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Abstract

For dynamical systems defined by vector fields over a compact invari-
ant set, we introduce a new class of approximated first integrals based
on finite-time averages and satisfying an explicit first order partial dif-
ferential equation. Referring to the PDE framework, we detect their
viscosity robustness with respect to stochastic perturbations of the vec-
tor field. We formulate this approximating device also in the Lyapunov
exponents framework. In such a case, we compare the operative use
of the introduced approximated first integrals to the common use of
the Fast Lyapunov Indicators to detect the phase space structure of
quasi-integrable systems.

1 Introduction

The existence of first integrals and their qualities, e.g. their number and
smoothness, constrain the topological properties in the large of the paths
of a dynamical system, see for example [17], [7] and [10]. Specifically, for
the so-called integrable systems, a whole set of global first integrals de-
termines completely the dynamics. On the opposite side with respect to
integrable dynamical systems we find the so-called ergodic ones, for which
non-trivial global first integrals are not allowed to exist. Both integrable
and ergodic systems are very special extreme situations, which usually do
not exist in nature, and the most typical case is represented by systems
which are not integrable nor ergodic, but approximating one or the other
situation, and sometimes both of them. Many examples of this kind can be
found in Celestial Mechanics, where the systems typically exhibit some vari-
ables with integrable or quasi-integrable behavior and other variables with
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approximate ergodic behaviour; other examples arise in Statistical Physics
and Plasma Physics, see for example [6], [23], [4] and [22]. The dynamics of
such (non-integrable and non-ergodic) systems can be characterized by tran-
sient behaviours (such as temporary captures into resonances or stickiness
phenomena) which are usually difficult to formally study with mathematical
tools defined over the complete orbits.

During the last decades, in the numerical investigations of these systems,
a very important role has been played by a practical use of approximated
notion of first integrals, of time averages, and other popular indicators of the
quality of the motion, like the Lyapunov exponents ([24], [5] and [25]). Since
the eighties, important results have been achieved by finite time computa-
tions of dynamical indicators on discrete sets of points of the phase space,
hereafter called grids, see [23] for a review on the subject. In particular, we
recall the methods based on the Fourier analysis of the solutions, such as
the frequency analysis method ([19], [20]), or on the Lyapunov exponents
theory, such as the Fast Lyapunov Indicators (FLI), introduced in [11]. The
finite time computation of a dynamical indicator on grids of the phase space
provides effective criteria for determining integrability, quasi-integrability or
stochasticity of motions (see [13] for the case of FLI).

In this paper, we introduce a new class of approximated global first
integrals and we investigate around the mathematical robustness of their
definition. Keeping in mind the Birkhoff-Khinchin Theorem [8] –which as-
serts that the time average of any function f is a global first integral– we
specifically study the indicators based on finite-time averages of functions,
with particular attention devoted to the FLI and their applications. We
restrict ourselves to dynamical systems defined by the flow φt

X of smooth
vector fields X over a compact invariant set Ω ⊂ Rn. Global smooth first
integrals F of such a system –whenever they do exist– are solutions on Ω of
the PDE equation:

∇F ·X(x) = 0. (1)

Clearly, this is not generally the case of the finite-time average GT of func-
tions f on [0, T ], whose Lie derivative ∇GT · X(x) = 1

T

[
f(φT

X(x)) − f(x)
]

depends both on x and φT
X(x).

Our first contribution is framed in considering unusual “finite-time” ap-
proximations Fµ, where substantially µ plays the role of 1/T :

Fµ(x) := µ

∫ +∞

0
e−µτf(φτ

X(x))dτ. (2)

The crucial advantage of Fµ with respect to the traditional finite-time aver-
ages GT is represented by the fact that it satisfies an explicit PDE equation,
precisely:

∇Fµ ·X(x) = µ(Fµ − f)(x). (3)
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In view of the previous equation, we regard Fµ as an approximated first
integral.

