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Abstract. We consider the nonlinear Schrödinger equation in higher dimension with
Dirichlet boundary conditions and with a non-local smoothing nonlinearity. We prove
the existence of small amplitude periodic solutions. In the fully resonant case we find
solutions which at leading order are wave packets, in the sense that they continue linear
solutions with an arbitrarily large number of resonant modes. The main difficulty in the
proof consists in solving a “small divisor problem” which we do by using a renormalisation
group approach.

1. Introduction and results

In this paper we prove the existence of small amplitude periodic solutions for a class of nonlinear
Schrödinger equations in D dimensions

ivt − ∆v + µv = f(x, Φ(v), Φ(v̄)) := |Φ(v)|2Φ(v) + F (x, Φ(v), Φ(v̄)), (1.1)

with Dirichlet boundary conditions on the square [0, π]D. Here D ≥ 2 is an integer, µ is a real parameter,
Φ is a smoothing operator, which in Fourier space acts as

(Φ(u))k = |k|−2suk, (1.2)

for some positive s, and F is an analytic odd function, real for real u, such that F (x, u, ū) is of order
higher than three in (u, ū), i.e.

F (x, u, ū) =

∞∑

p=4

∑

p1+p2=p

ap1,p2(x)up1 ūp2 , F (−x,−u,−ū) = −F (x, u, ū). (1.3)

In particular this implies that the functions ap1,p2 must be even for odd p and odd for even p, and real
for all p. The reality condition is assumed to simplify the analysis.

For D = 2 we do not impose any further condition on f , whereas for D ≥ 3 we shall consider a more
restrictive class of nonlinearities, by requiring

f(x, u, ū) =
∂

∂ū
H(x, u, ū) + g(x, ū), H(x, u, ū) = H(x, u, ū), (1.4)

i.e. with H a real function and g depending explicitly only on ū (besides x) and not on u.
In general when looking for small periodic solutions for PDE’s one expects to find a “small divisor

problem” due to the fact that the eigenvalues of the linear term accumulate to zero in the space of
T−periodic solutions, for any T in a positive measure set.

The case of one space dimension was widely studied in the ’90 for non-resonant equations by using KAM
theory by Kuksin-Pöshel [17], [18] and Wayne [20], and by using Lyapunov-Schmidt decomposition by
Craig-Wayne [7] and Bourgain [1], [4]. The two techniques are somehow complementary. The Lyapunov-
Schmidt decomposition is more flexible: it can be successfully adapted to non-Hamiltonian equations and
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to “resonant”equations, i.e. where the linear frequencies are not rationally independent [19], [3], [13]. On
the other hand KAM theory provides more information, for instance on the stability of the solutions.

Generally speaking the main feature which is used to solve the small divisor problem (in all the above
mentioned techniques) is the “separation of the resonant sites”. Such a feature can be described as
follows. For instance for D = 1 consider an equation D[u] = f(u), where D is a linear differential
operator and f(u) a smooth super-linear function; let λk with k ∈ Z

2 be the linear eigenvalues in the
space of T -periodic solutions, so that after rescaling the amplitude and in Fourier space the equation has
the form

λkuk = εfk(u), (1.5)

with infk |λk| = 0. The separation property for Dirichlet boundary conditions requires:

1. if |λk| < α then |k| > Cα−δ0 (this is generally obtained by restricting T to a Cantor set).
2. if both |λk| < α and |λh| < α then either h = k or |h − k| ≥ C(min{|h|, |k|})δ.

Here δ0 and δ are model-dependent parameters, and C is some positive constant. In the case of periodic
boundary conditions, 2. should be suitably modified.

It is immediately clear that 2. cannot be satisfied by our equation (1.1) as the linear eigenvalues are

λn,m = −ωn + |m|2 + µ, ω =
2π

T
, (1.6)

so that all the eigenvalues λn1,m1 with n1 = n and |m1| = |m| are equal to λn,m.
The existence of periodic solutions for D > 1 space dimensions was first proved by Bourgain in [2] and

[4], by using a Lyapunov-Schmidt decomposition and a technique by Spencer and Frölich to solve the
small divisor problem. Again the separation properties are crucial: 1. is assumed and 2. is weakened in
the following way:

2′. the sets of k ∈ Z
D+1 such that |λk| < 1 and R < |k| < 2R are separated in clusters, say Cj with j ∈ N,

such that each cluster contains at most Rδ1 elements and dist(Ci, Cj) ≥ Rδ2 , with 0 < δ2 ≤ δ1 ≪ 1.

Now, in order to apply Spencer and Frölich’s method, one has to control the eigenvalues of appropriate
matrices of dimension comparable to |Cj |. Such dimension goes to infinity with R and at the same time
the linear eigenvalues go to zero, so that achieving such estimates is a rather delicate question.

Recently Bourgain also proved the existence of quasi-periodic solutions for the nonlinear Schrödinger
equation, with local nonlinearities, in any dimensions [5]. Still more recently in [9], Eliasson and Kuksin
proved the same result by using KAM techniques. We can also mention a very recent preprint by Yuan
[22], where a variant of the KAM approach was provided to show the existence of quasi-periodic solutions:
in this version, stability of the solutions is not obtained, but, conversely, the proof rather simplifies with
respect to that given in [9].

In this paper we use a Lyapunov-Schmidt decomposition and then the so-called “Lindstedt series
method” [12] to solve the small divisor problem. The main purpose of this paper is to reobtain Bourgain’s
result [2] with the Lindstedt series method, on the simplest possible model which still carries the main
difficulties of the D space dimensions. Recently Geng and You [11] have proved, via KAM theory,
the existence of quasi-periodic solutions for the NLS with a non-local smoothing non-linearity and with
periodic boundary conditions; in such case they show the existence of a symmetry, which greatly simplifies
the analysis. In the case of Dirichlet boundary condition this symmetry is broken, so that the results of [11]
do not apply to the equation (1.1) with Dirichlet boundary conditions. None the less the regularisation
provides some nice simplifications. This motivates our choice of equation (1.1), since the main purpose of
the paper is to establish appropriate techniques and notation in the simplest (non-trivial) possible case.

Moreover, we are able to find periodic solutions also in some non-Hamiltonian and in resonant cases,
where the result was not known in the literature. In particular in the completely resonant case (µ = 0
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in (1.1)) we find solutions which reduce to wave packets (i.e. linear combinations of harmonics centred
around suitable frequencies) in the absence of the perturbation.

Let us now describe the general lines of the Lindstedt series approach, which were originally developed
by Eliasson [8] and Gallavotti [10] in the context of KAM theory for finite dimensional systems.

The main idea is to consider a “renormalisation” of equation (1.5) which can be proved to have solutions.
More precisely we consider a new, vector-valued, equation with unknowns Uj := {uk : k ∈ Cj}

(Dj(ω) + Mj)Uj = εFj(U) + LjUj, (1.7)

where Dj(ω) is the diagonal matrix of the eigenvalues λk with k ∈ Cj , Fj(U) is the vector {fk(u) : k ∈ Cj}
defined in (1.5) and Mj, Lj are matrices of free parameters. Equation (1.7) coincides with (1.5) provided
Mj = Lj for all j ∈ N.

The aim then is to proceed as in the one dimensional renormalisation scheme proposed in [12] and
[13]; namely we restrict (ω, {Mj}) to a Cantor set and construct both the solution Uj(ε, ω, {Mh})
and Lj(ε, ω, {Mh}) as convergent power series in ε. Then one solves the compatibility equation Mj =
Lj(ε, ω, {Mh}); essentially this is done by the implicit function theorem but with the additional compli-
cation that Lj is defined for (ω, {Mh}) in a Cantor set.

We look for periodic solutions of frequency ω = D +µ− ε, with ε > 0, which continue the unperturbed
one (ε = 0) with frequency ω0 = D + µ. Note that the choice of this particular unperturbed frequency is
made only for the sake of definiteness: any other linear frequency would yield the same type of results.

For ε 6= 0 we perform the change of variables

√
εu(x, t) = Φ(v(x, ωt)), (1.8)

so that (1.1) becomes

Φ−1(iωut − ∆u + µu) = ε|u|2u +
1√
ε
F (x,

√
εu,

√
εū) ≡ εf(x, u, ū, ε), (1.9)

with a slight abuse of notation in the definition of f .

We start by considering explicitly the case F = 0, for simplicity, so that f(x, u, ū, ε) = f(u, ū) = |u|2u.
In that case the problem of the existence of periodic solutions becomes trivial, but the advantage of
proceeding this way is that the construction that we are going to envisage extends easily to more general
f , with some minor technical adaptations.

We pass to the equation for the Fourier coefficients, by writing

u(x, t) =
∑

n∈Z,m∈Z
D

un,mei(nt+m·x), (1.10)

so that (1.9) gives

|m|2s
(
−ωn + |m|2 + µ

)
un,m = ε

∑

n1+n2−n3=n
m1+m2−m3=m

un1,m1un2,m2 ūn3,m3 ≡ εfn,m(u, ū), (1.11)

and the Dirichlet boundary conditions spell

un,m = un,Si(m) , Si(ej) = (1 − 2δ(i, j)) ej ∀i = 1, . . . , D, (1.12)
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where δ(i, j) is Kronecker’s delta and Si(m) is the linear operator that changes the sign of the i-th
component of m.

We proceed as follows. We perform a Lyapunov-Schmidt decomposition separating the P -Q supple-
mentary subspaces. By definition Q is the space of Fourier labels (n, m) such that un,m solves (1.11) at
ε = 0. If µ 6= 0 we impose an irrationality condition on µ, i.e. ω0n − p 6= 0, so that Q is defined as

Q :=
{
(n, m) ∈ Z × Z

D : n = 1, mi = ±1 ∀i
}

. (1.13)

By the Dirichlet boundary conditions, calling V = {1, 1, . . . , 1}, for all (1, m) ∈ Q we have that u1,m =
±u1,V ; see (1.12). Then (1.11) naturally splits into two sets of equations: the Q equations, for (n, m)
such that n = 1 and |m| =

√
D, and the P equations, for all the other values of (n, m). We first solve

the P equation keeping q := u1,V as a parameter. Then we consider the Q equations and solve them via
the implicit function theorem.

We look for solutions of (1.11) such that un,m ∈ R for all (n, m); this is possible as one can find real
solutions for the bifurcation equations in Q, and then the recursive P -Q equations are closed on the
subspace of real un,m. The same condition can be imposed also in the more general case (1.3), provided
the functions ap1,p2 are real, as we are assuming.

For µ 6= 0 we shall construct periodic solutions which are analytic both in time and space, and not only
sub-analytic, as usually found [2]. This is due to the presence of the smoothing non-linearity.

Theorem 1. Consider equation (1.9), with Φ defined by (1.2) for arbitrary s > 0 and F given by (1.3) if
D = 2 and by (1.3) and (1.4) if D ≥ 3. There exist a Cantor set M ⊂ (0, µ0) and a constant ε0 such that
the following holds. For all µ ∈ M there exists a Cantor set E(µ) ⊂ (0, ε0), such that for all ε ∈ E(µ)
the equation admits a solution u(x, t), which is 2π-periodic in time, analytic in time and in space, such
that ∣∣∣∣∣u(x, t) − q0 eit

D∏

i=1

sin xi

∣∣∣∣∣ ≤ Cε, q0 =
√

Ds3−D, (1.14)

uniformly in (x, t). The set M has full measure and for all µ ∈ M the set E = E(µ) has positive Lebesgue
measure and

lim
ε→0+

meas(E ∩ [0, ε])

ε
= 1, (1.15)

where meas denotes the Lebesgue measure.

For µ = 0 the following result extends Theorem 1 of [14] to the higher dimensional case.

Theorem 2. Consider equation (1.9) with µ = 0, D ≥ 2, Φ defined by (1.2) and F given (1.3) and
(1.4). There exist a constant ε0 and a Cantor set E ⊂ (0, ε0), such that for all ε ∈ E the equation admits
a solution u(x, t), which is 2π-periodic in time, sub-analytic in time and in space, satisfying (1.14) and
(1.15).

Remark. For µ 6= 0 we could consider other unperturbed periodic solutions and we would obtain the
same kind of results as in Theorem 1, with only some trivial changes of notation in the proofs.

For µ = 0 and if the functions ap1,p2(x) in (1.3) are constant, we could easily extend Theorem 2 to
other unperturbed solutions. Considering non-constant ap1,p2 ’s would require some extra work.

For D = 2 the following result extends Theorem 2 of [14].

Theorem 3. Consider equation (1.9) with µ = 0, D = 2, Φ defined by (1.2) and F given by (1.3)
and (1.4). Let K any interval in R+. For N > 4 there exist sets M+ of N vectors in Z

2
+ and sets of
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amplitudes am with m ∈ M+ such that the following holds. Define

q0(x, t) =
∑

m∈M+

am ei|m|2t sin(m1x1) sin(m2x2). (1.16)

There are a finite set K0 of points in K, a positive constant ε0 and a set E ∈ (0, ε0) (all depending on
M+), such that for all s ∈ K\K0 and ε ∈ E, equation (1.9) admits a solution u(x, t), which is 2π-periodic
in time, sub-analytic in time and space, such that

|u(x, t) − q0(x, t)| ≤ Cε, (1.17)

uniformly in (x, t). Finally

lim
ε→0+

meas(E ∩ [0, ε])

ε
= 1, (1.18)

where meas denotes the Lebesgue measure.

In the case D > 2 we can still find a solution of the leading order of the Q equations of the form
(1.16); however in order to prove the existence of a solution u(x, t) of the full equation we need a “non-
degeneracy condition”, namely that some finite dimensional matrix (denoted by J1,1 and defined in
Section 8) is invertible.

Theorem 4. Consider equation (1.9) with µ = 0, D ≥ 2, Φ defined by (1.2) and F given (1.3) and

(1.4). There exist sets M+ of N vectors in Z
D
+ and sets of amplitudes am with m ∈ M+ such that the

Q equations at ε = 0 have the solution

q0(x, t) =
∑

m∈M+

am ei|m|2t
D∏

i=1

sin(mixi). (1.19)

The set M+ identifies a finite order matrix J1,1 (depending analytically on the parameter s). For N > 1
if detJ1,1 = 0 is not an identity in s then the following holds. There are a finite set K0 of points in K,
a positive constant ε0 and a set E ∈ (0, ε0) (all depending on M+), such that for all s ∈ K \ K0 and
ε ∈ E, equation (1.9) admits a solution u(x, t), which is 2π-periodic in time, sub-analytic in time and
space, such that

|u(x, t) − q0(x, t)| ≤ Cε, (1.20)

uniformly in (x, t), and E satisfies the property (1.18).

2. Technical set-up and propositions

2.1. Separation of the small divisors

Let us require that µ is strongly non-resonant (and in a full measure set), i.e. that there exist 1 ≫ γ0 > 0
and τ0 > 1 such that

|(D + µ)n − p − aµ| ≥ γ0

|n|τ0
∀a = 0, 1, (n, p) ∈ Z

2
, (n, p) 6= (1, D), n 6= 0. (2.1)

We shall denote by M the set of values µ ∈ (0, µ0) which satisfy (2.1). For µ ∈ M and ε0 small enough
we shall restrict ε to a large relative measure set E0(γ) ⊂ (0, ε0) by imposing the Diophantine conditions
(recall that ω = D + µ − ε)

E0(γ) :=
{

ε ∈ (0, ε0) : |ωn − p| ≥ γ

nτ1
∀(n, p) ∈ N

2
}

(2.2)

5



for some τ1 > τ0 + 1 and γ ≤ γ0/2; see Appendix A1. These conditions guarantee the “separation of the
resonant sites”, due to the regularising non-linearity, for all pairs (n, m) and (n′, m′) such that n 6= n′;
indeed we have the following result.

Lemma 2.1. Fix s0 ∈ R. For all ε ∈ E0(γ) if for some p ≥ p1, n, n1 ∈ N one has

ps0 |ωn − p − µ| ≤ γ/2, ps0
1 |ωn1 − p1 − µ| ≤ γ/2, (2.3)

then either n = n1 and p = p1 or |n − n1| ≥ p
s0/τ1

1 and n + n1 ≥ B0p1 for some constant B0.

Proof. If n − n1 6= 0 one has γ/|n − n1|τ1 ≤ |ω(n − n1) − (p − p1)| ≤ γ/ps0
1 , so that one obtains

ps0
1 ≤ |n − n1|τ1 . If n = n1 then |p − p1| ≤ γ/ps0

1 , hence p = p1. Finally the inequality n + n1 ≥ B0p1

follows immediately from (2.3), with the constant B0 depending on ω and µ.

Remark. Note that if s0 is small enough one can always bound B0p1 ≥ p
s0/τ1

1 .

We shall now use the following lemma [6] to reorder our space index set Z
D

. The proof is deferred to
Appendix A2 (see also [4]).

Lemma 2.2. For all α > 0 small enough one can write Z
D = ∪j∈NΛj such that

(i) all m ∈ Λj are on the same sphere, i.e. for all j ∈ N there exists pj ∈ N such that |m|2 ≡ pj ∀m ∈ Λj;
(ii) Λj has dj elements such that |Λj | ≡ dj ≤ C1p

α
j , for some j-independent constant C1;

(iii) for all i 6= j such that Λj and Λi are on the same sphere (i.e. such that pj = pi) one has

dist(Λi, Λj) ≥ C2p
β
j , β =

2α

2D + (D + 2)!D2
, (2.4)

for some j-independent constant C2;
(iv) if dj > 1 then for any m ∈ Λj there exists m′ ∈ Λj such that |m − m′| < C2p

β
j , so that one has

diam(Λj) ≤ C1C2p
α+β
j ;

If D = 2 one can take dj = 2 for all j and β = 1/3.

