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ABSTRACT. We consider the nonlinear Schrédinger equation in higher dimension with
Dirichlet boundary conditions and with a non-local smoothing nonlinearity. We prove
the existence of small amplitude periodic solutions. In the fully resonant case we find
solutions which at leading order are wave packets, in the sense that they continue linear
solutions with an arbitrarily large number of resonant modes. The main difficulty in the
proof consists in solving a “small divisor problem” which we do by using a renormalisation
group approach.

1. Introduction and results

In this paper we prove the existence of small amplitude periodic solutions for a class of nonlinear
Schrédinger equations in D dimensions

vy — Av + pv = f(x, ®(v), ®(0)) := |®(v)|*®(v) + F(z, ®(v), ®(v)), (1.1)

with Dirichlet boundary conditions on the square [0, 7]”. Here D > 2 is an integer, y is a real parameter,
® is a smoothing operator, which in Fourier space acts as

(®(u)r = [k~ *ur, (1.2)

for some positive s, and F' is an analytic odd function, real for real u, such that F(x,u,a) is of order
higher than three in (u, @), i.e.

Flz,ui) =Y Y ap p(@ula?,  F(-z,—u,—0) = —F(z,u, ). (1.3)
p=4 p1+p2=p

In particular this implies that the functions a,, ,, must be even for odd p and odd for even p, and real
for all p. The reality condition is assumed to simplify the analysis.

For D = 2 we do not impose any further condition on f, whereas for D > 3 we shall consider a more
restrictive class of nonlinearities, by requiring

f(zyu, @) = %H(gc,u, a) + g(z, ), H(z,u,u) = H(x,u,a), (1.4)
i.e. with H a real function and g depending explicitly only on @ (besides ) and not on u.

In general when looking for small periodic solutions for PDE’s one expects to find a “small divisor
problem” due to the fact that the eigenvalues of the linear term accumulate to zero in the space of
T —periodic solutions, for any T in a positive measure set.

The case of one space dimension was widely studied in the '90 for non-resonant equations by using KAM
theory by Kuksin-Poshel [17], [18] and Wayne [20], and by using Lyapunov-Schmidt decomposition by
Craig-Wayne [7] and Bourgain [1], [4]. The two techniques are somehow complementary. The Lyapunov-
Schmidt decomposition is more flexible: it can be successfully adapted to non-Hamiltonian equations and
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to “resonant”equations, i.e. where the linear frequencies are not rationally independent [19], [3], [13]. On
the other hand KAM theory provides more information, for instance on the stability of the solutions.

Generally speaking the main feature which is used to solve the small divisor problem (in all the above
mentioned techniques) is the “separation of the resonant sites”. Such a feature can be described as
follows. For instance for D = 1 consider an equation D[u] = f(u), where D is a linear differential
operator and f(u) a smooth super-linear function; let A\, with k € 7? be the linear eigenvalues in the
space of T-periodic solutions, so that after rescaling the amplitude and in Fourier space the equation has
the form

/\kuk = afk(u), (1.5)

with infg |A\x| = 0. The separation property for Dirichlet boundary conditions requires:

1. if [A\r| < o then |k| > Ca~% (this is generally obtained by restricting 7' to a Cantor set).
2. if both |[A\g| < a and |A\,| < « then either h =k or |h — k| > C(min{|h|, |k|})°.

Here §p and § are model-dependent parameters, and C' is some positive constant. In the case of periodic
boundary conditions, 2. should be suitably modified.
It is immediately clear that 2. cannot be satisfied by our equation (1.1) as the linear eigenvalues are

Am = —wn + [m|* + p, w=—= (1.6)

so that all the eigenvalues Ay, ,, With nqy = n and |m1| = |m| are equal to Ay .

The existence of periodic solutions for D > 1 space dimensions was first proved by Bourgain in [2] and
[4], by using a Lyapunov-Schmidt decomposition and a technique by Spencer and Frolich to solve the
small divisor problem. Again the separation properties are crucial: 1. is assumed and 2. is weakened in
the following way:

2'. the sets of k € Z” ™" such that |\¢| < 1 and R < |k| < 2R are separated in clusters, say C; with j € N,
such that each cluster contains at most R elements and dist(C;, Cj) > R%, with 0 < §y < 61 < 1.

Now, in order to apply Spencer and Frolich’s method, one has to control the eigenvalues of appropriate
matrices of dimension comparable to |C;|. Such dimension goes to infinity with R and at the same time
the linear eigenvalues go to zero, so that achieving such estimates is a rather delicate question.

Recently Bourgain also proved the existence of quasi-periodic solutions for the nonlinear Schrodinger
equation, with local nonlinearities, in any dimensions [5]. Still more recently in [9], Eliasson and Kuksin
proved the same result by using KAM techniques. We can also mention a very recent preprint by Yuan
[22], where a variant of the KAM approach was provided to show the existence of quasi-periodic solutions:
in this version, stability of the solutions is not obtained, but, conversely, the proof rather simplifies with
respect to that given in [9].

In this paper we use a Lyapunov-Schmidt decomposition and then the so-called “Lindstedt series
method” [12] to solve the small divisor problem. The main purpose of this paper is to reobtain Bourgain’s
result [2] with the Lindstedt series method, on the simplest possible model which still carries the main
difficulties of the D space dimensions. Recently Geng and You [11] have proved, via KAM theory,
the existence of quasi-periodic solutions for the NLS with a non-local smoothing non-linearity and with
periodic boundary conditions; in such case they show the existence of a symmetry, which greatly simplifies
the analysis. In the case of Dirichlet boundary condition this symmetry is broken, so that the results of [11]
do not apply to the equation (1.1) with Dirichlet boundary conditions. None the less the regularisation
provides some nice simplifications. This motivates our choice of equation (1.1), since the main purpose of
the paper is to establish appropriate techniques and notation in the simplest (non-trivial) possible case.

Moreover, we are able to find periodic solutions also in some non-Hamiltonian and in resonant cases,
where the result was not known in the literature. In particular in the completely resonant case (p = 0
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in (1.1)) we find solutions which reduce to wave packets (i.e. linear combinations of harmonics centred
around suitable frequencies) in the absence of the perturbation.

Let us now describe the general lines of the Lindstedt series approach, which were originally developed
by Eliasson [8] and Gallavotti [10] in the context of KAM theory for finite dimensional systems.

The main idea is to consider a “renormalisation” of equation (1.5) which can be proved to have solutions.
More precisely we consider a new, vector-valued, equation with unknowns U; := {uy : k € C;}

(Dj(w) + M;)U; = eF;(U) + L;Uj, (1.7)

where D} (w) is the diagonal matrix of the eigenvalues A, with k € C;, F;(U) is the vector { fx(u) : k € C;}
defined in (1.5) and Mj, L; are matrices of free parameters. Equation (1.7) coincides with (1.5) provided
Mj = Lj for allj € N.

The aim then is to proceed as in the one dimensional renormalisation scheme proposed in [12] and
[13]; namely we restrict (w,{M;}) to a Cantor set and construct both the solution Uj(e,w,{M4})
and L;(e,w,{M}}) as convergent power series in €. Then one solves the compatibility equation M, =
Lj(e,w,{My}); essentially this is done by the implicit function theorem but with the additional compli-
cation that L, is defined for (w, {M}}) in a Cantor set.

We look for periodic solutions of frequency w = D + pu — ¢, with € > 0, which continue the unperturbed
one (e = 0) with frequency wo = D + p. Note that the choice of this particular unperturbed frequency is
made only for the sake of definiteness: any other linear frequency would yield the same type of results.

For € # 0 we perform the change of variables

Veu(z,t) = ®(v(z,wt)), (1.8)

so that (1.1) becomes

1
O (iwuy — Au+ pu) = elul*u + %F(I, Veu, Vei) = ef(x,u,u,€), (1.9)

with a slight abuse of notation in the definition of f.

We start by considering explicitly the case F' = 0, for simplicity, so that f(z,u,u,¢) = f(u, ) = |u|?u.
In that case the problem of the existence of periodic solutions becomes trivial, but the advantage of
proceeding this way is that the construction that we are going to envisage extends easily to more general
f, with some minor technical adaptations.

We pass to the equation for the Fourier coefficients, by writing

w@t) = D Uy e, (1.10)
nEZ,mEZD
so that (1.9) gives
Im|** (—wn + |m|* 4+ p) upm = € Z Uny my Ung ms Ung,ms = € fr,m (U, @), (1.11)

ni+ng—ng=n
mq+mg—mgz=m

and the Dirichlet boundary conditions spell
un,m :un)si(m), Sl-(ej) = (1—25(7,,])) ej V’L: 1,...,D, (112)

3



where 6(i,7) is Kronecker’s delta and S;(m) is the linear operator that changes the sign of the i-th
component of m.

We proceed as follows. We perform a Lyapunov-Schmidt decomposition separating the P-Q supple-
mentary subspaces. By definition @ is the space of Fourier labels (n,m) such that u,, , solves (1.11) at
e =0. If p # 0 we impose an irrationality condition on p, i.e. won — p # 0, so that @ is defined as

Q= {(n,m)EZxZD:n:l,mi::tlw}. (1.13)

By the Dirichlet boundary conditions, calling V' = {1,1,...,1}, for all (1,m) € @ we have that uy ,, =
+uq v; see (1.12). Then (1.11) naturally splits into two sets of equations: the @ equations, for (n,m)
such that n = 1 and |m| = v/D, and the P equations, for all the other values of (n,m). We first solve
the P equation keeping ¢ := u; v as a parameter. Then we consider the ) equations and solve them via
the implicit function theorem.

We look for solutions of (1.11) such that uy ., € R for all (n,m); this is possible as one can find real
solutions for the bifurcation equations in @), and then the recursive P-Q) equations are closed on the
subspace of real y, . The same condition can be imposed also in the more general case (1.3), provided
the functions a,, p, are real, as we are assuming.

For p # 0 we shall construct periodic solutions which are analytic both in time and space, and not only
sub-analytic, as usually found [2]. This is due to the presence of the smoothing non-linearity.

Theorem 1. Consider equation (1.9), with ® defined by (1.2) for arbitrary s > 0 and F given by (1.8) if
D=2 and by (1.3) and (1.4) if D > 3. There exist a Cantor set M C (0, po) and a constant g such that
the following holds. For all p € 9 there exists a Cantor set E(u) C (0,£0), such that for all € € E(p)
the equation admits a solution u(x,t), which is 2w-periodic in time, analytic in time and in space, such

that
D

u(z,t) — qo e’ Hsinxi < Ce, qgo =V D33=D, (1.14)
i=1
uniformly in (x,t). The set M has full measure and for all p € M the set € = E(u) has positive Lebesgue

measure and ¢
lim meas(€ N[0, e])

e—0+t 5

=1, (1.15)

where meas denotes the Lebesque measure.
For p = 0 the following result extends Theorem 1 of [14] to the higher dimensional case.

Theorem 2. Consider equation (1.9) with p = 0, D > 2, ® defined by (1.2) and F given (1.3) and
(1.4). There exist a constant €9 and a Cantor set € C (0,eq), such that for all £ € € the equation admits
a solution u(x,t), which is 2w-periodic in time, sub-analytic in time and in space, satisfying (1.14) and
(1.15).

Remark. For pu # 0 we could consider other unperturbed periodic solutions and we would obtain the
same kind of results as in Theorem 1, with only some trivial changes of notation in the proofs.

For 1 = 0 and if the functions ap, p,(z) in (1.3) are constant, we could easily extend Theorem 2 to
other unperturbed solutions. Considering non-constant a,, p,’s would require some extra work.

For D = 2 the following result extends Theorem 2 of [14].

Theorem 3. Consider equation (1.9) with u = 0, D = 2, ® defined by (1.2) and F given by (1.3)
and (1.4). Let R any interval in Ry. For N > 4 there exist sets M4 of N wvectors in Zi_ and sets of
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amplitudes a,, with m € M4 such that the following holds. Define

qo(z,t) = Z ap eIt sin(mqx1) sin(mazs). (1.16)
meM

There are a finite set Ko of points in K, a positive constant g and a set € € (0,e9) (all depending on
M ), such that for all s € R\ Ro and € € €, equation (1.9) admits a solution u(x,t), which is 2m-periodic
i time, sub-analytic in time and space, such that

lu(z,t) — qo(z, t)| < Cé, (1.17)

uniformly in (x,t). Finally
N0
i 2eas(€N00.6) (1.18)

e—0*t €

where meas denotes the Lebesque measure.

In the case D > 2 we can still find a solution of the leading order of the ) equations of the form
(1.16); however in order to prove the existence of a solution u(z,t) of the full equation we need a “non-
degeneracy condition”, namely that some finite dimensional matrix (denoted by Ji 1 and defined in
Section 8) is invertible.

Theorem 4. Consider equation (1.9) with p = 0, D > 2, ® defined by (1.2) and F given (1.3) and
(1.4). There exist sets My of N wvectors in Zf and sets of amplitudes a,, with m € My such that the
Q equations at € = 0 have the solution

D
qo(z,t) = Z ame“m‘%Hsin(mixi). (1.19)
i=1

meM4

The set My identifies a finite order matriz Ji 1 (depending analytically on the parameter s). For N > 1
if detJ1 1 = 0 is not an identity in s then the following holds. There are a finite set Ko of points in 8,
a positive constant ey and a set € € (0,e0) (all depending on M), such that for all s € R\ Ko and
e € €, equation (1.9) admits a solution u(x,t), which is 2w-periodic in time, sub-analytic in time and
space, such that

|u(z,t) — qgo(x,t)] < Ce, (1.20)

uniformly in (x,t), and € satisfies the property (1.18).

2. Technical set-up and propositions
2.1. Separation of the small divisors

Let us require that p is strongly non-resonant (and in a full measure set), i.e. that there exist 1 >~y > 0
and 79 > 1 such that

[(D+p)n—p—ap| > o Ya =0,1, (n,p)€Z2, (n,p) # (1,D), n#0. (2.1)

|n|7

We shall denote by I the set of values p € (0, o) which satisfy (2.1). For u € 9 and g small enough
we shall restrict € to a large relative measure set €g(y) C (0,e0) by imposing the Diophantine conditions
(recall that w =D + p —¢)

Eo(y) == {5 € (0,e0) : |wn —p| > % V(n,p) € N2} (2.2)
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for some 7 > 79+ 1 and v < 79/2; see Appendix Al. These conditions guarantee the “separation of the
resonant sites”, due to the regularising non-linearity, for all pairs (n,m) and (n’,m’) such that n # n’;
indeed we have the following result.

Lemma 2.1. Fiz so € R. For all ¢ € €y(y) if for some p > p1,n,n1 € N one has

plwn —p—pl <v/2,  pitlwng —p1—pl <v/2, (2.3)
then either n =ny and p = p1 or |n —nq| > pio/n and n+ ny > Bopy for some constant By.

Proof. If n —ny # 0 one has v/|n — n1|™ < |w(n —n1) — (p — p1)| < v/pi°, so that one obtains
p1° < |n—mnq|™. If n = ny then |p — p1]| < v/p7°, hence p = py. Finally the inequality n + n1 > Bop;
follows immediately from (2.3), with the constant By depending on w and pu. ]

Remark. Note that if sg is small enough one can always bound Bgp; > pio/ .

We shall now use the following lemma [6] to reorder our space index set Z”. The proof is deferred to
Appendix A2 (see also [4]).

Lemma 2.2. For all a > 0 small enough one can write Z° = UjenA; such that
(i) allm € A; are on the same sphere, i.e. for all j € N there exists p; € N such that |m|? = p; Vm € A;;
(i) Aj has d; elements such that |A;| = d; < Cip§, for some j-independent constant Ch;

(iii) for all i # j such that Aj and A; are on the same sphere (i.e. such that p; = p;) one has

B 2
- 2D+ (D +2)\D?’

dist(As, Aj) > Copll, 3 (2.4)

for some j-independent constant Ca;
() if dj > 1 then for any m € A; there exists m’ € A; such that |m — m/| < Cgpf, so that one has

diam(A;) < C1Cap§™7;
If D =2 one can take d; = 2 for all j and 8 =1/3.

Remarks. (1) Essentially Lemma 2.2 assures that the points located on the intersection of the lattice
7" with a sphere of any given radius r can be divided into a finite number of clusters, containing each
just a few elements (that is of order r*, & < 1) and not too closer to each other (that is at a distance
not less than of order %, 3 > 0; in fact one has 8 < a).

(2) In fact the proof given in Appendix A2 shows that diam(A;) < const.p?/ b

By definition we call Ay the list of vectors m such that m; = £1 (that is p; = D). In the following we
shall take a@ < min{s, 1}, with s given in (1.2).
2.2. Renormalised P-Q equations

For (n,j) # (1,1), let us define
Unvj = {un7m}m€Aj, (25)

which is a vector in R%. Recall that p; = |m|? if m € Aj; the equations for U, ; are then by definition
p§5n,jUn,j = EFn,jv (26)

where
6"1j = —wn +pj + Hy Fn,j = {fn,m}mGAj- (27)



We introduce the e-dependent
Yn.j = P} 0n (2.8)

where the exponent s; < s will be fixed in the forthcoming Definition 2.5 (iv), and we define the
renormalised P equations (for (n,j) # (1,1)) as

p; (5n,jI +p;S>_Cl(yn,j) Mn,j) Un,j = 77Fn,j + Ln,jUn,j; (2'9)

where I (the identity), M,, ; and L,, ; are d; x d; matrices and y; is a C* non-increasing function such
that (see Figure 2 below)

{ Xl(x) =1, if |$C| < '7/87 (2'10)

x1(z) =0, if |x] > ~/4,

and y}(z) < Cy~! for some positive constant C (the prime denotes derivative with respect to the
argument).
Clearly (2.9) coincides with (2.6), hence with (1.11), provided

n=g, Xl(yn,j)Mn,j = Ln,ju (211)

for all (n, j) # (1,1). The matrices L,, ; will be called the counterterms.
We complete the renormalised P equations with the renormalised QQ equations

*
S 4 —
D q= § § u"l;ml un27m2uﬂ37m3 + § unl,mlung,mgung,mgu (212)
nyt+ng—ng=1 my+mg—mz=V nyt+ng—ng=1
n;=1 m; €AY my+ma—mz=V

where the symbol >_* implies the restriction to the triples of (n;,m;) such that at least one has not

n; = |m;|*> = 1. It should be noticed that the second sum vanishes at 7 = 0.

2.3. Matrix spaces
Here we introduce some notations and properties that we shall need in the following.

Definition 2.3. Let A be a d x d real-symmetric matriz, and denote with A(i, ) and X9 (A) its entries

and its eigenvalues, respectively. Given a list m := {mq,...,mq} with m; € 7P and a positive number
o, we define the norms

Vd

= ) 9 [ s g a’\mifmj P
|A], g}g};lA(z,J)L 1Al g}glA(z,J)le
) d (2.13)
[All == —=1/tr(ATA) = > AL ),
i,j=1

with p depending on D. For fitedm = {my,...,mq} € 7P we call A(m) the space of dx d real-symmetric
matrices A with norm |Alsm.

Lemma 2.4. Given a matriz A € A(m), the following properties hold.
(i) The norm || Al is a smooth function in the coefficients A(i,j).

(ii) One has || A|l < Al < Vd| Al

(iii) One has % max; \/AD (AT A) < ||A]| < max; \/AO (AT A).

(iv) For invertible A one has

_ PR A(d,J
aA(i,j)"él 1(hvl) =-A 1(hvl)A 1(.]71)7 814(1,])”"4” = d|(A||) (214)




Proof. Item (i) follows by the invariance of the characteristic polynomial under change of coordinates.
Ttems (iii) and (iv) are trivial.
The first relation in item (iv) follows by the definition of differential as

DAf(A)B] = 0, F(A +2B)|o—o. (215)
Now by Taylor expansion we get D4(A)™1[B] = —A"1BA~!. The second relation is trivial. u
Remark. Note that for A symmetric one has \/A\® (AT A) = [\@)(A4)].

Definition 2.5. Let {A;}32, be the partition of ZP introduced in Lemma 2.2. Fiz o small enough with
respect to min{s, 1}, with s given in (1.2). Call Q@ C Z x N the set of indexes (n,j) # (1,1) such that

1 1
—§+(D+u—50)n<pj<(D—i—u)n—i—a (2.16)

For g9 small enough (2.16) in particular implies n > 0, hence  C N%. With each (n,7) # (1,1)
we assoctate the list A; = {m§-1),...,m§-dj)}, with dj < C1p§, and a dj x d; real-symmetric matriz
M, ; € A(A;) (see Definition 2.3), such that M, ; =0 if (n,j) ¢ Q.

(1) We call M the space of all matrices which belong to a space A(A;) for some j € N, and for A € A(A;)
we set |Als = |Aloa, -

(i1) We denote the eigenvalues of X1(yn,;)Mn,; with p?‘l/fi?, so that Vf:))] < C|My jloe < C|My 4o, for
some constant C'.

(i1i) For invertible 6, ;1 + p; °X1(Yn,j)Mn,; we define x,, ; and vy ; by setting

—s+2a —5— _ —1
T = |60+ 07 2| = || (ng T + 05 X1 (Yn) M) |, (2.17)
where the norm ||A|| is introduced in Definition 2.8 — notice that vy, j, hence z, j, depends both on e and
M;
(iv) We call s1 = s — 2a and set s3 = s1/4 in (2.8).