Referring to the PDE framework about existence and uniqueness results
for (3), we recognize the viscosity robustness of the proposed approximated
first integral Fµ. More precisely, this property consists in the fact that the
solution of the Dirichlet’s problem given by the following elliptic perturba-
tion of equation (3):






ν2

2 ∆F ν
µ (x) +X · ∇F ν

µ (x) = µ(F ν
µ − f)(x)

F ν
µ (x)|∂Ω = ψ(x)

(4)

pointwise converges, for ν → 0, exactly to the above function Fµ. In partic-
ular, the proposed representation (2) of the solution for (3) is stable under
stochastic perturbations. In fact, denoting by (Xν

τ , Px) the Markov pro-
cess solving the stochastic differential equation related to (4), it arises the
representation:

F ν
µ (x) = Mx

[
µ

∫ +∞

0
e−µτf(Xν

τ )dτ

]
ν→0−→ Fµ(x), ∀x ∈ Ω, (5)

see [9] for some more detail. We note that as a consequence of the invariance
of the compact set Ω, any boundary datum in (4) does not play any role,
since all orbits with initial condition in Ω never reach the boundary ∂Ω.
The discussions above show that, among the all possible perturbations of
(1), the equation (3) produces, for every µ > 0, approximated first integrals
with representation coming from a regularizing viscous technique.

This stable behaviour under viscous perturbations (and with arbitrary
boundary data) prompts analogies with other important situations in which
vanishing artificial viscosity is introduced in order to select a special so-
lution: this occurs for example in the viscosity solutions theory to the
Hamilton-Jacobi equation, we refer to [21], [3] and [2] for an exhaustive
treatment of the matter. However, the approximate first integral Fµ here in-
troduced behaves closer to Fokker-Planck –see for example [1] and [26]– than
to Hamilton-Jacobi environment, especially by considering free-divergence
systems, like the Hamiltonian ones. In fact, in such a case, searching first
integrals is equivalent to searching (smooth) invariant measures; whenever
this acts by adding (i) a µ-small relative friction (relative, to an assigned
function f) and (ii) a ν-small diffusion, we are naturally leaded to the (sta-
tionary) Fokker-Planck equation:

∇F ·X(x) + µ(f − F )(x) +
ν2

2
∆F (x) = 0.

In this order of ideas, we infer that the present Fµ is thus robust under the
vanishing (i.e. for ν → 0) diffusion action. A previous use of relative friction
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and vanishing viscosity has been numerically implemented in [16].
We formulate this approximating device to define finite-time approxi-

mations of the usual Lyapunov exponents, which can be considered as time
averages of suitable functions defined on the tangent space. This requires to
rewrite the variational equation on a compact invariant set of the tangent
space R2n. We will call exponentially dumped Lyapunov indicators these
finite-time approximations of the Lyapunov exponents. Finally, in Section
5, we compare the operative use of the exponentially dumped Lyapunov
indicators for the numerical detection of resonances and invariant tori of
quasi-integrable Hamiltonian systems to the common use of the FLI.

2 Approximated Birkhoff-Khinchin first integrals

In this section, starting from the Birkhoff-Khinchin Theorem (see for exam-
ple Chapter 1 in [8]), we propose a natural notion of approximated global
first integral and we discuss it from a functional point of view.

Let X be a smooth (i.e. at least C1) vector field defined over a compact
invariant set Ω ⊂ Rn and φt

X its flow. By the Birkhoff-Khinchin Theorem,
the time average of every real-valued continuous function f :

F(x) := lim
t→+∞

1

t

∫ t

0
f(φτ

X(x))dτ (6)

exists a.e. and it is a first integral, that is F(φt
X(x)) = F(x) for all t ∈ R.

On the one hand, the function F(x) can be highly irregular and its operative
use is limited. On the other hand, with reference to some possible applica-
tions to perturbation theory and allied topics, the finite time approximation
of (6):

GT (x) :=
1

T

∫ T

0
f(φt

X(x))dt (7)

is an approximated first integral, in the sense that its Lie derivative equals
to:

X · ∇GT (x) =
d

dt
GT (φt

X(x))
∣∣
t=0

=
1

T

[
f(φT

X(x)) − f(x)
]
. (8)

Let us denote µ := 1
T . Starting from this format, we consider below a

different finite time approximation of (7), which offers a better notion of
approximated global first integral.

