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A bijective mapping is established between the set of pure qubit states
and the set [0,1]3. This latter set corresponds naturally to the RGB data
which most digital image formats associate with the color of pixels. This
allows to associate with a digital color image (considered as a [0,1]3-valued
matrix) a rectangular lattice of qubits, where for each pixel there is a qubit,
the state of which is determined by the pixel’s color data according to the
correspondence mentioned above. We thus associate with a digital color
image an idealized physical system. We define a law of dynamical evo-
lution for this system in a manner that not only the initial state but also
each evolved state can be represented as a color image. This will be done
in two steps: 1. A Hamiltonian is specified which represents interaction of
the pixel-based qubits with a homogeneous magnetic field together with a
Heisenberg spin interaction between adjacent qubits. 2. Evolution is de-
fined not as the exact quantum dynamics defined by the specified Hamilto-
nian, but as the approximate quantum dynamics which treats this interac-
tion via the time-dependent Hartree equations and thus leaves each qubit
in a pure state, to which there corresponds a well-defined color. This ap-
proximate dynamics is computationally very cheap with a computational
complexity proportional to the number of pixels, whereas the complexity of
exact dynamics is well known to grow exponentially with that number. This
method allows to evolve a digital color image, thus producing a ‘movie’
from it. In such a movie the image undergoes changes which may be con-
sidered as interesting graphical effects in a first phase. In the course of fur-
ther evolution, the larger and obvious structures of the image fade away
and what remains is a dull, grainy, uniformity of seemingly random origin.
Since, however, the evolution scheme is reversible, the initial image can be
recovered from the final image by reversed evolution. Two examples of such
evolving images are presented, one together with the reversed evolution.
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1 Introduction

It is common practice to represent Schrödinger wave functions on a 2-dimensional do-
main as color images by representing the complex values of the wave function as colors.
Here the absolute value of a complex number determines the brightness of the corre-
sponding color and the phase determines the hue. The third independent quality of col-
ors, the saturation, can not naturally (together with brightness and hue) be represented
by a single complex number. Therefore, a natural color image (in which colors make
use of their three degrees of freedom) cannot be used directly as an areal Schrödinger
wave function on a rectangular domain. If, however, the image is deprived of its satura-
tion degree of freedom (e.g. by setting saturation always to its maximum representable
level 1 ) it can be used as a Schrödinger wave function, but the natural color image
cannot be reconstructed from it (since information was deleted).

A quantum analog to natural colors occurs with qubits. As is well-known, the pure
states of qubits (i.e. quantum systems with a two-dimensional Hilbert space) can be
represented in a natural manner as points which form the surface of a sphere: Bloch’s
sphere. If we don’t ignore the overall phase (which is irrelevant when the task is to
characterize the quantum state of an isolated qubit, but which matters if such states are
subject to manipulations such as interference with other qubit states) we have in addi-
tion to the two Bloch angles θ and φ an overall phase angle and thus three parameters
for which it is only a technical matter to map them onto the space of natural colors 2 .
This suggests that one can associate with each pixel of a digital color image a pure qubit
state. We give a concrete version of this connection in the next section. It actually makes
no direct use of Bloch’s angles but employs related quantities. A following section de-
scribes the corresponding quantum lattice system, and a final section presents pictorial
examples.

2 Correspondence between colors and pure qubit states

Any normal computer system allows to set the color of screen pixels for given integer-
valued screen coordinates i and j and integer-valued ‘RGB-values’. Although for most
systems the ranges of R, G, B are restricted to C := {0,1, . . . ,255} 3 , it is convenient to
abstract from this limitation by using the continuous range R := [0,1] for these quanti-
ties (in actual computations one then replaces 8 bits for representing colors by 64 bits
for representing a real number). By transformations provided by color management sys-
tems one may let these data triplets play a role different from the direct control of the

1 Saturation is maximal for monochromatic light. Normal tri-chromatic display systems (e.g. LCD) are
unable to reproduce highly saturated colors.

2 Of course, also impure states (which form the interior of Bloch’s sphere) could be chosen to correspond
to natural colors. Since in the dynamical scheme to be used here, no impure states arise, we do not
follow this path.