Remarks. (1) Essentially Lemma 2.2 assures that the points located on the intersection of the lattice

Z
D with a sphere of any given radius r can be divided into a finite number of clusters, containing each

just a few elements (that is of order rα, α ≪ 1) and not too closer to each other (that is at a distance
not less than of order rβ , β > 0; in fact one has β < α).

(2) In fact the proof given in Appendix A2 shows that diam(Λj) < const.p
α/D
j .

By definition we call Λ1 the list of vectors m such that mi = ±1 (that is pj = D). In the following we
shall take α ≪ min{s, 1}, with s given in (1.2).

2.2. Renormalised P -Q equations

For (n, j) 6= (1, 1), let us define
Un,j = {un,m}m∈Λj , (2.5)

which is a vector in R
dj . Recall that pj = |m|2 if m ∈ Λj; the equations for Un,j are then by definition

ps
jδn,jUn,j = εFn,j, (2.6)

where
δn,j = −ωn + pj + µ, Fn,j = {fn,m}m∈Λj . (2.7)
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We introduce the ε-dependent
yn,j := ps2

j δn,j, (2.8)

where the exponent s2 < s will be fixed in the forthcoming Definition 2.5 (iv), and we define the
renormalised P equations (for (n, j) 6= (1, 1)) as

ps
j

(
δn,jI + p−s

j χ̄1(yn,j)Mn,j

)
Un,j = ηFn,j + Ln,jUn,j, (2.9)

where I (the identity), Mn,j and Ln,j are dj × dj matrices and χ̄1 is a C∞ non-increasing function such
that (see Figure 2 below) {

χ̄1(x) = 1, if |x| < γ/8,

χ̄1(x) = 0, if |x| > γ/4,
(2.10)

and χ̄′
1(x) < Cγ−1 for some positive constant C (the prime denotes derivative with respect to the

argument).
Clearly (2.9) coincides with (2.6), hence with (1.11), provided

η = ε, χ̄1(yn,j)Mn,j = Ln,j, (2.11)

for all (n, j) 6= (1, 1). The matrices Ln,j will be called the counterterms.
We complete the renormalised P equations with the renormalised Q equations

Dsq =
∑

n1+n2−n3=1
ni=1

∑

m1+m2−m3=V
mi∈Λ1

un1,m1un2,m2un3,m3 +
∑

n1+n2−n3=1
m1+m2−m3=V

∗
un1,m1un2,m2un3,m3 , (2.12)

where the symbol
∑∗ implies the restriction to the triples of (ni, mi) such that at least one has not

ni = |mi|2 = 1. It should be noticed that the second sum vanishes at η = 0.

2.3. Matrix spaces

Here we introduce some notations and properties that we shall need in the following.

Definition 2.3. Let A be a d × d real-symmetric matrix, and denote with A(i, j) and λ(i)(A) its entries

and its eigenvalues, respectively. Given a list m := {m1, . . . , md} with mi ∈ Z
D and a positive number

σ, we define the norms

|A|∞ := max
i,j≤d

|A(i, j)|, |A|σ,m := max
i,j≤d

|A(i, j)| eσ|mi−mj |ρ ,

‖A‖ :=
1√
d

√
tr(AT A) =

√√√√1

d

d∑

i,j=1

A(i, j)2,
(2.13)

with ρ depending on D. For fixed m = {m1, . . . , md} ∈ Z
dD

we call A(m) the space of d×d real-symmetric
matrices A with norm |A|σ,m.

Lemma 2.4. Given a matrix A ∈ A(m), the following properties hold.
(i) The norm ‖A‖ is a smooth function in the coefficients A(i, j).
(ii) One has 1√

d
‖A‖ ≤ |A|∞ ≤

√
d‖A‖.

(iii) One has 1√
d

maxi

√
λ(i)(AT A) ≤ ‖A‖ ≤ maxi

√
λ(i)(AT A).

(iv) For invertible A one has

∂A(i,j)A
−1(h, l) = −A−1(h, i)A−1(j, l), ∂A(i,j)‖A‖ =

A(i, j)

d‖A‖ . (2.14)
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Proof. Item (i) follows by the invariance of the characteristic polynomial under change of coordinates.
Items (iii) and (iv) are trivial.
The first relation in item (iv) follows by the definition of differential as

DAf(A)[B] ≡ ∂εf(A + εB)|ε=0. (2.15)

Now by Taylor expansion we get DA(A)−1[B] = −A−1BA−1. The second relation is trivial.

Remark. Note that for A symmetric one has
√

λ(i)(AT A) = |λ(i)(A)|.

Definition 2.5. Let {Λj}∞j=1 be the partition of Z
D

introduced in Lemma 2.2. Fix α small enough with
respect to min{s, 1}, with s given in (1.2). Call Ω ⊂ Z × N the set of indexes (n, j) 6= (1, 1) such that

−1

2
+ (D + µ − ε0)n < pj < (D + µ)n +

1

2
. (2.16)

For ε0 small enough (2.16) in particular implies n > 0, hence Ω ⊂ N
2
. With each (n, j) 6= (1, 1)

we associate the list Λj = {m(1)
j , . . . , m

(dj)
j }, with dj ≤ C1p

α
j , and a dj × dj real-symmetric matrix

Mn,j ∈ A(Λj) (see Definition 2.3), such that Mn,j = 0 if (n, j) /∈ Ω.
(i) We call M the space of all matrices which belong to a space A(Λj) for some j ∈ N, and for A ∈ A(Λj)
we set |A|σ = |A|σ,Λj .

(ii) We denote the eigenvalues of χ̄1(yn,j)Mn,j with pα
j ν

(i)
n,j, so that ν

(i)
n,j ≤ C|Mn,j |∞ ≤ C|Mn,j |σ, for

some constant C.
(iii) For invertible δn,jI + p−s

j χ̄1(yn,j)Mn,j we define xn,j and νn,j by setting

xn,j =
∣∣δn,j + p−s+2α

j νn,j

∣∣ =
∥∥(δn,jI + p−s

j χ̄1(yn,j)Mn,j)
−1
∥∥−1

, (2.17)

where the norm ‖A‖ is introduced in Definition 2.3 – notice that νn,j, hence xn,j, depends both on ε and
M ;
(iv) We call s1 = s − 2α and set s2 = s1/4 in (2.8).

Remark. Note that the eigenvalues ν
(i)
n,j are proportional to χ̄1(yn,j), hence vanish for |yn,j| > γ/4.

Lemma 2.6. There exists a positive constant C such that one has |νn,j | ≤ C|Mn,j|∞ ≤ C|Mn,j |σ.

Proof. For notational simplicity set Mn,j = M , δn,j = δ, pj = p, dj = d, xn,j = x, νn,j = ν, ν
(i)
n,j = νi,

and define λi = δ + p−s+ανi, with |νi| ≤ C|M |∞ (see Definition 2.5 (ii)). Then one has

x =
∣∣δ + p−s+2αν

∣∣ =

(
1

d

d∑

i=1

1

λ2
i

)−1/2

≤ C
1/2
1 pα/2 min

i
|λi| ≤ C

1/2
1 pα/2

(
|δ| + p−s+α min

i
|νi|
)

.

We distinguish between two cases.

1. If there exists i = i0 such that |δ| < 2p−s+α|νi0 | then one obtains

x ≤ 2C
1/2
1 p−s+3α/2|νi0 | + p−s+3α/2 min

i
|νi| ≤ 4C

1/2
1 p−s+2α|νi0 |.

Therefore, if |δ| < p−s+2α|ν|/2 one has

p−s+2α|ν|/2 < x < 4C
1/2
1 p−s+2α|νi0 | ≤ 4CC

1/2
1 p−s+2α|M |∞,
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hence |ν| ≤ const.|M |∞. If |δ| ≥ p−s+2α|ν|/2 one has, by the assumption on δ, p−s+2α|ν|/2 ≤ |δ| <
2p−s+α|νi0 | ≤ 4p−s+2α|νi0 |, and the same bound follows.

2. If |δ| ≥ 2p−s+α|νi| for all i = 1, . . . , d, then one has

x = |δ|
(

1

d

d∑

i=1

1

(1 + δ−1p−s+ανi)2

)−1/2

= |δ| + O(p−s+α max
i

νi),

so that |ν| ≤ const.p−αC|M |∞.

Remark. The space of lists M = {Mn,j}(n,j)∈N
2 such that Mn,j ∈ M (cf. Definition 2.5 (i)) and

|M |σ = supn,j |Mn,j |σ < ∞ is a Banach space, that we denote with B.

Definition 2.7. We define D0 = {(ε, M) : 0 < ε ≤ ε0, |M |σ ≤ C0ε0}, for a suitable positive constant
C0, and D(γ) ⊂ D0 as the set of all (ε, M) ∈ D0 such that ε ∈ E0(γ) and

∣∣∣∣∣ωn −
(

pj + µ +
νn,j

ps1

j

)∣∣∣∣∣ ≥
γ

|n|τ ∀(n, j) ∈ Ω, (n, j) 6= (1, 1), n 6= 0, (2.18)

for some τ > τ0 + 1 + D.

Remark. We shall call Melnikov conditions the Diophantine conditions in (2.2) and (2.18). We shall
call (2.2) the second Melnikov conditions, as they will be used to bound the difference of the momenta of
comparable lines of the forthcoming tree formalism.

2.4. Main propositions

We state the propositions which represent our main technical results. Theorem 1 is an immediate conse-
quence of Propositions 1 and 2 below.

Proposition 1. Assume that (ε, M) ∈ D(γ). There exist positive constants c0, K0, K1, σ, η0, Q0 such
that the following holds true. It is possible to find a sequence of matrices L ∈ B,

L := {Ln,j(η, ε, M ; q)}(n,j)∈N
2\{(1,1)} , (2.19)

such that the following holds.
(i) There exists a unique solution Un,j(η, M, ε; q), with (n, j) ∈ Z × N \ {(1, 1)}, of equation (2.9) which
is analytic in η, q for |η| ≤ η0, |q| ≤ Q0, η0Q

2
0 ≤ c0 and such that

|Un,j(η, M, ε; q)(a)| ≤ |η|q3K0e
−σ(|n|+|pj|1/2). (2.20)

(ii) The sequence Ln,j(η, ε, M ; q) is analytic in η and uniformly bounded for (ε, M) ∈ D(γ) as

|L(η, ε, M ; q)|σ ≤ K0|η|q2. (2.21)

(iii) The functions Un,j(η, ε, M ; q) and Ln,j(η, ε, M ; q) can be extended on the set D0 to C1 functions,
denoted by UE

n,j(η, ε, M ; q) and LE
n,j(η, ε, M ; q), such that

LE
n,j(η, ε, M ; q) = Ln,j(η, ε, M ; q), UE

n,j(η, ε, M ; q) = Un,j(η, ε, M ; q), (2.22)

for all (ε, M) ∈ D(2γ).
(iv) The extended Q-equation, obtained from (2.12) by substituting Un,j(η, ε, M ; q) with UE

n,j(η, ε, M ; q),
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has a solution qE(η, ε, M), which is a true solution of (2.12) for (ε, M) ∈ D(2γ); with an abuse of
notation we shall call

UE
n,j(η, ε, M) = UE

n,j(η, ε, M ; qE(η, ε, M)), LE
n,j(η, ε, M) = LE

n,j(η, ε, M ; qE(η, ε, M)).

(v) The functions LE
n,j(η, ε, M) satisfy the bounds

|LE(η, ε, M)|σ ≤ |η|K1 , |∂εL
E
n,j(η, ε, M)|σ ≤ |η|K1|n|1+s2 ,

∑

(n,j)∈Ω

dj∑

a,b=1

∣∣∂Mn,j(a,b)L
E(η, ε, M)

∣∣
σ

e−σ|ma−mb|ρ ≤ |η|K1,
(2.23)

with ρ depending on D, and one has

∣∣UE
n,j(η, ε, M)

∣∣ ≤ |η|K1e
−σ(|n|+|pj |1/2), (2.24)

uniformly for (ε, M) ∈ D0.

Once we have proved Proposition 1, we solve the compatibility equation for the extended counterterm
function LE

n,m(η = ε, ε, M), which is well defined provided we choose ε0 so that ε0 < η0.

Proposition 2. For all (n, j) ∈ Ω, there exist C1 functions Mn,j(ε) : (0, ε0) → D0 (with an appropriate
choice of C0) such that
(i) Mn,j(ε) verifies

χ̄1(yn,j)Mn,j(ε) = LE
n,j(ε, ε, M(ε)), (2.25)

and is such that
|Mn,j(ε)|σ ≤ K2ε, |∂εMn,j(ε)|σ ≤ K2 (1 + |εn|) |n|s2 , (2.26)

for a suitable constant K2;
(ii) the set A ≡ A(2γ), defined as

A = {ε ∈ E0(γ) : (ε, M(ε)) ∈ D(2γ)} , (2.27)

has large relative Lebesgue measure, namely limε→0+ ε−1meas(A ∩ (0, ε)) = 1.

Proof of Theorem 1. By proposition 1 (i) for all (ε, M) ∈ D(γ) we can find a sequence Ln,j(η, ε, M)
so that there exists a unique solution Un,j(η, ε, M) of (2.6) for all |η| ≤ η0, where η0 depends only on γ
for ε0 small enough. By Proposition 1 (iii) the sequence Ln,j(η, ε, M) and the solution Un,j(η, ε, M) can
be extended to C1 functions (denoted by LE(η, ε, M) and UE(η, ε, M)) for all (ε, M) ∈ D. Moreover
LE

n,j(η, ε, M) = Ln,j(η, ε, M) and UE
n,j(η, ε, M) = Un,j(η, ε, M) for all (ε, M) ∈ D(2γ).

Equation (2.8) coincides with our original (2.6) provided the compatibility equations (2.10) are satisfied.
Now we fix ε0 < η0 so that LE

n,m(η = ε, ε, M) and UE
n,j(η = ε, ε, M) are well defined. By Proposition 2 (i)

there exists a sequence of matrices Mn,j(ε) which satisfies the extended compatibility equations (2.24).
Finally by Proposition 2 (ii) the Cantor set A(2γ) is well defined and of large relative measure.

For all ε ∈ A(2γ) the pair (ε, M(ε)) is by definition in D(2γ) so that by Proposition 1 (iii) one has

Ln,j(ε, ε, M(ε)) = LE
n,j(ε, ε, M(ε)), u(ε, ε, M(ε); x, t) = uE(ε, ε, M(ε); x, t), (2.28)

so that Un,j(ε, ε, M(ε)) solves (2.8) for η = ε. So by Proposition 2 (i) M(ε) solves the true compatibility
equations (2.10), χ̄1(yn,j)Mn,j(ε) = Ln,j(ε, ε, M(ε)), for all ε ∈ A(2γ). Then u(ε, ε, M(ε); x, t) is a true
nontrivial solution of our (1.9) in A(2γ). Then by setting E(µ) = A(2γ) the result follows.
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3. Recursive equations and tree expansion

In this section we find a formal solution Un,j of (2.9) as a power series on η; the solution Un,j is parame-
terised by the matrices Ln,j and it will be written in the form of a tree expansion.

We assume for Ln,j(η, ε, M) and Un,j(η, ε, M), with (n, j) 6= (1, 1), a formal series expansion in η, i.e.

Ln,j(η, ε, M) =

∞∑

k=1

ηkL
(k)
n,j, Un,j(η, ε, M) =

∞∑

k=1

ηkU
(k)
n,j , (3.1)

for all (n, j) 6= (1, 1). Note that (3.1) naturally defines the vector components u
(k)
n,m, m ∈ Λj .

By definition we set

U
(0)
1,1 = {u1,m : m ∈ Λ1}, u1,V = q, U

(k)
1,1 = 0, k 6= 0, (3.2)

where V = (1, 1, . . . , 1). Inserting the series expansion in (2.9) we obtain for all (n, j) 6= (1, 1) the
recursive equations

ps
j

(
δn,jI + p−s

j χ̄1(yn,j)Mn,j

)
U

(k)
n,j = F

(k)
n,j +

k−1∑

r=1

L
(r)
n,jU

(k−r)
n,j , (3.3)

while for (n, j) = (1, 1) we have
q = f1,V . (3.4)

In (3.3), for ma ∈ Λj, where a = 1, . . . , dj , F
(k)
n,j (a) is defined as

F
(k)
n,j (a) =

∑

k1+k2+k3=k−1

∑

n1+n2−n3=n
m1+m2−m3=ma

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (3.5)

where each u
(ki)
ni,mi is a component of some U

(ki)
ni,ji

. Recall that we are assuming for the time being

f(u, ū) = |u|2u and we are looking for solutions with real Fourier coefficients un,m.

3.1. Multiscale analysis

It is convenient to rewrite (3.3) introducing the following scale functions.