Definition 2.1 Let µ > 0 and f ∈ C0(Ω; R). The function

Fµ(x) := µ

∫ +∞

0
e−µτf(φτ

X(x))dτ (9)

is an approximated first integral in the sense that its Lie derivative equals
to:

X · ∇Fµ(x) = µ(Fµ − f)(x). (10)
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Remark 1 Let us consider the following change of the integral parameter:

[0,+∞] ∋ τ 7→ t(τ) = (1 − e−µτ )T ∈ [0, T ].

We note that the function (9) occurs by considering a direct modification of
the equivalent representation:

GT (x) = µ

∫ +∞

0
e−µτf(φ

t(τ)
X (x))dτ.

Remark 2 As a consequence of the dominated convergence Theorem, the
approximated first integral (10) pointwise converges, for µ → 0+, to the
finite time average G1/µ (see (7)):

lim
µ→0+

(Fµ −G1/µ)(x) = 0 ∀x ∈ Ω.

The first plain difference of Fµ with respect to G1/µ is that its Lie derivative

does not depend on the flow φT
X .

Remark 3 Another crucial advantage is that Fµ, viewed as a linear op-
erator on C0(Ω,R), provides also a precise characterization for exact global
first integrals, in the sense stated by the following

Proposition 2.1 Let µ > 0 be fixed. A function f ∈ C0(Ω,R) is a global
first integral for the vector field X if and only if Fµ(x) = f(x), ∀x ∈ Ω.

Proof. Let us first suppose that f is a global first integral for X, that is:
f(φt

X(x)) = f(x) ∀t ∈ R. Therefore we have

Fµ(x) = µ

∫ +∞

0
e−µτf(φτ

X(x))dτ = µ

∫ +∞

0
e−µτf(x)dτ = f(x).

Conversely, let Fµ(x) = f(x), ∀x ∈ Ω. Then, accordingly to (10), the Lie
derivative of f is equal to zero:

LXf(x) = X · ∇Fµ(x)(x) = µ(Fµ(x)(x) − f(x)) = 0.

Equivalently, f is a global first integral for the vector field X. 2

We finally underline that, in the previous proposition, the choice of the
parameter µ > 0 is arbitrary.

3 The PDE point of view

The aim of this section is to show the relevance of the previous notion
of approximated first integral (see Definition 2.1) inside the robust PDE
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framework and related viscosity techniques, see [9] and [1].
Simplifying the notation, in the sequel we refer to:

X · ∇F (x) = µ(F − f)(x). (11)

Now, considering the classical PDE theory for equations of elliptic type,
we take into account the following regularization of (11), with vanishing
viscosity ν > 0 and a sort of friction µ > 0:

ν2

2
∆F ν(x) +X · ∇F ν(x) = µ(F ν − f)(x). (12)

The existence and the asymptotic behavior of the solutions for (12), namely
the convergence of the functions F ν for ν → 0, has been largely enquired:
for the convenience to the reader, we briefly resume below the main results
(see [9] for some more details).

Let us consider the following elliptic differential operator with a small
parameter ν > 0 at the derivatives of highest order:

Lν :=
ν2

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
.

We are interested on the related Dirichlet’s problem:






LνF ν(x) + c(x)F ν(x) = g(x)

F ν(x)|∂Ω = ψ(x)

that is,






ν2

2

∑n
i,j=1 a

ij(x) ∂2F ν

∂xi∂xj (x) +
∑n

i=1 b
i(x)∂F ν

∂xi (x) + c(x)F ν(x) = g(x)

F ν(x)|∂Ω = ψ(x)

(13)
where Ω ⊂ R

n is a bounded domain with smooth connected boundary ∂Ω
and ψ is supposed to be continuous.
We recall below the existence and uniqueness result.