3 This is a reasonable technical compromise as the success of the 24-bit RGB (‘true-color’) image data
formats in digital photography, image processing, and printing shows.
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display color channels. They thus may control brightness, hue, and saturation directly.
The pictorial examples in this article make no use of non-trivial color management.

A natural correspondence between these two sets is given by the two maps

α : C → R , i 7→
i+ 1

2
256

(1)

and
β : R → C , x 7→ if x < 1 then b256 · xc else 255 (2)

which satisfy β◦α = 1 so that converting an image from conventionally digitized color
to ‘continuous’ color does not change the information: converting back to convention-
ally digitized color does not induce changes of the original digital image.

All colors that a normal computer systems can show on screen are obtained if the
modified RGB-values vary over R 3. A substantial part of color science [1] deals with
the equivalence relation on R 3 defined as ‘indiscernibility by a typical human visual
observer’. In conclusion, we may consider R 3 as a mathematical model for the space of
colors, and a R 3-valued matrix as a model for a (‘pixelized’) color image.

On the other hand, as we will see immediately, R 3 is related to the set C2
1 := {(z1,z2)∈

C2 : |z1|2 + |z2|2 = 1} of ‘normalized qubit wave functions’. A reasonably simple con-
nection is

γ : C2
1 → R 3 , (z1,z2) 7→

(
1+ sinφ1

2
,
1+ sinφ2

2
, |z2|

)
, (3)

where
φ1 := arg(z1) , φ2 := arg(z2) , where arg(0) := 0 . (4)

This function is continuous except on the subsets C2
1↑ := {(z1,0) ∈ C2

1} and C2
1↓ :=

{(0,z2) ∈ C2
1} of its domain. The continuity is clear from the representation sinφi =

ℑzi/|zi|, i = 1,2 which is free of singularities outside C2
1↑∪C2

1↓. For showing the discon-
tinuity on C2

1↑ we consider the sequence s : n 7→ e in/n and an arbitrary point (w,0)∈C2
1↑.

The C2
1-valued sequence n 7→ (w,sn)/

√
1−n−2 converges to (w,0) ∈ C2

1↑, whereas its im-

age n 7→ ( |z1|+ℑz1

2|z1|
√

1−n−2 ,
1+sinn

2 , 1
n
√

1−n−2 ) does not converge (due to the oscillatory behavior

of its second component). Discontinuity on C2
1↓ follows from a similar argument. An

implementation of γ is function R3 CpmImaging::Color::toR3()const in [5] and
[6].

Due to this lack of continuity, states near to C2
1↑ get represented by colors (via γ) which

depend sensitively on the state. The same is true for states near C2
1↓. We have

γ(C2
1↑) = R ×{1

2
}×{0} , γ(C2

1↓) = {1
2
}×R ×{1} . (5)

Therefore, colors for which the blue component is close to 0 or close to 1 should be
expected to show strong variations (between red and green in the first case and between
cyan and magenta in the latter case) if the state (represented by this color) undergoes
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small changes. This was indeed observed in several of my experiments. By obvious
modifications of (3) one may have red or green play the role that blue plays here. The
mapping γ is easily seen to be surjective. It has, therefore, a right-inverse mapping. This
can be chosen as the following function

δ : R 3 → C2
1 , (x1,x2,x3) 7→ (r1 e iφ1 ,r2 e iφ2) , (6)

where

r1 :=
√

1− x32 , r2 := x3 , , φ1 := arcsin(2x1 −1) , φ2 := arcsin(2x2 −1) . (7)

An implementation of δ is function CpmImaging::Color::Color(R3 const&) in
[5] and [6]. This mapping allows us to associate with a digital color image a state of a
rectangular array of qubits, for which in the next section we define a dynamical evolu-
tion.

3 A quantum lattice system

The quantum system to be considered will be defined by specializing the framework in
[2], Section 2: Each of the Hilbert spaces H j is simply C2, the number of particles (here
qubits) n is h ·w where the image to be associated with a system state is h pixels in height
and w pixels wide. Despite their intended rectangular arrangement it is convenient
to index the qubits linearly by numbers 1 to n. For any of these indexes it is easy to
compute the indexes of the four neighbors in the rectangular lattice. For a boundary
point, the missing neighbor is understood to be replaced by the point on the opposite
boundary on the same row (if the boundary is a column) or column (if the boundary is
a row). According to this rule, each point has four different neighbors. For each lattice
corner, two of the neighbors are also corners. Let us denote the four neighbors of i
simply as i1, i2, i3, i4.