Remark. Note that the eigenvalues I/T(:)J are proportional to X1(yn,;), hence vanish for |y, ;| > v/4.

Lemma 2.6. There exists a positive constant C' such that one has |vy, ;| < C|M, jloo < C| My jlo-

Proof. For notational simplicity set M,, ; = M, 6,; =96, p; =p,dj =d, 2y =, Vpj =V, V,
and define \; = 0 + p~51t%y;, with |v;| < O|M|s (see Definition 2.5 (ii)). Then one has

4 ~1/2
1 1
e=[0+pT = 2 < C12p 2 min || < €72 (18] + p~ < min ual)
d =~ A2 i i
1=
We distinguish between two cases.
1. If there exists i = ig such that |§| < 2p~*T%|v;,| then one obtains
z < 2011/2p75+3a/2|m0| 4 petse/2 Iniin lvi| < 4011/2p75+20‘|1/i0|.
Therefore, if || < p~*72%|v|/2 one has
P /2 < < ACPpT Ty | < ACCPpTI | M| o,
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hence |v| < const.|M|o. If || > p~*+t2%|v|/2 one has, by the assumption on &, p~*+22|v|/2 < |§] <
2p~ 5y, | < 4p~5T2%y;, |, and the same bound follows.

2. If |6] > 2p~5T*|yy| for all i = 1,...,d, then one has

1 d 1 —-1/2
— _ —s+ta .
= 19| (E Z (1+ 51p5+°‘m)2> = oI+ 0l max vi),

i=1
so that |v| < const.p™*C|M |- ]

Remark. The space of lists M = {M, ;}, ;en2 such that M, ; € M (cf. Definition 2.5 (i)) and
|M|y = sup,, ; |Mn jlo < oo is a Banach space, that we denote with B.

Definition 2.7. We define Do = {(¢, M) : 0 < € < &g, |M|s, < Coeo}, for a suitable positive constant
Co, and D(y) C Dy as the set of all (g, M) € Dq such that £ € Ey(y) and

v
wn — (pj—l—u—!- p?f)
J

for some T >1+ 1+ D.

>

[ V(n,j) €Q, (n,j)#(1,1), n#0, (2.18)

Remark. We shall call Melnikov conditions the Diophantine conditions in (2.2) and (2.18). We shall
call (2.2) the second Melnikov conditions, as they will be used to bound the difference of the momenta of
comparable lines of the forthcoming tree formalism.

2.4. Main propositions

We state the propositions which represent our main technical results. Theorem 1 is an immediate conse-
quence of Propositions 1 and 2 below.

Proposition 1. Assume that (¢, M) € D(v). There exist positive constants co, Ko, K1,0,10, Qo such
that the following holds true. It is possible to find a sequence of matrices L € B,

L:= {Ln,j(na g, M; q)}(nJ)GNQ\{(Ll)} ) (2-19)

such that the following holds.
(1) There exists a unique solution U, ;(n, M, e;q), with (n,j) € Z x N\ {(1,1)}, of equation (2.9) which
is analytic in n,q for n| < no, lq| < Qo, M0Q3 < co and such that

(Unj (. M, :0)(@)] < [nlg? Koo+, (2.20)
(11) The sequence Ly, ;(n,e,M;q) is analytic in n and uniformly bounded for (¢, M) € D(v) as

IL(n,2,M;q)|o < Ko|nlg®. (2.21)

(iii) The functions U, j(n,&, M;q) and L, j(n,e,M;q) can be extended on the set g to C1 functions,
denoted by Ufj(n,a,M;q) and Lfyj(n,a,M;q), such that

LY (n.e,M;q) =Ly j(n,e, Miq),  UF;(n,e,M;q) = Uy ;(n.e, M;:q), (2.22)

for all (e, M) € D(2).
(tv) The extended Q)-equation, obtained from (2.12) by substituting U, ;(n,e, M;q) with Ufj(n,e,M;q),
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has a solution ¢¥(n,e, M), which is a true solution of (2.12) for (e,M) € D(2v); with an abuse of
notation we shall call

UnEJ("%EaM) = Ufj(nagaM;qE(nagaM))u Lfr€7j(n7‘€7M) = L7€7J(n757M7qE(77787M))

(v) The functions LE ;(n,e, M) satisfy the bounds

ILE (e, M)lo < InlEy, 0Ly j (6, Mo < [yl |n|t o2,

ol —my|? (2.23)
> Z |00, 5 a0y LF (0,8, M) e=0me < [nlKq,
(n,j)€Q a,b=1
with p depending on D, and one has
UL, (6, M)| < [n] Kyemo(Inesl ™), (2.24)

uniformly for (e, M) € Dy.

Once we have proved Proposition 1, we solve the compatibility equation for the extended counterterm
function Lfim(n =e¢,e, M), which is well defined provided we choose g¢ so that €9 < ng.

Proposition 2. For all (n,j) € Q, there exist C' functions M, j(€) : (0,e0) — Dq (with an appropriate
choice of Cy) such that
(1) M, ;(e) verifies

X1(Yn,j)Ma,j(€) = Ly; (e, 6, M(e)), (2.25)
and s such that
|My.j(e)l, < Kae,  [0:Mn;(e)], < Ko (14 [en]) |n]*, (2.26)
for a suitable constant Ko;
(i1) the set A =A(2v), defined as
A={ee&(y): (s, M) € D(27)}, (2.27)

has large relative Lebesgue measure, namely lim,_o+ e 'meas(A N (0,¢)) = 1.

Proof of Theorem 1. By proposition 1 (i) for all (¢, M) € D () we can find a sequence L, ;(n,e, M)
so that there exists a unique solution U, ;(n,e, M) of (2.6) for all |n| < ng, where 79 depends only on ~
for €9 small enough. By Proposition 1 (iii) the sequence L,, ;(n,¢, M) and the solution U,, ;(n,e, M) can
be extended to C! functions (denoted by LZ(n,e, M) and U¥(n,e, M)) for all (¢, M) € D. Moreover
LY i(n,e, M) = Ly j(n,e, M) and U ;(n,e, M) = U, j(n,e, M) for all (¢, M) € D(2y).

Equation (2.8) coincides with our original (2.6) provided the compatibility equations (2.10) are satisfied.
Now we fix g9 < 7o so that LE  (n =e,e, M) and Ufj(n =¢,e, M) are well defined. By Proposition 2 (i)
there exists a sequence of matrices M, j(¢) which satisfies the extended compatibility equations (2.24).
Finally by Proposition 2 (ii) the Cantor set 2A(27) is well defined and of large relative measure.

For all € € A(27) the pair (e, M(¢)) is by definition in ©(2v) so that by Proposition 1 (iii) one has

Ly j(e.e, M(e)) = Ly j(e.6, M(e)),  ule,e, M(e);z,t) = u®(e,e, M(e); a, 1), (2.28)
so that U, (e, e, M(g)) solves (2.8) for n = e. So by Proposition 2 (i) M () solves the true compatibility

equations (2.10), X1(yn,j) My j(e) = Ly (e, e, M(¢g)), for all € € A(27). Then u(e, e, M(e);x,t) is a true
nontrivial solution of our (1.9) in 2A(2v). Then by setting E(u) = A(27) the result follows. u
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3. Recursive equations and tree expansion

In this section we find a formal solution U, ; of (2.9) as a power series on 7; the solution U, ; is parame-
terised by the matrices L,, ; and it will be written in the form of a tree expansion.
We assume for L,, j(n,e, M) and U, ;(n,e, M), with (n,j) # (1,1), a formal series expansion in 7, i.e.

L j(n,e, M) = anLJ, Un.j(n,e, M) = ZnUJ, (3.1)

for all (n,j) # (1,1). Note that (3.1) naturally defines the vector components u%’“?n, m € Aj.
By definition we set

Ul {ul m M E Al} u,v =g, Ul(fcl) =0, k#0, (32)

where V' = (1,1,...,1). Inserting the series expansion in (2.9) we obtain for all (n,j) # (1,1) the
recursive equations

s —5— k k T k—r
25 (BT 495X (yn ) Mo ) Upt) = )+ZLn§Ufu £ (3.3)

while for (n,7) = (1,1) we have

q=fiv. (3.4)
In (3.3), for mg € Aj, where a =1,...,d;, Frgkj) (a) is defined as
k
ORI oo ulfh el (3:5)

k1+kot+ks=k—1 mni1tna—nz=n

m1+mo—m3z=mg

where each un,m, is a component of some U, .- Recall that we are assuming for the time being
;

f(u, ) = |u*u and we are looking for solutions with real Fourier coefficients t, .

3.1. Multiscale analysis
It is convenient to rewrite (3.3) introducing the following scale functions.

Definition 3.1. Let x(x) be a C* non-increasing function such that x(x) =0 if |x| > 2v and x(z) =
if |z| < ~v; moreover, if the prime denotes derivative with respect to the argument, one has |x'(z)] < Cy~
for some positive constant C. Let xn(x) = x(2"x) — x(2"*12) for h > 0, and x_1(z) = 1 — x(z); see

Figure 1. Then
L=x-1(@)+ > xu@) = D> xal@). (3.6)
h=0 h=—1

We can also write

1=x1(2) + Xo(2) + X-1(2), (3.7)
with X1(x) = x(8z) (cf. (2.8) and Figure 2), X—1(z) =1 = x(4z), and Xo(z) = x2(z) = x(4z) - x(8).
Remark. Note that yj(z) # 0 implies 27" "1y < |z < 27"y if h > 0 and v < |z] if h = —1. In
particular if xp(x) # 0 and xp/ (z) # 0 for h # ' then |h — h'| = 1.

Definition 3.2. We denote (recall (2.17) and that s1 = s — 2a)

Vn,j
6".7 + S1
p;

T, j Exnyj(E,M) = (38)

11



x(@) x2(z) xa(z) Xo(7) X-1()

v/8 /4 /2 " 2y v

Figure 1. Graphs of some of the C*° compact support functions xp(z) partitioning the unity. The
function x(z) is given by the envelope of all functions but x_1(z).

X1() Xo(z) X-1(2)

7)8 v/4 v/2 x

Figure 2. Graphs of the C'*° functions partitioning the unity x—1(x), xo(z) and X1 (z).

For h=-1,0,1,2,...,00 and i = —1,0,1 we define Gy, ; n,i(e, M) as follows:

(1) fori=—1,0, we set Gy jni=0 for h# =1 and Gy, j,—1,;, =0 for all (¢, M) such that X;(yn,;) = 0;
(11) similarly we set Gy, jn1 =0 for all (e, M) such that xp(xn, ;) = 0;

(ii1) otherwise we set

—1
_ X i) My, 5 .
Gn,j,fl,i = Xl(ynﬁ)p] s <5HJI + %) Ll 1= _1;07
J

(3.9)

—1
_ —Ss Xl y";‘ an‘
Gt = 31 i) X ()P <6n,jf+ %) o ohs -1
7

Then Gy jn,i will be called the propagator on scale h.

Remarks. (1) If p?‘u@ are the eigenvalues of X1(yn,;)Mnp, ; (cf. Definition 2.5) one has by Lemma 2.4

n.j

Iniin (5n,jl+p;5+°‘1/7% <&y < rnl_in\/dj

so that 6, ;1 +p; °X1(Yn,j) Mn,; is invertible where Gy, j p.i(¢, M) is not identically zero; this implies that
G, jni(e, M) is well defined (and C*°) on all D (as given in Definition 2.7).

5n,jI + p;erayr(i)j

: (3.10)
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(2) If i = —1,0, then for (e, M) € ®( the denominators are large. Indeed i # 1 implies |y, ;| > /8,
hence [0y, ;| > p; **7/8, whereas |p; *' vy ;| < p;*' CColeo| < const.p; *?ep in Do (with C as in Lemma
2.6 and Cj as in Definition 2.7), so that z,, j = [0p,; + p; "' Vs j| > [05,j]/2. Then

- X ) M, i\ 1
|Grg—iloe = 25 (5n7j1+ M) ’
p; 50

(3.11)

—s+ta -1 —sta s _ 16 _3s
< 0yPpytel? <20y Pp Ay T < 2P

)

 VUng
7 + S1
p]

where we have also used Lemma 2.4 (ii).
(3) Notice that G, ;—1,—1 is a diagonal matrix (cf. (3.9) and notice that X_1(yn,;)X1(Yn,;) = 0 identi-
cally).

Inserting the multiscale decomposition (3.6) and (3.7) into (3.3) we obtain

Uf(lka) :. Z Z Ué’f},w (3.12)

with
00 k—
k k (k—r
Ufz,;,hz—GnJhl F >+5(Z 1) G jna Z Z Z J,h n,m))h ) (3.13)
h1=-—1141=0,1r=
where (4, j) is Kronecker’s delta, and we have used that h = —1 for ¢ # 1 and written
LY = 3" %1 ni)xn(an,) LY (3.14)
n,j X1 Yn,j )Xh\Tn,j gk .
h=—1

with the functions fo , to be determined.

2. Tree expansion

The equations (3.13) can be applied recursively until we obtain the Fourier components u,(z Zn as (formal)

polynomials in the variables Gy, j n,i, ¢ and L( ) i, With 7 < k. Tt turns out that u( ) can be written as
sums over trees (see Lemma 3.6 below), deﬁned in the following way.

A (connected) graph G is a collection of points (vertices) and lines connecting all of them. The points
of a graph are most commonly known as graph vertices, but may also be called nodes or points. Similarly,
the lines connecting the nodes of a graph are most commonly known as graph edges, but may also be
called branches or simply lines, as we shall do. We denote with V(G) and L(G) the set of nodes and the
set of lines, respectively. A path between two nodes is the minimal subset of L(G) connecting the two
nodes. A graph is planar if it can be drawn in a plane without graph lines crossing.

Definition 3.3. A tree is a planar graph G containing no closed loops. One can consider a tree G with a
single special node vy: this introduces a natural partial ordering on the set of lines and nodes, and one can
imagine that each line carries an arrow pointing toward the node vo. We can add an extra (oriented) line
Loy exiting the special node v ; the added line will be called the root line and the point it enters (which is not
a node) will be called the root of the tree. In this way we obtain a rooted tree 6 defined by V(0) = V(G)
and L(0) = L(G) U{y. A labelled tree is a rooted tree 0 together with a label function defined on the sets
L(6) and V (0).

We shall call equivalent two rooted trees which can be transformed into each other by continuously
deforming the lines in the plane in such a way that the latter do not cross each other (i.e. without

13



Figure 3. Example of an unlabelled tree (only internal nodes with 1 and 3 entering lines are taken into
account, according to the diagrammatic rules in Section 3.3).

destroying the graph structure). We can extend the notion of equivalence also to labelled trees, simply
by considering equivalent two labelled trees if they can be transformed into each other in such a way that
also the labels match. An example of tree is illustrated in Figure 3.

Given two nodes v, w € V(0), we say that w < v if v is on the path connecting w to the root line. We
can identify a line with the nodes it connects; given a line £ = (v, w) we say that ¢ enters v and exits (or
comes out of) w. Given two comparable lines £ and ¢1, with ¢; < ¢, we denote with P(¢1,£) the path of
lines connecting ¢; to ¢; by definition the two lines £ and ¢; do not belong to P(¢1,¢). We say that a node
v is along the path P({1, ) if at least one line entering or exiting v belongs to the path. If P(¢1,£) =0
there is only one node v along the path (such that ¢, enters v and £ exits v).

In the following we shall deal mostly with labelled trees: for simplicity, where no confusion can arise,
we shall call them just trees.

We call internal nodes the nodes such that there is at least one line entering them; we call internal
lines the lines exiting the internal nodes. We call end-points the nodes which have no entering line. We
denote with L(6), V5(0) and E(6) the set of lines, internal nodes and end-points, respectively. Of course
V(0) = Vo(0) U E(0).

3.3. Diagrammatic rules

We associate with the nodes (internal nodes and end-points) and lines of any tree 6 some labels, according
to the following rules; see Figure 4 for reference.

(1) For each node v there are s, entering lines, with s, € {0,1,3}; if s, = 0 then v € E(0).

(2) With each end-point v € E(f) one associates the mode labels (n,,m,), with m, € A; and n, = 1.
One also associates with each end-point an order label k, = 0, and a node factor n, = £q, with the sign
depending on the sign of the permutation from m, to V: one can write n, = (—1)‘”“_‘/'1/2(], where |z,
is the [;-norm of z.

(3) With each line £ € L(f) not exiting an end-point, one associates the index label j, € N and the
momenta (ng, mg,m}) € Z x Z” x ZP such that (ng,j;) # (1,1) and mg,m, € A;,. One has p;, =
|me|? = |mj|* (see Lemma 2.2 (ii) for notations). The momenta define as,by € {1,...,d;}, with d;, =
[Aj,] < C1p§,, such that me = A;, (ar), mjp = Aj, (be).

(4) With each line ¢ € L(f) not exiting an end-point one associates a type label iy = —1,0,1. If i = —1
then my, = mj,.

(5) With each line £ € L(f) not exiting an end-point one associates the scale label hy € NU {—1,0}. If
ig = 0,—1 then hy = —1; if two lines ¢, ¢ have (ng,j¢) = (ne,je), then |ig — ip| < 1 and if moreover
ig = ipr = 1 then also |h[ — h[/| <1
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b

Figure 4. Labels associated to the nodes and lines of the trees. (a) The line ¢ exits the end-point v: one
associate with £ the labels iy, hy, ny and my, and with v the labels n,, m, and k,, with the constraints
ig=—1, hyg = =1, ng =ny =1, myg = my € A1, kv = 0. (b) The line £ exits the node v with s, = 3:
one associate with £ the labels iy, hy, ng, jo, me, mz, ay, by, and with v the label k,, with the constraints
(ng, Je) # (1,1), mg = Ay, (ag), m), = Aj, (be), kv = 1. (c) The line £ exits the node v with s, = 1: one
associate with £ the labels ip, hy, ng, jg, my, m}, ag, by, and with v the labels kv, ay, by, ju and ny,
with the constraints (n¢,je) # (1,1), me = Aj, (ap), my = Aj, (be), kv > 1, ay = by, by = ag,, ng = nygy,
Je = je, - Other constraints are listed in the text.

(6) If £ € L(#) exits an end-point v then hy = —1, ip = —1, j, =1, ny = 1 and my = m,,.

(7) With each line £ € L(6) except the root line one associates a sign o(¢) = £1 such that for all v € V(0)
one has

1= > a(0), (3.15)
LeL(v)
where L(v) is the set of the s, lines entering v. One does not associate any label o to the root line £.

(8) If s, = 1 the labels ny,, jo, of the line entering v are the same as the labels ny, j; of the line ¢ exiting
v, and one defines j, = j¢, a, = by, b, = ag,. With such v one associates an order label k, € N.

(9) If s, = 3 then k, = 1. If £ is the line exiting v and /1, {2, {3 are the lines entering v one has

Ny = U(ﬁl)ngl + U(ég)nb + 0(53)7123 = Z O'(g/)ng/ (316)
L'eL(v)
and
my = o(b1)me, + o(l2)me, + o(l3)my, = Z a0 ymy, (3.17)
L'eL(v)

with L(v) defined after (3.15).
(10) With each line £ € L(6) one associates the propagator

90 := Gy joheic (@, be). (3.18)

if ¢ does not exit an end-point and g, = 1 otherwise.
(11) With each internal node v € V() one associates a node factor n, such that n, = 1/3 for s, = 3 and
Ny = k) (ay, by) for s, = 1.

ne,je

(12) Finally one defines the order of a tree as

k0) = > k. (3.19)

veV ()
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Definition 3.4. We call ©%) the set of all the nonequivalent trees of order k defined according to the

diagrammatic rules. We call @ m the set of all the nonequivalent trees of order k and with labels (n,m)
associated to the root line.

Lemma 3.5. For all § € ©%) and for all lines £ € L(6) one has |ng|,|mel,|m}| < Bk, for some constant
B.

Proof. By definition of order one has |Vo(6)| < k and by induction one proves |E(0)| < 2|Vy(0)| + 1 (by
using that s, < 3 for all v € V;(0)). Hence |E(A)| < 2k + 1. Each end-point v contributes n, = £1 to
the momentum n, of any line ¢ following v, so that |ne| < 2k + 1 for all lines £ € L(9).