Theorem 3.1 (Existence and uniqueness) We assume that the following
conditions are satisfied.

1. The function c is uniformly continuous, bounded and c(x) ≤ 0 for all
x ∈ Rn.

2. The coefficients of Lν satisfy a Lipschitz condition.
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3.

k−1
n∑

i=1

λ2
i ≤

n∑

i,j=1

aij(x)λiλj ≤ k

n∑

i=1

λ2
i

for every real λ1, λ2, . . . , λn and x ∈ Rn, where k is a positive constant.

Under these assumptions, for every ν > 0 there exists a unique solution F ν

to the problem (13).

In order to investigate on the asymptotic behavior of such a solutions, we
remind the following

Theorem 3.2 (Pointwise limit) Suppose conditions 1., 2. and 3. are sat-
isfied. In the case where c(x) < 0 for all x ∈ Ω and, for a given x ∈ Ω, the
trajectory φt

X(x), t ≥ 0 does not leave Ω, then

lim
ν→0

F ν(x) = F (x) = −
∫ +∞

0
g(φτ

X(x))exp
[ ∫ τ

0
c(φv

X(x))dv
]
dτ. (14)

It is now interesting to underline the following fact: the representation of
the function F depends decisively on the behavior of the flow φt

X . In par-
ticular, since the vector field X admits the invariant bounded domain Ω,
the pointwise limit limν→0 F

ν(x) = F (x), ∀x ∈ Ω, does not depend on the
boundary datum in (13).

Now we are ready to come back to our original elliptic equation (12):
with respect to the previous general setting, it corresponds to the coeffi-
cients aij(x) = δij , bi(x) = Xi(x), c(x) = −µ and g(x) = −µf(x) and it
trivially satisfies the three conditions of Theorems 3.1 and 3.2. In such a
case, the pointwise limit for ν → 0 is just given by the above introduced
function (9):

F (x) = µ

∫ +∞

0
e−µτf(φτ

X(x))dτ, ∀x ∈ Ω. (15)

This fact shows that, among the all possible perturbations of X ·∇F (x) = 0,
the one proposed, that is X ·∇F (x) = µ(F −f)(x), exactly selects, for every
µ > 0, the approximated first integral coming from a regularizing viscous
technique. This argument points out the robust viscosity motivation of
(15) and –according to Definition 2.1– seems to mark a step towards the
recognition of a good notion of approximated global first integral in Ergodic
Theory.

4 Lyapunov exponents

Lyapunov exponents, first introduced at the beginning of the last century,
provide a natural way to formalize the notion of exponential divergence for
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the trajectories of a given dynamical system, see for example [18]. Sub-
sequently, the use of such quantities in Ergodic Theory appeared in the
fundamental paper of Oseledec (see [24] and [25]) and the numerical appli-
cations followed mainly after [5].
Here below, starting from the variational equation on the tangent space R2n,
we make use of the formula (15) in order to obtain a finite-time approxima-
tion of Lyapunov exponents, which we will call exponentially dumped Lya-
punov indicators. Moreover, we provide a viscous regularization of them, as
we have done for the previously introduced approximated first integrals.

We start with the definition of Lyapunov exponent.

Definition 4.1 Given a pair (x, v) ∈ R
n × (Rn

r {0}), the Lyapunov expo-
nent associated to (x, v) is defined as

χ(x, v) := lim
t→+∞

1

t
log

(‖vt‖
‖v‖

)
, (16)

where vt := Dφt
X(x)v is the tangent vector at the time t > 0 and ‖·‖ denotes

a norm.

For convenience, in the sequel we use the Euclidean norm. We remark that,
by an easy computation, the Lyapunov exponent χ admits also an integral
representation as a time average:

χ(x, v) = lim
t→+∞

1

t

∫ t

0
fχ(φτ

X(x, v))dτ. (17)

In the above formula, the function fχ corresponds to:

fχ(x, v) =
v ·DX(x)v

‖v‖2
. (18)

Moreover, the variational vector field X(x, v) := (X(x),DX(x)v), where
DX denotes the Jacobian matrix related to X, is defined on R

n×(Rn
r{0})

and the corresponding flow φt
X

is given by:

φt
X(x, v) =

(
φt

X(x),Dφt
X (x)v

)
.