Definition 3.1. Let χ(x) be a C∞ non-increasing function such that χ(x) = 0 if |x| ≥ 2γ and χ(x) = 1
if |x| ≤ γ; moreover, if the prime denotes derivative with respect to the argument, one has |χ′(x)| ≤ Cγ−1

for some positive constant C. Let χh(x) = χ(2hx) − χ(2h+1x) for h ≥ 0, and χ−1(x) = 1 − χ(x); see
Figure 1. Then

1 = χ−1(x) +

∞∑

h=0

χh(x) =

∞∑

h=−1

χh(x). (3.6)

We can also write
1 = χ̄1(x) + χ̄0(x) + χ̄−1(x), (3.7)

with χ̄1(x) = χ(8x) (cf. (2.8) and Figure 2), χ̄−1(x) = 1 − χ(4x), and χ̄0(x) = χ2(x) = χ(4x) − χ(8x).

Remark. Note that χh(x) 6= 0 implies 2−h−1γ < |x| < 2−h+1γ if h ≥ 0 and γ < |x| if h = −1. In
particular if χh(x) 6= 0 and χh′(x) 6= 0 for h 6= h′ then |h − h′| = 1.

Definition 3.2. We denote (recall (2.17) and that s1 = s − 2α)

xn,j ≡ xn,j(ε, M) =

∣∣∣∣∣δn,j +
νn,j

ps1

j

∣∣∣∣∣ . (3.8)
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x2γγγ/2γ/4γ/8

χ1(x)χ2(x) χ0(x) χ−1(x)χ(x)

Figure 1. Graphs of some of the C∞ compact support functions χh(x) partitioning the unity. The
function χ(x) is given by the envelope of all functions but χ−1(x).

xγ/2γ/4γ/8

χ̄1(x) χ̄0(x) χ̄−1(x)

Figure 2. Graphs of the C∞ functions partitioning the unity χ̄−1(x), χ̄0(x) and χ̄1(x).

For h = −1, 0, 1, 2, . . . ,∞ and i = −1, 0, 1 we define Gn,j,h,i(ε, M) as follows:
(i) for i = −1, 0, we set Gn,j,h,i = 0 for h 6= −1 and Gn,j,−1,i = 0 for all (ε, M) such that χ̄i(yn,j) = 0;
(ii) similarly we set Gn,j,h,1 = 0 for all (ε, M) such that χh(xn,j) = 0;
(iii) otherwise we set






Gn,j,−1,i = χ̄i(yn,j)p
−s
j

(
δn,jI +

χ̄1(yn,j)Mn,j

ps
j

)−1

, i = −1, 0,

Gn,j,h,1 = χ̄1(yn,j)χh(xn,j)p
−s
j

(
δn,jI +

χ̄1(yn,j)Mn,j

ps
j

)−1

, h ≥ −1.

(3.9)

Then Gn,j,h,i will be called the propagator on scale h.

Remarks. (1) If pα
j ν

(i)
n,j are the eigenvalues of χ̄1(yn,j)Mn,j (cf. Definition 2.5) one has by Lemma 2.4

min
i

∣∣∣δn,jI + p−s+α
j ν

(i)
n,j

∣∣∣ ≤ xn,j ≤ min
i

√
dj

∣∣∣δn,jI + p−s+α
j ν

(i)
n,j

∣∣∣ , (3.10)

so that δn,jI +p−s
j χ̄1(yn,j)Mn,j is invertible where Gn,j,h,i(ε, M) is not identically zero; this implies that

Gn,j,h,i(ε, M) is well defined (and C∞) on all D0 (as given in Definition 2.7).
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(2) If i = −1, 0, then for (ε, M) ∈ D0 the denominators are large. Indeed i 6= 1 implies |yn,j| ≥ γ/8,
hence |δn,j | ≥ p−s2

j γ/8, whereas |p−s1

j νn,j | ≤ p−s1

j CC0|ε0| ≤ const.p−s2

j ε0 in D0 (with C as in Lemma

2.6 and C0 as in Definition 2.7), so that xn,j = |δn,j + p−s1

j νn,j | ≥ |δn,j |/2. Then

|Gn,j,−1,i|∞ = p−s
j

∣∣∣
(
δn,jI +

χ̄1(yn,j)Mn,j

ps
j

)−1∣∣∣
∞

≤ C
1/2
1 p

−s+α/2
j

∣∣∣δn,j +
νn,j

ps1

j

∣∣∣
−1

≤ 2C
1/2
1 p

−s+α/2+s2

j |yn,j |−1 ≤ 16

γ
C

1/2
1 p

−3s/4
j ,

(3.11)

where we have also used Lemma 2.4 (ii).
(3) Notice that Gn,j,−1,−1 is a diagonal matrix (cf. (3.9) and notice that χ̄−1(yn,j)χ̄1(yn,j) = 0 identi-
cally).

Inserting the multiscale decomposition (3.6) and (3.7) into (3.3) we obtain

U
(k)
n,j =

∑

i=−1,0,1

∞∑

h=−1

U
(k)
n,j,h,i, (3.12)

with

U
(k)
n,j,h,i = Gn,j,h,iF

(k)
n,j + δ(i, 1)Gn,j,h,1




∞∑

h1=−1

∑

i1=0,1

k−1∑

r=1

L
(r)
n,j,hU

(k−r)
n,j,h1,i1


 , (3.13)

where δ(i, j) is Kronecker’s delta, and we have used that h = −1 for i 6= 1 and written

L
(r)
n,j =

∞∑

h=−1

χ̄1(yn,j)χh(xn,j)L
(r)
n,j,h, (3.14)

with the functions L
(r)
n,j,h to be determined.

3.2. Tree expansion

The equations (3.13) can be applied recursively until we obtain the Fourier components u
(k)
n,m as (formal)

polynomials in the variables Gn,j,h,i, q and L
(r)
n,j,h with r < k. It turns out that u

(k)
n,m can be written as

sums over trees (see Lemma 3.6 below), defined in the following way.
A (connected) graph G is a collection of points (vertices) and lines connecting all of them. The points

of a graph are most commonly known as graph vertices, but may also be called nodes or points. Similarly,
the lines connecting the nodes of a graph are most commonly known as graph edges, but may also be
called branches or simply lines, as we shall do. We denote with V (G) and L(G) the set of nodes and the
set of lines, respectively. A path between two nodes is the minimal subset of L(G) connecting the two
nodes. A graph is planar if it can be drawn in a plane without graph lines crossing.

Definition 3.3. A tree is a planar graph G containing no closed loops. One can consider a tree G with a
single special node v0: this introduces a natural partial ordering on the set of lines and nodes, and one can
imagine that each line carries an arrow pointing toward the node v0. We can add an extra (oriented) line
ℓ0 exiting the special node v0; the added line will be called the root line and the point it enters (which is not
a node) will be called the root of the tree. In this way we obtain a rooted tree θ defined by V (θ) = V (G)
and L(θ) = L(G) ∪ ℓ0. A labelled tree is a rooted tree θ together with a label function defined on the sets
L(θ) and V (θ).

We shall call equivalent two rooted trees which can be transformed into each other by continuously
deforming the lines in the plane in such a way that the latter do not cross each other (i.e. without
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Figure 3. Example of an unlabelled tree (only internal nodes with 1 and 3 entering lines are taken into
account, according to the diagrammatic rules in Section 3.3).

destroying the graph structure). We can extend the notion of equivalence also to labelled trees, simply
by considering equivalent two labelled trees if they can be transformed into each other in such a way that
also the labels match. An example of tree is illustrated in Figure 3.

Given two nodes v, w ∈ V (θ), we say that w ≺ v if v is on the path connecting w to the root line. We
can identify a line with the nodes it connects; given a line ℓ = (v, w) we say that ℓ enters v and exits (or
comes out of) w. Given two comparable lines ℓ and ℓ1, with ℓ1 ≺ ℓ, we denote with P(ℓ1, ℓ) the path of
lines connecting ℓ1 to ℓ; by definition the two lines ℓ and ℓ1 do not belong to P(ℓ1, ℓ). We say that a node
v is along the path P(ℓ1, ℓ) if at least one line entering or exiting v belongs to the path. If P(ℓ1, ℓ) = ∅
there is only one node v along the path (such that ℓ1 enters v and ℓ exits v).

In the following we shall deal mostly with labelled trees: for simplicity, where no confusion can arise,
we shall call them just trees.

We call internal nodes the nodes such that there is at least one line entering them; we call internal
lines the lines exiting the internal nodes. We call end-points the nodes which have no entering line. We
denote with L(θ), V0(θ) and E(θ) the set of lines, internal nodes and end-points, respectively. Of course
V (θ) = V0(θ) ∪ E(θ).

3.3. Diagrammatic rules

We associate with the nodes (internal nodes and end-points) and lines of any tree θ some labels, according
to the following rules; see Figure 4 for reference.

(1) For each node v there are sv entering lines, with sv ∈ {0, 1, 3}; if sv = 0 then v ∈ E(θ).

(2) With each end-point v ∈ E(θ) one associates the mode labels (nv, mv), with mv ∈ Λ1 and nv = 1.
One also associates with each end-point an order label kv = 0, and a node factor ηv = ±q, with the sign
depending on the sign of the permutation from mv to V : one can write ηv = (−1)|mv−V |1/2q, where |x|1
is the l1-norm of x.

(3) With each line ℓ ∈ L(θ) not exiting an end-point, one associates the index label jℓ ∈ N and the

momenta (nℓ, mℓ, m
′
ℓ) ∈ Z × Z

D × Z
D such that (nℓ, jℓ) 6= (1, 1) and mℓ, m

′
ℓ ∈ Λjℓ

. One has pjℓ
=

|mℓ|2 = |m′
ℓ|2 (see Lemma 2.2 (ii) for notations). The momenta define aℓ, bℓ ∈ {1, . . . , dj}, with djℓ

=
|Λjℓ

| ≤ C1p
α
jℓ

, such that mℓ = Λjℓ
(aℓ), m′

ℓ = Λjℓ
(bℓ).

(4) With each line ℓ ∈ L(θ) not exiting an end-point one associates a type label iℓ = −1, 0, 1. If iℓ = −1
then mℓ = m′

ℓ.

(5) With each line ℓ ∈ L(θ) not exiting an end-point one associates the scale label hℓ ∈ N ∪ {−1, 0}. If
iℓ = 0,−1 then hℓ = −1; if two lines ℓ, ℓ′ have (nℓ, jℓ) = (nℓ′ , jℓ′), then |iℓ − iℓ′ | ≤ 1 and if moreover
iℓ = iℓ′ = 1 then also |hℓ − hℓ′ | ≤ 1.
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(a) (b) (c)
v v vℓ ℓ ℓ ℓ1

Figure 4. Labels associated to the nodes and lines of the trees. (a) The line ℓ exits the end-point v: one
associate with ℓ the labels iℓ, hℓ, nℓ and mℓ, and with v the labels nv, mv and kv, with the constraints
iℓ = −1, hℓ = −1, nℓ = nv = 1, mℓ = mv ∈ Λ1, kv = 0. (b) The line ℓ exits the node v with sv = 3:
one associate with ℓ the labels iℓ, hℓ, nℓ, jℓ, mℓ, m′

ℓ
, aℓ, bℓ, and with v the label kv, with the constraints

(nℓ, jℓ) 6= (1, 1), mℓ = Λjℓ
(aℓ), m′

ℓ
= Λjℓ

(bℓ), kv = 1. (c) The line ℓ exits the node v with sv = 1: one

associate with ℓ the labels iℓ, hℓ, nℓ, jℓ, mℓ, m′

ℓ
, aℓ, bℓ, and with v the labels kv, av , bv, jv and nv,

with the constraints (nℓ, jℓ) 6= (1, 1), mℓ = Λjℓ
(aℓ), m′

ℓ
= Λjℓ

(bℓ), kv ≥ 1, av = bℓ, bv = aℓ1 , nℓ = nℓ1 ,
jℓ = jℓ1 . Other constraints are listed in the text.

(6) If ℓ ∈ L(θ) exits an end-point v then hℓ = −1, iℓ = −1, jℓ = 1, nℓ = 1 and mℓ = mv.

(7) With each line ℓ ∈ L(θ) except the root line one associates a sign σ(ℓ) = ±1 such that for all v ∈ V0(θ)
one has

1 =
∑

ℓ∈L(v)

σ(ℓ), (3.15)

where L(v) is the set of the sv lines entering v. One does not associate any label σ to the root line ℓ0.

(8) If sv = 1 the labels nℓ1 , jℓ1 of the line entering v are the same as the labels nℓ, jℓ of the line ℓ exiting
v, and one defines jv = jℓ, av = bℓ, bv = aℓ1 . With such v one associates an order label kv ∈ N.

(9) If sv = 3 then kv = 1. If ℓ is the line exiting v and ℓ1, ℓ2, ℓ3 are the lines entering v one has

nℓ = σ(ℓ1)nℓ1 + σ(ℓ2)nℓ2 + σ(ℓ3)nℓ3 =
∑

ℓ′∈L(v)

σ(ℓ′)nℓ′ (3.16)

and

m′
ℓ = σ(ℓ1)mℓ1 + σ(ℓ2)mℓ2 + σ(ℓ3)mℓ3 =

∑

ℓ′∈L(v)

σ(ℓ′)mℓ′ , (3.17)

with L(v) defined after (3.15).

(10) With each line ℓ ∈ L(θ) one associates the propagator

gℓ := Gnℓ,jℓ,hℓ,iℓ
(aℓ, bℓ). (3.18)

if ℓ does not exit an end-point and gℓ = 1 otherwise.

(11) With each internal node v ∈ V0(θ) one associates a node factor ηv such that ηv = 1/3 for sv = 3 and

ηv = L
(kv)
nℓ,jℓ

(av, bv) for sv = 1.

(12) Finally one defines the order of a tree as

k(θ) =
∑

v∈V (θ)

kv. (3.19)
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Definition 3.4. We call Θ(k) the set of all the nonequivalent trees of order k defined according to the

diagrammatic rules. We call Θ
(k)
n,m the set of all the nonequivalent trees of order k and with labels (n, m)

associated to the root line.

Lemma 3.5. For all θ ∈ Θ(k) and for all lines ℓ ∈ L(θ) one has |nℓ|, |mℓ|, |m′
ℓ| ≤ Bk, for some constant

B.

Proof. By definition of order one has |V0(θ)| ≤ k and by induction one proves |E(θ)| ≤ 2|V0(θ)| + 1 (by
using that sv ≤ 3 for all v ∈ V0(θ)). Hence |E(θ)| ≤ 2k + 1. Each end-point v contributes nv = ±1 to
the momentum nℓ of any line ℓ following v, so that |nℓ| ≤ 2k + 1 for all lines ℓ ∈ L(θ).

Let θℓ be the tree with root line ℓ and let k(θℓ) be its order. Then the bounds |mℓ|, |m′
ℓ| ≤ 2k(θℓ) + 1

can be proved by induction on k(θℓ) as follows. If v is the internal node which ℓ exits and sv = 3, call
ℓ1, ℓ2, ℓ3 the lines entering v (the case sv = 1 can be discussed in the same way, and it is even simpler)
and for i = 1, . . . , 3 denote by θi the tree with root line ℓi and by ki the corresponding order. Then
k1 + k2 + k3 = k(θℓ) − 1, so that by the inductive hypothesis one has

m′
ℓ = mℓ1 + mℓ2 + mℓ3 =⇒ |m′

ℓ| ≤
3∑

i=1

(2ki + 1) ≤ 2k(θℓ) + 1,

and hence also |mℓ| = |m′
ℓ| ≤ 2k(θℓ) + 1.

The coefficients u
(k)
n,m can be represented as sums over the trees defined above; this is in fact the content

of the following lemma.

Lemma 3.6. The coefficients u
(k)
n,m can be written as

u(k)
n,m =

∑

θ∈Θ
(k)
n,m

Val(θ), (3.20)

where
Val(θ) =

( ∏

ℓ∈L(θ)

gℓ

)( ∏

v∈V (θ)

ηv

)
. (3.21)

Proof. The proof is done by induction on k ≥ 1. For k = 1 it reduces just to a trivial check.

Now, let us assume that (3.20) holds for k′ < k, and use that u
(0)
n,m = q δ(n, 1)

∏D
i=1(±δ(mi,±1)). If we

set m = Λj(a), we have (see Figure 5)

u(k)
n,m =

∞∑

h=−1

∑

i=−1,0,1

dj∑

b=1

Gn,j,h,i(a, b)
∑

k1+k2+k3=k

∑

n1+n2−n3=n

m1+m2−m3=Λj(b)

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

+
∞∑

h=−1

dj∑

b,b′=1

Gn,j,h,1(a, b)
k−1∑

r=1

Ln,j,h(b, b′)u
(k−r)
n,Λj(b′)

.

(3.22)

Consider a tree θ ∈ Θ
(k)
n,m such that m = Λj(a), sv0 = 3 and hℓ0 = h, if ℓ0 is the root line of θ and v0

is defined in 3.3. Let θ1, θ2, θ3 be the sub-trees whose root lines ℓ1, ℓ2, ℓ3 enter v0. By (3.15) one has∑3
j=1 σ(ℓj)mℓj = m′

ℓ0
, with m′

ℓ0
= Λj(b) for b = bℓ0 . Then we have

Val(θ) = Gn,j,h,i(a, b)Val(θ1)Val(θ2)Val(θ3), (3.23)
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(k, n, m)

=
(h, i, n, m, m′)

(k1, n1, m1)

(k2, n2, m2)

(k3, n3, m3)

(h, 1, n, m, m′)

(kv, n, m′, m1)
(k1, n, m1)

+

Figure 5. Graphical representation of (3.20); the sums are understood; note that
∑

j
σ(ℓj )mj = m′ in

the first summand and kv + k1 = k in the second summand.

and we reorder the lines so that σ(ℓ3) = −1, which produces a factor 3.

