �+ i0)

is linearly independent and hence the Weyl solution 	� (x; x0; �+ i0) is a linear
combination of 	+ (x; x0; �+ i0) ;	+ (x; x0; �+ i0). I.e.,

c+ (x0; �)	� (x; x0; �+ i0) (4.1)

= 	+ (x; x0; �+ i0) +R+ (x0; �)	+ (x; x0; �+ i0)

with some coe¢ cients c+ (x0; �) and R+ (x0; �).
If one interprets 	+ (x; x0; �+ i0) as a plane wave incident from +1 with mo-

mentum
p
� then 	+ (x; x0; �+ i0) + R+ (x0; �)	+ (x; x0; �+ i0) ; x ! 1; is the

superposition of the on-coming 	+ and the re�ected R+	+ waves. By this reason
R+ (x0; �) can be referred to as a right re�ection coe¢ cient with respect to reference
point x0 corresponding to momentum

p
�.

Setting in (4:1) x = x0 one gets

c+ (x0; �) = 1 +R+ (x0; �) (4.2)

Di¤erentiating (4:1) and then setting x = x0 one gets

c+ (x0; �) @x	� (x0; x0; �+ i0)

= @x	+ (x0; x0; �+ i0) +R+ (x0; �) @x	+ (x0; x0; �+ i0)

Recalling m� (x0; �) = @x	� (x0; x0; �+ i0) we have

c+ (x0; �)m� (x0; �+ i0) = m+ (x0; �+ i0) +R+ (x0; �)m+ (x0; �+ i0) (4.3)

It follows now from (4:2) and (4:3) that

R+ (x0; �) = �
m� �m+

m� �m+
(x0; �) ; for almost every � 2 �ac

�
Hx0
+

�
:



12 ALEXEI RYBKIN

Similarly, assuming �ac
�
Hx0
�
�
6= ?, one de�nes a left re�ection coe¢ cient R�

R� (x0; �) =
m+ �m�
m� �m+

(x0; �) ; for almost every � 2 �ac
�
Hx0
�
�
:

Thus, we have

R� (x0; �) = �
m� �m�
m� �m+

(x0; �) ; for almost every � 2 �ac
�
Hx0
�
�
: (4.4)

Remark 3. De�nition of R� given by (4:4) is extremely general and applies to
any full line Schrodinger operator H having some a.c. spectrum. Moreover both
R� (x0; �) exist if � 2 �ac

�
Hx0
+

�
\ �ac

�
Hx0
�
�
. However R� is consistent with the

usual de�nition accepted in the short-range scattering theory only for L1 (R) po-
tentials equal to zero on x ? x0. If �ac

�
Hx0
+

�
\ �ac

�
Hx0
�
�
6= ? then a di¤erent

de�nition of R� can be considered (see [5]) which has better consistency with the
short-range scattering. However all reasonable de�nitions produce re�ection coe¢ -
cients di¤erent by a unimodular factor.

Remark 4. De�nition (4:4) depends on the reference point x0 which will be dis-
cussed in the next section.

Let R� (x0; t; �) denote the re�ection coe¢ cient corresponding to q (x; t).

Theorem 2. Let q (x; t) satisfy the conditions of Theorem 1 and �ac
�
Hx0
�
�
6= ?.

Then for almost every � 2 �ac
�
Hx0
�
�

R� (x0; t; �) (4.5)

= R� (x0; �) exp

�
4i

Z t

0

(q (x0; s) + 2�) Imm� (x0; s; �+ i0) ds

�
; t 2 [0; T ] :

Proof. Di¤erentiating (4:4) with respect to t and using (3:17) yields

@tR� = 2ib Imm� �R�, for almost every � 2 �ac
�
Hx0
�
�
: (4.6)

Since b = 2 (q + 2�), (4:6) immediately implies (4:5). �

Corollary 1. jR� (x0; t; �)j is an invariant. That is for t 2 [0; T ]
jR� (x0; t; �)j = jR� (x0; �)j for almost every � 2 �ac

�
Hx0
�
�
:

Corollary 2. Assume that q (x; t) decays as x ! �1 su¢ ciently fast for any
t 2 [0; T ]. Then

lim
x0!�1

R� (x0; t; �)

R� (x0; �)
= e�8i�

3=2t for almost every � 2 �ac
�
Hx0
�
�
: (4.7)

To see (4:7) it is enough to notice that lim
x0!�1

m� (x0; t; �) = �i
p
�.