The time average representation formula (17) pushes to consider, in the light
of the previous sections, the following

Definition 4.2 (Exponentially dumped Lyapunov indicator) Let µ > 0.
Given a pair (x, v) ∈ Rn × (Rn r {0}), the exponentially dumped Lyapunov
indicator associated to (x, v) is defined as

Kµ (x, v) := µ

∫ +∞

0
e−µτ fχ (φτ

X (x, v)) dτ. (19)
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In the next section, we will show that Kµ represents a powerful indicator for
the integrability of a dynamical system.

We return now to the case of a smooth vector field X over a compact
invariant set Ω. In this setting and by using Theorem 3.2, we will revisit
below the formula (19) as a pointwise limit of functions Kν

µ, providing a vis-
cosity regularization of Kµ. However, taking into account the hypothesis of
Theorem 3.2, we observe that the flow of X is not defined on a compact con-
nected invariant set because the norm of the tangent vectors can diverge to
infinity. In order to solve this technical problem, we give alternative repre-
sentations of χ and Kµ through a reformulation of the variational dynamics
as the flow of a vector field defined on a compact connected invariant subset
of Ω × Rn.
We proceed in two steps. We start by defining the following vector field Y

on Ω× (Rn
r {0}), which is substantially the v-orthogonal projection of X:

Y(x, v) :=

(
X(x),DX(x)

v

‖v‖ − v

‖v‖

[
v

‖v‖ ·DX(x)
v

‖v‖

])
. (20)

We prove now the following technical results.

Lemma 4.1 For all (x, v) ∈ Ω × (Rn
r {0}), it holds:

χ (x, v) = lim
t→+∞

1

t

∫ t

0
fχ

(
φτ
Y

(
x,

v

‖v‖

))
dτ,

where the function fχ is given by formula (18). Moreover, every subset
Ω × ∂Bn(0, r), r > 0, is invariant under the flow φt

Y
.

Proof. We start by introducing the retraction Π:

Π : R
n × (Rn

r {0}) → R
n × S

n−1

(x, v) 7−→ Π(x, v) =

(
x,

v

‖v‖

)
.

In view of the 0-homogeneity of the function fχ, that is fχ(x, λv) = fχ(x, v)
∀λ 6= 0, we have that

fχ

(
φt
X

(x, v)
)

= fχ

(
Π ◦ φt

X
(x, v)

)
.

Therefore, we enquire the rectraction of the dynamics φt
X

(x, v), proving that
it corresponds to the flow of the vector field Y, that is:

Π ◦ φt
X(x, v) = φt

Y ◦ Π(x, v) . (21)
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In order to do this, we denote (x(t), v(t)) := φt
X

(x, v) and compute:

d

dt
Π ◦ φt

X
(x, v) =

d

dt

(
x(t),

v(t)

‖v(t)‖

)

=

(
ẋ(t),

v̇(t)

‖v(t)‖ − v(t)

‖v(t)‖2

v(t) · v̇(t)
‖v(t)‖

)

=

(
ẋ(t),

DX(x(t))v(t)

‖v(t)‖ − v(t)

‖v(t)‖2

v(t) ·DX(x(t))v(t)

‖v(t)‖

)

=

(
X(x(t)),DX(x(t))

v(t)

‖v(t)‖ − v(t)

‖v(t)‖

[
v(t)

‖v(t)‖ ·DX(x(t))
v(t)

‖v(t)‖

])

= Y (x(t), v(t)) = Y

(
x(t),

v(t)

‖v(t)‖

)
.