Let §; be the tree with root line ¢ and let k() be its order. Then the bounds |my|, |mj| < 2k(6,) + 1
can be proved by induction on k(6;) as follows. If v is the internal node which £ exits and s, = 3, call
l1, s, L3 the lines entering v (the case s, = 1 can be discussed in the same way, and it is even simpler)
and for i« = 1,...,3 denote by 6; the tree with root line ¢; and by k; the corresponding order. Then

k1 + ko + ks = k(6¢) — 1, so that by the inductive hypothesis one has

w

my =me, +me, +me, = |my| < Z (2k; + 1) < 2k(0,) +

and hence also [my| = |mj| < 2k(6,) + 1. [

The coefficients u( )
of the following lemma.

can be represented as sums over the trees defined above; this is in fact the content

(k)

Lemma 3.6. The coefficients un m can be written as

S val(e), (3.20)

ool
where
Val(@)z( H gg)( H nv). (3.21)
LeL(0) veV ()

Proof. The proof is done by induction on k¥ > 1. For k = 1 it reduces just to a trivial check.
Now, let us assume that (3.20) holds for &’ < k, and use that u,(zom =¢qd(n,1) Hfil(:té(mi, +1)). If we
set m = Aj(a), we have (see Figure 5)

%) dj
k N ; g
u5172n = Z Z ZGn,th,i(aab) Z Z ushtznlu%;vzn?usl;’z?m
h=—1i=-1,0,1 b=1 kit+ka+ks=k nitna—ng=n
myi4+mo—mz=A;(b) (322)
T DD DL ARN) S
h=—1b,b'=1

Consider a tree 6 € @%@n such that m = Aj(a), sy, = 3 and hy, = h, if £y is the root line of § and v
is defined in 3.3. Let 61,605,603 be the sub-trees whose root lines £1, £, 3 enter vg. By (3.15) one has
23:1 o(tj)me; =my, , with my = A;(b) for b = by,. Then we have

Val(@) = Gn,j,h,i (a, b)V&l(91 )Val(Hg)Val(Hg), (323)
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(kla ni, ml)

(k7 n, m) (kQa na, m2) (klv n, ml)
(k’uanamlaml)
e @ . e
(h,i,n,m,m’) (h,1,m,m,m’)
(k3,n3,m3)

Figure 5. Graphical representation of (3.20); the sums are understood; note that Zj o(lj)m; =m' in
the first summand and k., + k1 = k in the second summand.

and we reorder the lines so that o(¢3) = —1, which produces a factor 3.
In the same way consider a tree 6 € @5{“2” such that m = Aj(a), sy, = 1 and hg, = h, with the same

notations as before. Let 61 be the sub-tree whose root line ¢; enters vg. Set ky,, = r, my,, = A;(b),
m},, = A;(b'), where b = by, and ¥’ = ay,. Then

Val(0) = Gu,jn1(a,b) L, (b,0') Val(6y), (3.24)

so that the proof is complete. [

3.4. Clusters and resonances

In the preceding section we have found a power series expansion for U, ; solving (2.9) and parameterised
by Ly, ;. However for general values of L, ; such expansion is not convergent, as one can easily identify
contributions at order k which are O(k!¢), for a suitable constant £. In this section we show that it is
possible to choose the parameters L,, ; in a proper way to cancel such “dangerous” contributions; in order
to do this we have to identify the dangerous contributions and this will be done through the notion of
clusters and resonances.

Definition 3.7. Given a tree 6 € @%kzn a cluster T on scale h is a connected mazximal set of nodes and
lines such that all the lines ¢ have a scale label < h and at least one of them has scale h; we shall call
hr = h the scale of the cluster. We shall denote by V(T), Vo(T) and E(T) the set of nodes, internal
nodes and the set of end-points, respectively, which are contained inside the cluster T, and with L(T) the
set of lines connecting them. Finally kr = ZV(T) ky will be called the order of T.

Therefore an inclusion relation is established between clusters, in such a way that the innermost clusters
are the clusters with lowest scale, and so on. A cluster T can have an arbitrary number of lines entering
it (entering lines), but only one or zero line coming out from it (exiting line or root line of the cluster);
we shall denote the latter (when it exists) with £%.. Notice that by definition all the external lines have
ig=1.

Definition 3.8. We call 1-resonance on scale h a cluster T of scale hp = h with only one entering line
{1 and one exiting line (% of scale hgf) > h+1, with |V(T)| > 1 and such that
(i) one has

Jep

ne = nep 2 o(h=2)/7, mle €A (3.25),
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(ii) if for some £ € L(T) not on the path P({r,lL) one has ng = ng,, then jo # jor.
We call 2-resonance a set of lines and nodes which can be obtained from a I1-resonance by setting ig, = 0.
Finally we call resonances the 1- and 2-resonances. The line L% of a resonance will be called the root line
of the resonance. The root lines of the resonances will be also called resonant lines.

Remarks. (1) A 2-resonance is not a cluster, but it is well defined due to condition (ii) of the 1-resonances.
Indeed, such a condition implies that there is a one to one correspondence between 1-resonances and 2-
resonances.

(2) The reason why we do not include in the definition of 1-resonances the clusters which satisfy only
condition (i), i.e. such that there is a line £ € L(T) \ P(r,£%) with ny = ng,. and j, = je,., is that
these clusters do not give any problems and can be easily controlled, as will become clear in the proof of
Lemma 4.1; cf. also the subsequent Remark (1).

(3) The 2-resonances are included among the resonances for the following reason. The 1-resonances are
the dangerous contributions, and we shall cancel them by a suitable choice of the counterterms. Such a
choice automatically cancels out the 2-resonances.

An example of resonance is illustrated in Figure 6. We associate a numerical value with the resonances
as done for the trees. To do this we need some further notations.

n, ju m, th
Figure 6. Example of resonance 7. We have set je1 =7, nel =n, me1 =m’ , Mg, = m, so that
ngp =mnand je,. = j, by (3.25). Moreover, if h = h is the scale of T', one has her > h+1 by definition

of cluster and h,1 = héf) > h + 1 by definition of resonance. For any line £ € L(T) one has hy < h and
T

there is at least one line on scale h. The path P(ZT,E%F) consists of the line £1. If ny, = n then j,, # j
by the condition (ii).

Definition 3.9. The trees 0 € R;lkzw withn > 2=2/7 and (n, j) € Q are defined as the trees § € ngzl m
with the following modifications:

(a) there is a single end-point, called e, carrying the labels n.,m. such that ne = n, me € Aj; if Le is
the line exiting from e then we associate with it a propagator gs, = 1, a label my, = m. and a label
oy, € {:I:l},'

(b) the root line £y has ig, = 1, ngy = n and mzo € A; and the corresponding propagator is ge, = 1;

(c) one has maxyer o)\ {t0,0.)} Pe = .

A cluster T (and consequently a resonance) on scale hp < h for 0 € R;H)” is defined as a connected
mazximal set of nodes v € V(0) and lines £ € L(0) \ {{o, e} such that all the lines ¢ have a scale label
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< hr and at least one of them has scale h.

We define the set R%) as the set of trees belonging to R;ﬁ;)j for some triple (h,n,j).

Remark. The entering line /. has no label mzc, while the root line has no label my,. Both carry no
scale label. Recall that by the diagrammatic rule (7) the root line ¢; has no o label.

Lemma 3.10. Let B be the same constant as in Lemma 3.5. For all 0 € R;lkzw and for all ¢ not in the path
P(Le,Lo) one has |ng| < Bk and |my|,|mj| < Bk. For { on such path one has min{|ng — n.|, |ng + ne|} <
Bk.

Proof. For the lines not along the path P = P({., £y) the proof is as for Lemma 3.5. If a line £ is along
the path P then one can write ny = ng + n,, where ng is the sum of the labels £n,, of all the end-points
preceding ¢ but e. The signs depend on the labels o(¢’) of the lines ¢ preceding ¢; in particular the sign
in front of n. depends on the labels o(¢') of the lines ¢’ € P({.,¢), in agreement with to (3.16). Then the
last assertion follows by reasoning once more as in the proof of Lemma 3.5. L]

The definition of value of the trees in R(¥) is identical to that given in (3.21) for the trees in ©%).

(n, m, m’, h,i=1)

Figure 7. We associate with the resonance T (enclosed in an ellipse and such that m = Aj(a), m’ =

Aj(b), m1,m} € Aj) the tree 07 € R, n,;, and vice-versa.

Let us now consider a tree § with a resonance T" whose exiting line is the root line ¢y of 4, let 8; be the

tree atop the resonance. Given a resonance T, there exists a unique 0 € R

honoj? with n = Neys J = Jeo
and h = hr, such that (see Figure 7)

Val(6) = g4, Val(67) Val(6), (3.26)

so that we can call, with a slight abuse of language, Val(f1) the value of the resonance T'.

3.5. Choice of the parameters L, ;

With a suitable choice of the parameters L,, ;5 the functions uslzn can be rewritten as sum over “renor-

malised” trees defined below.

Definition 3.11. We define the set of renormalised trees Gg)nm defined as the trees in @%kzn with no
resonances nor nodes with s, = 1. In the same way we define R%i)h)n’j. We call R%C7),L)n7j(a, b) the set of

trees 0 € R%C)hnj such that the entering line has me = A;(b) while the root line has mj = Aj(a). Finally
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we define the sets @g%) and Rg%) as the sets of trees belonging to ol for some n, m and, respectively,

an

to Rg%)hnj for some h,n,j.

We extend the notion of resonant line by including also the lines coming out from a node v with s, = 1.
This leads to the following definition.

Definition 3.12. A resonant line is either the root line of a resonance (see Definition 3.8) or the line
exiting a node v with s, = 1.

The following result holds.

Lemma 3.13. For all k,n,m one has

ulfl, =Y Val(0), (3.27)

provided we choose in (3.14)
L) == 3 3 Va@), (nj)eq

hi<h—1 HGRE:;)"LI . J(a b) (328)

LY (a,0)=0,  (n,j)¢ 9

where Rg,)hl,n,j(a’ b) is as in Definition 3.11.

Proof. First note that by definition L, 5, = 0 if (n,j) ¢ Q. We proceed by induction on k. For k =1
(3.28) holds as o) = 65}% Then we assume that (3.28) holds for all » < k. By (3.13) one has

R,nm

UM = GugnaF M or i = —1,0, and

n,5,h,0

o0

k—
k) k hr
U s = Gogina Fo) + Gga | 32 3 Z i Uniiz | - (329)

ho=—112=1,07r

(")

where F, (k ? is a function of the coefficients u,, ' m

with 7 < k. By the inductive hypothesis each u( Zn

can be expressed as a sum over trees in O Rn e
the trees 6 € OF) “m, with m = Aj(a) and s,, = 3 (vp is introduced in Definition 3.3), such that only the
root line ¢y of A can be resonant. Note that £y can be resonant only if ¢ = iy, = 1. If ¢y is non-resonant

then 0 € ok

R,n,m>

Therefore (Gn,j7h)iF7§J))( ) is given by the sum over

so that the assertion holds trivially for i # 1.

For i = 1 we split the coefficients of G, ; 5, 1F( ) as sum of two terms: the first one, denoted G, ;n 1J1(l ]),
is the sum over all trees belonging to O . m for m € A; with s,, = 3 and the second one is sum of trees
with value

Val(6) = g4, Val(67) Val(6), (3.30)

with 07 € RR)h o,y and by € @%nrm, with m’ = A;(b) for some r and some b; by definition of resonance
we have h; < h — 1.

We get terms of this type for all 7 and 6, so that

dj

FM(a) = I (a) + DI 3 val(9) | UL (), (3.31)

b=1 ho=—11i2=1,0r=1h;<h—1 9672;‘)}11 . ](a b)
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where the sum over h; < h — 1 of the terms between parentheses gives —ng (@, b) by the first line in

(3.28) Therefore all the terms but Jffj) (a) in (3.31) cancel out the term between parentheses in (3.29),
and only the term Gy, 55 (a) is left in (3.29). On the other hand G, ;i J ") (a) is by definition the

sum over all trees in O

R,nm>

so that the assertion follows also for i = 1. |

Remarks. (1) The proof of Lemma 3.13 justifies why we included into the definition of resonances (cf.
Definition 3.8) also the 2-resonances, even if the latter are not clusters. Indeed in (3.29) we have to sum
also over i, = 0.

(2) Note that Val(f) is a monomial of degree 2k + 1 in ¢ for 6 € o

R,n.m>
2k in g for 6 € o

R,n,m"

and it is a monomial of degree

In the next section we shall prove that the matrices Lgf; , are symmetric (we still have to show that
the matrices are well-defined). For this we shall need the following result.

Lemma 3.14. For all trees 8 € Ry pn, j(a,b) there exists a tree 01 € Rp nn,;(b,a) such that Val(f) =
Val(@l)

Proof. Given a tree § € Ry n,j(a,b) consider the path P = P(l.,{y), and set P = {¢1,...,¢n}, with
o=ty = ... LUy = Cny1 = L. We construct a tree 01 € Ry pn,;(b,a) in the following way.

1. We shift the oy labels down the path P, so that oy, — oy,,, for k =1,..., N, £y acquires the label
o¢, , while £, loses its label oy, (which becomes associated with the line ¢y).

2. For all the lines £ € P we exchange the labels my, mj, so that my, — mj , mj — my, fork=1,... N,
while one has simply mgo — my, and my, — m}o for the root and entering lines.

3. For any pair ¢1(v), £2(v) of lines not on the path P and entering the node v along the path, we exchange
the corresponding labels oy, i.e. 0y, (v) = 04, (v) and 04, () — T4, (v)-

4. The line ¢, becomes the root line, and the line £y becomes the entering line.

As a consequence of item 4. the ordering of nodes and lines along the path P is reversed (in particular
the arrows of all the lines £ € P U {{r, ¢} are reversed). On the contrary the ordering of all the lines
and nodes outside P is not changed by the operations above. This means that all propagators and node
factors of lines and nodes, respectively, which do not belong to P remain the same.

Then the symmetry of M, hence of the propagators, implies the result. L]

4. Bryuno lemma and bounds

In the previous section we have shown that, with a suitable choice of the parameters L,, ;, we can express
the coefficients u%kzn as sums over trees belonging to @gf_)n m- We show in this section that such expansion

)

is indeed convergent if 7 is small enough and (g, M) € D () (see Definition 2.7).

4.1. Bounds on the trees in @g;)

Given a tree 0 € ok

R,nm>

we call G(0,~) the set of (e, M) € Dy such that for all £ € L() one has

2*he+1,}/7 hé 7& _17

27}1@717 < |xn£;j£|
Y hé = _17

|xn£;j£|

IV IA
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with x,, ; defined in (2.17), and

|yne7je| < 2_2’77 =1,
2737 < |yn@,j@| < 27177 if = Oa (42)
2727 < |yneyje|7 i =—1

with y,, ; defined in (2.8). In other words we can have Val(f) # 0 only if (¢, M) € &(0,~).
We call ©(60,7) C D the set of (¢, M) such that

Y
|Zne,ge| = el

for all lines ¢ € L(#) such that i = 1, and

gl

> 7T 4.4
T e —na | (44

}57111% - 5n217j21 }

for all pairs of lines £; < € € L(f) such that ng # ne,, i, ie, = 0,1 and [[,cpy, 4 0()o(lr) = 1 (the

last condition implies that |ny — ny, | is bounded by the sum of |n,| of the nodes v preceding ¢ but not

£1). This means that D (6, ) is the set of (e, M) verifying the Melnikov conditions (2.2) and (2.18) in 6.
In order to bound Val(¢) we will use the following result (Bryuno lemma).

Lemma 4.1. Given a tree 6 € o

R,nm

such that ®(0,v) N &(0,7) # 0, then the scales he of 6 obey
Ny (0) < max{0, ck(9)2=M0/m _ 1}, (4.5)

where Ny (0) is the number of lines £ with ip = 1 and scale hy greater or equal than h, and ¢ is a suitable
constant.

Proof. For (e, M) € D(0,7) N &(#,7) both (4.1) and (4.3) hold. Moreover by Lemma 3.5 one has
|n| < Bk(0). This implies that one can have Ny, (6) > 1 only if k(6) is such that k(6) > ko := B~12(»=1/7,
Therefore for values k(f) < ko the bound (4.5) is satisfied.

If k(0) > ko, we proceed by induction by assuming that the bound holds for all trees 6" with k(0") < k(6).
Define Ej, := ¢~12(=2F1B/7: 50 we have to prove that Nj,(0) < max{0,k(¢)E; ' —1}. In the following
we shall assume that c is so large that all the assertions we shall make hold true.

Call ¢y the root line of 6 and ¢4,...,¥,, the m > 0 lines on scale > h — 1 which are the closest to £y
and such that iy, =1for s=1,...,m.

If the root line £y of 0 is on scale < h then

Nu(0) = iNh(@)a (4.6)

where 6; is the sub-tree with #¢; as root line.

By construction Nj_1(6;) > 1, so that k(6;) > B~'2("=2)/7 and therefore for ¢ large enough (recall
that 3 < a < 1) one has max{0, k(0;)E; ' — 1} = k(6;)E, ' — 1, and the bound follows by the inductive
hypothesis.

If the root line ¢y has iy, = 1 and scale > h then /1,...,¢,, are the entering line of a cluster 7.

By denoting again with 6; the sub-tree having ¢; as root line, one has

Nh(G) = 1+iNh(6i)7 (4.7)
=1
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so that, by the inductive assumption, the bound becomes trivial if either m = 0 or m > 2.

If m = 1 then one has a cluster T" with two external lines E%F = {y and ¢7 = {1, such that hy, > h—1
and hg, > h. Then, for the assertion to hold in such a case, we have to prove that (k(6) —k(61))E; ' > 1.
For (e, M) € &(0,7) N®D(0,~) one has

min{'”%'? |n@1 |}| > 2(h—2)/77 (48)

and, by definition, one has ig, = i¢, = 1, hence [yn,, o, |s [Yne, 5o, | < 7/4 (see (4.2)), so that we can apply
Lemma 2.1.
We distinguish between two cases.

1. If ng, # ne,, by Lemma 2.1 with so = s2 (and the subsequent Remark) one has
g, £ ne,| > const. min{|ng,|, [ne, |}52/™ > const. min{|ng, |, [ne, |}2/7 > const.2(h-2s2/7° > |,

where we have used that sa /72 > (/7 for a small enough. Therefore B(k(6) — k(61)) > ming—41 |ne, +
angl| Z Eh.

2. If ngy, = ny,, consider the path P = P(¢1,4p). Now consider the nodes along the path, and call ¢;
the lines entering these nodes and 6; the sub-trees which have such lines as root lines. If m; denotes the
momentum label my, one has, by Lemma 3.5, |m;| < Bk(6;).

Call 7 the line on the path P U {/;} closest to £y such that i; # —1 (that is all lines ¢ along the path
P(Z, 60) have ES —1).

2.1. If |ng| < |ne,|/2 then, by the conservation law (3.16) one has k() — k(61) > B~}|ng,|/2 > Ep.
2.2. If |ng| > |ne,|/2 we distinguish between the two following cases.

2.2.1. If ny # ng, (= ne,) then by Lemma 2.1 and (4.2) one finds

Ing % ng,| > const. min{|ng|, [ng, |}52/™ > const.2752/To(h=2s2/7" 5 |

2.2.2. If n; = ny, then we have two further sub-cases.

2.2.2.1. If jo, # jg, then |mg —my | > Cgp?zo > Clny,|?, for some constant C. For all the lines ¢ along

the path P(£,£y) one has i, = —1, hence m; = m) (cf. the Remark (3) after Definition 3.2), so that
Img —my, | < 2 Imi| < B(k(#) — k(61)), and the assertion follows once more by using (4.8).

2.2.2.2. If j4, = jz then iz = 0 because hy < h — 2 and one would have |hy — h| = |hg — hy,| < 1if i; = 1.
As 2-resonances (as well as 1-resonances) are not possible there exists a line £’ (again with 7, = 0 because
he < h —2), not on the path P(£, ), such that ji = js, and |ne| = |ng,| > 2("=2/7; cf. condition (ii)
in Definition 3.8. In this case one has k(#) — k(61) > B~ ne| > Ej,.

This completes the proof of the lemma. u

Remarks. (1) It is just the notion of 2-resonance and property (ii) in Definition 3.8, which makes non-
trivial the case 2.2.2.2. in the proof of Lemma 4.1.

(2) Note that in the discussion of the case 2.2.2.1. we have proved that k() — k(61) > const.|ng, |° (using
once more that so/7 > ( for «, hence [, small enough with respect to s).

The Bryuno lemma implies the the following result.

Lemma 4.2. There is a positive constant Do such that for all trees § € ©F and for all (,M) €

R,n,m
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D(9,v) N &(0,7) one has

(z) [Val(9)| < Dlocq2k+1( 10‘0[ 2hNh((~))) H pj_gsS/47

h=1 LeL(0)
(Zl) |85Va.1(9)| S Dlocq2k+l( H 22hNh ) H pfsz a7 (49)
h=1 LeL(6

WIS Z 901,y ValO)] < D+ (T 222 @) TT pye.
h=1

(n',5)eQa’ b'=1 0L (6)
if In| < Bk and |m| < Bk, with B given as in Lemma 3.5, and Val(0) = 0 otherwise.

Proof. By Lemma 3.5 we know that O

R,n,m

is empty if |n| > Bk or |m| > Bk. We first extract the

factor ¢?**! by noticing that a renormalised tree of order k has 2k + 1 end-points (cf. the proof of Lemma
3.5).

For (e, M) € ©(0,7)N S (0, ) the bounds (4.5) hold. First of all we bound all propagators g, such that
ip = —1,0 with 16C}/%y~1|p;,|73%/4 according to (3.11). For the remaining g; we use the inequalities
(4.1) due to the scale functions: by Lemma 2.4 (ii) one has |G, j n,1(a,b)| < \/d_jp;s|5n1j +p; " v gl so
that we can bound the propagators g, proportionally to 27¢|p;,|~3%/4. This proves the bound (i) in (4.9);
notice that the product over the scale labels is convergent.