One could define neighborship of boundary points differently and thereby change
our presently described toroidal topology into that of a simple rectangle (by giving
corners only two neighbors and other boundary points three) or into a Möbius strip (by
leaving two opposite boundaries without substitutes for neighbors, and defining the
neighbors for the other pair of boundaries cross-wise). In images there is normally no
important content on the boundary and the treatment of the boundaries makes no large
difference. The case selected here is the one which can be coded with the least number
of conditional statements.

In the Hilbert space C2, all Hermitian operators which we will need are the three
Pauli matrices σ1,σ2,σ3. The Hamiltonian H for each of the isolated qubits we choose

H = h1 ·σ1 +h2 ·σ2 +h3 ·σ3 , (h1,h2,h3) ∈ R3 (8)

so that, for the selection h1 = h2 = 0, the conventional up and down states (1,0) and (0,1)
are eigenstates with eigenvalues h3 and −h3.
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The pair interactions Vρ, ρ := {i, j}, have to be defined as Hermitian operators on the
Hilbert space Hi ⊗H j = C2 ⊗C2, where the two tensorial factors are identical only by
the ‘accident’ that we have identified the isomorphic state spaces of different qubits.
Independent of which concrete data structure we choose for this two-qubit space (the
obvious choices are C-valued functions on {1,2,3,4} and C-valued functions on {1,2}×
{1,2}, only the second choice is canonical) it implies a corresponding tensor product of
Hermitian operators on C2. Understanding this tensor product each of the terms σi⊗σ j,
i, j ∈ {1,2,3}, defines an Hermitian operator in C2 ⊗C2. Further, for each ψ ∈ C2 and
each φ∈C2⊗C2, the element 〈ψ |φ〉 is a well-defined element of C2 and this contraction
function 〈 · | · 〉 has the property

〈ψ |ψ′⊗ψ
′′ 〉 = 〈ψ |ψ′ 〉 ·ψ′′ (9)

for all ψ,ψ′,ψ′′ ∈ C2.
The pair interaction we will be using is V{i, j} = 0 if i and j are not neighbors and is

the interaction operator of the Heisenberg models

V := q · (σ1 ⊗σ1 +σ2 ⊗σ2 +σ3 ⊗σ3) , q ∈ R (10)

for neighbors.
The state ψ of the n-qubit system is (in the separated interaction approximation) given

as a C2
1-valued list (ψ1, . . . ,ψn) which depends on time. The dynamics of the system is

governed by equation (20) of [2]. The present notation gives this the form

i
�
ψi = Hψi + 〈ψi1 |V ψi1 ⊗ψi 〉+ 〈ψi2 |V ψi2 ⊗ψi 〉+ 〈ψi3 |V ψi3 ⊗ψi 〉+ 〈ψi4 |V ψi4 ⊗ψi 〉

(11)
where the operations ⊗ and 〈 · | · 〉 are to be understood as explained above. Recall the
definition of i1, i2, i3, i4 at the end of the first paragraph of this section.

Efficient numerical methods are available which allow us to follow timestep by
timestep the evolution of arbitrary initial states. The present work is exclusively con-
cerned with initial states which were created from digital color images according to the
method of section 2.

With this definition, the conservation properties proved in [2], Section 2 are as fol-
lows: For all i ∈ {1, . . . ,n} the scalar product 〈ψi |ψi 〉 is constant in time and the same is
true for the expectation value

〈Htot〉 =
n

∑
i=1

(
〈ψi |H ψi 〉

+
1
2
〈ψi1 ⊗ψi |V ψi1 ⊗ψi 〉

+
1
2
〈ψi2 ⊗ψi |V ψi2 ⊗ψi 〉

+
1
2
〈ψi3 ⊗ψi |V ψi3 ⊗ψi 〉

+
1
2
〈ψi4 ⊗ψi |V ψi4 ⊗ψi 〉

)
(12)
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of the total Hamiltonian. Conserved quantities are very useful as indicators for the
quality of a computed implementation of the dynamics. Only if the computed discrete
system trajectory shows only small deviations of these quantities from constancy the
timestep is probably not chosen too large. How these deviations depend on the time
step size of the discrete trajectory is a useful indicator of the order of the integration
method. An implementation of all this is in class CpmQM::SpinN in [5] and [6].