The use of the previous relation together with the initial condition Π ◦
φ0
X

(x, v) = φ0
Y
◦ Π(x, v) imply the relation (21). As a straightforward con-

sequence fχ

(
Π ◦ φt

X
(x, v)

)
= fχ

(
φt
Y
◦ Π(x, v)

)
, and the statement of the

lemma follows. Finally, from the relation:

v ·Y(v)(x, v) = v ·
(
DX(x)

v

‖v‖ − v

‖v‖

[
v

‖v‖ ·DX(x)
v

‖v‖

])
= 0,

we immediately gain the invariance of every subset Ω × ∂Bn(0, r), r > 0,
under the flow φt

Y
. 2

By using the same arguments of the previous proof, we gain the analogous
result for the exponentially dumped Lyapunov indicators.

Lemma 4.2 Let µ > 0. For all (x, v) ∈ Ω × (Rn r {0}), it holds:

Kµ (x, v) = µ

∫ +∞

0
e−µτfχ

(
φτ
Y

(
x,

v

‖v‖

))
dτ,

where the function fχ is given by formula (18).

We remark now that, although the flow φt
Y

leaves invariant Ω × ∂Bn(0, r),
r > 0, we cannot apply Theorem 3.2 yet, essentially because Y cannot be
extended by continuity in v = 0 and thus it does not admit a compact
connected invariant set. To solve this problem, the second step consists
in modifying the vector field Y in a small neighborhood of 0 ∈ Bn(0, 1).
More precisely, given h ∈ C∞(Bn(0, 1),R), such that h(v) = 1 for ‖v‖ ≥ ε
and h(v) = 0 for ‖v‖ < ε

2 , we introduce the following vector field Ŷ on
Ω ×Bn(0, 1):

Ŷ(x, v) =






Y(x, v) if ‖v‖ ≥ ε

h(v)Y(x, v) if ‖v‖ < ε

(22)
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A direct application of previous Lemma 4.2 and Theorem 3.2 allows us now
to take into account the elliptic Dirichlet’s problem:






ν2

2 ∆Kν
µ(x, v) + Ŷ(x)∇xKν

µ(x, v) + Ŷ(v)∇vKν
µ(x, v) = µ(Kν

µ − fχ)(x, v)

Kν
µ(x, v)|∂D = ψ(x, v)

(23)
where D := Ω ×Bn(0, 1) and ψ is supposed to be continuous.
We finally denote by (Ŷν

τ , P(x,v)) the Markov process solving the stochas-
tic differential equation (now on the phase space R2n) related to (23). As
explained in the previous section, the solution Kν

µ admits the representation:

Kν
µ(x, v) = M(x,v)

[
µ

∫ +∞

0
e−µτfχ(Ŷν

τ )dτ

]
, (24)

and can be considered as a viscous regularization of the exponentially dumped
Lyapunov indicator Kµ. In fact, the following convergence result holds:

Proposition 4.1 Let ν, µ > 0. The corresponding solution (24), when re-

stricted to Ω×(Bn(0, 1)r
◦

Bn (0, ε)), is independent on the above regularizing
function h(v), and the following pointwise limit holds:

lim
ν→0

Kν
µ(x, v) = Kµ(x, v).

5 Fast and exponentially dumped Lyapunov indi-

cators

In the last years, the so called Fast Lyapunov Indicators [11] have been
extensively used to numerically detect the phase space structure, i.e. the
distribution of KAM tori and resonances, of quasi–integrable systems, see
[12] and [13]. For the equation ẋ = X(x), the simplest definition of Fast
Lyapunov Indicator of a point x and of a tangent vector v, at time T , is:

FLIT (x, v) = log
(‖vT ‖
‖v‖

)
, (25)