In the same way consider a tree θ ∈ Θ
(k)
n,m such that m = Λj(a), sv0 = 1 and hℓ0 = h, with the same

notations as before. Let θ1 be the sub-tree whose root line ℓ1 enters v0. Set kv0 = r, mv0 = Λj(b),
m′

v0
= Λj(b

′), where b = bℓ0 and b′ = aℓ1 . Then

Val(θ) = Gn,j,h,1(a, b)L
(r)
n,j,h(b, b′)Val(θ1), (3.24)

so that the proof is complete.

3.4. Clusters and resonances

In the preceding section we have found a power series expansion for Un,j solving (2.9) and parameterised
by Ln,j. However for general values of Ln,j such expansion is not convergent, as one can easily identify
contributions at order k which are O(k!ξ), for a suitable constant ξ. In this section we show that it is
possible to choose the parameters Ln,j in a proper way to cancel such “dangerous” contributions; in order
to do this we have to identify the dangerous contributions and this will be done through the notion of
clusters and resonances.

Definition 3.7. Given a tree θ ∈ Θ
(k)
n,m a cluster T on scale h is a connected maximal set of nodes and

lines such that all the lines ℓ have a scale label ≤ h and at least one of them has scale h; we shall call
hT = h the scale of the cluster. We shall denote by V (T ), V0(T ) and E(T ) the set of nodes, internal
nodes and the set of end-points, respectively, which are contained inside the cluster T , and with L(T ) the
set of lines connecting them. Finally kT =

∑
V (T ) kv will be called the order of T .

Therefore an inclusion relation is established between clusters, in such a way that the innermost clusters
are the clusters with lowest scale, and so on. A cluster T can have an arbitrary number of lines entering
it (entering lines), but only one or zero line coming out from it (exiting line or root line of the cluster);
we shall denote the latter (when it exists) with ℓ1

T . Notice that by definition all the external lines have
iℓ = 1.

Definition 3.8. We call 1-resonance on scale h a cluster T of scale hT = h with only one entering line

ℓT and one exiting line ℓ1
T of scale h

(e)
T > h + 1, with |V (T )| > 1 and such that

(i) one has
nℓ1

T
= nℓT ≥ 2(h−2)/τ , m′

ℓ1
T
∈ ΛjℓT

, (3.25),
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(ii) if for some ℓ ∈ L(T ) not on the path P(ℓT , ℓ1
T ) one has nℓ = nℓT , then jℓ 6= jℓT .

We call 2-resonance a set of lines and nodes which can be obtained from a 1-resonance by setting iℓT = 0.
Finally we call resonances the 1- and 2-resonances. The line ℓ1

T of a resonance will be called the root line
of the resonance. The root lines of the resonances will be also called resonant lines.

Remarks. (1) A 2-resonance is not a cluster, but it is well defined due to condition (ii) of the 1-resonances.
Indeed, such a condition implies that there is a one to one correspondence between 1-resonances and 2-
resonances.
(2) The reason why we do not include in the definition of 1-resonances the clusters which satisfy only
condition (i), i.e. such that there is a line ℓ ∈ L(T ) \ P(ℓT , ℓ1

T ) with nℓ = nℓT and jℓ = jℓT , is that
these clusters do not give any problems and can be easily controlled, as will become clear in the proof of
Lemma 4.1; cf. also the subsequent Remark (1).
(3) The 2-resonances are included among the resonances for the following reason. The 1-resonances are
the dangerous contributions, and we shall cancel them by a suitable choice of the counterterms. Such a
choice automatically cancels out the 2-resonances.

An example of resonance is illustrated in Figure 6. We associate a numerical value with the resonances
as done for the trees. To do this we need some further notations.

n, j, m′, hℓ1
T

ℓ1
T

ℓ1

ℓ2

n, j, m, hℓT

ℓT

Figure 6. Example of resonance T . We have set jℓ1
T

= j, nℓ1
T

= n, m′

ℓ1
T

= m′, mℓT
= m, so that

nℓT
= n and jℓT

= j, by (3.25). Moreover, if hT = h is the scale of T , one has hℓT
≥ h+1 by definition

of cluster and hℓ1
T

= h
(e)
T

> h + 1 by definition of resonance. For any line ℓ ∈ L(T ) one has hℓ ≤ h and

there is at least one line on scale h. The path P(ℓT , ℓ1
T

) consists of the line ℓ1. If nℓ2 = n then jℓ2 6= j
by the condition (ii).

Definition 3.9. The trees θ ∈ R(k)
h,n,j with n ≥ 2(h−2)/τ and (n, j) ∈ Ω are defined as the trees θ ∈ Θ

(k)
h,n,m

with the following modifications:
(a) there is a single end-point, called e, carrying the labels ne, me such that ne = n, me ∈ Λj; if ℓe is
the line exiting from e then we associate with it a propagator gℓe = 1, a label mℓe = me and a label
σℓe ∈ {±1};
(b) the root line ℓ0 has iℓ0 = 1, nℓ0 = n and m′

ℓ0
∈ Λj and the corresponding propagator is gℓ0 = 1;

(c) one has maxℓ∈L(θ)\{ℓ0,ℓe)} hℓ = h.

A cluster T (and consequently a resonance) on scale hT ≤ h for θ ∈ R(k)
h,n,j is defined as a connected

maximal set of nodes v ∈ V (θ) and lines ℓ ∈ L(θ) \ {ℓ0, ℓe} such that all the lines ℓ have a scale label
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≤ hT and at least one of them has scale hT .

We define the set R(k) as the set of trees belonging to R(k)
h,n,j for some triple (h, n, j).

Remark. The entering line ℓe has no label m′
ℓe

, while the root line has no label mℓ0 . Both carry no
scale label. Recall that by the diagrammatic rule (7) the root line ℓ0 has no σ label.

Lemma 3.10. Let B be the same constant as in Lemma 3.5. For all θ ∈ R(k)
h,n,j and for all ℓ not in the path

P(ℓe, ℓ0) one has |nℓ| ≤ Bk and |mℓ|, |m′
ℓ| ≤ Bk. For ℓ on such path one has min{|nℓ − ne|, |nℓ + ne|} ≤

Bk.

Proof. For the lines not along the path P = P(ℓe, ℓ0) the proof is as for Lemma 3.5. If a line ℓ is along
the path P then one can write nℓ = n0

ℓ ± ne, where n0
ℓ is the sum of the labels ±nv of all the end-points

preceding ℓ but e. The signs depend on the labels σ(ℓ′) of the lines ℓ′ preceding ℓ; in particular the sign
in front of ne depends on the labels σ(ℓ′) of the lines ℓ′ ∈ P(ℓe, ℓ), in agreement with to (3.16). Then the
last assertion follows by reasoning once more as in the proof of Lemma 3.5.

The definition of value of the trees in R(k) is identical to that given in (3.21) for the trees in Θ(k).

1l

l0

1 1(n, m , m’ , h , i  )11

1 1(n, m , m’ , h , i  )11

l0

Val )
v

l = h  l

v

( )
l0

h  < h−1

( .

T

(n, m, m’, h, i=1 )

(n, m , i  )1 1

.Val 

e

le

G (a,b)
n,j,h,1

Val ( )

(n, m’, i=1 )

Figure 7. We associate with the resonance T (enclosed in an ellipse and such that m = Λj(a), m′ =
Λj(b), m1, m′

1 ∈ Λj) the tree θT ∈ Rh1,n,j , and vice-versa.

Let us now consider a tree θ with a resonance T whose exiting line is the root line ℓ0 of θ, let θ1 be the

tree atop the resonance. Given a resonance T , there exists a unique θT ∈ R(k)
h,n,j , with n = nℓ0 , j = jℓ0

and h = hT , such that (see Figure 7)

Val(θ) = gℓ0 Val(θT )Val(θ1), (3.26)

so that we can call, with a slight abuse of language, Val(θT ) the value of the resonance T .

3.5. Choice of the parameters Ln,j

With a suitable choice of the parameters Ln,j,h the functions u
(k)
n,m can be rewritten as sum over “renor-

malised” trees defined below.

Definition 3.11. We define the set of renormalised trees Θ
(k)
R,n,m defined as the trees in Θ

(k)
n,m with no

resonances nor nodes with sv = 1. In the same way we define R(k)
R,h,n,j. We call R(k)

R,h,n,j(a, b) the set of

trees θ ∈ R(k)
R,h,n,j such that the entering line has me = Λj(b) while the root line has m′

ℓ0
= Λj(a). Finally

19



we define the sets Θ
(k)
R and R(k)

R as the sets of trees belonging to Θ
(k)
R,n,m for some n, m and, respectively,

to R(k)
R,h,n,j for some h, n, j.

We extend the notion of resonant line by including also the lines coming out from a node v with sv = 1.
This leads to the following definition.

Definition 3.12. A resonant line is either the root line of a resonance (see Definition 3.8) or the line
exiting a node v with sv = 1.

The following result holds.

Lemma 3.13. For all k, n, m one has

u(k)
n,m =

∑

θ∈Θ
(k)

R,n,m

Val(θ), (3.27)

provided we choose in (3.14)





L
(k)
n,j,h(a, b) = −

∑

h1<h−1

∑

θ∈R(k)

R,h1,n,j
(a,b)

Val(θ), (n, j) ∈ Ω,

L
(k)
n,j,h(a, b) = 0, (n, j) /∈ Ω,

(3.28)

where R(k)
R,h1,n,j(a, b) is as in Definition 3.11.

Proof. First note that by definition Ln,j,h = 0 if (n, j) /∈ Ω. We proceed by induction on k. For k = 1

(3.28) holds as Θ
(1)
R,n,m ≡ Θ

(1)
n,m. Then we assume that (3.28) holds for all r < k. By (3.13) one has

U
(k)
n,j,h,i = Gn,j,h,iF

(k)
n,j for i = −1, 0, and

U
(k)
n,j,h,1 = Gn,j,h,1F

(k)
n,j + Gn,j,h,1




∞∑

h2=−1

∑

i2=1,0

k−1∑

r=1

L
(r)
n,j,h U

(k−r)
n,j,h2,i2



 , (3.29)

where F
(k)
n,j is a function of the coefficients u

(r′)
n′,m′ with r′ < k. By the inductive hypothesis each u

(r′)
n′,m′

can be expressed as a sum over trees in Θ
(r′)
R,n′,m′ . Therefore (Gn,j,h,iF

(k)
n,j )(a) is given by the sum over

the trees θ ∈ Θ
(k)
n,m, with m = Λj(a) and sv0 = 3 (v0 is introduced in Definition 3.3), such that only the

root line ℓ0 of θ can be resonant. Note that ℓ0 can be resonant only if i = iℓ0 = 1. If ℓ0 is non-resonant

then θ ∈ Θ
(k)
R,n,m, so that the assertion holds trivially for i 6= 1.

For i = 1 we split the coefficients of Gn,j,h,1F
(k)
n,j as sum of two terms: the first one, denoted Gn,j,h,1J

(k)
n,j ,

is the sum over all trees belonging to ΘR,n,m for m ∈ Λj with sv0 = 3 and the second one is sum of trees
with value

Val(θ) = gℓ0 Val(θT )Val(θ1), (3.30)

with θT ∈ R(r)
R,h1,n,j and θ1 ∈ Θ

(k−r)
R,n,m′ with m′ = Λj(b) for some r and some b; by definition of resonance

we have h1 < h − 1.
We get terms of this type for all θT and θ1 so that

F
(k)
n,j (a) = J

(k)
n,j (a) +

dj∑

b=1

∞∑

h2=−1

∑

i2=1,0

k−1∑

r=1

∑

h1<h−1




∑

θ∈R(r)

R,h1,n,j
(a,b)

Val(θ)


U

(k−r)
n,j,h2,i2

(b), (3.31)
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where the sum over h1 < h − 1 of the terms between parentheses gives −L
(r)
n,j,h(a, b) by the first line in

(3.28) Therefore all the terms but J
(k)
n,j (a) in (3.31) cancel out the term between parentheses in (3.29),

and only the term Gn,j,h,iJ
(k)
n,j (a) is left in (3.29). On the other hand Gn,j,h,iJ

(k)
n,j (a) is by definition the

sum over all trees in Θ
(k)
R,n,m, so that the assertion follows also for i = 1.

Remarks. (1) The proof of Lemma 3.13 justifies why we included into the definition of resonances (cf.
Definition 3.8) also the 2-resonances, even if the latter are not clusters. Indeed in (3.29) we have to sum
also over i2 = 0.
(2) Note that Val(θ) is a monomial of degree 2k + 1 in q for θ ∈ Θ

(k)
R,n.m, and it is a monomial of degree

2k in q for θ ∈ Θ
(k)
R,n,m.

In the next section we shall prove that the matrices L
(k)
n,j,h are symmetric (we still have to show that

the matrices are well-defined). For this we shall need the following result.

Lemma 3.14. For all trees θ ∈ RR,h,n,j(a, b) there exists a tree θ1 ∈ RR,h,n,j(b, a) such that Val(θ) =
Val(θ1).

Proof. Given a tree θ ∈ RR,h,n,j(a, b) consider the path P = P(ℓe, ℓ0), and set P = {ℓ1, . . . , ℓN}, with
ℓ0 ≻ ℓ1 ≻ . . . ≻ ℓN ≻ ℓN+1 = ℓe. We construct a tree θ1 ∈ RR,h,n,j(b, a) in the following way.

1. We shift the σℓ labels down the path P , so that σℓk
→ σℓk+1

for k = 1, . . . , N , ℓ0 acquires the label
σℓ1 , while ℓe loses its label σℓe (which becomes associated with the line ℓN).

2. For all the lines ℓ ∈ P we exchange the labels mℓ, m
′
ℓ, so that mℓk

→ m′
ℓk

, m′
ℓk

→ mℓk
for k = 1, . . . , N ,

while one has simply m′
ℓ0

→ mℓe and mℓe → m′
ℓ0

for the root and entering lines.

3. For any pair ℓ1(v), ℓ2(v) of lines not on the path P and entering the node v along the path, we exchange
the corresponding labels σℓ, i.e. σℓ1(v) → σℓ2(v) and σℓ2(v) → σℓ1(v).

4. The line ℓe becomes the root line, and the line ℓ0 becomes the entering line.

As a consequence of item 4. the ordering of nodes and lines along the path P is reversed (in particular
the arrows of all the lines ℓ ∈ P ∪ {ℓT , ℓ1

T } are reversed). On the contrary the ordering of all the lines
and nodes outside P is not changed by the operations above. This means that all propagators and node
factors of lines and nodes, respectively, which do not belong to P remain the same.

Then the symmetry of M , hence of the propagators, implies the result.

4. Bryuno lemma and bounds

In the previous section we have shown that, with a suitable choice of the parameters Ln,j , we can express

the coefficients u
(k)
n,m as sums over trees belonging to Θ

(k)
R,n,m. We show in this section that such expansion

is indeed convergent if η is small enough and (ε, M) ∈ D(γ) (see Definition 2.7).

4.1. Bounds on the trees in Θ
(k)

R

Given a tree θ ∈ Θ
(k)
R,n,m, we call S(θ, γ) the set of (ε, M) ∈ D0 such that for all ℓ ∈ L(θ) one has

{
2−hℓ−1γ ≤ |xnℓ,jℓ

| ≤ 2−hℓ+1γ, hℓ 6= −1,

|xnℓ,jℓ
| ≥ γ, hℓ = −1,

(4.1)

21



with xn,j defined in (2.17), and





|ynℓ,jℓ
| ≤ 2−2γ, iℓ = 1,

2−3γ ≤ |ynℓ,jℓ
| ≤ 2−1γ, iℓ = 0,

2−2γ ≤ |ynℓ,jℓ
|, iℓ = −1.

(4.2)

with yn,j defined in (2.8). In other words we can have Val(θ) 6= 0 only if (ε, M) ∈ S(θ, γ).
We call D(θ, γ) ⊂ D0 the set of (ε, M) such that

|xnℓ,jℓ
| ≥ γ

|nℓ|τ
(4.3)

for all lines ℓ ∈ L(θ) such that iℓ = 1, and

∣∣δnℓ,jℓ
− δnℓ1

,jℓ1

∣∣ ≥ γ

|nℓ − nℓ1 |τ
(4.4)

for all pairs of lines ℓ1 ≺ ℓ ∈ L(θ) such that nℓ 6= nℓ1 , iℓ, iℓ1 = 0, 1 and
∏

ℓ′∈P(ℓ1,ℓ) σ(ℓ′)σ(ℓ1) = 1 (the

last condition implies that |nℓ − nℓ1 | is bounded by the sum of |nv| of the nodes v preceding ℓ but not
ℓ1). This means that D(θ, γ) is the set of (ε, M) verifying the Melnikov conditions (2.2) and (2.18) in θ.