Equation (4:5) admits a di¤erent derivation. For almost every � 2 �ac
�
Hx0
�
�

R� (x0; t; �) =
�� (x0; t; �)

�� (x0; �)
R� (x0; �) ; t 2 [0; T ] : (4.8)

where �� solves (3:18). Indeed, by a direct computation one veri�es

b (x0; t; �)m� (x0; t; �) =
@t�� (x0; t; �)

�� (x0; �)
+ a (x0; �) ; t 2 [0; T ] : (4.9)
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Plugging (4:9) into (4:5) and observing that a is real and �� (x0; 0; �) = 1, yields
(4:8).
Note that it follows from (3:18) and (3:19) that �� in (4:9) is the solution to the

initial value problem

@2t �� �
@tb

b
@t�� �

�
a
@tb

b
+ bc+ a2 � @ta

�
�� = 0

�� (0) = 1; @t�� (0) = bm� � a
for a second order linear ordinary di¤erential equation with real coe¢ cients.
We took de�nition (4:4) of the re�ection coe¢ cient for simplicity. We plan to

investigate more suitable de�nitions elsewhere.

5. Transformation of the Weyl matrix and reflection coefficient
under the change of the reference point

Most of equations in the previous sections crucially depend on the reference point
x0. In this section we derive the di¤erentiate equations describing this dependence.
We shall start with the Weyl matrix.

Theorem 3. Let q be real valued and q 2 L1loc (R) and �@2x + q (x) be in the limit
point case at +1 and �1. Then

@xM = QM +MQ0 (5.1)

where

Q (x; z) =

�
0 q (x)� z
1 0

�
:

Proof. Di¤erentiate the coe¢ cients of M taking into account (2:11) one gets

@xm1 = 2 (q � z)m12

@xm12 = m1 + (q � z)m2

@xm2 = 2m12

which can be written in the matrix form

@xM =

�
0 q � z
1 0

�
M +M

�
0 1

q � z 0

�
:

�

Remark 5. Combine (3:5) and (5:1)�
@tM = PM +MP 0

@xM = QM +MQ0
(5.2)

It is straightforward to show that the compatibility of the equations in (5:2) implies

@xP � @tQ+ [P;Q] = 0

and we arrive at the famous compatibility condition which is equivalent to the
KdV (3:2) equation. The pair P;Q is, of course, the Ablowitz-Kaup-Newell-Segur
(AKNS) pair [1].
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Remark 6. The solution to (5:1) can be represented in terms of the fundamental
solutions � and � (2:2)� (2:4) by0@ m1

m12

m2

1A (x; z) (5.3)

=

0@ (@x�)
2
2@x�2@x� (@x�)

2

1
2@x�

2 @x (��)
1
2@x�

2

�2 2�� �2

1A (x; x0; z)
0@ m1

m12

m2

1A (x0; z) (5.4)

To demonstrate (5:3) one substitutes (2:14) into (2:16).

Equation (5:3) shows that Weyl matrixes M (x; z) and M (x0; z) corresponding
to di¤erent reference points are not in general similar.
Turn now to the re�ection coe¢ cient

Theorem 4. Let q be real valued and q 2 L1loc (R) and �@2x + q (x) be in the limit
point case at +1 and �1 and such that �ac

�
Hx0
�
�
6= ?. Then for almost every

� 2 �ac
�
Hx0
�
�

R� (x; �) =
	� (x; x0; �)

	� (x; x0; �)
R� (x0; �) : (5.5)

Proof. Di¤erentiating (4:4) with respect to x and using (2:15) we have: for almost
every � 2 �ac

�
Hx0
�
�

@xR� = 2i Imm� �R�: (5.6)

Integrating (5:6)

R� (x; �) = R� (x0; �) exp

�
2i

Z x

x0

Imm� (s; �+ i0) ds

�
and recalling (2:14), we get (5:5) : �

Corollary 3. For almost every � 2 �ac
�
Hx0
�
�
and any x; x0

jR� (x; �)j = jR� (x0; �)j :
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