When deriving Val(f) with respect to € we get a sum of trees with a distinguished line, say ¢, whose
propagator g, is substituted with d.g, in the tree value. For simplicity, in the following set j = jy, hy = h
and n = ny.

Let us first consider the case iy = —1,0 (so that g, is given by the first line of (3.9)), and recall Lemma
2.4 (ii) and (iii)). Bounding the derivative d.g; we obtain, instead of the bound on gy, a factor

52|, 01/2 a/2
| | 001/2_| | —(s—2s2— a/2) (410)

pj |6n,J + p] Vn,] |~

1

arising when the derivative acts on X;(yn,;) (here and in the following factors Cy~! is a bound on the

derivative of x with respect to its argument), and a factor

2

2|7’L|Clp0-‘ 16 —(s—2s2—«
J . < 2017|n|pj( 2—a)

p;((sn,j + pj_Sl Vn,j)

(4.11)

arising when the derivative acts on the matrix (6,1 + p; *X(Yn,j)Mn ;).

If iy = 1 then the propagator is given by the second line in (3.9), so that both summands arising from
the derivation of the function X1 (yn,;) and of the matrix (6, ;I +p; *X(yn,j)Mn ;)" are there, and they
are both bounded proportionally to pj_sz_o‘|n|22h (recall that sy = (s — 2a)/4). Moreover (see Lemma
2.4 (iv)) there is also an extra summand containing a factor

|n|p70¢/22h+1
207_1017/2 — < const.p; Tstdap |92k, (4.12)
pj|6nu +p; Vn,jl

arising when the derivative acts on x4(2n ;). Indeed, by setting A = (8,51 +p; *X1(yn )My ;)" ", so that
x = ||A]| 7!, one has
d]
Oey, j = 1/2 A(i (i,h) A(l, k)0-A"*(h,1), (4.13)
IAI® ik mi=1
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which implies (4.12). For a < s we can bound s — 4o with s3 + a.

Finally we can bound each n = n, with Bk (see Lemma 3.5). All the undistinguished lines in the tree
(i.e. all lines ¢’ # ¢ in L(0)) can be bounded as in item (i). This proves the bound (ii) in (4.9).

The derivative with respect to M, j(a’,b’) gives a sum of trees with a distinguished line ¢ (as in
the previous case (ii)), with the propagator 8Mn,1j,(a/1b/)gg replacing g¢. Notice that £ must carry the
labels n’, j'. We have two contributions, one arising from the derivative of the matrix and the other one
(provided i, = 1) arising from the derivative of the scale function xp, (there is no contribution analogous
to (4.10) because y, ; does not depend on M). By reasoning as in the case (ii) we obtain a factor
proportional to 22hp;es27°‘

The sums over the labels (n', ) € Q and o/,0' =1,...,d; can be bounded as follows. By Lemma 3.5
one has |n'| < Bk. Then j' must be such that p;; = O(n’), which implies that the number of values
which j’ can assume is at most proportional to |n’|P~1 and o', ¥’ vary in {1,...,d; }, with d; < Cip§ <
const.|n/|*. Therefore we obtain an overall factor proportional to k! (P=D+2e < E1H+D < OF for some
constant C. Hence also the bound (iii) of (4.9) is proved. u

4.2. Bounds on the trees in R}_’;)

Given a tree 0 € Ry p n,j, we call é(@, ) set of (e, M) € D¢ such that (4.1) holds for all £ € L(0)\{¢., 4o},

and (4.2) holds for all ¢ € L(6). Let ©(0,v) C Do be the set of (¢, M) such that (4.3) holds for all
Le L(0)\ {le, 4o}, and (4.4) holds for all pairs ¢; < £ € L(6) such that

(i) ne, # ne, ie,ie, = 0,1 and [[epq, o) o()o(lr) = 1
(ii) either both ¢, ¢; are on the path P (¥, {y) or none of them is on such a path.

The following lemma will be useful.

(a,b) such that 6(9,7) N é(@,”y) # 0 then there are two positive

Lemma 4.3. Given a tree 6 € Rg)ﬁ
Jhom, g

constants Bs and Bs such that
(i) a line £ on the path P(L.,ly) can have iy # —1 only if k > Ba|n|?;
(ii) one has k > Bg|lmg, — mp|? with 1/p=1+a/B =1+ D(1+ D(D + 2)!/2).

Proof. (i) One can proceed very closely to case 2. in the proof of Lemma 4.1, with ¢, and ¢ playing the
role of ¢; and /, respectively — see the Remark (2) after the proof of Lemma 4.1. We omit the details.

(ii) By Lemma 2.2, for all mg, mp € Aj one has |mg — myp| < Cgp?+ﬁ. For (n,j) € § this implies that
|mq — my| < const. |n|*TP. If k > By|n|® then one has k > const. |mg — mp|?/(+#) | the statement holds
true (recall that a/3 is given by (2.4)). If k < Ba|n|? then by item (i) all the lines ¢ on the path P (£, o)

have i, = —1, hence my = mj,. Then by calling, as in the proof of Lemma 4.1, 6, the sub-trees whose root
lines enter the nodes of P (., {y) and m; the momentum label my,, we obtain |m,, —mye,| < >~ |ms| < Bk,
and the assertion follows once more. n

The following generalisation of Lemma 4.1 holds.

Lemma 4.4. Given tree 0 € Rg_s)}—%n’j such that 35(6‘,7) N é(ﬁ,v) = () then the scales hy of 0 obey, for
all h < h,
Ni(0) < max{0, ck(h) 22=MA/7Y (4.14)

where Np(0) and ¢ are defined as in Lemma 4.1.

Proof. To prove the lemma we consider a slightly different class of trees with respect to R%}f)ﬁ iy which
" Jhn,

R The differences are as follows:

we denote by R
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(i) the root line has scale labels hy, < h and iy, € {—1,0,1},
(i) we remove the condition n, = ng,, je = je,, and require only that |n.| > 2(=2)/7,

Notice that, for all 6 € R(k) j» among the three sub-trees entering the root, two are in O k1) and

®(k2), respectively, and one is in Rg;;l) , with h; < h (recall that by definition h, < h for all £ € L(6)),

and k1 + ko + k3 = k — 1. Hence we shall prove (4.14) for the trees 6 € Rg% ;» for which we can proceed
by induction on k.

For (¢, M) € ’)5(9,7) N é(@,”y) we have both (4.1) and (4.3) for all £ € L(0) \ {{o,£.}. Moreover by
Lemma 3.10 we have Bk(6) > |ng + an.|, where a = 0 if £ is not on the path P = P(l., {y) and a € {£1}
otherwise.

For £ not on the path P one can have hy > h only if k(6) is such that k(0) > ko = B~'12(h=D/7 (cf. the
proof of Lemma 4.1). If all lines not along the path P have scales < h, consider the line ¢ on the path P
with scale hy > h which is the closest to £, (the case in which such a line does not exist is trivial, because
it yields N, (#) = 0)). Then £ is the exiting line of a cluster T' with /. as entering line. Note that we have
both |ng| > 2=D/7 and |n.| > 2("=2)/7 with h > h. As T cannot be a resonance, if ny = n. then either
je F je, so that

br > min{ Bane|?, B~1Calp;, |7} > const. 2D/

(cf. Lemma 4.3 (i) and the case 2.2.2.1. in the proof of Lemma 4.1), or j; = je, so that
kr > 3712(?172)/7- > 3712(h72)/7

(cf. the case 2.2.2.2. in the proof of Lemma 4.1). If on the contrary ny # ne, by Lemma 2.1 one has
Bk(#) > const. min{|ng + ne|} > const.2("=2s2/7*  Therefore there exists a constant B such that for
values k() < ko := B~12(h~ Ds2/7 the bound (4.14) is satisfied.

If k(0) > ko, we assume that the bound holds for all trees 8 with k(¢') < k(6). Define Ej, =
c12(=2+M0/7; we want to prove that Ny (6) < max{0,k(0)E; ' —1}.

We proceed exactly as in the proof of Lemma 4.1. The only difference is that, when discussing the case
2.2.1, one can deduce |nz = ng,| > const. min{|ng,|, [nz|}*2/™ > const.2(h=2%2/7* 5 E, by using that the
quantity n. cancels out as the line £ is along the path P. L]

The following result is an immediate consequence of the previous lemma.

Lemma 4.5. For fized k the matrices lek); are symmetric; moreover the following identity holds:

L% = —X1yny) Y. Cileny) Z Val(g), (4.15)

h=-1 0ERY), ..
where, by definition,
Ch(x) = Z Xn(x). (4.16)
hi=h+2

Proof. The previous analysis has shown that the matrices L( ). are well-defined. Then the matrices are
symmetric by Lemma 3.14, where we have established a one to one correspondence between the trees
contributing to L( )(a b) and those contributing to L( )(b, a) such that the corresponding trees have the
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same value. Identity (4.15) follows from the definitions (3.14) and (3.28). u
Remark. Notice that C,(z) = 1 when |2| < 27""2y and Cj,(x) = 0 when |z| > 27714,

Lemma 4.6. Given a tree 6 € R%i)h_’nyj(a, b), for (e, M) € 35(9,7) and o > 0 one has

h
() [Val(0)] < (Dg?)r2 " ( T 2w )eabmemel” TT p %%,
h=—1 LeL()
h
(i0) [0-Val(0)] < (Dg?)*2 " n| (T 22w @ )emolmemmel” T pree=e,
h=—1 LeL(0)
(4.17)

djr
@) Y > 10w, (0 Val(6)]

(n’,j")EQa’,b'=1
h
S(DqQ)k27h( H 22h’Nh,/(0))67(r|mafmb|’J H pj—[sz—a'
h=—1 £eL(0)

for some constant D depending on o and .

Proof. The proof follows the same lines as that of Lemma 4.2. We first extract the factor ¢* by noticing
that a renormalised tree in R%’f) has 2k end-points. To extract the factor 27" we recall that there is at
least a line £ # £y on scale hy = h: then N, (f) > 1 and by (4.14) we obtain k > const.2"?/7  so that
C*2=" > 1 for a suitable constant C. To extract the factor e~ !™e =" we use Lemma 4.3 (ii) to deduce
CFe=olma=mul” > 1. Hence the bound (i) in (4.17) follows.

When applying the derivative with respect to € to Val(f) we reason exactly as in Lemma 4.2; the only
difference is that we bound |ng| < |n| + Bk, which provides in the bound (4.17) an extra factor |n| with
respect to the bound (ii) in (4.9).

The derivative with respect to M, j/(a’,b’) gives a sum of trees with a distinguished line ¢ carrying the
propagator 6Mn/,j/ (ar,b)9¢ instead of g. As in the case (iii) of Lemma 4.2 we have two contributions, one
when the derivative acts on the matrix and the other (if 7, = 1) when the derivative acts on x4,; by the
same arguments as in Lemma 4.2 (ii) we obtain a factor of order 22hpj_£52_0‘.

By Lemma 3.10 one has min{|n’ — n|, |n’ + n|} < Bk, so that the sum over n’ is finite and proportional
to k. The sum over j',a’,b’ produces a factor proportional to |n/|(P~D+2® _ reason as in the proof of
(4.9) (iii) in Lemma 4.2. This provides an overall factor of order |n’|”. If k > By|n|? (with By defined
in Lemma 4.3) this factor can be bounded by C* for some constant C. If k < Bg|n|? then, by Lemma
4.3 (i), one must have iy = —1, hence my = m), for all lines ¢ on the path P(l,{p): then if a’ # ¥
necessarily the line ¢, which the derivative is applied to, is not on such a path, and the possible values of
§',a’, b’ are bounded proportionally to k. If a’ = b’ either £ ¢ P({.,ly) — and we can reason as before
—or £ € P(le,y): in the last case we use the conservation law (3.17) of the momenta (mg, m}), and we
obtain again at most k" terms. L]

Remark. For any fixed o > 0 the constant D in (4.17) is proportional to C, hence grows exponentially
in 0. As we shall need for C' to be at worst proportional to 1/¢g (in order to have convergence of the
series (3.27)), this means that o can be taken as large as O(]logeg).

We are now ready to prove the first part of Proposition 1.

Proposition 1 (i)-(ii). There exist constants co, Ko, Qo and o such that the following bounds hold for
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all (e, M) € D(7), ¢ < Qo and 1 < m = coQy2:

tn,m| < Kolnlgeo(nIFImD 1L, 1| < Kolnlg?,

. (4.18)
0Ly j|,, < Koln|""|n|q?, |0y L, < Kog®,

for all (n,j) # (1,1). Moreover the operator norm of the derivative with respect to My, ; is bounded as

O LA,
[Oa Ll : = sup [0n LA
AeB |A|U
4, (4.19)
<swp s 0SB L Desme T Imamal) < plg?

n,J€Qab=1,....d; /7 ' al b=1

where the space B is defined in the Remark after the proof of Lemma 2.6.

Proof. By definition ®(v) is contained in all ©(6,+) and in all ®(0,), so that we can use Lemma
4.2 and Lemma 4.6 to bound the values of trees. First we fix an unlabelled tree § and sum over the
values of the labels: we can modify independently all the end-point labels, the scales, the type labels and
the momenta my if iy # —1 (one has my = mj, for iy = —1). Fixed (¢, M) and (ny, j;) there are only
dj, = O(p§,) possible values for my. This reduces the factors p; **~* to p; ** in the bounds (4.9) and
(4.17). By summing over the type and scale labels {i¢, he}er o) (recall that ‘after fixing the mode labels
and ¢ there are only two possible values for each hy such that Val(d) # 0), we obtain a factor 4%, and
summing over the possible end-point labels provides another factor 2(P+1D(2k+1) " Finally we bound the
number of unlabelled trees of order k by C* for a suitable constant C' [15]. In (4.9) we can bound

IO_O[ 2" Nn(0) — exp (10g2 i hNh(H)) < exp (const.k i h2_hﬁ/27) < Ck. (4.20)
h=—1 h=—1 h=—00

for a suitable constant C, and an analogous bound holds for the products over the scales in (4.17).

Since (see (3.1) and (3.20))
Unm =Y 1" Y Val(6), (4.21)

k=1 peoly)
and, by Lemma 3.5, Gan is empty if k < B7!|n| or k < B~!|m/|, we obtain the first bound in (4.18).
Using (4.17) (i), we bound the sum on 0 € Rg% hon,; €xactly in the same way. The main difference is

that R%i)h’nyj(a, b) is empty if [m, — my| > By 'k'/?, by Lemma 4.3 (ii). Then by Lemma 4.5, we obtain
the second bound in (4.18).
As for the third bound in (4.18), we have

OcLnj = —X1(ynj) > Culwny) Y. 0:Val(d)

h=-1 eeRg)n sJh (4 22)
—X1(¥ng) D (0-Calznyg)) D Val(d) = (9=x1(yny) Z Chl(eng) D Val(d),
h=-—1 GER%C)TL i h=-1 96735;2 gk

where the first summand is treated, just like in the previous cases, by using (4.17) (ii) instead of (4.17)
(i). In the other summands Val(f) is bounded exactly as in the previous cases, but the derivative with
respect to € gives in the second summand an extra factor proportional to |n|2hp§0‘ — appearing only for
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those values of h such that xp(z, ;) is non-zero (and for each value of ¢ there are only two such values
so that the sum over h is finite) — and in the third summand a factor proportional to |n|pj*. We omit
the details, which can be easily worked out by reasoning as for (4.10) and (4.12) in the proof of Lemma
4.2. Finally we bound 2" by C* as in the proof of Lemma 4.6.

The fourth bound in (4.18) follows trivially by noting that to any order k the derivative with respect
to n of n* produces kn*~1.

Finally, one can reason in the same way about the derivative with respect to M, ;, by using (4.17) (iii),
so that (4.19) follows. u

5. Whitney extension and implicit function theorems
5.1. Extension of U and L

In this section we extend the function L,, ;, defined in (), to the larger set D.

Lemma 5.1. The following statements hold true.

(i) Given 0 € R,(Ié;,)hﬂl,j’ we can extend Val(0) to a function, called Val®(9), defined and C" in Dy, and

L, ;(n,e,M;q) to a function Lfﬁj = Lfyj(n, g, M;q) such that

LY = —Xi(yn) Y. Culan) D0t Y Val®(0), (5.1)
h=-1 k=1 ger®
R,n,j,h

satisfies for any (e, M) € Dg the same bounds in (4.18) and (4.19) as LY ;(n,e, M;q) in D(y). Further-
more Val(9) = Val® (0) for any (e, M) € D(0,2v) C D(0,7) and Val?(0) = 0 for (¢, M) € Do\ D(6,7).
(ii) In the same way, given 6 € Gg)n,m’ we can extend Val(d) to a function Val®(9) defined and C* in

Do, and U, j(n,e,M;q) to a function Uf)j(n,a,M;q) such that ufﬁm = ufﬁm(n,a,M;q), given by

o0

Uy, = n" Z Val? (), (5.2)
k=1 geo®

R,n,m

satisfies for any (e, M) € Dy the same bounds in (4.18) as tn,m n D (7).
Furthermore Val(8) = Val®(0) for any (e, M) € D(0,2y) C D(0,7) and Val®(@) = 0 for (¢, M) €
Do\ D(0,7)-

Proof. We prove first the statement for the case 6 € R%C)hn ;- We use the C compact support function

x—1(t) : R — R, introduced in Definition 3.1. Recall that x_;(t) equals 0 if |t| < v and 1 if [¢| > 2,
and |0;x_1(t)] < Cy~!, for some constant C.
Given a tree 0 € R%C,)h,n,j’ we define

Val®(0) = [ x-1(@nesllne™) T x-1(16n,, 4o, = Oy, ey =10, [™)) Val(6), (5.3)
L€L(O)\{fe L0} £1,02€L(0)

ip=1
where [T, ¢ 1. (p) 18 the product on the pairs £1 < f> € L(0) such that [,cpq, 4,y o(0)o(br) =1, i¢, = 1,0,
ng, # ng,, and either both ¢1, s are on the path connecting e to vy or both of them are not on such a
path. The sign [[,cp(f, ¢,) o(€)o(€1) is such that |ng, —ne,| < n.

By definition Val?(8) = Val(6) for (¢, M) € 35(6‘, 27) as in this set the scale functions x_; in the above
formula are identically equal to 1.
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By definition supp(Val®(8)) ¢ 6(9, ), as the scale functions x_; in the above formula are identically
equal to 0 in the complement of D (6, ) with respect to Dy.

presence of the extra terms due to the derivatives of the x_; functions. Each factor of the first product
in (5.3), when derived, produces an extra factor proportional to 2"¢p3®|n,|7*!. Note that a summand of
this kind appears only if iy = 1 and (¢, M) is such that

2y
—he—1
2 S e S

(5.4)

This implies |ng| < 2("+1)/7 5o that the presence of the extra factor simply produces, in (4.17) (ii), a
larger constant D and a larger exponent — say 4 — instead of 2 in the factor 221N (9) | Each factor of the
second product produces an extra factor |ng, — ng,|™*1, which can be bounded by C*.

Therefore the derivatives of Lfi ; respect the same bounds (4.18) as L, ; modulo a redefinition of the
constants ¢g, Ky. As these bounds are uniform (independent of (n,j)), then Lfij is a C! function of
(e, M).

We proceed in the same way for 0 € Oy m:

ValE(e) = H X—1(|xntz7me||nf|7—) H X—1(|6"21;j£1 671@2,]‘[2 ||n@1 - nleﬁ))val(e)v (5'5)
LeL(0):ip=1 £1,2€L(0)

where now the product II*** runs on the pairs of lines ¢; < ¢ such that HEGP(Zl,b) o(l)o(ly) = 1,
ig; = 1,0, and ng, # ng,. |

Proposition 1 (iii). L” is differentiable in (e, M) € D¢ and satisfy the bounds

|0-LE (a,b)| < Cy|n|*Fsze=0lme=mel’|p|g2,

& (5.6)
Z Z ‘8Mn/,j/(a',b’)Lg,j (av b)’ e\ma_mb‘p < Cl|77|a
(n',j")€Qa’,b/=1
where C1 1s a suitable constant.
Proof. Simply combine the proof of Lemma 5.1 with that of Proposition 1 (ii). L]

5.2. The extended Q equation

Going back to (2.12), we can extend it to all D¢ by using UY; instead of U, ; for all (n,j) # (1,1); we
obtain the equation

DSq = fl’v(uE) = Z u'El;ml u7€27m2u7€37m3' (5'7)

nitng—nz=1
mi+mo—mz=V

The leading order is obtained for n; = 1 and m; € Ay for all ¢ = 1,2,3, namely at n = 0 we have a

nonlinear algebraic equation for g,
D3q=3P¢3, (5.8)

with solution qg = vV D*3—L. We can now prove the following result.

Proposition 1 (iv). There exists ng such that for all |n| < no and (e, M) € Dy, equation (5.7) has a
solution q” (e, M;n), which is analytic in n and C* in (¢, M); moreover
dj
100" (e, M;m)| < K|n], > 0 and® (e Min)| < Klnl, (5.9)

(n,j)€Q a,b=1
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for a suitable constant K.