In order to bound Val(θ) we will use the following result (Bryuno lemma).

Lemma 4.1. Given a tree θ ∈ Θ
(k)
R,n,m such that D(θ, γ) ∩ S(θ, γ) 6= ∅, then the scales hℓ of θ obey

Nh(θ) ≤ max{0, c k(θ)2(2−h)β/τ − 1}, (4.5)

where Nh(θ) is the number of lines ℓ with iℓ = 1 and scale hℓ greater or equal than h, and c is a suitable
constant.

Proof. For (ε, M) ∈ D(θ, γ) ∩ S(θ, γ) both (4.1) and (4.3) hold. Moreover by Lemma 3.5 one has
|n| ≤ Bk(θ). This implies that one can have Nh(θ) ≥ 1 only if k(θ) is such that k(θ) > k0 := B−12(h−1)/τ .
Therefore for values k(θ) ≤ k0 the bound (4.5) is satisfied.

If k(θ) > k0, we proceed by induction by assuming that the bound holds for all trees θ′ with k(θ′) < k(θ).
Define Eh := c−12(−2+h)β/τ : so we have to prove that Nh(θ) ≤ max{0, k(θ)E−1

h − 1}. In the following
we shall assume that c is so large that all the assertions we shall make hold true.

Call ℓ0 the root line of θ and ℓ1, . . . , ℓm the m ≥ 0 lines on scale ≥ h − 1 which are the closest to ℓ0

and such that iℓs = 1 for s = 1, . . . , m.
If the root line ℓ0 of θ is on scale < h then

Nh(θ) =

m∑

i=1

Nh(θi), (4.6)

where θi is the sub-tree with ℓi as root line.
By construction Nh−1(θi) ≥ 1, so that k(θi) > B−12(h−2)/τ and therefore for c large enough (recall

that β < α ≪ 1) one has max{0, k(θi)E
−1
h − 1} = k(θi)E

−1
h − 1, and the bound follows by the inductive

hypothesis.
If the root line ℓ0 has iℓ0 = 1 and scale ≥ h then ℓ1, . . . , ℓm are the entering line of a cluster T .
By denoting again with θi the sub-tree having ℓi as root line, one has

Nh(θ) = 1 +
m∑

i=1

Nh(θi), (4.7)
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so that, by the inductive assumption, the bound becomes trivial if either m = 0 or m ≥ 2.

If m = 1 then one has a cluster T with two external lines ℓ1
T = ℓ0 and ℓT = ℓ1, such that hℓ1 ≥ h − 1

and hℓ0 ≥ h. Then, for the assertion to hold in such a case, we have to prove that (k(θ)−k(θ1))E
−1
h ≥ 1.

For (ε, M) ∈ S(θ, γ) ∩ D(θ, γ) one has

min{|nℓ0|, |nℓ1 |}| ≥ 2(h−2)/τ , (4.8)

and, by definition, one has iℓ0 = iℓ1 = 1, hence |ynℓ0
,jℓ0

|, |ynℓ1
,jℓ1

| ≤ γ/4 (see (4.2)), so that we can apply
Lemma 2.1.

We distinguish between two cases.

1. If nℓ0 6= nℓ1 , by Lemma 2.1 with s0 = s2 (and the subsequent Remark) one has

|nℓ0 ± nℓ1 | ≥ const.min{|nℓ0 |, |nℓ1 |}s2/τ1 ≥ const.min{|nℓ0|, |nℓ1 |}s2/τ ≥ const.2(h−2)s2/τ2 ≥ Eh,

where we have used that s2/τ2 ≥ β/τ for α small enough. Therefore B(k(θ) − k(θ1)) ≥ mina=±1 |nℓ0 +
anℓ1 | ≥ Eh.

2. If nℓ0 = nℓ1 , consider the path P = P(ℓ1, ℓ0). Now consider the nodes along the path, and call ℓi

the lines entering these nodes and θi the sub-trees which have such lines as root lines. If mi denotes the
momentum label mℓi one has, by Lemma 3.5, |mi| ≤ Bk(θi).

Call ℓ̄ the line on the path P ∪ {ℓ1} closest to ℓ0 such that iℓ̄ 6= −1 (that is all lines ℓ along the path
P(ℓ̄, ℓ0) have iℓ = −1).

2.1. If |nℓ̄| ≤ |nℓ0 |/2 then, by the conservation law (3.16) one has k(θ) − k(θ1) > B−1|nℓ0 |/2 ≥ Eh.

2.2. If |nℓ̄| ≥ |nℓ0 |/2 we distinguish between the two following cases.

2.2.1. If nℓ̄ 6= nℓ0 (= nℓ1) then by Lemma 2.1 and (4.2) one finds

|nℓ̄ ± nℓ0 | ≥ const. min{|nℓ̄|, |nℓ0 |}s2/τ ≥ const.2−s2/τ2(h−2)s2/τ2

> Eh.

2.2.2. If nℓ̄ = nℓ0 then we have two further sub-cases.

2.2.2.1. If jℓ0 6= jℓ̄, then |mℓ̄ − m′
ℓ0
| ≥ C2p

β
jℓ0

≥ C|nℓ0 |β , for some constant C. For all the lines ℓ along

the path P(ℓ̄, ℓ0) one has iℓ = −1, hence mℓ = m′
ℓ (cf. the Remark (3) after Definition 3.2), so that

|mℓ̄ − m′
ℓ0
| ≤∑i |mi| ≤ B(k(θ) − k(θ1)), and the assertion follows once more by using (4.8).

2.2.2.2. If jℓ0 = jℓ̄ then iℓ̄ = 0 because hℓ̄ ≤ h− 2 and one would have |hℓ̄ − h| = |hℓ̄ − hℓ0 | ≤ 1 if iℓ̄ = 1.
As 2-resonances (as well as 1-resonances) are not possible there exists a line ℓ′ (again with iℓ′ = 0 because
hℓ′ ≤ h − 2), not on the path P(ℓ̄, ℓ0), such that jℓ′ = jℓ0 and |nℓ′ | = |nℓ0 | > 2(h−2)/τ ; cf. condition (ii)
in Definition 3.8. In this case one has k(θ) − k(θ1) > B−1|nℓ′ | ≥ Eh.

This completes the proof of the lemma.

Remarks. (1) It is just the notion of 2-resonance and property (ii) in Definition 3.8, which makes non-
trivial the case 2.2.2.2. in the proof of Lemma 4.1.
(2) Note that in the discussion of the case 2.2.2.1. we have proved that k(θ)− k(θ1) ≥ const.|nℓ0 |β (using
once more that s2/τ ≥ β for α, hence β, small enough with respect to s).

The Bryuno lemma implies the the following result.

Lemma 4.2. There is a positive constant D0 such that for all trees θ ∈ Θk
R,n,m and for all (ε, M) ∈
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D(θ, γ) ∩ S(θ, γ) one has

(i) |Val(θ)| ≤ Dk
0q2k+1

( ∞∏

h=1

2hNh(θ)
) ∏

ℓ∈L(θ)

p
−3s/4
jℓ

,

(ii) |∂εVal(θ)| ≤ Dk
0q2k+1

( ∞∏

h=1

22hNh(θ)
) ∏

ℓ∈L(θ)

p−s2−α
jℓ

,

(iii)
∑

(n′,j′)∈Ω

dj′∑

a′,b′=1

|∂Mn′,j′ (a
′,b′)Val(θ)| ≤ Dk

0q2k+1
( ∞∏

h=1

22hNh(θ)
) ∏

ℓ∈L(θ)

p−s2−α
jℓ

.

(4.9)

if |n| < Bk and |m| < Bk, with B given as in Lemma 3.5, and Val(θ) = 0 otherwise.

Proof. By Lemma 3.5 we know that Θk
R,n,m is empty if |n| > Bk or |m| > Bk. We first extract the

factor q2k+1 by noticing that a renormalised tree of order k has 2k+1 end-points (cf. the proof of Lemma
3.5).

For (ε, M) ∈ D(θ, γ)∩S(θ, γ) the bounds (4.5) hold. First of all we bound all propagators gℓ such that

iℓ = −1, 0 with 16C
1/2
1 γ−1|pjℓ

|−3s/4 according to (3.11). For the remaining gℓ we use the inequalities
(4.1) due to the scale functions: by Lemma 2.4 (ii) one has |Gn,j,h,1(a, b)| ≤

√
djp

−s
j |δn,j + p−s1

j νn,j |, so

that we can bound the propagators gℓ proportionally to 2hℓ |pjℓ
|−3s/4. This proves the bound (i) in (4.9);

notice that the product over the scale labels is convergent.
When deriving Val(θ) with respect to ε we get a sum of trees with a distinguished line, say ℓ, whose

propagator gℓ is substituted with ∂εgℓ in the tree value. For simplicity, in the following set j = jℓ, hℓ = h
and n = nℓ.

Let us first consider the case iℓ = −1, 0 (so that gℓ is given by the first line of (3.9)), and recall Lemma
2.4 (ii) and (iii)). Bounding the derivative ∂εgℓ we obtain, instead of the bound on gℓ, a factor

Cγ−1
ps2

j |n|C1/2
1 p

α/2
j

ps
j |δn,j + p−s1

j νn,j |
≤ CC

1/2
1

16

γ2
|n|p−(s−2s2−α/2)

j , (4.10)

arising when the derivative acts on χ̄i(yn,j) (here and in the following factors Cγ−1 is a bound on the
derivative of χ with respect to its argument), and a factor

2|n|C1p
α
j

ps
j(δn,j + p−s1

j νn,j)2
≤ 2C1

162

γ2
|n|p−(s−2s2−α)

j , (4.11)

arising when the derivative acts on the matrix (δn,jI + p−s
j χ̄(yn,j)Mn,j)

−1.
If iℓ = 1 then the propagator is given by the second line in (3.9), so that both summands arising from

the derivation of the function χ̄1(yn,j) and of the matrix (δn,jI + p−s
j χ̄(yn,j)Mn,j)

−1 are there, and they

are both bounded proportionally to p−s2−α
j |n|22h (recall that s2 = (s − 2α)/4). Moreover (see Lemma

2.4 (iv)) there is also an extra summand containing a factor

2Cγ−1C
7/2
1

|n|p7α/2
j 2h+1

ps
j |δn,j + p−s1

j νn,j |
≤ const.p−s+4α

j |n|22h, (4.12)

arising when the derivative acts on χh(xn,j). Indeed, by setting A = (δn,jI +p−s
j χ̄1(yn,j)Mn,j)

−1, so that

x = ‖A‖−1, one has

∂εxn,j =
1

d
1/2
j ‖A‖3

dj∑

i,k,h,l=1

A(i, k)A(i, h)A(l, k)∂εA
−1(h, l), (4.13)
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which implies (4.12). For α ≪ s we can bound s − 4α with s2 + α.

Finally we can bound each n = nℓ with Bk (see Lemma 3.5). All the undistinguished lines in the tree
(i.e. all lines ℓ′ 6= ℓ in L(θ)) can be bounded as in item (i). This proves the bound (ii) in (4.9).

The derivative with respect to Mn′,j′(a
′, b′) gives a sum of trees with a distinguished line ℓ (as in

the previous case (ii)), with the propagator ∂Mn′,j′ (a
′,b′)gℓ replacing gℓ. Notice that ℓ must carry the

labels n′, j′. We have two contributions, one arising from the derivative of the matrix and the other one
(provided iℓ = 1) arising from the derivative of the scale function χhℓ

(there is no contribution analogous
to (4.10) because yn,j does not depend on M). By reasoning as in the case (ii) we obtain a factor
proportional to 22hp−s2−α

jℓ
.

The sums over the labels (n′, j′) ∈ Ω and a′, b′ = 1, . . . , dj′ can be bounded as follows. By Lemma 3.5
one has |n′| < Bk. Then j′ must be such that pj′ = O(n′), which implies that the number of values
which j′ can assume is at most proportional to |n′|D−1, and a′, b′ vary in {1, . . . , dj′}, with dj′ ≤ C1p

α
j′ ≤

const.|n′|α. Therefore we obtain an overall factor proportional to k1+(D−1)+2α ≤ k1+D ≤ Ck for some
constant C. Hence also the bound (iii) of (4.9) is proved.

4.2. Bounds on the trees in R(k)

R

Given a tree θ ∈ RR,h,n,j, we call S̃(θ, γ) set of (ε, M) ∈ D0 such that (4.1) holds for all ℓ ∈ L(θ)\{ℓe, ℓ0},
and (4.2) holds for all ℓ ∈ L(θ). Let D̃(θ, γ) ⊂ D0 be the set of (ε, M) such that (4.3) holds for all
ℓ ∈ L(θ) \ {ℓe, ℓ0}, and (4.4) holds for all pairs ℓ1 ≺ ℓ ∈ L(θ) such that

(i) nℓ1 6= nℓ, iℓ, iℓ1 = 0, 1 and
∏

ℓ′∈P(ℓ1,ℓ) σ(ℓ′)σ(ℓ1) = 1;

(ii) either both ℓ, ℓ1 are on the path P(ℓe, ℓ0) or none of them is on such a path.

The following lemma will be useful.

Lemma 4.3. Given a tree θ ∈ R(k)

R,h̄,n,j
(a, b) such that D̃(θ, γ) ∩ S̃(θ, γ) 6= ∅ then there are two positive

constants B2 and B3 such that
(i) a line ℓ on the path P(ℓe, ℓ0) can have iℓ 6= −1 only if k ≥ B2|n|β;
(ii) one has k ≥ B3|ma − mb|ρ with 1/ρ = 1 + α/β = 1 + D(1 + D(D + 2)!/2).

Proof. (i) One can proceed very closely to case 2. in the proof of Lemma 4.1, with ℓe and ℓ playing the
role of ℓ1 and ℓ̄, respectively – see the Remark (2) after the proof of Lemma 4.1. We omit the details.
(ii) By Lemma 2.2, for all ma, mb ∈ Λj one has |ma − mb| ≤ C2p

α+β
j . For (n, j) ∈ Ω this implies that

|ma − mb| ≤ const. |n|α+β. If k ≥ B2|n|β then one has k ≥ const. |ma − mb|β/(α+β), the statement holds
true (recall that α/β is given by (2.4)). If k < B2|n|β then by item (i) all the lines ℓ on the path P(ℓe, ℓ0)
have iℓ = −1, hence mℓ = m′

ℓ. Then by calling, as in the proof of Lemma 4.1, θi the sub-trees whose root
lines enter the nodes of P(ℓe, ℓ0) and mi the momentum label mℓi , we obtain |mℓe −mℓ0| ≤

∑
i |mi| ≤ Bk,

and the assertion follows once more.

The following generalisation of Lemma 4.1 holds.

Lemma 4.4. Given tree θ ∈ R(k)

R,h̄,n,j
such that D̃(θ, γ) ∩ S̃(θ, γ) 6= ∅ then the scales hℓ of θ obey, for

all h ≤ h̄,

Nh(θ) ≤ max{0, c k(θ) 2(2−h)β/τ}, (4.14)

where Nh(θ) and c are defined as in Lemma 4.1.

Proof. To prove the lemma we consider a slightly different class of trees with respect to R(k)

R,h̄,n,j
, which

we denote by R(k)

R,h̄
. The differences are as follows:
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(i) the root line has scale labels hℓ0 ≤ h̄ and iℓ0 ∈ {−1, 0, 1},
(ii) we remove the condition ne = nℓ0 , je = jℓ0 , and require only that |ne| > 2(h̄−2)/τ .

Notice that, for all θ ∈ R(k)

R,h̄,n,j
, among the three sub-trees entering the root, two are in Θ

(k1)
R and

Θ
(k2)
R , respectively, and one is in R(k3)

R,h̄1
, with h̄1 ≤ h̄ (recall that by definition hℓ ≤ h̄ for all ℓ ∈ L(θ)),

and k1 + k2 + k3 = k − 1. Hence we shall prove (4.14) for the trees θ ∈ R(k)

R,h̄
, for which we can proceed

by induction on k.

For (ε, M) ∈ D̃(θ, γ) ∩ S̃(θ, γ) we have both (4.1) and (4.3) for all ℓ ∈ L(θ) \ {ℓ0, ℓe}. Moreover by
Lemma 3.10 we have Bk(θ) ≥ |nℓ + ane|, where a = 0 if ℓ is not on the path P = P(ℓe, ℓ0) and a ∈ {±1}
otherwise.

For ℓ not on the path P one can have hℓ ≥ h only if k(θ) is such that k(θ) > k0 = B−12(h−1)/τ (cf. the
proof of Lemma 4.1). If all lines not along the path P have scales < h, consider the line ℓ on the path P
with scale hℓ ≥ h which is the closest to ℓe (the case in which such a line does not exist is trivial, because
it yields Nh(θ) = 0)). Then ℓ is the exiting line of a cluster T with ℓe as entering line. Note that we have
both |nℓ| ≥ 2(h−1)/τ and |ne| > 2(h̄−2)/τ , with h̄ ≥ h. As T cannot be a resonance, if nℓ = ne then either
jℓ 6= je, so that

kT > min{B2|ne|β , B−1C2|pje |β} > const.2(h−1)β/τ

(cf. Lemma 4.3 (i) and the case 2.2.2.1. in the proof of Lemma 4.1), or jℓ = je, so that

kT > B−12(h̄−2)/τ ≥ B−12(h−2)/τ

(cf. the case 2.2.2.2. in the proof of Lemma 4.1). If on the contrary nℓ 6= ne, by Lemma 2.1 one has

Bk(θ) ≥ const. min{|nℓ ± ne|} ≥ const.2(h−2)s2/τ2

. Therefore there exists a constant B̃ such that for

values k(θ) ≤ k̃0 := B̃−12(h−1)s2/τ2

the bound (4.14) is satisfied.