4 Numerical integration

As in [2] we use the asynchronous leap-frog method [3] for a computational solution
of the initial value problem. The initial state is obtained from a digital image of my
cat Oscar 4. The original is an image of 2048× 1536 pixels, coded as a JPG-file of size
1944 KB. This image was converted to a 533×400 image coded as a PPM-file of size 625
KB. This then was converted into a state of n = 533 · 400 = 213200 qubits according to
the method of section 2. The Hamiltonian is defined by giving its four parameters the
values h1 = h2 = 0, h3 = 1, and q = 10. Then the expectation value of the Hamiltonian
with respect to the initial state is 〈H〉 = 4.497 ·106. A semi-empirical rule says that ∆ t =
〈H〉/

√
n = 1.0267 ·10−4 is a good value for the time step of the densified version of the

asynchronous leap-frog integrator; this is the choice which is made for the run which
created the following evolved images. It created 8001 images (including the image of
the initial state) with 10 (densified) integration steps between images. Computation
time for these images was 59 minutes on a state of the art laptop computer (2.39 GHz,
3 GB RAM). What is shown here, is each 50th image from this collection. We see that
the integration does not diverge (explode) during these 80000 integration steps. It does
so very soon, if we multiply the time step by 150; then the cat is well visible in the first
picture which contains divergent pixel values (see Picture 6 for the pictorial effect of
divergences as ‘black holes’). If we use 4 times the stable step we get divergences only
after the cat’s image is no longer visible. After the performance of 4000 steps, (and thus
after completion of image 401), the sign of ∆ t is changed so that the evolution — due to
the reversibility of the integrator, see [3] — goes all the evolution backward, as can be
seen from the paired figures.

Finally a similar image series is shown which starts from a computer generated im-
age [4] which contains large noiseless uniform areas, which typically are missing in
camera captures. This series does not include reversal. Instead it shows in an obvious
manner the appearance of divergences. These appear since the time step was chosen
to be 150 times the recommended value. An implementation of the program run is
CpmVQM2::App18::doTheWork() for the control path sel==-2 (see [5],[6]).

4 it needs to be a cat in recognition of the heroic role that cats play in quantum theory: Schrödinger’s cat
and in dynamical systems theory: Arnold’s cat transformation
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(a) Image 1 (b) Image 801

(c) Image 51 (d) Image 751

(e) Image 101 (f) Image 701
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(g) Image 151 (h) Image 651

(i) Image 201 (j) Image 601

(k) Image 251 (l) Image 551
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(m) Image 301 (n) Image 501

(o) Image 351 (p) Image 451

(q) Image 401
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(r) Picture 1 (s) Picture 2

(t) Picture 3 (u) Picture 4

(v) Picture 5 (w) Picture 6
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5 Outlook

Applications of the present approach are conceivable in several directions: One may see
value in the graphical embellishment of images which the method provides in a very
flexible way. One may even enjoy the cryptographic application to evolve completely
unrecognizable images into interpretable ones if the parameter h1,h2,h3,q,dt of the evo-
lution method are known (as a key), such as recovering image 801 from image 401. On
the other hand, using images as initial values for a large system of evolution equa-
tions as (11) allows us to test the robustness of integration schemes very profoundly.
The intentional design of initial data will hardly generate such diversified situations as
they are provided effortlessly by some images of non-trivial structure. There are many
topics on which observations are easily made and which are not studied here: How
does the energy expectation value change if we change the pixel count of the image by
established resampling methods? How the image content determines the stable time
step? How information truncation (such as storing an evolved state as an image on
disk, and reconstructing the state from the stored image) affects our ability to evolve
the truncated image back to the original?
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