Proof. Set Qg := 2qo. Then there exists 1; such that u” is analytic in 7, ¢ for |n| < 71 and |¢| < Qo and
C' in (¢, M). By the implicit function theorem, there exists 79 < 11 such that for all || < 7 there is a
solution ¢ = ¢F(n, e, M) of the Q equation (5.7) such that |¢¥| < 3¢o/2. By definition of the extension
u, the equation (5.7) coincides (2.12) on ©(2v). The bounds on the derivatives follow from Lemma 4.2
and Lemma 5.1. n

We now define

UrzE:j(naeaM):Ufj(nasaM;qE(naeaM))v Lf,j(nasaM):Lf,j(naeaM;qE(nvevM))' (510)

Proposition 1 (v). There exists a positive constant Ky such that the matrices LE ;(n,e, M) satisfy the

bounds s 5 .
|L (nvgvM)Lf < |77|K17 |8€Ln,j(77787M)|0 < |77|K1|TL| +527

il (5.11)
D> Om @i L (e, M)| e Imemmel” < Ky,
(n,j)EQ a,b=1
and the coefficients Uf)j (n,e, M) satisfy the bounds
o (Inl+1pi [V
UZ,(n,e, M)| < [n] Kye= (e, (5.12)
uniformly for (e, M) € Dy.
Proof. It follows trivially from the bounds (5.9) and from the bounds of Lemma 5.1. u

6. Proof of Proposition 2
6.1. Proof of Proposition 2 (i)

Let us consider the compatibility equation (2.11) where L, ; = Lfyj (n,e,M). One can rewrite (2.11) as

Xl(y’nﬂj)M’nﬂj = Lf,j(n5 g, M)) = nil(yn,j)iE(%E, M)a (61)

with LF(n,e, M) = O(1), so that (6.1) has for = 0 the trivial solution M, ; = 0.

The bounds of Proposition 1 (v) imply that the Jacobian of the application EE(n,s, M):B — Bis
bounded in the operator norm (B is defined in the Remark before Definition 2.7). Thus there exists
10, K2 such that, for |n| < no and for all (¢, M) € ®(2v), we can apply the implicit function theorem to
(6.1) and obtain a solution M, _;(n, ), which satisfies the bounds

|Myjlo < Kolul,  [0:-Mnj(n,€)le < Koln|'™2[nl,  [0,M;(n,€)ls < Ko, (6.2)

for a suitable constant Ks.
Finally we fix ¢g < 19, n = € and set (with an abuse of notation) M, ;(¢) = M, ;(n = €,¢€), so that, by

noting that

d
3z Mn,j(€) = Oy Mn,j(n,€) + 0cMn,;(n, €), (6.3)

we deduce from (6.2) the bound (2.26).

6.2. Proof of Proposition 2 (ii) — measure estimates

We now study the measure of the set (2.27). By definition this is given by the set of € € E((y) such that
the further Diophantine conditions

s -1 2y

@n,j(€) = || On gl + 05 X1 (Ynyg) Maj ()7 2 Pk

(6.4)
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are satisfied for all (n,j) € Q such that (n,j) # (1,1). Recall that (n,j) € Q implies n > 0. By Lemma
2.4 (iii) one has

(€)= min XD (8,51 + p; X (ng) May)| = min |8, + p; v, ()], (6.5)

(¢) are the eigenvalues of X1 (yn,;) MY (¢) and that

since the matrices are symmetric. Recall that p?‘u(i) .

n,j
dj < C1p§ (cf. Definition 2.5).
Then we impose the conditions

i 2 . )
Gy + 07 = L W, ) e Q\ (LD}, i=1,....d;, (6.6)

n,J nT

and recall that M, ; = 0 (i.e. uf:)] = 0) if (n,7) ¢ Q, so that for (n,j) ¢ Q the Diophantine conditions
(6.6) are surely verified, by (2.1).
Call A the set of values of ¢ € &g(y) which verify (6.6). We estimate the measure of the subset of

&o(7y) complementary to 2, i.e. the set defined as union of the sets

Tnji = {5 € Co(7y) : |On,; -i-pj_s-i_al/r(:)j(&')l < i—z} (6.7)
for (n,j) e Qandi=1,...,d;.

Given n, the condition (n,j) € Q implies that p; can assume at most eon + 1 different values — cf.
(2.16). On a (D — 1)-dimensional sphere of radius R there are at most O(RP~!) integer points, hence
the number of values which j can assume is bounded proportionally to n”~1(1 4 egn). Finally i assumes
d; < Clp? values.

Since p € MM we have, for n < (o /4eg)*/ (To+1)

i+t ()| > (D + p)n — p; — p| — 2e0n > (6.8)

0
j n.j 2 oo
so that we have to discard the sets J,, ;; only for n > (Y0 /4e0) Y/ (ot 1),

Let us now recall that for a symmetric matrix M (e) depending smoothly on a parameter ¢, the eigen-
values are C! in ¢ [16]. Then the measure of each J,, ;; can be bounded from above by

Y <£ (605 + p,—s+ay<i>4(5)))l . (6.9)
N7 e@o(y | \de N T T
where one has
‘d% (5n,j +pj—s+ayflf§(g)) ’ > g (6.10)

This can be obtained as follows. Proving (6.10) requires to find lower bounds for

)

d —s ‘

(i)-(s) are the eigenvalues of M, ;(¢) (i.e. X1 (ymj))\(i)-(s) = p?‘l/r(;)J(E)) The eigenvalues A, ;(¢)®

n,J n,j
are C! in ¢, so that, by Lidskii’s lemma [16], one has

where \

d
< dj | =M,

SINO)
’ & )‘n,j (8)

< C K (14 gon'2) n?, (6.11)
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where we have used (6.3) and (6.2). Since s2 + @ < s — a, we obtain

d e i
‘E (—wn + s i PTG g)AY, (5)) ‘ >n/2,
which implies (6.10).

Recall that p; is bounded proportionally to n. Then for fixed n we have to sum over const.(1+gqn)n? !
values of j and over d; < Clpj‘?‘ < const.n® < const.n.

Therefore we have

dj
~ 1 €0
Z Zmeas (Jn,5,i) < const. Z y|n|P <W + W)

(n.)€9 i=1 n>(y/4g0) =1/ (ro+1)

< const. (a((f*D)/(T““) + 5(1J+(T*D*1)/(To+l)>

(6.12)

)

provided 7 > D + 1. Therefore the measure is small compared to that of €y(y) — which is of order eo— if
r>max{ro+ D+1,D+1} =7+ D+ 1.

7. Generalisations and proof of Theorem 1
7.1. Equation (1.4): proof of Theorem 1 in D > 2

In order to consider equation (1.4) we only need to make few generalisations. By our assumptions
f(zyu,a) = g(z,a) + Oy H(x,u, a),

with H real valued. For simplicity we discuss explicitly only the case with odd p in (1.3) and ¢ odd in
u. Considering also even p should require considering an expansion in y/¢: this would not introduce any
technical difficulties, but on the other hand would require a deeper change in notations.

We modify the tree expansion, analogously to what done in [14]. The change of variables (1.8) trans-
forms each monomial in (1.3) into a monomial 5(p1+p2’1)/2ap17p2 (x) uPr@P?; we can take into account the
contributions arising from g(z, @), by considering the corresponding Taylor expansion and putting p; = 0
and py > 3. All the other contributions are such pi1ap, p, = (p2 + 1)ap,+1,p,—1 (by the reality of H and
of the functions ay, p, ).

Each new monomial produces internal nodes of order k, = (py,1 + pv2 — 1)/2 € N, such that k, > 2,
with p, 1 + Dy 2 entering lines among which p, ; have sign ¢ = 1 and p, 2 have sign o = —1; note that the
case previously discussed corresponds to (py,1,Pv,2) = (2,1). Hence, with the notations of Section 3.3,
we can write s, = Dy,1 + Py,2, With s, odd.

Fach internal node v has labels ki, py 1, Pv,2, My, With the mode label m, & Z”. The node factor
associated with v is ay, , p, »,m,, namely the Fourier coefficient with index m, in the Fourier expansion
of the function ay, , p, ,; by the analyticity assumption on the non-linearity the Fourier coefficients decay
exponentially in m, that is
< Ale_AQIm‘, (71)

‘a’pv,lvpu,%mu

for suitable constants A; and As.

The conservation laws (3.16) and (3.17) have to be suitably changed. We can still write that ny is given
by the right hand side, the only difference being that L(v) contain s, lines (and each line ¢ € L(v) has its
own sign o(¢)). On the contrary (3.17) for mj has to be changed in a more relevant way: indeed one has

my=my,+ Y o(l)me, (7.2)
' eL(v)
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with L(v) defined as before.
The order of any tree 6 is still defined as in (3.19), and, more generally, all the other labels are defined
exactly as in Section 3.3.
The first differences appear when one tries to bound the momenta of the lines in terms of the order of
the tree. In fact one has
BO) <1+ > (su—1), (7.3)

veVH(0)

which reduces to the formula given in the proof of Lemma 3.5 only for s, < 3. One has s, = 2k, + 1, so

that
Yo sv=1)=2 > ky =2k, (7.4)

veVh(0) vEVH(H)

and one can still bound |n,| < Bk for any tree § € ©) and any line £ € L(9).
The conservation law (7.1) gives, for any line £ € L(6),

max{|mel, [my|} < Bk + > |mal, (7.5)
veEVH(0)

for some constant B. The bound in (7.5) is obtained by reasoning as in the proof of Lemma 3.5; the last
sum is due to the mode labels of the internal nodes. Thus the bound on ny in Lemma 3.5 still holds, while
the bounds on my, mj, have to be replaced with (7.5). The same observation applies to Lemma 3.10.

Also Lemma 3.14 still holds. The proof proceeds as follows. The tree 6; which one associates with each
0 € Rrn,jn(a,b) is the tree in Rp . ;1 (b, a) defined as follows.

1. As in the proof of Lemma 3.14.

2. As in the proof of Lemma 3.14.

3. Let © be a node along the path P = P(£.,{y) and let ¢1,...,£Ls, with s = s be the lines entering ;
suppose that ¢; is the line belonging to the path P U {{.}. If o(¢1) = 1 we change all the signs of the
other lines, i.e. o(¢;) — —o(¥;) for i = 2,...,s, whereas if 0(¢) = —1 we do not change the signs.

24. As in the proof of Lemma 3.14.

Then one can easily check that the reality of H implies that the tree 6, is well defined (as an element
of Rrn,jn(b,a)) and has the same value as 6.

Remarks. (1) Note that item 3. above reduces to item 3. of Lemma 3.14 if s, = 3 for each internal
node v.

(2) If the node @ has pg1 = 0 (i.e. the monomial associated to it arises from the function g(z, %)) then
the operation in item 3. is empty.

Therefore we can conclude that the counterterms are still symmetric.

The analysis of Section 4 can be performed almost unchanged. Here we confine ourselves to show the
few changes that one has to take into account.

The first relevant difference appears in Lemma 4.1. Because of the presence of the mode labels of the
internal nodes the bound (4.5) on Np,(0) does not hold anymore, and it has to be replaced with

Ny (6) < max {o, c(k(e) + Y |mv|)2<2—h>ﬁ/f - 1}, (7.6)
veEVH(0)

for a suitable constant ¢. The proof of (7.6) proceeds as the proof of Lemma 4.1 in Section 4. We use
that in (4.7) for m = 1 one has

KO) = k@) + D Imol— Y Imu=kr+ D |mal, (7.7)

veVp(0) vEVo(61) veVL(T)
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and, except for item 2.2.2.1., we simply bound the right hand side of (7.7) with k7. The only item which
requires a different argument is item 2.2.2.1., where instead of the bound |m; — myg,| < >~ |m;| we have,
by (7.5),

Img—me| < > |mol+ Y Imil <Bkr+ > ImvlﬁmaX{B,l}(kTJr > Imvl),

vEP(L,00) veVo(T) veVL(T)

where v € P (¢, £y) means that the node v is along the path P(¢,4) (i.e. £, € P(£,4y) Ulp)) and the sum
over 4 is over all sub-trees which have the root lines entering one of such nodes.

Remark. Note that if the coefficients ap, ,,(x) in (1.3) are just constants (i.e. do not depend on z),
then m, = 0 and (7.6) reduces to (4.5).

Moreover in (4.9) we have a further product

H AqeAzlmol (7.8)

veEVH(0)

while the product of the factors 2"V»(9) can be written as

ho

(H 2hNh,(e))( ﬁ 2hNh(0)) < ohok ﬁ QhNh(f’))7 (7.9)

h=-—1 h=ho+1 h=ho+1

with hg to be fixed, where the last product, besides a contribution which can be bounded as in (4.20),
gives a further contribution

ﬁ [T 22" < ] exp(const.|mv| ihrhﬁ/f), (7.10)

h=ho veVy(0) veEVH(0) h=ho

so that we can use part of the exponential factors in (7.8) to compensate the exponential factors in (7.10),
provided hy is large enough (depending on 7).
Another consequence of (7.2) is in Lemma 4.3: item (ii) has to be replaced with

|ma — my| < const.k'/? + Z [y, (7.11)
veVH(0)

because each internal node v contributes a momentum m, to the momenta of the lines following v. Up
to this observation, the proof of (7.11) proceeds as in the proof of Lemma 4.3.

Therefore also the bound (4.14) of Lemma 4.4 has to changed into (7.6), for all h < h. The proof
proceeds as that of Lemma 4.4 in Section 4, with the changes outlined above when dealing with the case
2.2.2.1.

The property (7.11) reveals itself also in the proof of Lemma 4.6. More precisely, in order to extract a
factor e~?I™a=ml” we use that (7.11) implies (recall that p < 1)

I — my|” < O(k: + 3 |mv|), (7.12)
veVH(0)

for a suitable p-dependent constant C', so that we can write, for some other constant C’,

ea|ma—mb|p < C’k H e<7‘7nv|7 (713)
veVy(9)
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where o has to be chosen so small (e.g. |o| < Az/4, with Ay given in (7.1)) that the last product in (7.13)
can be controlled by part of the exponentially decaying factors e~42™+| associated with the internal
nodes. This means, in particular, that ¢ cannot be arbitrarily large when €9 becomes small (cf. the
Remark after the proof of Lemma 4.6).

As in (4.9) also in (4.17) there are the further factors (7.8), which can be dealt with exactly as in the
previous case.

Besides the issues discussed above, there is no other substantial change with respect to the analysis of
Sections 4 to 6.

7.2. Equation (1.1) in dimension 2: proof of Theorem 1 in D = 2

We can consider more general nonlinearities in the case D = 2, that is of the form (1.3) without the
simplifying assumption (1.4). Indeed in such case the counterterms are 2 x 2 matrices (cf. Lemma 2.2),
so that we can bound w,, ; by the absolute value of the determinant of 0, ;I + X1(yn,j) Mn,jp; °, which is a
C' function of ¢ (we have proved only C! but it should be obvious that we can bound as many derivatives
of Lgﬁ ; as we need to, possibly by decreasing the domain of convergence of the functions involved).

Set for notational simplicity M, j = ¥1(Yn,j) My, ;. Let us evaluate the measure of the Cantor set

€ ={ceCy): |572w’ —I—p;strﬁnyjén,j —|—p;25 det My ;| > 2v[n| 77}, (7.14)
following the scheme of Section 6. Here we are using explicitly that for D = 2 one has
det (5n,jI + p;sﬁn,j) = (57210. —i—p;strﬁn,j&n,j + p;Qs det M’ﬂ,j? (7'15)

because M, ; is a 2 X 2 matrix.
We estimate the measure of the complement of €; with respect to &g (7), which is the union of the sets

~ s o 2
Inj = {8 € Co(y): 107 ; +p; “an 6+ pj *bn 4| < i} (7.16)

n|”
where a,, j = tr M,, ; and b, ; = det M,, ;.
Given n the condition (n,j) € Q implies that p; can assume at most ggn + 1 different values. On a
one-dimensional sphere of radius R there are less than R integer points, so the number of values j can

assume is bounded proportionally to n(egn + 1).
Since u € MM we have for |n| < ng(12/e0)'/?™, with some constant ny,

2

3B 25 ") +25 s 2 (D 0 =y = = 2e0fnl)? —consto > g, (7.47)
so that .,
1003 (Bnj + Py “ang) + Py b j| > N8 (7.18)
provided v < 73/2 and 7 > 27j.
The measure of each J,, ; can be bounded from above by
2 sup <i (62 4 P *an,j0nj + p; %b )) - . (7.19)
|7’L|T ce@o(r) de V7 J VARGV J 5]

In order to control the derivative we restrict € to the Cantor set

v

|n|7

¢y = {g € &y(7) : |6n,;(2n +p;%ay, ;(€)) +np; tan,; —I—p;%b;)j(s)] > for all (n,j) € Q} , (7.20)
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with a;, ;(¢) = day,j(¢)/de and b), ;(¢) = dby ;(¢)/de. On this set we have (recall that p; is bounded
proportionally to |n|)

2
Z meas (J,, ;) < const. Z 7n| —775702 < const.58777272)/270, (7.21)
(n,j)eQ n>no(v/e0)1/270 n

provided 7 > 72 + 3. Hence meas(J,, ;) is small with respect to e provided 7 > 279 + 72 + 2.
Finally let us study the measure of ;. The bounds (6.2) — and their proofs to deal with the second
derivatives — imply

lan.i|,bn.j] < Ceo, lay, ;| [br, ;] < C (1 + goln|"t5?),

7.22
ol ] < € (1 eolaf?¥22), i
for some constant C.

Let us call j:z,j the complement of &, with respect to &g(y) at fixed (n, ) € Q. As in estimating the
set J,,; in (7.16) we can restrict the analysis to the values of n such that n > ny(vyo/g0)'/?7, possibly
with a constant n; different from ng. Then we need a lower bound on the derivative, which gives

2
—s —s —2s n
[Inl(2n + a3, ;05 ") + On jar o5 * + by 0y | = (7.23)
(recall that ¢, ; < 1/2). Hence we get
Z meas (jl ) < const Z M < const.e{2 /2™ (7.24)
nj) = : 22 = €0 ’ :

(n,5)€Q n>ny(v/g0)t/270

provided 75 > 5. Again the measure is small with respect to gy provided 7o > 279 + 4. For 79 > 1 this
gives 7o > 6 and therefore 7 > 279 + 7 + 2 > 10.

Remark. The argument given above applies only when D = 2, because only in such a case the matrices
M,, ; are of finite n-independent size (cf. Lemma 2.2). A generalisation to the case D > 2 should require
some further work.

8. Proof of Theorems 2, 3 and 4

Let us now consider (1.9) with p = 0, under the conditions (1.3) if D = 2 and both (1.3) and (1.4) if
D > 3. Note that for 4 =0 one has w =D —e.
The @ subspace is infinite-dimensional, namely (1.13)) is replaced by

Q:={(n,m) e NxZ"” : Dn=|m|?}, (8.1)

so that @ contains as many elements as the set of m € Z” such that |m|2/D € N.

As in [14] our strategy will be as follows: first, we shall find a finite-dimensional solution of the
bifurcation equation, hence we shall prove that it is non-degenerate in ) and eventually we shall solve
both the P and @ equations iteratively.

A further difficulty comes from the separation of the resonant sites. Indeed the conditions (2.1) and
(2.2) are fulfilled now only for those (n,p) such that Dn # p. This implies that Lemma 2.1 does not hold:
given p;°lwn; — p;| < /2 for i = 1,2 it is possible that D(n1 — n2) = p1 — p2 and in such case we have
at most [p1 — pa| < v/ep5®, which in general provides no separation at all. Hence we cannot use anymore
the second Melnikov conditions.
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We then replace Lemma 2.2 a by more general result (cf. Lemma 8.4 below), due to Bourgain; conse-
quently we deal with a more complicated renormalised P equations.

8.1. The @ equations

In [14] we considered the one-dimensional case and used the integrable cubic term in order to prove the
existence of finite-dimensional subsets of ) such that there exists a solution of the bifurcation equation
with support on those sets.

In order to extend this result to D > 2 we start by considering (1.9) projected on the @Q subspace. We
set Un,m = gm if (n,m) € Q, so that the @ equations become

2(1 —1
|m| ( +S)D dm = E Uny,my Ung,maUng,ms-

mi1+mg—mgz=m
ni+ng—ng=|m|2/D
Setting ¢m = am + Qm, with Q,, = O(n), the leading order provides a relatively simple equation, as
shown by Bourgain in [4]:

|m[?0*+) D g, = Z Gymy Oy Grmg s (8.2)

mi,m2,m3
my4mg—mz=m
(m1—mg,mg—m3)=0

which will be called the bifurcation equation. One can easily find finite-dimensional sets M such that
(i) if m € M then S;(m) e M Vi=1,...,D (S; is defined in (1.12)),
(ii) if my1, ma, m3 € M and (m; — ms, may — ms) = 0, then my + ma — ms € M.

Remarks. (1) Condition (i) implies that M is completed described by its intersection M4 with Zf.
(2) Clearly (8.2) admits a solution with support on sets respecting (i) and (ii) above. An example is as
follows. For all r the set M, (r) := {m € Zf : |m| = r} is a finite-dimensional set on which (8.2) is
closed.

(3) We look for a solution of (8.2) which satisfies the Dirichlet boundary conditions. Hence we study
(8.2) as an equation for a,, with m € M.