If k(θ) > k̃0, we assume that the bound holds for all trees θ′ with k(θ′) < k(θ). Define Eh =
c−12(−2+h)β/τ : we want to prove that Nh(θ) ≤ max{0, k(θ)E−1

h − 1}.
We proceed exactly as in the proof of Lemma 4.1. The only difference is that, when discussing the case

2.2.1, one can deduce |nℓ̄ ± nℓ0 | ≥ const. min{|nℓ0 |, |nℓ̄|}s2/τ ≥ const.2(h−2)s2/τ2

> Eh by using that the
quantity ne cancels out as the line ℓ̄ is along the path P .

The following result is an immediate consequence of the previous lemma.

Lemma 4.5. For fixed k the matrices L
(k)
n,j are symmetric; moreover the following identity holds:

L
(k)
n,j = −χ̄1(yn,j)

∞∑

h=−1

Ch(xn,j)
∑

θ∈R(k)

R,h,n,j

Val(θ), (4.15)

where, by definition,

Ch(x) =

∞∑

h1=h+2

χh(x). (4.16)

Proof. The previous analysis has shown that the matrices L
(k)
n,j are well-defined. Then the matrices are

symmetric by Lemma 3.14, where we have established a one to one correspondence between the trees

contributing to L
(k)
n,j(a, b) and those contributing to L

(k)
n,j(b, a) such that the corresponding trees have the
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same value. Identity (4.15) follows from the definitions (3.14) and (3.28).

Remark. Notice that Ch(x) = 1 when |x| ≤ 2−h−2γ and Ch(x) = 0 when |x| ≥ 2−h−1γ.

Lemma 4.6. Given a tree θ ∈ R(k)
R,h,n,j(a, b), for (ε, M) ∈ D̃(θ, γ) and σ > 0 one has

(i) |Val(θ)| ≤ (Dq2)k2−h
( h∏

h′=−1

2h′Nh′ (θ)
)
e−σ|ma−mb|ρ

∏

ℓ∈L(θ)

p
−3s/4
jℓ

,

(ii) |∂εVal(θ)| ≤ (Dq2)k2−h|n|
( h∏

h′=−1

22h′Nh′ (θ)
)
e−σ|ma−mb|ρ

∏

ℓ∈L(θ)

p−s2−α
jℓ

,

(iii)
∑

(n′,j′)∈Ω

dj′∑

a′,b′=1

|∂Mn′,j′ (a
′,b′)Val(θ)|

≤ (Dq2)k2−h
( h∏

h′=−1

22h′Nh′ (θ)
)
e−σ|ma−mb|ρ

∏

ℓ∈L(θ)

p−s2−α
jℓ

.

(4.17)

for some constant D depending on σ and γ.

Proof. The proof follows the same lines as that of Lemma 4.2. We first extract the factor q2k by noticing

that a renormalised tree in R(k)
R has 2k end-points. To extract the factor 2−h we recall that there is at

least a line ℓ 6= ℓ0 on scale hℓ = h: then Nh(θ) ≥ 1 and by (4.14) we obtain k > const.2hβ/τ , so that
Ck2−h ≥ 1 for a suitable constant C. To extract the factor e−σ|ma−mb|ρ we use Lemma 4.3 (ii) to deduce
C̃ke−σ|ma−mb|ρ ≥ 1. Hence the bound (i) in (4.17) follows.

When applying the derivative with respect to ε to Val(θ) we reason exactly as in Lemma 4.2; the only
difference is that we bound |nℓ| < |n| + Bk, which provides in the bound (4.17) an extra factor |n| with
respect to the bound (ii) in (4.9).

The derivative with respect to Mn′,j′(a
′, b′) gives a sum of trees with a distinguished line ℓ carrying the

propagator ∂Mn′,j′ (a
′,b′)gℓ instead of gℓ. As in the case (iii) of Lemma 4.2 we have two contributions, one

when the derivative acts on the matrix and the other (if iℓ = 1) when the derivative acts on χhℓ
; by the

same arguments as in Lemma 4.2 (ii) we obtain a factor of order 22hp−s2−α
jℓ

.

By Lemma 3.10 one has min{|n′ −n|, |n′ + n|} < Bk, so that the sum over n′ is finite and proportional
to k. The sum over j′, a′, b′ produces a factor proportional to |n′|(D−1)+2α – reason as in the proof of
(4.9) (iii) in Lemma 4.2. This provides an overall factor of order |n′|D. If k ≥ B2|n|β (with B2 defined
in Lemma 4.3) this factor can be bounded by Ck for some constant C. If k < B2|n|β then, by Lemma
4.3 (i), one must have iℓ = −1, hence mℓ = m′

ℓ, for all lines ℓ on the path P(ℓe, ℓ0): then if a′ 6= b′

necessarily the line ℓ, which the derivative is applied to, is not on such a path, and the possible values of
j′, a′, b′ are bounded proportionally to kD. If a′ = b′ either ℓ /∈ P(ℓe, ℓ0) – and we can reason as before
– or ℓ ∈ P(ℓe, ℓ0): in the last case we use the conservation law (3.17) of the momenta (mℓ, m

′
ℓ), and we

obtain again at most kD terms.

Remark. For any fixed σ > 0 the constant D in (4.17) is proportional to C̃, hence grows exponentially
in σ. As we shall need for C̃ to be at worst proportional to 1/ε0 (in order to have convergence of the
series (3.27)), this means that σ can be taken as large as O(| log ε0|).

We are now ready to prove the first part of Proposition 1.

Proposition 1 (i)-(ii). There exist constants c0, K0, Q0 and σ such that the following bounds hold for
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all (ε, M) ∈ D(γ), q < Q0 and η ≤ η1 = c0Q
−2
0 :

|un,m| < K0|η|q3e−σ(|n|+|m|), |Ln,j|σ < K0|η|q2,

|∂εLn,j |σ < K0|n|1+s2 |η|q2, |∂ηLn,j|σ < K0q
2,

(4.18)

for all (n, j) 6= (1, 1). Moreover the operator norm of the derivative with respect to Mn,j is bounded as

‖∂ML‖σ : = sup
A∈B

|∂ML[A]|σ
|A|σ

≤ sup
n,j∈Ω

sup
a,b=1,...,dj

∑

n′,j′

dj′∑

a′,b′=1

|∂Mn′,j′ (a
′,b′)Ln,j(a, b)|eσ(|ma−mb|ρ−|ma′−mb′ |ρ) < K0|η|q2,

(4.19)

where the space B is defined in the Remark after the proof of Lemma 2.6.

Proof. By definition D(γ) is contained in all D(θ, γ) and in all D̃(θ, γ), so that we can use Lemma
4.2 and Lemma 4.6 to bound the values of trees. First we fix an unlabelled tree θ and sum over the
values of the labels: we can modify independently all the end-point labels, the scales, the type labels and
the momenta mℓ if iℓ 6= −1 (one has mℓ = m′

ℓ for iℓ = −1). Fixed (ε, M) and (nℓ, jℓ) there are only
djℓ

= O(pα
jℓ

) possible values for mℓ. This reduces the factors p−s2−α
jℓ

to p−s2

jℓ
in the bounds (4.9) and

(4.17). By summing over the type and scale labels {iℓ, hℓ}ℓ∈L(θ) (recall that after fixing the mode labels
and ε there are only two possible values for each hℓ such that Val(θ) 6= 0), we obtain a factor 4k, and
summing over the possible end-point labels provides another factor 2(D+1)(2k+1). Finally we bound the
number of unlabelled trees of order k by C̄k for a suitable constant C̄ [15]. In (4.9) we can bound

∞∏

h=−1

2hNh(θ) = exp
(

log 2

∞∑

h=−1

hNh(θ)
)
≤ exp

(
const.k

∞∑

h=−∞
h2−hβ/2τ

)
≤ Ck. (4.20)

for a suitable constant C, and an analogous bound holds for the products over the scales in (4.17).
Since (see (3.1) and (3.20))

un,m =

∞∑

k=1

ηk
∑

θ∈Θ
(k)

R,n,m

Val(θ), (4.21)

and, by Lemma 3.5, Θ
(k)
R,n,m is empty if k < B−1|n| or k < B−1|m|, we obtain the first bound in (4.18).

Using (4.17) (i), we bound the sum on θ ∈ R(k)
R,h,n,j exactly in the same way. The main difference is

that R(k)
R,h,n,j(a, b) is empty if |ma − mb| > B−1

3 k1/ρ, by Lemma 4.3 (ii). Then by Lemma 4.5, we obtain
the second bound in (4.18).

As for the third bound in (4.18), we have

∂εLn,j = −χ̄1(yn,j)

∞∑

h=−1

Ch(xn,j)
∑

θ∈R(k)

R,n,j,h

∂εVal(θ)

− χ̄1(yn,j)

∞∑

h=−1

(∂εCh(xn,j))
∑

θ∈R(k)

R,n,j,h

Val(θ) − (∂εχ̄1(yn,j))

∞∑

h=−1

Ch(xn,j)
∑

θ∈R(k)

R,n,j,h

Val(θ),

(4.22)

where the first summand is treated, just like in the previous cases, by using (4.17) (ii) instead of (4.17)
(i). In the other summands Val(θ) is bounded exactly as in the previous cases, but the derivative with
respect to ε gives in the second summand an extra factor proportional to |n|2hp3α

j – appearing only for
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those values of h such that χh(xn,j) is non-zero (and for each value of ε there are only two such values
so that the sum over h is finite) – and in the third summand a factor proportional to |n| ps2

j . We omit
the details, which can be easily worked out by reasoning as for (4.10) and (4.12) in the proof of Lemma
4.2. Finally we bound 2h by Ck as in the proof of Lemma 4.6.

The fourth bound in (4.18) follows trivially by noting that to any order k the derivative with respect
to η of ηk produces kηk−1.

Finally, one can reason in the same way about the derivative with respect to Mn,j , by using (4.17) (iii),
so that (4.19) follows.

5. Whitney extension and implicit function theorems

5.1. Extension of U and L

In this section we extend the function Ln,j, defined in D(γ), to the larger set D0.

Lemma 5.1. The following statements hold true.

(i) Given θ ∈ R(k)
R,h,n,j, we can extend Val(θ) to a function, called ValE(θ), defined and C1 in D0, and

Ln,j(η, ε, M ; q) to a function LE
n,j ≡ LE

n,j(η, ε, M ; q) such that

LE
n,j = −χ̄1(yn,j)

∞∑

h=−1

Ch(xn,j)

∞∑

k=1

ηk
∑

θ∈R(k)

R,n,j,h

ValE(θ), (5.1)

satisfies for any (ε, M) ∈ D0 the same bounds in (4.18) and (4.19) as LE
n,j(η, ε, M ; q) in D(γ). Further-

more Val(θ) = ValE(θ) for any (ε, M) ∈ D̃(θ, 2γ) ⊂ D̃(θ, γ) and ValE(θ) = 0 for (ε, M) ∈ D0 \ D̃(θ, γ).

(ii) In the same way, given θ ∈ Θ
(k)
R,n,m, we can extend Val(θ) to a function ValE(θ) defined and C1 in

D0, and Un,j(η, ε, M ; q) to a function UE
n,j(η, ε, M ; q) such that uE

n,m ≡ uE
n,m(η, ε, M ; q), given by

uE
n,m =

∞∑

k=1

ηk
∑

θ∈Θ
(k)

R,n,m

ValE(θ), (5.2)

satisfies for any (ε, M) ∈ D0 the same bounds in (4.18) as un,m in D(γ).
Furthermore Val(θ) = ValE(θ) for any (ε, M) ∈ D(θ, 2γ) ⊂ D(θ, γ) and ValE(θ) = 0 for (ε, M) ∈
D0 \ D(θ, γ).

Proof. We prove first the statement for the case θ ∈ R(k)
R,h,n,j . We use the C∞ compact support function

χ−1(t) : R → R
+, introduced in Definition 3.1. Recall that χ−1(t) equals 0 if |t| < γ and 1 if |t| ≥ 2γ,

and |∂tχ−1(t)| ≤ Cγ−1, for some constant C.

Given a tree θ ∈ R(k)
R,h,n,j , we define

ValE(θ) =
∏

ℓ∈L(θ)\{ℓe,ℓ0}
iℓ=1

χ−1(|xnℓ,jℓ
||nℓ|τ )

∏

ℓ1,ℓ2∈L(θ)

∗∗
χ−1(|δnℓ1

,jℓ1
− δnℓ2,jℓ2

||nℓ1 − nℓ2 |τ1))Val(θ), (5.3)

where
∏∗∗

ℓ1,ℓ2∈L(θ) is the product on the pairs ℓ1 ≺ ℓ2 ∈ L(θ) such that
∏

ℓ∈P(ℓ1,ℓ2)
σ(ℓ)σ(ℓ1) = 1, iℓj = 1, 0,

nℓ1 6= nℓ2 , and either both ℓ1, ℓ2 are on the path connecting e to v0 or both of them are not on such a
path. The sign

∏
ℓ∈P(ℓ1,ℓ2)

σ(ℓ)σ(ℓ1) is such that |nℓ1 − nℓ2 | ≤ n.

By definition ValE(θ) = Val(θ) for (ε, M) ∈ D̃(θ, 2γ) as in this set the scale functions χ−1 in the above
formula are identically equal to 1.
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By definition supp(ValE(θ)) ⊂ D̃(θ, γ), as the scale functions χ−1 in the above formula are identically

equal to 0 in the complement of D̃(θ, γ) with respect to D0.
To bound the derivatives the only fact that prevents us from simply applying (4.17) (ii-iii) is the

presence of the extra terms due to the derivatives of the χ−1 functions. Each factor of the first product
in (5.3), when derived, produces an extra factor proportional to 2hℓp3α

jℓ
|nℓ|τ+1. Note that a summand of

this kind appears only if iℓ = 1 and (ε, M) is such that

2−hℓ−1γ ≤ xnℓ,jℓ
≤ 2γ

|nℓ|τ
. (5.4)

This implies |nℓ| < 2(hℓ+1)/τ , so that the presence of the extra factor simply produces, in (4.17) (ii), a
larger constant D and a larger exponent – say 4 – instead of 2 in the factor 22h′Nh′(θ). Each factor of the
second product produces an extra factor |nℓ1 − nℓ2 |τ1+1, which can be bounded by Ck.

Therefore the derivatives of LE
n,j respect the same bounds (4.18) as Ln,j modulo a redefinition of the

constants c0, K0. As these bounds are uniform (independent of (n, j)), then LE
n,j is a C1 function of

(ε, M).
We proceed in the same way for θ ∈ ΘR,n,m:

ValE(θ) =
∏

ℓ∈L(θ):iℓ=1

χ−1(|xnℓ,mℓ
||nℓ|τ )

∏

ℓ1,ℓ2∈L(θ)

∗∗∗
χ−1(|δnℓ1

,jℓ1
δnℓ2,jℓ2

||nℓ1 − nℓ2 |τ1))Val(θ), (5.5)

where now the product Π∗∗∗ runs on the pairs of lines ℓ1 ≺ ℓ2 such that
∏

ℓ∈P(ℓ1,ℓ2)
σ(ℓ)σ(ℓ1) = 1,

iℓj = 1, 0, and nℓ1 6= nℓ2 .

Proposition 1 (iii). LE is differentiable in (ε, M) ∈ D0 and satisfy the bounds

∣∣∂εL
E
n,j(a, b)

∣∣ < C1|n|1+s2e−σ|ma−mb|ρ |η|q2,

∑

(n′,j′)∈Ω

dj′∑

a′,b′=1

∣∣∣∂Mn′,j′ (a
′,b′)L

E
n,j(a, b)

∣∣∣ e|ma−mb|ρ < C1|η|,
(5.6)

where C1 is a suitable constant.

Proof. Simply combine the proof of Lemma 5.1 with that of Proposition 1 (ii).

5.2. The extended Q equation

Going back to (2.12), we can extend it to all D0 by using UE
n,j instead of Un,j for all (n, j) 6= (1, 1); we

obtain the equation

Dsq = f1,V (uE) =
∑

n1+n2−n3=1
m1+m2−m3=V

uE
n1,m1

uE
n2,m2

uE
n3,m3

. (5.7)

The leading order is obtained for ni = 1 and mi ∈ Λ1 for all i = 1, 2, 3, namely at η = 0 we have a
nonlinear algebraic equation for q,

Dsq = 3Dq3 , (5.8)

with solution q0 =
√

Ds3−D. We can now prove the following result.

Proposition 1 (iv). There exists η0 such that for all |η| ≤ η0 and (ε, M) ∈ D0, equation (5.7) has a
solution qE(ε, M ; η), which is analytic in η and C1 in (ε, M); moreover

|∂εq
E(ε, M ; η)| ≤ K|η|,

∑

(n,j)∈Ω

dj∑

a,b=1

∣∣∂Mn,j(a,b)q
E(ε, M ; η)

∣∣
σ
≤ K|η|, (5.9)

30



for a suitable constant K.