where vT = DφT
X(x)v. In [13] it is proved that, for Hamiltonian vector

fields, if T is suitably long (precisely of some inverse power of the perturb-
ing parameter, see [13] for precise statements) and v is generic, the value of
FLIT (x, v) is different, at order 0 in ε, in the case x belongs to an invariant
KAM torus from the case x belongs to a resonant elliptic torus. There-
fore, the computation of the FLI on grids of initial conditions in the phase
space allows one to detect the distribution of invariant tori and resonances
in relatively short CPU times. Let us remark that if at a first glance the
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function FLIT seems a crude way of estimating Lyapunov exponents from
finite time computations, in [13] it is proved that it provides informations
on the dynamics of x that cannot be obtained with the largest Lyapunov ex-
ponent, which in fact is equal to zero for all KAM tori and resonant elliptic
tori. Moreover, resonances and KAM tori are detected by the FLI on times
T which are much smaller than the times required to compute finite-time
approximations of the largest Lyapunov exponent. These computational
advantages allows one to use the FLI for extensive dynamical analysis of dy-
namical systems representing accurate models of real systems, such as the
dynamical model for the outer solar system ([14] and [15]).

In this section we propose a practical use of the exponentially dumped
Lyapunov indicators, which we have defined in section 4, as a global defini-
tion of Fast Lyapunov Indicators, in the sense specified in the introduction.
In fact, on the one hand the definition (25) of Fast Lyapunov Indicators is
a pointwise definition, on the other hand the definition (19) with µ = 1/T
provides almost the same information on the dynamics as the FLI.
We compare the results provided by the two indicators on the quasi-integrable
Hamiltonian system defined in [12]:

H =
I2
1

2
+
I2
1

2
+ I3 + εf(ϕ1, ϕ2, ϕ3), (26)

where I1, I2, I3 ∈ R, ϕ1, ϕ2, ϕ3 ∈ T1, the underlying symplectic structure is
dI ∧ dϕ, ε > 0 is the perturbing parameter and the perturbation f is given
by:

f(ϕ1, ϕ2, ϕ3) =
1

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + 4
. (27)

Hamiltonian system (26) is particularly suited for the detection of the KAM
tori and web of resonances (see [12]), in fact: for ε > 0 suitable small, the
KAM Theorem applies to (26); each KAM torus of the system intersects
transversely in only one point the section of phase space:

S := {(I1, I2, I3, ϕ1, ϕ2, ϕ3) with (ϕ1, ϕ2, ϕ3) = (0, 0, 0)},

which we call action space; the perturbation (27) is non-generic in the sense
of the Poincaré Theorem about the non-integrability of quasi-integrable sys-
tems.

We now compute the exponentially dumped Lyapunov indicators defined
by µ = ε for a grid of equally spaced initial conditions on the section S. The
practical computation of the integral in (19) is done by restricting the in-
tegration interval up to a total time T1 such that the exponential dump
exp(−µT1) is smaller than the numerical precision adopted for the compu-
tation. For example, we set T1 such that: exp(−µT1) < 10−16. The initial
vector for any initial condition was chosen as: (vI1 , vI2, vI3 , vϕ1

, vϕ2
, vϕ3

) =
(1/

√
5,

√
2/5, 0, 1/

√
5, 1/

√
5, 0). The result of the computation is reported
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Figure 1: Computation of the exponentially dumped Lyapunov indicators for ini-
tial conditions (I1, I2, I3, ϕ1, ϕ2, ϕ3) on the section S, ε = 0.004 and µ =

√
ε/10.

The x-axis corresponds to the value of I1, the y-axis corresponds to the value of I2;
for each initial condition the value of the exponentially dumped Lyapunov indica-
tor is reported using the color scale reported below the picture. The well known
structure of resonances of this system is clearly detected by the highest and lowest
values of the exponentially dumped Lyapunov indicator, see [12] and [13].

in Figure 1, where we report for any initial actions (I1, I2) the value of the
computed exponentially dumped Lyapunov indicator using a color scale1

such that dark gray corresponds to the lowest values of the indicator and
light gray corresponds to the highest values of the indicator. Following [13],
the KAM tori are characterized by intermediate gray, hyperbolic motions
by light gray and resonant elliptic tori by dark gray. It is clear that the
distribution of the values of the exponentially dumped Lyapunov indicator
shown in Figure 1 corresponds to the distribution of resonances and KAM
tori as it is described in [12].

1The color version of the figure can be found on the electronic version of the paper so

that light gray corresponds there to yellow and darker gray corresponds there to darker

orange.
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