Finding non-trivial solutions of (1.9) by starting from solutions of the bifurcation equation like those of
the example may however be complicated, so we shall prove the existence of solutions under the following,
more restrictive, conditions.

Lemma 8.1. There exist finite sets My C Zf such that |m|? is divided by D for all m € M, and (8.2)
18 equivalent to

Im|20+9) D=1 — gD+142 _ (3D _ 9D+1)g2 =0, q,, € M, , 53)
Gy =0, GWEZE\M_H '
with A? := Domem, a?,.

Proof. The idea is to choose the m € M so that |m|> € DN, (8.3) is equivalent to (8.2) and has a
non-trivial solution. We choose M so that the following conditions are fulfilled:
(a) setting N := M| and min,eaq, [m| = [mq| (this only implies a reordering of the elements of M ),
we impose

oD+1 Z |m|2+2s < (3D + 2D+1(N _ 2)) |m1|2+25; (8.4)

meMy\{m1}

(b) the identity (m; — mg,ma —mg) = 0 can be verified only if either m; —mg = 0 or ma — m3 = 0 or
[(m1)i] = [(m2);| = |(m3);| for all i =1,..., D ((m;); is the i-th component of the vector m;).
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An easy calculation shows that under conditions (b) equation (8.2) assumes the form
an (|m|2(1+S)D*1 —gD+142 (3D _ 2D+1)a/12n) —0, (8.5)

and hence is equivalent to (8.3). Now, in order to find a non-trivial solution to (8.5) we must impose

|m1|2+25 — min |m|2+28 2 2D+1A2D, (86)
meMy
with A determined by
DEPTHN-1)+3P) A =M, N=[My|, M:= > |m*™ (8.7)
meM_4

As in the one-dimensional case [14], if we fix N then (8.6) is equivalent to condition (a), i.e. (8.4), which
is an upper bound on the moduli of the remaining m; € My \ {m1}. Then there exist sets of the type
described above at least for N = 1.

To complete the proof (for all N € N) we have still to show that sets M verifying the conditions (a)
and (b) exist. The existence of sets with N =1 is trivial, an iterative method of construction for any N
is then provided in Appendix A3. u

Remark. The compatibility condition (8.4) requires for the harmonics of the periodic solution to be
large enough, and not too spaced from each other. Therefore, once we have proved that the solutions of
the bifurcation equation can be continued for € # 0, we can interpret the corresponding periodic solutions
as perturbed wave packets. The same result was found in D =1 in [14].

We have proved that the bifurcation equation admits a non-trivial solution

2

D
¢ (x,t) = Z qr(g)ei‘ng t(2i)DHsin(mixi), (8.8)

meM i=1

with q,(,g) = ay, form € Zf and extended to all Z” by imposing the Dirichlet boundary conditions.

We can set ¢, = q,(,g) + Q@ for allm € ZP and split the @ equation in a bifurcation equation (8.3) and

a recursive linear equation for @,,:

*
2425 y—1 0) (0 0) (0 —
|m| D™ Qm —2 E leqgng‘b(ng - E q'gnzqf(nngS = § Uny,my Ung,moUng,ms (8.9)
my1,mo,m3 my,mg,m3 mqi+mg—m3z=m
mqi+mg—m3z=m mi1+mg—mgz=m

(my1—mg,mg—m3)=0 (m1—mg,mg—m3)=0 nitnzmng=im(2/D
where for all (n,m) € Q one has u, m = ¢, and * in the last sum means that the sum is restricted to
the triples (n;, m;) such that if at least two of u,, n, are q,(,i’f then the label (n,m) of the third one must
not belong to Q.

By using once more the Dirichlet boundary conditions, we can see (8.9) as an equation for the coefficients
Q. with m € Zf. In particular the left hand side yields an infinite-dimensional matrix J acting on Zf.
We need to invert this matrix.

Lemma 8.2. For all D and for all choices of My as in Lemma 8.1, one has that J is a block-diagonal
matriz, with finite dimensional blocks, whose sizes are bounded from above by some constant My depending
only on D and M.

The result above is trivial for D = 2 and requires some work for D > 2, see Appendix A4. In any case
it is not enough to ensure that the matrix J is invertible. The following discussion shows that at least

39



for N =1 (and any D > 2) and for N > 4 and D = 2 there exist sets My such that the matrix J is
invertible outside a discrete set of values of s.

We can write J = diag{|m|**2¢/D — 8A} + Y, where A is defined in (8.7) and with |Y|, bounded by
a constant depending only on D and M. Therefore for My large enough we can write J as

_(Jin O
= (%)

where Jy 1 is a Mo x My matrix, and Ja 2 is — by the definition of My — invertible.

To ensure the invertibility of J; ; we notice that detJ; ; = 0 is an analytic equation for the parameter s,
and therefore is either identically satisfied or has only a denumerable set of solutions with no accumulation
points. For all s outside such denumerable set J is invertible.

Proving that for a given M the function detJ; ; is not identically zero can be however quite lengthly.

For N =1and My ={V =(1,...,1)} the Dirichlet boundary conditions imply that we only need to
consider those m € Zf with strictly positive components. For all such m either m = V or |m|?> > D.
This implies that J; ; has two diagonal blocks: a 1 x 1 block involving M and a block involving m such
that |m|?> > D. The first block is trivially found to be non-zero. In the second block the off-diagonal
entries all depend linearly on D?%, and for all m the diagonal entry with index m is |m|>(1*%) /D plus a
term depending linearly on D?: therefore in the limit s — oo this block is invertible. Hence det.J; 1 = 0
is not an identity in s.

If N > 1 we restrict our attention to the case D = 2 where we can describe the matrix J;,; with
sufficient precision. We have the following

Lemma 8.3. For D =2 and N > 4 consider M4 as a point in cV.

(i) The set of points My which either do not respect Lemma 8.1 or are such that detJ; 1 = 0 identically
in s is contained in a proper algebraic variety WV.

(ii) Provided that |mq| is large enough one can always find integer point which do not belong to W and
respect (8.4) for all s in some open interval.

The proof is in Appendix A5.

Therefore the forthcoming analysis applies without any further assumption for D = 2 and N > 4,
whereas one must assume that J; ; is invertible to apply it to the other cases. Of course, given a set M
verifying the conditions of Lemma 8.1 one can check, through a finite number of operations, whether Ji ;
is invertible, and, if it is, then the analysis below ensure the existence of periodic solutions.

8.2. Renormalised P equation

The following Lemma (Bourgain lemma) will play a fundamental role in the forthcoming discussion. A
proof is provided in Appendix A6.

Lemma 8.4. For all sufficiently small o we can partition 7P = UjeNAj so that, setting

p; = Hélil |m|27 (I)(m) = (m, |m|2)7 (8'10)

there exist j-independent constants Cy and Co such that

|A;] < Cipf, dist(®(A;), D(A;)) > Co min{pf,pf}, diam(A;) < Clch;?*B, (8.11)
with 3 = /(1 +2P~1DY(D + 1)!)D.
Remarks. (1) For fixed €, wn — |m|? can be small only if n is the integer nearest to |m|?/w.

(2) For any (m1,n1) and (na, mg) such that m; € Aj, mo € Ay for j' # j, and n; is the integer nearest
to |m;|?/w, i = 1,2, one has

[m1 —ma| + |n1 —na| > C3 min{p?,pf/} (8.12)
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for some constant C'5 independent of w.
(3) As in Lemma 2.2 also here one could prove that in fact diam(A;) < const.p]
details.

/ D; see Appendix A6 for

Definition 8.5. We call C; the sets of (n,m) € Z x ZP such that m € A;, Dn # |m|? and —1/2 +
(D —eo)n < |m|?> < Dn+1/2. We set 6p,m = —wn + |m|? and d; = |C;|, and define the d;-dimensional
vectors and the d; x d; matrices

. m|?\° N . .
Uj = {’unym}(n)m)ecj, ]D)j = dlag { <| | > 5n,m} y Xl,j = dlag { X1 (5n,m)} (813)
( j (

pj n,m)eC;
parameterised by j € N.

Remark. Notice that for each pair (n,m), (n/,m’) € C; we have |(n,m) — (n/,m’)| < C(eop;/D + p3*)
for a suitable constant C.

We define the renormalised P equations

fn,m

un,m = 77 |m|255n m )

(nvm) ¢ U ij Dn # |m|27
jeN (8.14)

p; (]D)] —l—pj_sM)Uj:nFj—i—LjUj, jeN,

where ]\//TJ = X1,;M;X1,j, and the parameter n and the counterterms L; will have to satisfy eventually the
identities
n=e¢g, Mj :Lj (815)

for all j € N.

Remark. We note that d; can be as large as O(Eopjl-JrO‘), hence can be large with respect to p;. However

for given € the matrix A; = D, + p;S]\/Zj is diagonal apart from a p§ X p§ (e-depending) block. This
implies that the matrix A; has at most p§ eigenvalues which are different from |m|?*,, 1. This can be
proved as follows. Consider the entry A;(a,b), with a,b € C;, with a = (n1,m1) and b = (n2, ms2). The
non-diagonal part can be non-zero only if X1(ny,m, )X1(Ons,ms) M (a,b) # 0, which requires |0y, m,| < v/4
for ¢ = 1,2. Therefore for fixed ¢, m; and ms one has only one possible value for each n;, i.e. the integer
closest to w™!|m;|?. This proves the assertion because |A;| < C1p$ and for all (n,m) € C; one has
m e Aj.

Definition 2.3 and Lemma 2.4 still hold, with Z*" replaced with Z*P*) in the definitions of A(m).
Definitions 2.5 (i)-(ii) can be maintained with (n, j) replaced by j, while (iii) becomes

z; = X1, (D; + p; M) 'R0~ (8.16)

Finally there is no parameter so. Equivalently we can set s; = 0, which leads to identify y,, », with 6,
(cf. (2.8)): this explains why there is no need to introduce the further parameters yy, .
The main Propositions 1 and 2 in Section 2.4 still hold with the following changes.

1. (n,j) € Z x N (or Q) has to be always replaced with j € N,

2. In Proposition 1, ¢ (i.e. the solution of the @ equation) is not a parameter any more: it is substituted
with the solution, say ¢(°), of the bifurcation equation (8.2), whose Fourier coefficients can be incorporated
in the list of positive constants given at the beginning of the statement.
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3. In Proposition 1 (i) the bound (2.20) becomes
|t (1, M, ) | < Kolmle=ent™ +imIY™), (8.17)

for some constant K, namely we have only sub-analyticity in space and time.

4. In Proposition 1 (v) one must replace s with s in the first line of (2.23) and in (2.26), and e~71"a="/"
with e~o((mama)=(m.:me)l” i the second line of (2.23), for a suitable constant p.

8.3. Multiscale analysis

The multiscale analysis follows in essence the same ideas as in the previous sections, but there are a few
changes, that we discuss here. It turns out to be more convenient to replace the functions y,(z) with
new functions xp(z) = xx(32z), in order to have x_1(x;) = 1 when x1(d,,m) # 1 for all (n,m) € C,.
This only provides an extra factor 32 in the estimates. For notational simplicity in the following we shall
drop the tilde. -

Let us call Aj =D; + p;°M;. Note that

1=x100nm) + X0(0nm) + X=1(0nm) Y(n,m) € C;. (8.18)

Introduce a block multi-indez b, defined as a d;-dimensional vector with components b(a) € {1,0, -1},

and set
d;

>_Cj b~ H )_(b(a) (5n(a),m(a))' (819)

a=1
For any b we can consider the permutation 7 which reorders (b(1),...,b(d;)) into (b (1),...,bx.(d;))
in such a way that the first V; elements are 1, the following N5 elements are 0, and the last N3 = d; — N,
with N = N + Na, elements are —1. The permutation 7y induces a permutation matrix Pg such that
PBAJ-PB_1 can be written in the block form

An A A
PgA; Pt = | AT, Asn Ass | (8.20)
AT, AT, Ags

where the block A; 1, A2 2 and Aj 3 contain all the entries A;(a,b) with b(a) = b(b) = 1, with b(a) =
b(b) = 0 and b(a) = b(b) = —1, respectively, while the non-diagonal blocks are defined consequently.

—

Then for all b such that X; 6 # 0 we can write

Ain A O
Aj=P | AT, Asp 0 | P} (8.21)
0 0 Ass

where we have used that if X;5 # 0 then the blocks A; 3 and Aj 3 are zero. Furthermore, for the same
reason, the block Az 3 is a diagonal matrix. Note that N < Cyp§ by the Remark after (8.15).

The first NV x N block of A; in general is not block-diagonal, but it can be transformed into a block-
diagonal matrix. Indeed, we have

~ _ Aia 0 0 I B 0
Aj= SjﬁAj)BS}:Ba AJ)B = 0 As o 0 Sj,E = PB 0o I 0], (8.22)
0 0 Az s 0 0 I



where B
Ay =A1g — A A3 AT, B=A1pA, (8.23)

while I and 0 are the identity and the null matrix (in the correct spaces). Of course also the matrices
A; j depend on b even if we are not making explicit such a dependence.

The invertibility of As 5 is ensured by the condition b(a) = 0 for the indices a = N7 +1,...,N. The
inverse A, % can by bounded proportionally to 1/ in the operator norm. Then also A; can be inverted

provided ZM is invertible, i.e. provided det /1111 # 0. Hence in the following we shall assume that this
is the case (and we shall check that this holds true whenever it appears; see in particular (8.29) below).

—

Hence for all b such that X;5 # 0 we can write

-1 _ ¢-Tj-1g-1
A _Sj,SAj,BSj,B’ (8.24)
and set
LA 0 0y
Gj,l?),l :pj SLB 0 0 0 j,B’
0 00
(8.25)
0O 0 O 00 O
_ —sqg—T -1 -1 R _ —sq—T -1
Gj,B,o—pj Sj,E 0 Ay 0 Sj,E’ Gj_’bﬁl—pj Sj)]3 0 0 91 Sj)]3
0 0 0 0 0 Ajs
so that (8.24) gives
p;SA;1 = Gj,S,fl + Gj,B,o + Gj,B,l (8.26)

for all b such that X;.6 # 0. We can define Gj,Bz‘ also for b such that X;B = 0, simply by setting

)

Gj,B,i =0 for such b. Then we define the propagators

Xi5 Xn(x;) Gj,S,l’ if i =1 and xn(z;) #0,

Gj,E,i,h = Xj,ﬁ Gj,ﬁ,i’ ifi=0,—-1and h = —1, (8.27)
0, otherwise ,
so that we obtain
-5 4—1 -5 - -1 -
pAT =0 X EAT =D X [ (Gj,ﬁ -1t Gj,B,O) + > xnlzy) Gj,ﬁ,l}
b b h=-1
- (8.28)

which provides the multiscale decomposition.

Remark. Only the propagator Gj &1, can produce small divisors, because the diagonal propagator
Gj,B,—l,—l and the non-diagonal propagator Gj,B,O,—l have denominators which are not really small.
We can bound |Gjt~”. _4lo for i = —1,0 by using a Neumann expansion, since by definition in the
corresponding blocks one has |0y, | > /8 and |M;|, < Cey,.

Hence we can bound the propagators as

Gigaa| SOV i=0.-1 Grga| < 2h0y e (8.29)
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for all j € N.
Recall that we are assuming |J |, < C for some s-dependent constant C.
We write the counterterms as

Ly =xn(@) Y X, 5L 500 (8.30)
b

where by definition L, 7 , (a,b) = 0 if either b(a) = —1 or b(b) = —1.
With this modlﬁcatlons to (3.9) the multiscale expansion follows as in Section 3.1, with j = (n,m):

UAEID VD o) oY s

i=—1,0,1 | h=—1
with
(k)

u%ﬁ%:#a (nvm)¢ U Cja Dn#|m|2a
o jeN

U](,kb)zh G, bZh +611G.7b1h( Z Z Z Z _],bh ],1:31,7;)1,}11) jEN’ (832)

h1:—1b #07,1 0,1,—17’ 1
uszk,Zn — qgf) = J ! Z Z * wk) g (k2) o (k3) Dn — |m|2,

"1;m1 nz,mz ns,ms’

ki1+ko+ks=k mqi+mg—m3z=m
nitng—ng=|m|2/D

where * has the same meaning as in (8.9).

8.4. Tree expansion

We only give the differences with respect to Section 3.2.

(2) One has (n,,m,) € @ and the node factor is 5, = .

(3) We add a further label 7, p, g to the lines to evidence which term of (8.32) we are considering. We
also associate with each line ¢ a label j, € Z,, with the constraints j, € N if £ is a p-line and j, = 0
otherwise.

(4) The momenta are: (ng,my), (ny, my) € C;, for a p-line, (ng, me), (ny, m;) € Q, with |my —mj| < M,
for a ¢-line, and finally (ng, m¢) = (nj, m;) ¢ U;NCj U Q for an r-line. For a p-line the momenta define
the labels as,be € {1,...,d;}, with d;, = |C;,|, such that (n,, m¢) = Cj,(ar) and (nj, mj) = Cj;,(be). For a
¢-line the momenta define ay, by such that (ng, me) = Q(ar) and (nj, mj) = Q(by).

(5) Each p-line carries also a block label b, with components by(a) = —1,0,1, where a = 1,...,d;,.
(6) Both r-lines and g-lines £ have iy = —1 and hy, = —1.

(7) One must replace_gng,jg) with jg. Moreover if two lines ¢ and ¢ have jy = jy then |by(a) —by (a)] <1
and if hy # —1 then by # 0 (by the definition of functions xz).

(8) One has ny = n, instead of ny = 1 for lines ¢ coming out from end-points.

(9) One must replace (ng, j¢) with jp.

(10) Equation (3.16) becomes

n} = U(ﬁl)ngl + U(ég)nb + O’(ég)’lu3 = Z O'(g/)ng/ (833)
L'eL(v)

(that is ng is replaced with n}), while (3.17) does not change.
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(11) The propagator Gy of any line ¢ is given by g0 = G (ag,be), as defined in(8.27), if £ is a p-line,

|2s

Je,besie,he

while it is given by go = J!(as, be) if £ is an g-line and by g = 1/8,,.m,|me

j— 3 — (kU)
(12) The node factor for s, =11is 7, = Lje,ﬁz,hz(a”’ by).

if ¢ is a r-line.

The set @;k) is defined as in Definition 3.4, with j instead of n, m, by taking into account also the new
rules listed above. This will lead to a tree representation (3.20) for (8.32), which can be proved as for
Lemma 3.6.

In Lemma 3.5 the estimate |ng| < Bk does not hold any more because there is no longer conservation
of the momenta ny (i.e. (3.18) has been replaced with (8.33)), and all the bounds on the momenta should
be modified into |ng|, [n}|, |me|, |m}| < Bk'™* for some constant B. This can be proved by induction on
the order of the tree. The bound is trivially true to first order. It is also trivially true if either the root
line has ¢ = —1 or it is ¢-line or a r-line (one just needs to choose B appropriately). Suppose now that
the root line is a p-line with ¢ # —1: call vp the node which the root line exits. If s,, = 3, call 01,05, 03
the sub-trees with root lines £1, £2, £3, respectively, entering the node vy. We have |(ng,, me,)| < ki 74 by
the inductive hypothesis, and by definition |(n}, m})| < Zle Bk} < B(k —1)"*4. Then |(ng,my)| <
B(k — 1)1 4 Cy(k — 1)200+49) < BEl+4e If 5, = 1 the proof is easier.

8.5. Clusters and resonances
Definition 3.7 of cluster is unchanged, while Definition 3.8 of resonance becomes as follows.

Definition 8.6. We call 1-resonance on scale h > 0 a cluster T of scale h(T) = h with only one entering
line {p and one exiting line (% of scale hg,f) > h+ 1 with [V(T)| > 1 and such that
(i) one has

(a’) ]Z,} = jfTa (b) png Z 2(h_2)/7—7 (834),

(ii) for all ¢ € L(T) not on the path P({r,¢L) one has ji # jor -

We call 2-resonance a set of lines and nodes which can be obtained from a 1-resonance by setting ip, =
0,—1. Resonances are defined as the sets which are either 1-resonances or 2-resonances. Differently from
3.8 we do not include among the resonant lines the lines exiting a 2-resonance.

Definition 3.9 is unchanged provided that we replace (n, j) with j, we require p; > 2(h=2)/7 e associate
with the node e the labels (n.,m.) € C; and with ¢y the labels (ng,, m¢,) € C;.

Since we do not have the conservation of the momentum n, Lemma 3.10 does not hold in the same
form: the bounds have to be weakened into |ng|, |mg|, |n}|,|m}| < Bk for the lines ¢ not along the
P(Lle, lo), and |ngl, |mel, |}, |mj| < B(|n| + k)* < for the lines along the path.

8.6. Choice of the counterterms

The choice of the counterterm (8.30) is not unique and therefore is rather delicate.

Resonances produce contributions that make the power series to diverge. We want to eliminate such
divergences with a careful choice of the counterterms.

The sets @%i)j and R%C)h ; are defined slightly differently with respect to Definition 3.11.

Definition 8.7. We denote by @g{f)j the set of renormalised trees defined as the trees in @;k) with the
following differences:

(i) The trees do not contain any I-resonance T with ble =by,.