Proof. Set Q0 := 2q0. Then there exists η1 such that uE is analytic in η, q for |η| ≤ η1 and |q| ≤ Q0 and
C1 in (ε, M). By the implicit function theorem, there exists η0 ≤ η1 such that for all |η| ≤ η0 there is a
solution qE ≡ qE(η, ε, M) of the Q equation (5.7) such that |qE | < 3q0/2. By definition of the extension
uE, the equation (5.7) coincides (2.12) on D(2γ). The bounds on the derivatives follow from Lemma 4.2
and Lemma 5.1.

We now define

UE
n,j(η, ε, M) = UE

n,j(η, ε, M ; qE(η, ε, M)) , LE
n,j(η, ε, M) = LE

n,j(η, ε, M ; qE(η, ε, M)). (5.10)

Proposition 1 (v). There exists a positive constant K1 such that the matrices LE
n,j(η, ε, M) satisfy the

bounds
|LE(η, ε, M)|σ ≤ |η|K1 , |∂εL

E
n,j(η, ε, M)|σ ≤ |η|K1|n|1+s2 ,

∑

(n,j)∈Ω

dj∑

a,b=1

∣∣∂Mn,j(a,b)L
E(η, ε, M)

∣∣
σ

e−σ|ma−mb|ρ ≤ |η|K1,
(5.11)

and the coefficients UE
n,j(η, ε, M) satisfy the bounds

∣∣UE
n,j(η, ε, M)

∣∣ ≤ |η|K1e
−σ(|n|+|pj |1/2), (5.12)

uniformly for (ε, M) ∈ D0.

Proof. It follows trivially from the bounds (5.9) and from the bounds of Lemma 5.1.

6. Proof of Proposition 2

6.1. Proof of Proposition 2 (i)

Let us consider the compatibility equation (2.11) where Ln,j = LE
n,j(η, ε, M). One can rewrite (2.11) as

χ̄1(yn,j)Mn,j = LE
n,j(η, ε, M)) ≡ ηχ̄1(yn,j)L̃

E(η, ε, M), (6.1)

with L̃E(η, ε, M) = O(1), so that (6.1) has for η = 0 the trivial solution Mn,j = 0.
The bounds of Proposition 1 (v) imply that the Jacobian of the application L̃E(η, ε, M) : B → B is

bounded in the operator norm (B is defined in the Remark before Definition 2.7). Thus there exists
η0, K2 such that, for |η| ≤ η0 and for all (ε, M) ∈ D(2γ), we can apply the implicit function theorem to
(6.1) and obtain a solution Mn,j(η, ε), which satisfies the bounds

|Mn,j|σ ≤ K2|η|, |∂εMn,j(η, ε)|σ ≤ K2|n|1+s2 |η|, |∂ηMn,j(η, ε)|σ ≤ K2, (6.2)

for a suitable constant K2.
Finally we fix ε0 ≤ η0, η = ε and set (with an abuse of notation) Mn,j(ε) = Mn,j(η = ε, ε), so that, by

noting that
d

dε
Mn,j(ε) = ∂ηMn,j(η, ε) + ∂εMn,j(η, ε), (6.3)

we deduce from (6.2) the bound (2.26).

6.2. Proof of Proposition 2 (ii) – measure estimates

We now study the measure of the set (2.27). By definition this is given by the set of ε ∈ E0(γ) such that
the further Diophantine conditions

xn,j(ε) :=
∥∥(δn,jI + p−s

j χ̄1(yn,j)Mn,j(ε))
−1
∥∥−1 ≥ 2γ

|n|τ (6.4)
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are satisfied for all (n, j) ∈ Ω such that (n, j) 6= (1, 1). Recall that (n, j) ∈ Ω implies n > 0. By Lemma
2.4 (iii) one has

xn,j(ε) ≥ min
i

|λ(i)(δn,jI + p−s
j χ̄1(yn,j)Mn,j)| = min

i
|δn,j + p−s+α

j ν
(i)
n,j(ε))|, (6.5)

since the matrices are symmetric. Recall that pα
j ν

(i)
n,j(ε) are the eigenvalues of χ̄1(yn,j)M

(i)
n,j(ε) and that

dj ≤ C1p
α
j (cf. Definition 2.5).

Then we impose the conditions

∣∣∣δn,j + p−s+α
j ν

(i)
n,j(ε)

∣∣∣ ≥ 2γ

nτ
∀(n, j) ∈ Ω \ {(1, 1)}, i = 1, . . . , dj , (6.6)

and recall that Mn,j = 0 (i.e. ν
(i)
n,j = 0) if (n, j) /∈ Ω, so that for (n, j) /∈ Ω the Diophantine conditions

(6.6) are surely verified, by (2.1).
Call A the set of values of ε ∈ E0(γ) which verify (6.6). We estimate the measure of the subset of

E0(γ) complementary to A, i.e. the set defined as union of the sets

In,j,i :=

{
ε ∈ E0(γ) : |δn,j + p−s+α

j ν
(i)
n,j(ε)| ≤

2γ

nτ

}
(6.7)

for (n, j) ∈ Ω and i = 1, . . . , dj .
Given n, the condition (n, j) ∈ Ω implies that pj can assume at most ε0n + 1 different values – cf.

(2.16). On a (D − 1)-dimensional sphere of radius R there are at most O(RD−1) integer points, hence
the number of values which j can assume is bounded proportionally to nD−1(1 + ε0n). Finally i assumes
dj ≤ C1p

α
j values.

Since µ ∈ M we have, for n ≤ (γ0/4ε0)
1/(τ0+1),

∣∣∣δn,j + p−s+α
j ν

(i)
n,j(ε)

∣∣∣ ≥ |(D + µ)n − pj − µ| − 2ε0n ≥ γ0

2nτ0
, (6.8)

so that we have to discard the sets In,j,i only for n ≥ (γ0/4ε0)
1/(τ0+1).

Let us now recall that for a symmetric matrix M(ε) depending smoothly on a parameter ε, the eigen-
values are C1 in ε [16]. Then the measure of each In,j,i can be bounded from above by

4γ

nτ
sup

ε∈E0(γ)

∣∣∣∣∣

(
d

dε

(
δn,j + p−s+α

j ν
(i)
n,j(ε)

))−1
∣∣∣∣∣ . (6.9)

where one has ∣∣∣∣
d

dε

(
δn,j + p−s+α

j ν
(i)
n,j(ε)

)∣∣∣∣ ≥
n

2
. (6.10)

This can be obtained as follows. Proving (6.10) requires to find lower bounds for

∣∣∣∣
d

dε

(
−ωn + pj + µ + p−s

j χ̄(yn,j)λ
(i)
n,j(ε)

)∣∣∣∣ ,

where λ
(i)
n,j(ε) are the eigenvalues of Mn,j(ε) (i.e. χ̄1(yn,j)λ

(i)
n,j(ε) = pα

j ν
(i)
n,j(ε)). The eigenvalues λn,j(ε)

(i)

are C1 in ε, so that, by Lidskii’s lemma [16], one has

∣∣∣∣
d

dε
λ

(i)
n,j(ε)

∣∣∣∣ ≤ dj

∣∣∣∣
d

dε
Mn,j

∣∣∣∣
∞

≤ C1K2

(
1 + ε0n

1+s2
)
nα, (6.11)
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where we have used (6.3) and (6.2). Since s2 + α ≤ s − α, we obtain

∣∣∣∣
d

dε

(
−ωn + pj + µ + p−s

j χ̄(yn,j)λ
(i)
n,j(ε)

)∣∣∣∣ ≥ n/2,

which implies (6.10).
Recall that pj is bounded proportionally to n. Then for fixed n we have to sum over const.(1+ε0n)nD−1

values of j and over dj ≤ C1p
α
j ≤ const.nα ≤ const.n.

Therefore we have

∑

(n,j)∈Ω

dj∑

i=1

meas (In,j,i) ≤ const.
∑

n≥(γ/4ε0)−1/(τ0+1)

γ|n|D
(

1

|n|τ+1
+

ε0

|n|τ
)

≤ const.
(
ε
(τ−D)/(τ0+1)
0 + ε

1+(τ−D−1)/(τ0+1)
0

)
,

(6.12)

provided τ > D + 1. Therefore the measure is small compared to that of E0(γ) – which is of order ε0– if
τ > max{τ0 + D + 1, D + 1} = τ0 + D + 1.

7. Generalisations and proof of Theorem 1

7.1. Equation (1.4): proof of Theorem 1 in D > 2

In order to consider equation (1.4) we only need to make few generalisations. By our assumptions

f(x, u, ū) = g(x, ū) + ∂ūH(x, u, ū),

with H real valued. For simplicity we discuss explicitly only the case with odd p in (1.3) and g odd in
u. Considering also even p should require considering an expansion in

√
ε: this would not introduce any

technical difficulties, but on the other hand would require a deeper change in notations.
We modify the tree expansion, analogously to what done in [14]. The change of variables (1.8) trans-

forms each monomial in (1.3) into a monomial ε(p1+p2−1)/2ap1,p2(x)up1 ūp2 ; we can take into account the
contributions arising from g(x, ū), by considering the corresponding Taylor expansion and putting p1 = 0
and p2 ≥ 3. All the other contributions are such p1ap1,p2 = (p2 + 1)ap2+1,p1−1 (by the reality of H and
of the functions ap1,p2).

Each new monomial produces internal nodes of order kv = (pv,1 + pv,2 − 1)/2 ∈ N, such that kv ≥ 2,
with pv,1 + pv,2 entering lines among which pv,1 have sign σ = 1 and pv,2 have sign σ = −1; note that the
case previously discussed corresponds to (pv,1, pv,2) = (2, 1). Hence, with the notations of Section 3.3,
we can write sv = pv,1 + pv,2, with sv odd.

Each internal node v has labels kv, pv,1, pv,2, mv, with the mode label mv ∈ Z
D

. The node factor
associated with v is apv,1,pv,2,mv , namely the Fourier coefficient with index mv in the Fourier expansion
of the function apv,1,pv,2 ; by the analyticity assumption on the non-linearity the Fourier coefficients decay
exponentially in m, that is ∣∣apv,1,pv,2,mv

∣∣ ≤ A1e
−A2|m|, (7.1)

for suitable constants A1 and A2.
The conservation laws (3.16) and (3.17) have to be suitably changed. We can still write that nℓ is given

by the right hand side, the only difference being that L(v) contain sv lines (and each line ℓ ∈ L(v) has its
own sign σ(ℓ)). On the contrary (3.17) for m′

ℓ has to be changed in a more relevant way: indeed one has

m′
ℓ = mv +

∑

ℓ′∈L(v)

σ(ℓ′)mℓ′ , (7.2)
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with L(v) defined as before.
The order of any tree θ is still defined as in (3.19), and, more generally, all the other labels are defined

exactly as in Section 3.3.
The first differences appear when one tries to bound the momenta of the lines in terms of the order of

the tree. In fact one has
|E(θ)| ≤ 1 +

∑

v∈V0(θ)

(sv − 1) , (7.3)

which reduces to the formula given in the proof of Lemma 3.5 only for sv ≤ 3. One has sv = 2kv + 1, so
that ∑

v∈V0(θ)

(sv − 1) = 2
∑

v∈V0(θ)

kv = 2k, (7.4)

and one can still bound |nℓ| ≤ Bk for any tree θ ∈ Θ(k) and any line ℓ ∈ L(θ).
The conservation law (7.1) gives, for any line ℓ ∈ L(θ),

max{|mℓ|, |m′
ℓ|} ≤ Bk +

∑

v∈V0(θ)

|mv|, (7.5)

for some constant B. The bound in (7.5) is obtained by reasoning as in the proof of Lemma 3.5; the last
sum is due to the mode labels of the internal nodes. Thus the bound on nℓ in Lemma 3.5 still holds, while
the bounds on mℓ, m

′
ℓ have to be replaced with (7.5). The same observation applies to Lemma 3.10.

Also Lemma 3.14 still holds. The proof proceeds as follows. The tree θ1 which one associates with each
θ ∈ RR,n,j,h(a, b) is the tree in RR,n,j,h(b, a) defined as follows.

1. As in the proof of Lemma 3.14.

2. As in the proof of Lemma 3.14.

3. Let v̄ be a node along the path P = P(ℓe, ℓ0) and let ℓ1, . . . , ℓs, with s = sv̄ be the lines entering v̄;
suppose that ℓ1 is the line belonging to the path P ∪ {ℓe}. If σ(ℓ1) = 1 we change all the signs of the
other lines, i.e. σ(ℓi) → −σ(ℓi) for i = 2, . . . , s, whereas if σ(ℓ) = −1 we do not change the signs.

24. As in the proof of Lemma 3.14.

Then one can easily check that the reality of H implies that the tree θ1 is well defined (as an element
of RR,n,j,h(b, a)) and has the same value as θ.

Remarks. (1) Note that item 3. above reduces to item 3. of Lemma 3.14 if sv = 3 for each internal
node v.
(2) If the node v̄ has pv̄,1 = 0 (i.e. the monomial associated to it arises from the function g(x, ū)) then
the operation in item 3. is empty.

Therefore we can conclude that the counterterms are still symmetric.
The analysis of Section 4 can be performed almost unchanged. Here we confine ourselves to show the

few changes that one has to take into account.
The first relevant difference appears in Lemma 4.1. Because of the presence of the mode labels of the

internal nodes the bound (4.5) on Nh(θ) does not hold anymore, and it has to be replaced with

Nh(θ) ≤ max
{
0, c
(
k(θ) +

∑

v∈V0(θ)

|mv|
)
2(2−h)β/τ − 1

}
, (7.6)

for a suitable constant c. The proof of (7.6) proceeds as the proof of Lemma 4.1 in Section 4. We use
that in (4.7) for m = 1 one has

k(θ) − k(θ1) +
∑

v∈V0(θ)

|mv| −
∑

v∈V0(θ1)

|mv| = kT +
∑

v∈V0(T )

|mv|, (7.7)
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and, except for item 2.2.2.1., we simply bound the right hand side of (7.7) with kT . The only item which
requires a different argument is item 2.2.2.1., where instead of the bound |mℓ̄ − mℓ0 | ≤

∑
i |mi| we have,

by (7.5),

|mℓ̄ − mℓ0 | ≤
∑

v∈P(ℓ̄,ℓ0)

|mv| +
∑

i

|mi| ≤ BkT +
∑

v∈V0(T )

|mv| ≤ max{B, 1}
(
kT +

∑

v∈V0(T )

|mv|
)
,

where v ∈ P(ℓ̄, ℓ0) means that the node v is along the path P(ℓ̄, ℓ0) (i.e. ℓv ∈ P(ℓ̄, ℓ0)∪ ℓ0)) and the sum
over i is over all sub-trees which have the root lines entering one of such nodes.

Remark. Note that if the coefficients ap1,p2(x) in (1.3) are just constants (i.e. do not depend on x),
then mv ≡ 0 and (7.6) reduces to (4.5).

Moreover in (4.9) we have a further product

∏

v∈V0(θ)

A1e
−A2|mv|, (7.8)

while the product of the factors 2hNh(θ) can be written as

( h0∏

h=−1

2hNh(θ)
)( ∞∏

h=h0+1

2hNh(θ)
)
≤ 2h0k

∞∏

h=h0+1

2hNh(θ)
)
, (7.9)

with h0 to be fixed, where the last product, besides a contribution which can be bounded as in (4.20),
gives a further contribution

∞∏

h=h0

∏

v∈V0(θ)

2ch|mv|2(2−h)β/τ ≤
∏

v∈V0(θ)

exp
(
const.|mv|

∞∑

h=h0

h2−hβ/τ
)
, (7.10)

so that we can use part of the exponential factors in (7.8) to compensate the exponential factors in (7.10),
provided h0 is large enough (depending on τ).

Another consequence of (7.2) is in Lemma 4.3: item (ii) has to be replaced with

|ma − mb| ≤ const.k1/ρ +
∑

v∈V0(θ)

|mv|, (7.11)

because each internal node v contributes a momentum mv to the momenta of the lines following v. Up
to this observation, the proof of (7.11) proceeds as in the proof of Lemma 4.3.

Therefore also the bound (4.14) of Lemma 4.4 has to changed into (7.6), for all h ≤ h̄. The proof
proceeds as that of Lemma 4.4 in Section 4, with the changes outlined above when dealing with the case
2.2.2.1.

The property (7.11) reveals itself also in the proof of Lemma 4.6. More precisely, in order to extract a
factor e−σ|ma−mb|ρ , we use that (7.11) implies (recall that ρ < 1)

|ma − mb|ρ ≤ C
(
k +

∑

v∈V0(θ)

|mv|
)
, (7.12)

for a suitable ρ-dependent constant C, so that we can write, for some other constant C̃,

eσ|ma−mb|ρ ≤ C̃k
∏

v∈V0(θ)

eσ|mv |, (7.13)
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where σ has to be chosen so small (e.g. |σ| < A2/4, with A2 given in (7.1)) that the last product in (7.13)
can be controlled by part of the exponentially decaying factors e−A2|mv| associated with the internal
nodes. This means, in particular, that σ cannot be arbitrarily large when ε0 becomes small (cf. the
Remark after the proof of Lemma 4.6).