(i) If a node v has s, =1 then by #* Bg/, where £ and ¢’ are the lines exiting and entering, respectively,
the node v. The factor n, = L;kvg N associated with v will be defined in (8.39).
£,D¢,lve
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(i11) The propagators of any line { entering any I-resonance T (recall that by (i) one has B}T * BgT),
where (. = (, is

9e = xne ()X, 5, (Gﬁ,g%,o(ae, bo) + Gy, 5, —1(aebe) =Gy g, o(ae,be) =Gy, 5, 4 (ar, bz)) , (8.35)

and the same holds for the propagator of any line £ with iy = 1 entering a node v with s, = 1.

In the same way we define R%c)hj We call R%i)h_j (a,b) the set of trees 6 € R%’,i)h_j such that the entering
line has m. = C;(a) while the root line has mj = C;(b). Finally we define the sets @F];) and R%ﬂ) as the

sets of trees belonging to 6 for some j and, respectively, to Rg% h.j . for some h,j.

By proceeding as in Section 3.5 we introduce the following matrices:

T® @b = Y ST vale). (8.36)

hi<h=loer(Y. | (ab)

We use a different symbol for such matrices, as we shall see that the counterterms will not be identified
with the matrices in (8.35), even if they will be related to them. We shall see that, by the analog of
Lemma 3.14, the matrices ’Z;Z are symmetric.

To define the counterterms L; we note that, in order to cancel at least the 1-resonances, we need the
following condition:

(k) (k) _
GiBan (Lj7g,h + T ) G,51=0 (8.37)
Moreover in order to solve the compatibility condition we need a solution L . i, , (@, b) which is proportional
t0 X1(0n(a),m(a))X1(On(s),m@)), and clearly the solution L(k) T(k) = 0 does not comply with this
requirement. However, since G . Bk is not invertible, (8. 37) does not imply L( t)> N —T(: ; indeed there
exists a solution such that L, -, (a,b) # 0 only if b(a) = b(b) = 1. This solution does not cancel the

resonances 1’ with Eng # B[T, and does not even touch the 2-resonances. Nevertheless, if (8.37) holds,
we shall see that we are left only with 2-resonances and partially cancelled 1-resonances, which admit
better bounds (see (8.17)).

By definition L( ) (a b) = 0 if either b(a) or b(b) is equal to —1. Then (8.37) reduces to the following
equation for the matmx X = L;kg’ LT ’];(Z)

I T

I
0] S- 1XS clo)=0 = X (BX{,+X12B") + BXs,B" =0, (8.38)
0 0

J,b

where we define:
X1 Xi2 Xi3
PE:IXPS = Xi1:2 X212 X213
Xf3 X§3 X33

In (8.38) there are two matrices which act as free parameters. A (non-unique) solution is

k
o L 0 o I -B 0 I 00
POALY Ps=( 0 0 0|=|0 0 0]|Tu(-B 0 0]. (8.39)
’ 0 00 0 0 0 0 0 0



In this definition, L,z , (a,b) # 0 only if b(a) = b(b) = 1, so that L, ;, has the correct factors 1.
Moreover the 1-resonances with pr = by, are cancelled, while the 2-resonances are untouched since
LignlGB0-11 G -1,-1) =0

Let us now consider a 1-resonance 7' with pr # by,. We can write

(k) (k)
Gign (Lj,s,h + T ) G5y 1, (8.40)
_ (k) (k) - —s 4—1
=GB1n (Lj,ﬁ,h + ) Xnn (25)X 5, (pj A7 =Gy 0 Gj,Bl,fl)
_ (k) (k) >
=Ggn (Lj,f;,h Ry ) Xna (%)X 5, (Gj,ﬁ,o +6Gi5 0 -Gjp,0 - Gj,Bl,—l) )

which does not vanish since ‘Bng # BgT. In that case we say that the 1-resonance is regularised.
Then Lemma 3.13 holds true, with Lflk; h) substituted with Tj(lz), provided that in the definition of

renormalised trees (cf. Definition 3.11) we add the condition that all 1-resonances T' with ‘Bng # BZT and
all the nodes with s, =1 and i,, = 1 are regularised.

Also Lemma 3.14 is still true, as the property for the matrix to be symmetric depends only the non-
linearity.

8.7. Bryuno Lemma in @g;)

The set G (0, ) is defined by (4.1), provided we substitute (n, j) with j and v with /32. (4.2) is replaced
by:

|5n(a),m(a)| < 27277 bf(a) =1,
273y < |bn(aym@)| < 271, by(a) =0, (8.41)
272y < |6p(a)m(a)l; by(a) = —1,

forall jy>1landa=1,...,d;.
For the definition of the set ®(6,~) we require only the condition (4.3), which becomes

J
=
Je

|z, = (8.42)

We define Np,(0) as the set of lines £ with iy = 1 and scale hy > h, which do not enter any resonance.
Then, with this new definition of Ny (), Lemma 4.1 remains the same. The proof follows the same lines
as in Section 4.1, with the following minor changes.

In order to have a line on scale h we need that Bk'*4® > COp;, > C2("=Y/T for some constant C. We
proceed as in the proof of Lemma 4.1, up to (4.8), where again ng, should be substituted with p;, with
i=0,1.

1. If je, = je, then, since {1 by hypothesis does not enter a (regularised) resonance, there exists a line ¢/
with iy € {0, —1}, not along the path P(¢,£y), such that j» = jg,. By the Remark after Definition 8.5,
we know that [ng| > |ng, /2| > 2"=2)/7. In this case one has (k(0) — k(01)'t** > B~ ny| > Ej.

2. If jg, # jo, then we call £ € P (£, 1) the line with i # —1 which is the closest to £o.
2.1. If pjg S pjfo /2 then (k:(@) - k(@l))H‘m‘ Z Opjeo'
2.2. It pj, > pj,, /2 then one reasons as in case 2.2. of Lemma 4.1, with the following differences.

2.2.1. If jg, # jg, then |(ng, mz) — (ney, M, )| > const.pflo. For all the lines ¢ along the path P (¢, {y) one
has i = —1, hence either ny = nj, and my = mj, (if £ is a p-line) or |m; — mj| < M, (if £ is a ¢-line), so
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that |(ng, mg) — (ne,, me, )| < 2B(k(0) — k(7)) 4, with the same meaning for the symbols as in Section
4.1, and the assertion follows once more by using (4.8).

2.2.2. If j4, = j7 then there are two further sub-cases.

2.2.2.1. If £ does not enter any resonance, we proceed as in item 1.

2.2.2.2. If / enters a resonance, then we continue up to the next line ¢ on the same path with ¢ # —1.
If j; # je, the proof is concluded as in 2.2.1. since 2B > |(nz, my) — (nj, m;)| > C’lp?. Likewise —
using item 2.2.2.1- the proof is concluded if the line £ does not enter a resonance. If ¢ enters a resonance
with j; = jg,, we proceed until we reach a line with i # —1 which either has j # jg, or does not enter a

resonance: this is surely possible, because by definition ¢; does not enter a resonance and jo, # jg,. This
completes the proof of the lemma.

Lemma 4.2 holds with |n[,[m| < Bk'™* and ¢ = 1, and with p; ~3%/% i all the lines of (4.9). The proof

is the same (recall that we can set sy = 0); we only need to substltute p§ (which bounded the dimension
of the non-diagonal block) with d;. In (iii) the labels (n/, ') should be substituted by j'.

8.8. Bryuno Lemma in R}_’;)

The definitions of é(@,v) and 35(9,7) are changed exactly as &(6,~) and D(6,+), respectively, in the
previous Section 8.7.

Definition 8.8. We divide Rpg . ; into two sets R}%)h_’j and R%_’h)j : R}%)h_’j contains all the trees such
that either P({o,L.) = 0 or at least one line £ € P (Lo, L) has j, # j, and R%%,h,j =RRrh; \R}%,h,j' This
naturally yields a decomposition R%i)h_j = Rg,& U Rplf Z) for all k € N.

The two properties (i) and (ii) of Lemma 4.3 should be restated as follows.

B/(1+4c) then R%C 1)

(i) There exists a positive constant By such that if k < B 2D . contains only trees with

P(€07 ) 0

(i) for all 6 € R%’;?j (a,b) we have |(n(a),m(a)) — (n(b),m(b))|” < k, with p a constant depending on D.
The proof of (i) can be obtained by reasoning as in the cases 2.1. and 2.2.1. of Section 8.7, while that

of (ii) proceeds as in the proof of Lemma 4.3 (ii).

For the trees in R(k 2) all the lines ¢ along the path P(¢y,£.) have j, = j, and we can bound the
product of the Corresponding propagators as

H 407_1]9;@5) exp ( -0 Z [(ng, me) — (nz,m2)|p> < OFemol(neg meg)=(necme)I” (8 43)
LeP (Lo le) LEP (Lo,le)

where the factor is due to regularisation of the propagators with i, = 1 (see (8.35)), and we have used
(829) to bound |G, 5. [ for i =0, —1. Hence also [Val(f)|, is bounded by Ck.

Lemma 4.4 and properties (i) and (ii) of Lemma 4.6 are modified exactly as the corresponding 4.1 and
4.2. In (4.17) (ii) |n| should be substituted by |p;|**4®. Finally (4.17) (iii) should be replaced with

_ 3s/4
3 Z 101, (ar ) Val(0)| < D*2 ( H 92h' Ny (6 ) i, (8.44)
j eNa’ b'=1 h/=—1 4

which can be proved as follows.

1. Let us first consider R}i e We have no difficulty in bounding the sums and derivatives applied on lines
£ ¢ P(fo,Le). By the analog of Lemma 4.3 discussed above, if Bok < pf/(Hm) then P(£y, £.) = () and we
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have no problem. Otherwise we have at most (2p; + &)+ possible values of (n,m) and (n/,m’) which

can be associated with a line ¢ along the path P (g, £.) and by our assumption one has (2p; +k)! T4 < C*
for some constant C.

2. If all the lines £ € P({y, £.) have j, = j then the sums with o’ # b’ contain at most pfo‘ terms, whereas
the sums with ¢’ = b’ contain at most k terms, since there are at most k lines on P (o, £.).

The rest of Section 4 is unchanged. In Section 5.1 we remove the second Melnikov condition (the s
and # * % products) in (5.3) and (5.5).

8.9. Measure estimates

By definition we have to evaluate the measure of the set

. ST N1~ -1 2 .
{52 HXlJ(DJ +p M) Rl 2 p—z Vj € N}- (8.45)
J
By Lemma 2.4 (iii) one has
2= min [AOD; + ;M) (8.46)
1=1yenag

since the matrices are symmetric and the minimum is attained for some 4 such that x1(0,(i),m()) 7 0
The set (8.45) contains the set

) — 2
Qf—{86(0,50):‘/\(Z)(DJ——I—pjij)‘Zp—z Vi=1,....,d;, VjeN,}. (8.47)
J

We estimate the measure of the subset of (0,e9) complementary to €, i.e. the set defined as union of the
sets
~ ; e 2")/
Jj_’i = {EE (0,80) : ’,\(Z)(DJ —|—pj SMJ-’ < ]7} (848)
J
forjeNandi=1,...,d;.
First we notice that if |p;| < C/eg, for an appropriately small C, then

<ept<h (8.49)

’)\(i) (D; = pi I +p; * M) 5

which implies that
7 —sar Dj
AN(Dy +py°M;) > 5

so that we have to discard the sets J;; only for p; > C/eo.

Let us now recall that for a symmetric matrix M (z) depending analytically on a parameter x, the
derivatives of the eigenvalues are: 9,A\? () = (v;, 0, M (x)v;), where v; are the corresponding eigenvectors
[16].

Since D; depends linearly — and therefore analytically — on & we consider \;(z, &) := A?) (D, (=) +p; °M;)
with z, e independent parameters.

Clearly |0;\i(x,€)| > p;, and by Lidskii’s Lemma

d;

|0eXi(z,€) < p7° )

=1

AD(9.M;)
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Now ]\/ZJ is a dj x d; matrix which for each fixed ¢ has only a nonzero block of size p§; the properties of

the functions ;1 imply that also 85A//7j has only a nonzero block of size p§'. So one has
|0:i(x,€)| < O(L + op;~*F57),

for some constant C.
Then the measure of each J;; can be bounded from above by

dy (d (i) sy 8y
— sup — Y (D»s + p- M‘E) < —- 8.50
Pj ec(0,e0) de J( ) ! i ) pj+1 ( )
Therefore we have
d.
s 1 T— «@
ZZmeas (J,,:) < const. Z ApPte (T—+1> < const. ( (r=D— )), (8.51)
jeN =1 p>C/eo p

provided 7 > D+ 1+ «, so that the measure of the complementary of & is small in (0,¢¢) if 7 > D+1+a.

Appendix Al. Preliminary measure estimate

We estimate the measure of the complement of &g(y), defined in (2.2), with respect to the set (0,¢eo),
under the condition p € M. For all n,p € N we consider the set

Tnp = {E € (0,g0) : Jwn —p| < l} (A1.1)

nm
The measure of such a set is bounded proportionally to |n|_(ﬁ+1). Moreover one has

Z meas(J, p) < const. Z In|~ (MY 4 const. EOZ |n|~™, (A1.2)

n,p=1 n=1 n=1

because the number of values that p can assume is at most 1 + ggn (simply note that |wn —p| > 1/2if p
is not the integer closest to wn and |w — D — u| < &9).
Finally we note that, by (2.1), for n < (y0/2¢0)"/ (%1 one has

jwn —p| = [(D + p)n — pl| — €oln| = y|n|7™, (A1.3)
provided v < 70/2. Hence the sum in (A1.2) can be restricted to n > (yo/2g0)" (™41 so that

Z meas(J,, ) < const. g5/ 0T 4 const, gy T D/ o) (A1.4)
which is infinitesimal in g¢ provided 7 > 79 + 1.

Appendix A2. Proof of the separation Lemma 2.2

Let D € N be fixed, D > 2. For all D >d > 1 and for all r > 1 let Sd(r) be a d-sphere of radius r and
Sd(r) the sphere S%(r) centred at the origin. Set (¢, d) := 2¢/d(d + 2)!, and let us denote with |A| the
number of elements of the finite set A.

Lemma A2.1. For all ¢ < 1 one can define sets of integer points Ao = Ao(e,r,D,d), with a =
.,N = N(e,r,D,d), such that

|Ao| < C(D,d) max{r®,d+2},  SHr)nZ” = UAQ, dist(Ag, Ag) > C'(D,d)rPED | (A2.1)
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where C(D,d) and C'(D,d) are suitable (¢, r)-independent constants.
The proof of this lemma follows easily from the following result.

Lemma A2.2. There exist constants C and C' such that the following holds. Letny, ... nj € S4(r)nZ".
If for alli =1,...,k — 1 one has [n; —ni41| < Cr®©D then k < C' max{re,d + 2}.

Proof. Let us first recall some trivial facts:

1. [S4(r)yNZP| < C(D,d) r?, for some constant C(D, d);

2. given p linearly independent vectors vi,...,v, € Z" the volume of the p-dimensional simplex they
identify is given by
1 L V11 ... UMD
H|detNNT|§, N=| ... ... ... ], (A2.2)
Up1 .-« UpD

and, since N has integer coefficients, the volume of the simplex is bounded from below as 1/p!.

Let us fix also some notations. Given p linearly independent vectors connecting points in S¢(r), consider
the p-dimensional simplex generated by these vectors. Suppose that the angles between the vectors are
small enough: the volume of the simplex is bounded from above by the volume of the spherical cap in
which the vectors are contained. If T" is the radius of the base of the cap, then the volume of the spherical
cap is of order T'%+2 /r; see Figure 8.

Figure 8. Simplex generated by two linearly independent vectors wi and wg which connects points
on the sphere S'(r). T is the basis of the spherical cap in which the two vectors are contained. If
the angle between the two vectors is small then the volume (=area) of the cap is of order I'3/r, with
['= O(|wi] + [wz]).

Now we pass to the proof of the lemma. For k < d + 1 the assertion is trivially satisfied, hence we can
assume from now on k > d + 2. We proceed recursively.

Step 1. Consider three vectors in {ni,...,nt} such that the two difference vectors are linearly indepen-
dent: possibly reordering the vectors we can assume that they are ni, ny and ng, and set w; = ng — nq
and wy = n3 — no. The last two vectors connect points of some 1-sphere Sl(rl), with 7 <.

Then there exists a constant C; such that max{|wi|, |wa|} > Clri/g. The proof is by reductio ad
absurdum: consider the 2-dimensional simplex generated by {w1, w2 }; by the assumption on the distance
between the vectors and fact 2. we can say that there exist two constants D; and Dy such that r <
D3 < Dy C$r1, which is contradictory if C; is small enough.

One must have 1 < A;r*1%, with § = d(e,d), for a3 = 3 and a suitably large constant A;: otherwise
max{|ws |, |wa|} > Clri/g > A;Cyr°, which is not possible if A,C; > C. By fact 1. we have at most
C(D,1)r; < C(D,1) A7 other integer vectors on S*(ry) N S%(r).
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Step 2. Next, consider another vector (if any) in {ni,...,ni}, say ng, such that {wq,ws,ws}, with
w3 = n4 — N3, are linearly independent and generate a simplex which is contained in a 2-sphere S?(rz)
for some 5 < r. Of course the distance between n4 and any vector found in step 1. is bounded by
Cr% + Byr1 < Bir®, for suitable constants B; and Bj.

Therefore we can prove, again by relying on fact 2., that max{|wi/, |wz|, |lws|} > Cgr%/4 for a suitable
small constant Cy (otherwise one would find 79 < DoT'* < DyC37r, hence a contradiction for Cy small
enough).

Moreover, one must have ro < Aor®2? for ap = 4a; and a suitably large constant A,; otherwise
max{|wy |, |wal, Jws|} > Cgr%/4 > CyAor®2%/4 > B1r®19 which is not possible if as = 4y and Cy Ay > By.
By fact 1. we have at most C(D,2)r2 < C(D,2) Ar?@2° other integer vectors on S2(rg) N S4(r).

Step j. The proof is performed by induction. Assume that, up to step j — 1., we have found at most
a C(D,1) A;r®1? + O(D,2) Agr?@20 + ...+ C(D,j — 1) A;_177%-1% vectors, with a; = (i + 2)!/2 and
suitably large constants A;, such that the distance between any two among these vectors is less than
Bj,lr“i*ﬂ for a suitable constant B;_;.

Moreover there are at least j vectors, which are linearly independent: we can assume are {ni,...,n;}
and set w; = n;41 —n; fori =1,...,5 — 1. Suppose that there is at least another vector n;;1 on Sd(r)
which does not depend linearly on {n1,...,n;}, and set w; = nj11 —n; (if there is no such vector the proof

becomes easier). Call S7(r;) the j-sphere which contain the j-simplex generated by {ws,...,w;}. Once
1/j

2
One must have 7; < A;7%% for a; = (j + 2)aj_1 and A; suitably large: if this were not true then

more fact 2. implies that there is a constant C;, small enough, such that max{|w1|, ..., |w;|} > C;r

one would have erjl-/j > CjA;r*%/7 > B;_1r®-19 hence a contradiction if a; = jaj_1 and C;A; >
Bj_1. Hence the number of other vectors that we have to add at this step is at most C(D, j) 7’? <
C(D,j) A;jr7*% and the distance between all the points is bounded by Bjr;: < B;r®i%, for suitable

constants B; and B;. Hence the inductive hypothesis is satisfied.

The inductive estimate for j = d yields the result, provided one sets ¢ = d(d + 2)!§/2 and one chooses
C and 1/C’ small enough. This completes the proof. u

Remarks. (1) A careful look at the proof of Lemma A2.2 shows that C/ = C’(D) is the maximum of
dC(D,d) Aq for 1 <d < D, hence C' = (D—-1)C(D,D —1) Ap_1, whereas C = C(D) is obtained as the
minimum between the constant C' and the constants By for 1 < d < D — 2, hence C' = C. This shows
that in Lemma A2.1 one can choose C(D,d) and C’(D,d) as functions of the only D.

(2) In the proof of Lemma A2.2 the construction in step 1. shows that if one takes three vectors ng,
ne and nz on a l-sphere S'(r1) then (with the notations used in the proof of the lemma) one has
max{wy, wa} > Clr}/g. Therefore for d = 1 these sets A; can be chosen in such a way that each set
contains at most two elements, and the distance between two distinct sets on the same sphere S*(r) is
larger than a universal constant times /3.

Lemma A2.1 implies that it is possible to decompose the set Z” U SP(r) as the union of sets A such
that diam(A) < const.r%t¢ (cf. [2], p. 399), and |A| < const.rP+e). Hence, if we take o small enough
and we set =0 and o = D(d + €), by using that €/6 = (d + 2)!d/2, Lemma 2.1 follows.

Appendix A3. Constructive scheme for Lemma 8.1

Here we prove that the sets M verifying the conditions (a) and (b) in the proof of Lemma 8.1 are
non-empty. The proof consists in providing explicitly a construction.

1. Fix a list of parameters aa,...,ay € R such that o; < a;_1 for i =2,..., N, with a7 = 1, and
N
2P ) "ait? <3P 4 2P(N - 2). (A3.1)
i=2
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2. Given 7 € R" and for i = 2,..., N consider the regions R;(r) := {z € Zf soyogr < |z] < ayr} with r
so big that it is not possible to cover any of the R;(r) with 3N222P planes and spheres.

3. Choose an integer vector m; € Zf such that |m4|* = r? is divided by D, and construct the “orbit”
O(my) :={m € Z" : |my| = |(ma)4.

4. For each pair m,m’ € O(my) consider the two planes orthogonal to m —m’ and passing respectively
through m and m/, and the sphere which has m — m’ as diameter (there are at most 3 - 2P~1(20 — 1)
planes and spheres).

5. Choose the second integer vector ma € Ra(r) such that |mo|? divides D and the orbit O(m2) does not
lie on any of the planes and spheres defined at step 4.

6. For each pair m,m’ € O(m)UO(mz) proceed as in step 4. We have at most further 3-2°(2P+! —1)
planes and spheres.

7. Then we proceed iteratively. When we arrive to my we have to remove at most 3N2P~1(N2D — 1)
planes and spheres.

Appendix A4. Blocks of the matrix J

Write M = {mq,...,mar}, with M = 2PN, and set V = {v = (m,m’) : m,m’ € M, m # m'}: clearly
= |V| = M(M —1). We call alphabet the set V and letters the elements (vectors) of V. We call word

of length ¢ > 1 any string vivs ...vy, with vy € V for k = 1,...,£. Let us denote with A the set of all

words with letters in the alphabet V plus the empty set (which can be seen as a word of length 0).

For v € V with v = (m;, m;) we write v(1) = m; and v(2) = m;. Given two words a = v1...v,

and b = v} ...v), we can construct a new word ab = vy ...v,0] ...v), of length n + n’. Finally we can

n
introduce a map a — w(a), which associates with any letter v € V the vector v(1) — v(2), to any word

a = vy ...v, the vector w(a) = w(vy) + ...+ w(v,) and finally w(p) = 0. We say that a is a loop if

w(a) = 0.

Remarks. (1) Given a set M let V be the corresponding alphabet. If |[M| = M then |V| = L(M) =
M(M —1). If we add an element mpy41 to M so to obtain a new set M’ = M U {mp41}, then the
corresponding alphabet V' contains all the letters of V plus other 2M letters. We can imagine that this
alphabet is obtained through 2M steps, by adding one by one the 2M new letters. In this way, we can
imagine that the length L of the alphabet can be increased just by 1.

(2) By construction w(v1v2) = w(vavy). In particular w(a) depends only on the letters of a (each with
its own multiplicity), but not on the order they appear within a.

Define a matrix J, such that

) Jik = J(g5, qr), with q;, q € Z",

i) J(q,q') # 0 if there exist my, mo € M such that ¢ —m; = ¢’ —mg and (m’ — ma, m; —mso) =0, and
(q,q") = 0 otherwise.

(i
(i
J
A sequence C = {qo,q1,---,qn} Will be called a chain if J(qx—1,qx) # 0 for k = 1,...,n. We call
= |C| the length of the chain C. A chain can be seen as a pair of a vector and a word that is

C = (qo; a), where gy € ZP and a = V1 ... Un, with w(vg) = gx — g—1. Note that, by definition of the
matrix J, given a chain C as above, one has

Gk = gr—1 +w(vr),  (ge — vk(2),w(vr)) =0, (A4.1)

forallk=1,...,n
Lemma A4.1. Given a chain C = (qo;a), if the word a contains a string voagvy, with vog € V and
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ap € A, then (w(voap), w(vg)) = 0.
Proof. As the word a of C' contains the string vgagvg, by (A4.1) there exists j > 1 such that

(¢ — v0(2), w(vo)) =0, (gj +vo +w(ao) — vo(2),w(vo)) =0,
so that (w(vo) +w(ap),w(vg)) = 0. [

Lemma A4.2. Given a chain C = (qo;a), if the word a contains a string agboag, with ag,by € A and
ag containing all the letters of the alphabet V, then agbg is a loop.

Proof. For any v € V we can write ag = ajvas, with a1,as € A depending on v. Then agbgag =
aivasbpaivas. Consider the string vasbpaiv: by Lemma A4.1 one has (w(vagbpay), w(v)) = 0. On the
other hand (cf. Remark (2) after the definition of loop) one has w(vazbpar) = w(ayvazby) = w(aghy), so
that (w(agby), w(v)) = 0. As v is arbitrary we conclude that

(w(aghp),w(v)) =0 YveV = w(agby) = 0,
i.e. apbg is a loop. |

Lemma A4.3. There exists K such that if a word has length k > K then the word contains a loop. The
value of K depends only on the number of letters of the alphabet.

Proof. The proof is by induction on the length L of the alphabet V (cf. Remark (1) after the definition
of loop).

For L = 1 the assertion is trivially satisfied. Assume that for given L there exists an integer K (L) such
that any word of length K (L) containing at most L distinct letters has a loop: we want to show that
then if the alphabet has L + 1 letters there exists K (L + 1) such that any word of the alphabet with
length K (L + 1) has also a loop.

Let N(L) be the number of words of length K (L) written with the letters of an alphabet V with
V| = L + 1. Consider a word a = ay...an(r)4+1, Where each ay has length K(L). We want to show
by contradiction that a contains a loop. If this is not the case, by the inductive assumption for each k
either aj contains a loop or it must contain all the L 4 1 letters. As all words aj have length K (L) and
there are N(L) + 1 of them, at least two words, say a; and a; with ¢ < j, must be equal to each other.
Therefore we can write a = a1 ... a;—1a;ba;a541 ... aN(r)+1, Where b =a;y1...a5-1 ifj>i+1landb=10
if j =i+ 1. Hence a contains the string a;ba;, with a; containing all the letters. Hence by Lemma A4.2
one has w(a;b) = 0, i.e. a;bis a loop. u

Remark. Note that the proof of Lemma A4.3 implies

L
K(@L+1)<K@L)(NL)+1) < [[(N@©) +1), (A4.2)
=1

which provides a bound on the maximal length of the chains in terms of the length of the alphabet V.

Lemma 8.2 follows immediately from the results above, by noting that all the spheres with diameter a
vector v(1) — v(2) with v € V are inside a compact ball of Z" .

Appendix A5. Invertibility of J for D=2

In the following we assume D = 2 and N > 4. We first prove that (i) implies (ii). As seen in Appendix
A3 condition (8.4) is implied by

|m| 2+42s
al§< l) Sai-‘rlu Vi=2,...,N—1, (A51)

||

54



where the a; > 1 are fixed in Appendix A3.

For |mq]| large enough, (A5.1) contains a 2N-dimensional ball of arbitrarily large radius. By definition
an algebraic variety is the set of solutions of some polynomial equations and therefore cannot contain all
the positive integer points of a ball provided the radius is large enough (depending on the degree of the
polynomial).

To prove (i) let us start with some notations. We consider Z*" as a lattice in C*", we denote z =
{z1,...,an} = M, € C* where each ; is a point in C; we denote the points in M still as m; € C?,
and for each point x; € M, we have the orbit O(z;) € M i.e. the four points in M obtained by changing
the signs of the components of x;.

Definition A5.1. (i) Given two points m;, m; in M we consider: the circle with diameter m; —m; (curve
of type 1) the two lines orthogonal to m; —m; and passing respectively through m; (curve of type 2) and
through m; (curve of type 8). Note that the curve is identified by the couple (m;,m;) and by the type
label. We call C the finite set of distinct curves obtained in this way for all couples m; # m; in M.

(i1) Let C be a curve in C identified by the couple (m;,m;). We say that a point m’ is g-linked by (m;, m;)
tom € C if one has either (1) m' = —m+m;+m;, if C is a curve of type 1, or (2) m' = m+ (m; —m,),
if C is a curve of type 2, or (3) m' =m — (m; —my), if C is a curve of type 3. Notice that in case (1)
also m' is on the circle, while in cases (2) and (8) m' is on a curve of type 8 and 2, respectively. We say
that two points m,m’ € Zi are linked by (m;,m;) if there are two points m € O(m) and m' € O(m’)
such that m,m' are g-linked by (m;, m;).

(1ii) Given My we consider the set H of points y; ¢ M which lie on the intersection of two curves
in C, counted with their multiplicity. Set r := |H|: we denote the list of intersection points as y =
{y1,...,yr(v)}. Note that v depend only on N.

We first prove that the points x € C*" which do not satisfy Lemma 8.1 lie on an algebraic variety. As
seen in Appendix A3, Lemma 8.1 is verified by requiring that if either a curve of type 1 contains three
points in M or a curve of type 2 or 3 contains two points in M, then such points are on the same orbit.
It is clear (see Appendix A3) that this condition can be achieved by requiring that = does not belong to
some proper algebraic variety, say W,, in cV,

Let us now consider the set of points = € ZiN where det.Jq 1 is identically equal to zero (as a function
of s); since J 1 is a block diagonal matrix we factorise the single blocks and treat them separately. The
matrix Ji 1 has some simple blocks which we can describe explicitly. Recall that

N
164 =¢; Z |lz:)? 202, = (1 —c1)|w]® — 1 Z |z ]2, (A5.2)
i=1 j=1,...,N
%

where ¢; = 8/(8N +1).

1. For all m € Zi such that m does not belong to any curve C' € C one has Yy, ,,v = 0 for all m/; by
considering the limit s — 0o one can easily check that Jp, ,m, = |m|?>72¢/2 — 84 = 0 is never an identity
in s (independently of the choice of M ).

2. For all linked couples m,m’ € Zi such that each point belongs to one and only one curve one has
either a diagonal block |m[?*2¢/2 — 84 — 4a2 for some z; € M4 if m =m’, or a 2 x 2 matrix

|m|*t25/2 — 8A —20, O,
—20m, Om; |m/|?T25 /2 — 8A

if m # m’ and (m;, m;) is the couple linking m’ to m. In both cases a trivial check of the limit s — +o0
will ensure that the determinant is not identically null.
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3. There is a block matrix containing all and only the elements of M. Such a matrix is easily obtained
by differentiating the left hand side of (8.5):

am, 0 ... 0 9 8 ... 8 am, 0 ... 0
R o I | CR
o 0 . 08 ST |
0 ... 0 amy 8 8 9 0 0 amy

Since all the a,,, are non-zero we only need to prove that the matrix in the middle is invertible, which is
trivially true since the determinant is an odd integer.

We now have considered all those blocks in J; ; whose invertibility can be easily checked directly. We
are left with the intersection points in H' := H N Zi \ M and all those points m’ which are linked to
some y; € H'. We call J the restriction of J1,1 to such points; the crucial property of J is that it is a
K x K matrix with K bounded by above by some constant depending only on N.

We will impose that J is invertible at s = 0 by requiring that M, does not lie on an appropriate
algebraic variety in C*V.

By definition the points in H (and the points linked to them) are algebraic functions of z € C*V. By
construction Jy, m — Yin.m = |m|?*t2°/2 — 8A and moreover Y, ,,,» contains a contribution —20, Qi for
each couple (m;, m;) linking m’ to m. We want to prove that for s = 0 the equation det.J = 0 (which is
an equation for x € C2N) defines a proper algebraic variety, say Wy, in cV.

We consider the space CT := C*¥ xCY xC?" and, with an abuse of notation, we denote the generic point
in C* by (z,a,y) = (X1,..., TN, Gzys- -, Azyy Y1,---,Yr) (therefore we consider (x,a,y) as independent
variables). Note that det J=0isa polynomial equation in C”. We call W, the algebraic variety defined
by requiring both that the a,, satisfy (A5.2) and that each y; lies on at least two curves of C' (W, is
equivalent to a finite number of copies of (CQN).

We now recall a standard theorem in algebraic geometry which states: Let W be an algebraic variety
in C"*™ and let 11 be the projection C"™™ — C" then IL(W) is an algebraic variety (clearly it may be
the whole C"!) We set n = 2N (the first 2N variables), m = 2r + N and apply the stated theorem to
II(W, N Wy); we now only need to prove that the algebraic variety we have obtained is proper; to do so
it is convenient to treat separately the invertibility conditions of each single block of J.

The first step is to simplify as far as possible the structure of the intersections and therefore of the
matrix J. The simplest possible block involving an intersection point y; is such that

(i) only two curves in C pass through y;;

(ii) the two points linked to y; (by the couples of points in M identifying the curves) are not intersection
points.

Such a configuration gives either a 3 x 3 matrix or a 2 x 2 matrix — if one of the curves is either an
horizontal or vertical line or a circle centred at the origin.

Definition A5.2. We say that a curve C € C depends on the two — possibly equal — variables x;,x; € C?
if C is identified by the couple (m;, m;), such that m; € O(x;) and m; € O(z;).

The negation of (i) is that y; is on (at least) three curves of C: such condition defines a proper algebraic
variety in CT, say W;. We now consider the projection of W, N WW; on C?N: its closure is an algebraic
variety and either it is proper or the triple intersection occurs for any choice of x (which unfortunately
can indeed happen due to the symmetries introduced by the Dirichlet boundary conditions).

Three curves in C depend on at most six variables in C?. If four or more of such variables are different
then at least one variable, say xx, appears only once. By moving z in C? we can move arbitrarily one of
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the curves, while the other two (which do not depend on zj) remain fixed. This implies that the triple
intersection cannot hold true for all values of z and thus II(W, N W;) is a proper variety in cV.

In the same way the negation of (ii) is that one point linked to y; lies on (at least) two curves of C
(one curve is fixed by the fact that the point is linked to y;); again the intersection is determined by six
points in M and the same reasoning holds.

We call W, the variety in C” defined by the union of all those W; such that II(W;, N W) is proper.

In Wy \ W, we can now classify the possible blocks appearing in J (notice that only intersection points
which are integer valued have to be taken into account when constructing the blocks in .J ).

1. We have a list of at most 3 x 3 blocks corresponding to the intersection points of type (i)-(ii). Such
intersection points are identified by two curves which can depend on at most four different variables z;,
with k=1,...,4.

2. There are more complicated blocks corresponding to multiple intersections (or intersection points
linked to each other), which occur for all z € C*M due to symmetry. As we have proved above the curves
defining such intersections depend on at most three different variables z;, .

In any given block, call it By, the contribution from Y involves only terms of the form —2a,, am,;
such that m;,m; € Uj_,O(x;,). Each @, depends on all the components of z; in particular, afnj can
be written as a term depending only on the x;, plus the term —%cl Z#il
N >4 and k£ < 4 the second sum is surely non-empty.

Finally one has the diagonal contributions (from J —Y): |y;]* — 3¢1 D itin

polynomial function in the z;,’s.
In the limit ), Airsia xf — 00 the terms depending on the z;, ’s become irrelevant and we are left
with a matrix (of unknown size) whose entries, apart from the common factor —%cl > itinoia x?, are
integer numbers. It is easily seen that these numbers are odd on the diagonal, while all the off-diagonal
terms are even; indeed Y contributes only even entries while J — Y is diagonal and odd due to the term
8A. Thus the determinant (apart form the common factors) is odd and hence the equation detBy, = 0 is
not an identity on W,. If we call W), the variety in CT defined by detBj, = 0 then II(W, N W},) is surely
proper. Finally we call Wy the union of all the W), and set Wy = Wy U W, UW,.

i xf Since by hypothesis

.....

i T3 + 2, where 2 is a

Appendix A6. Proof of the separation Lemma 8.4

The following proof is adapted from [4]. Given & > 0 define § = §(¢,D) = ¢/2P~1D!(D + 1)!. Then
Lemma 8.4 follows from the results below.

Lemma A6.1. Let z € RY. Assume that there exist d vectors A1, ..., Ay, which are linearly independent
in Z°, and such that |A,| < Ay and |z~ Ag| < Ay for allk =1,...,d. Then |z| < C(d)A%~ Ay for some
constant C(d) depending only on d.

Proof. Call §; € [0,7/2] the angle between Ay and the direction of the vector x. Without any loss of
generality we can assume [, > g for all k =1,...,d — 1. Set 8, = 7/2 — B4. One has 3, > 0 because
Aq,...,Aq are linearly independent.

Consider the simplex generated by the vectors Aq,...,Ay. By the fact 2. in the proof of Lemma 8.4
one has, for some d-dependent constant C(d),

1 S O(d) |A1| |A2| RPN |Ad| |sin 01172| |sino¢1273| NN ‘sinalhhh(d_1)7d| ) (A61)

where ay. (j_1),;, J = 2, is the angle between the vector A; and the plane generated by the vectors
Al, ceey Ajfl. Hence
1< C’(d)Aﬁl71|Ad|| sinay. (d—1),dl- (A6.2)

Moreover one has

|z - Ag| = |z| |Ad| |cos Ba] = |z| |Ad| |sin 8] > |x] |Ad] ‘sin Q1. (d-1),d| (A6.3)
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so that, from (A6.2) and (A6.3), we obtain |£C|A17(d71) < C(d)As, so that the assertion follows. =

Lemma A6.2. There exist constants C and C' such that the following holds. Let ni,...,ny € Z" be a
sequence of distinct elements such that |®(n;) — ®(nj11)| < Cr®. Then k < C' max{r, D + 2}.

Proof. Since the vectors n; are on the lattice ZP there exist a constant Cy(D) and jo < k/2 such
that |n;,| > C1(D)k*P. Set A; = n; —n;,. By assumption one has |®(n;) — ®(n;41)| < Cr°, hence
|®(nj) — ®(nj,)| < C>F — jo)r® for all jo+1 < j < k. Then |®(n;) — ®(n;,)| < Ay := CJyr° for all
jo+1<j<jo+Ji. Fix J; = k¥/*(P) | with a(n) = 2n(n + 1). By using that

D(n;) — ®(njy,) = (85,2405 - njy + [A,]%), (A6.4)

we find |AJ| S Al and |7’Lj0 . AJ| S AQ = A% for all jo +1 Sj S jo + Jl.

If Span{Aj,11,...,Aj 17, } = D then by Lemma A6.1 one has |n;,| < C(D)AP*. Then, for this
relation to be not in contradiction with |n;,| > Cy(D)kYP, we must have Cy(D)kY/P < C(D)APT!,
hence k < Co(D)r*(P)? for some constant Cy(D).

If Span{Aj 11,..., Ao+, } <D — 1 then there exists a subspace Hy with dim(H;) = D — 1 such that
n; € nj, + Hy for jo+1 < j < jo+ Ji. Choose j1 < J1/2 such that Py, nj, = n;, —n;, € H; satisfies
| Prrymj, | > C'(D—l)Jll/(D_l)7 and fix Jo = Jll/a(D_l). Redefine A; = n;—nj, for j > j1+1, Ay = CJor®
and Ay = A%: by reasoning as in the previous case we find again |A;| < A; and |nj, - Aj| < Aj for all
Jo+1<j<jo+J1

If Span{Aj, 11,...,Aj,+7,} = D — 1 then by Lemma A6.1 one has |n;,| < C(D — 1)AP, which implies
Cy(D — 1)(]11/13_1 < C(D)AP. By using the new definition of Ay, we obtain J; < Co(D — 1) r*(P=1)9
hence k < C3(D) r*(P=1a(P)3 for some other constant C3(D).

If Span{Aj +1,...,8jo+s} < D — 2 then there exists a subspace Hy with dim(H;) = D — 1 such
that n; € nj, + Hy for j1 +1 < j < ji + J2. Then we iterate the construction until either we find
k < Cpy2(D) reP=1)..alD=n)d for some n < D — 1 and some constant Cr+2(D) or we arrive at a
subspace Hp_1 with dim(Hp_1) = 1.

In the last case the vectors Aj, ,41,..., 8, o4Jp_,, With Jp_1 = Jlljf;@), are linearly dependent by
construction, so that they lie all on the same line. Therefore, we can find at least Jp_1/2 of them, say
the first Jp_1/2, with decreasing distance from the origin. If we set n;,, ,11 = a, n;,_, 47, ,/2 = b, and
Njp_a41 — Njp_otJp_1/2 = ¢, and sum over jp_2 +1 < j < jp_o + Jp_1/2 the inequalities

Inj —nj_1] + |nj|* — |n;—1|* < const.|®(n;) — ®(nj_1)| < const.Cr’, (A6.5)

we obtain 7
le| + [¢|? < |e| + |al* = |b|* < const. CT‘[S%, (A6.6)

where |c| > Jp_1/2. Hence Jp_; < (Crd)2.
By collecting together all the bound above we find k < Cp(D)r2*P)--a(2)3 5o that, by defining
C' = Cp(D) and using that ¢/6 = a(D)...a(2) = 2P~1D!(D + 1)!, the assertion follows. =

Lemma A6.3. There exist constants £, §', C' and C' such that the following holds. Given ny € Z"
there exists a set A C ZP, with ng € A, such that diam(A) < C'r<" and |®(z) — ®(y)| > C'r?" for all
ze€A andy ¢ A.

Proof. Cf. [4], p. 399, which proves the assertion with ¢’ =0 + ¢ and ¢’ = § = d(g, D). ]

Lemma A6.4. Let A be as in Lemma A6.3. There exists a constant C” such that one has |A| <
O//TD(E+5).

Proof. The bound follows from Lemma A6.3 and from the fact that diam(A) < C’'r¢, by using that the
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points in A are distinct lattice points in R”. L]
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