As in (4.9) also in (4.17) there are the further factors (7.8), which can be dealt with exactly as in the
previous case.

Besides the issues discussed above, there is no other substantial change with respect to the analysis of
Sections 4 to 6.

7.2. Equation (1.1) in dimension 2: proof of Theorem 1 in D = 2

We can consider more general nonlinearities in the case D = 2, that is of the form (1.3) without the
simplifying assumption (1.4). Indeed in such case the counterterms are 2 × 2 matrices (cf. Lemma 2.2),
so that we can bound xn,j by the absolute value of the determinant of δn,jI + χ̄1(yn,j)Mn,jp

−s
j , which is a

C1 function of ε (we have proved only C1 but it should be obvious that we can bound as many derivatives
of LE

n,j as we need to, possibly by decreasing the domain of convergence of the functions involved).

Set for notational simplicity Mn,j = χ̄1(yn,j)Mn,j . Let us evaluate the measure of the Cantor set

E1 =
{
ε ∈ E0(γ) : |δ2

n,j + p−s
j tr Mn,jδn,j + p−2s

j detMn,j | ≥ 2γ|n|−τ
}

, (7.14)

following the scheme of Section 6. Here we are using explicitly that for D = 2 one has

det
(
δn,jI + p−s

j Mn,j

)
= δ2

n,j + p−s
j tr Mn,jδn,j + p−2s

j detMn,j , (7.15)

because Mn,j is a 2 × 2 matrix.
We estimate the measure of the complement of E1 with respect to E0(γ), which is the union of the sets

In,j :=

{
ε ∈ E0(γ) : |δ2

n,j + p−s
j an,jδ + p−2s

j bn,j | ≤
2γ

|n|τ
}

, (7.16)

where an,j = tr Mn,j and bn,j = detMn,j .
Given n the condition (n, j) ∈ Ω implies that pj can assume at most ε0n + 1 different values. On a

one-dimensional sphere of radius R there are less than R integer points, so the number of values j can
assume is bounded proportionally to n(ε0n + 1).

Since µ ∈ M we have for |n| ≤ n0(γ
2
0/ε0)

1/2τ0 , with some constant n0,

∣∣δn,j(δn,j + p−s
j an,j) + p−2s

j bn,j

∣∣ ≥ (|(D + µ)n − pj − µ| − 2ε0|n|)2 − const.ε0 ≥ γ2
0

2|n|2τ0
, (7.17)

so that ∣∣δn,j(δn,j + p−s
j an,j) + p−2s

j bn,j

∣∣ ≥ γ

|n|τ , (7.18)

provided γ < γ2
0/2 and τ > 2τ0.

The measure of each In,j can be bounded from above by

2γ

|n|τ sup
ε∈E0(γ)

∣∣∣∣∣

(
d

dε

(
δ2
n,j + p−s

j an,jδn,j + p−2s
j bn,j

))−1
∣∣∣∣∣ . (7.19)

In order to control the derivative we restrict ε to the Cantor set

E2 =

{
ε ∈ E0(γ) :

∣∣δn,j(2n + p−s
j a′

n,j(ε)) + np−s
j an,j + p−2s

j b′n,j(ε)
∣∣ ≥ γ

|n|τ2
for all (n, j) ∈ Ω

}
, (7.20)
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with a′
n,j(ε) = dan,j(ε)/dε and b′n,j(ε) = dbn,j(ε)/dε. On this set we have (recall that pj is bounded

proportionally to |n|)

∑

(n,j)∈Ω

meas (In,j) ≤ const.
∑

n≥n0(γ/ε0)1/2τ0

n + ε0n
2

|n|τ−τ2
≤ const.ε

(τ−τ2−2)/2τ0

0 , (7.21)

provided τ > τ2 + 3. Hence meas(In,j) is small with respect to ε0 provided τ > 2τ0 + τ2 + 2.
Finally let us study the measure of E2. The bounds (6.2) – and their proofs to deal with the second

derivatives – imply

|an,j | , |bn,j| ≤ Cε0,
∣∣a′

n,j

∣∣ ,
∣∣b′n,j

∣∣ ≤ C
(
1 + ε0|n|1+s2

)
,

∣∣a′′
n,j

∣∣ ,
∣∣b′′n,j

∣∣ ≤ C
(
1 + ε0|n|2+2s2

)
,

(7.22)

for some constant C.
Let us call I

1
n,j the complement of E2 with respect to E0(γ) at fixed (n, j) ∈ Ω. As in estimating the

set In,j in (7.16) we can restrict the analysis to the values of n such that n > n1(γ0/ε0)
1/2τ0 , possibly

with a constant n1 different from n0. Then we need a lower bound on the derivative, which gives

∣∣|n|(2n + a′
n,jp

−s
j ) + δn,ja

′′
n,jp

−s
j + b′′n,jp

−2s
j

∣∣ ≥ n2

2
, (7.23)

(recall that δn,j < 1/2). Hence we get

∑

(n,j)∈Ω

meas
(
I

1
n,j

)
≤ const.

∑

n≥n1(γ/ε0)1/2τ0

(n + ε0n
2)

|n|τ2−2
≤ const.ε

(τ2−4)/2τ0

0 , (7.24)

provided τ2 > 5. Again the measure is small with respect to ε0 provided τ2 > 2τ0 + 4. For τ0 > 1 this
gives τ2 > 6 and therefore τ > 2τ0 + τ2 + 2 > 10.

Remark. The argument given above applies only when D = 2, because only in such a case the matrices
Mn,j are of finite n-independent size (cf. Lemma 2.2). A generalisation to the case D > 2 should require
some further work.

8. Proof of Theorems 2, 3 and 4

Let us now consider (1.9) with µ = 0, under the conditions (1.3) if D = 2 and both (1.3) and (1.4) if
D ≥ 3. Note that for µ = 0 one has ω = D − ε.

The Q subspace is infinite-dimensional, namely (1.13)) is replaced by

Q := {(n, m) ∈ N × Z
D : Dn = |m|2}, (8.1)

so that Q contains as many elements as the set of m ∈ Z
D such that |m|2/D ∈ N.

As in [14] our strategy will be as follows: first, we shall find a finite-dimensional solution of the
bifurcation equation, hence we shall prove that it is non-degenerate in Q and eventually we shall solve
both the P and Q equations iteratively.

A further difficulty comes from the separation of the resonant sites. Indeed the conditions (2.1) and
(2.2) are fulfilled now only for those (n, p) such that Dn 6= p. This implies that Lemma 2.1 does not hold:
given ps0

i |ωni − pi| ≤ γ/2 for i = 1, 2 it is possible that D(n1 − n2) = p1 − p2 and in such case we have
at most |p1 − p2| ≤ γ/εps0

2 , which in general provides no separation at all. Hence we cannot use anymore
the second Melnikov conditions.
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We then replace Lemma 2.2 a by more general result (cf. Lemma 8.4 below), due to Bourgain; conse-
quently we deal with a more complicated renormalised P equations.

8.1. The Q equations

In [14] we considered the one-dimensional case and used the integrable cubic term in order to prove the
existence of finite-dimensional subsets of Q such that there exists a solution of the bifurcation equation
with support on those sets.

In order to extend this result to D ≥ 2 we start by considering (1.9) projected on the Q subspace. We
set un,m = qm if (n, m) ∈ Q, so that the Q equations become

|m|2(1+s)D−1qm =
∑

m1+m2−m3=m

n1+n2−n3=|m|2/D

un1,m1un2,m2un3,m3 .

Setting qm = am + Qm, with Qm = O(η), the leading order provides a relatively simple equation, as
shown by Bourgain in [4]:

|m|2(1+s)D−1am =
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

am1am2am3 , (8.2)

which will be called the bifurcation equation. One can easily find finite-dimensional sets M such that
(i) if m ∈ M then Si(m) ∈ M ∀i = 1, . . . , D (Si is defined in (1.12)),
(ii) if m1, m2, m3 ∈ M and 〈m1 − m3, m2 − m3〉 = 0, then m1 + m2 − m3 ∈ M.

Remarks. (1) Condition (i) implies that M is completed described by its intersection M+ with Z
D
+ .

(2) Clearly (8.2) admits a solution with support on sets respecting (i) and (ii) above. An example is as

follows. For all r the set M+(r) := {m ∈ Z
D
+ : |m| = r} is a finite-dimensional set on which (8.2) is

closed.
(3) We look for a solution of (8.2) which satisfies the Dirichlet boundary conditions. Hence we study
(8.2) as an equation for am with m ∈ M+.

Finding non-trivial solutions of (1.9) by starting from solutions of the bifurcation equation like those of
the example may however be complicated, so we shall prove the existence of solutions under the following,
more restrictive, conditions.

Lemma 8.1. There exist finite sets M+ ⊂ Z
D
+ such that |m|2 is divided by D for all m ∈ M+ and (8.2)

is equivalent to

{ |m|2(1+s)D−1 − 2D+1A2 − (3D − 2D+1)a2
m = 0, am ∈ M+ ,

am = 0, am ∈ Z
D
+ \M+,

(8.3)

with A2 :=
∑

m∈M+
a2

m.

Proof. The idea is to choose the m ∈ M+ so that |m|2 ∈ DN, (8.3) is equivalent to (8.2) and has a
non-trivial solution. We choose M+ so that the following conditions are fulfilled:
(a) setting N := |M+| and minm∈M+ |m| = |m1| (this only implies a reordering of the elements of M+),
we impose

2D+1
∑

m∈M+\{m1}
|m|2+2s ≤

(
3D + 2D+1(N − 2)

)
|m1|2+2s; (8.4)

(b) the identity 〈m1 − m3, m2 − m3〉 = 0 can be verified only if either m1 − m3 = 0 or m2 − m3 = 0 or
|(m1)i| = |(m2)i| = |(m3)i| for all i = 1, . . . , D ((mj)i is the i-th component of the vector mj).
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An easy calculation shows that under conditions (b) equation (8.2) assumes the form

am

(
|m|2(1+s)D−1 − 2D+1A2 − (3D − 2D+1)a2

m

)
= 0, (8.5)

and hence is equivalent to (8.3). Now, in order to find a non-trivial solution to (8.5) we must impose

|m1|2+2s = min
m∈M+

|m|2+2s ≥ 2D+1A2D, (8.6)

with A determined by

D
(
2D+1(N − 1) + 3D

)
A2 = M, N = |M+|, M :=

∑

m∈M+

|m|2+2s. (8.7)

As in the one-dimensional case [14], if we fix N then (8.6) is equivalent to condition (a), i.e. (8.4), which
is an upper bound on the moduli of the remaining mi ∈ M+ \ {m1}. Then there exist sets of the type
described above at least for N = 1.

To complete the proof (for all N ∈ N) we have still to show that sets M+ verifying the conditions (a)
and (b) exist. The existence of sets with N = 1 is trivial, an iterative method of construction for any N
is then provided in Appendix A3.

Remark. The compatibility condition (8.4) requires for the harmonics of the periodic solution to be
large enough, and not too spaced from each other. Therefore, once we have proved that the solutions of
the bifurcation equation can be continued for ε 6= 0, we can interpret the corresponding periodic solutions
as perturbed wave packets. The same result was found in D = 1 in [14].

We have proved that the bifurcation equation admits a non-trivial solution

q(0)(x, t) =
∑

m∈M+

q(0)
m ei

|m|2

D t (2i)
D

D∏

i=1

sin(mixi), (8.8)

with q
(0)
m = am for m ∈ Z

D
+ and extended to all Z

D by imposing the Dirichlet boundary conditions.

We can set qm = q
(0)
m +Qm for all m ∈ Z

D and split the Q equation in a bifurcation equation (8.3) and
a recursive linear equation for Qm:

|m|2+2sD−1Qm − 2
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

Qm1q
(0)
m2

q(0)
m3

−
∑

m1,m2,m3
m1+m2−m3=m

〈m1−m3,m2−m3〉=0

q(0)
m1

q(0)
m2

Qm3 =
∑

m1+m2−m3=m

n1+n2−n3=|m|2/D

∗
un1,m1un2,m2un3,m3 (8.9)

where for all (n, m) ∈ Q one has un,m ≡ qm and ∗ in the last sum means that the sum is restricted to

the triples (ni, mi) such that if at least two of uni,mi are q
(0)
mi then the label (n, m) of the third one must

not belong to Q.
By using once more the Dirichlet boundary conditions, we can see (8.9) as an equation for the coefficients

Qm with m ∈ Z
D
+ . In particular the left hand side yields an infinite-dimensional matrix J acting on Z

D
+ .

We need to invert this matrix.

Lemma 8.2. For all D and for all choices of M+ as in Lemma 8.1, one has that J is a block-diagonal
matrix, with finite dimensional blocks, whose sizes are bounded from above by some constant M1 depending
only on D and M+.

The result above is trivial for D = 2 and requires some work for D > 2, see Appendix A4. In any case
it is not enough to ensure that the matrix J is invertible. The following discussion shows that at least

39



for N = 1 (and any D ≥ 2) and for N > 4 and D = 2 there exist sets M+ such that the matrix J is
invertible outside a discrete set of values of s.

We can write J = diag{|m|2+2s/D − 8A} + Y , where A is defined in (8.7) and with |Y |∞ bounded by
a constant depending only on D and M+. Therefore for M0 large enough we can write J as

J =

(
J1,1 0
0 J2,2

)
,

where J1,1 is a M0 × M0 matrix, and J2,2 is – by the definition of M0 – invertible.
To ensure the invertibility of J1,1 we notice that detJ1,1 = 0 is an analytic equation for the parameter s,

and therefore is either identically satisfied or has only a denumerable set of solutions with no accumulation
points. For all s outside such denumerable set J is invertible.

Proving that for a given M+ the function detJ1,1 is not identically zero can be however quite lengthly.
For N = 1 and M+ = {V ≡ (1, . . . , 1)} the Dirichlet boundary conditions imply that we only need to

consider those m ∈ Z
D
+ with strictly positive components. For all such m either m = V or |m|2 > D.

This implies that J1,1 has two diagonal blocks: a 1× 1 block involving M+ and a block involving m such
that |m|2 > D. The first block is trivially found to be non-zero. In the second block the off-diagonal
entries all depend linearly on D2s, and for all m the diagonal entry with index m is |m|2(1+s)/D plus a
term depending linearly on D2s: therefore in the limit s → ∞ this block is invertible. Hence detJ1,1 = 0
is not an identity in s.

If N > 1 we restrict our attention to the case D = 2 where we can describe the matrix J1,1 with
sufficient precision. We have the following

Lemma 8.3. For D = 2 and N > 4 consider M+ as a point in C
2N .

(i) The set of points M+ which either do not respect Lemma 8.1 or are such that detJ1,1 = 0 identically
in s is contained in a proper algebraic variety W.
(ii) Provided that |m1| is large enough one can always find integer point which do not belong to W and
respect (8.4) for all s in some open interval.

The proof is in Appendix A5.
Therefore the forthcoming analysis applies without any further assumption for D = 2 and N > 4,

whereas one must assume that J1,1 is invertible to apply it to the other cases. Of course, given a set M+

verifying the conditions of Lemma 8.1 one can check, through a finite number of operations, whether J1,1

is invertible, and, if it is, then the analysis below ensure the existence of periodic solutions.

8.2. Renormalised P equation

The following Lemma (Bourgain lemma) will play a fundamental role in the forthcoming discussion. A
proof is provided in Appendix A6.

Lemma 8.4. For all sufficiently small α we can partition Z
D

= ∪
j∈N

∆j so that, setting

pj = min
m∈∆j

|m|2, Φ(m) = (m, |m|2), (8.10)

there exist j-independent constants C1 and C2 such that

|∆j | ≤ C1p
α
j , dist(Φ(∆i), Φ(∆j)) ≥ C2 min{pβ

i , pβ
j }, diam(∆j) < C1C2p

α+β
j , (8.11)

with β = α/(1 + 2D−1D!(D + 1)!)D.

Remarks. (1) For fixed ε, ωn − |m|2 can be small only if n is the integer nearest to |m|2/ω.
(2) For any (m1, n1) and (n2, m2) such that m1 ∈ ∆j , m2 ∈ ∆j′ for j′ 6= j, and ni is the integer nearest
to |mi|2/ω, i = 1, 2, one has

|m1 − m2| + |n1 − n2| ≥ C3 min{pβ
j , pβ

j′} (8.12)
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for some constant C3 independent of ω.

(3) As in Lemma 2.2 also here one could prove that in fact diam(∆j) < const.p
α/D
j ; see Appendix A6 for

details.

Definition 8.5. We call Cj the sets of (n, m) ∈ Z × Z
D such that m ∈ ∆j, Dn 6= |m|2 and −1/2 +

(D − ε0)n ≤ |m|2 ≤ Dn + 1/2. We set δn,m = −ωn + |m|2 and dj = |Cj |, and define the dj-dimensional
vectors and the dj × dj matrices

Uj = {un,m}(n,m)∈Cj
, Dj = diag

{( |m|2
pj

)s

δn,m

}

(n,m)∈Cj

, χ̂1,j = diag

{√
χ̄1(δn,m)

}

(n,m)∈Cj

(8.13)

parameterised by j ∈ N.

Remark. Notice that for each pair (n, m), (n′, m′) ∈ Cj we have |(n, m) − (n′, m′)| ≤ C(ε0pj/D + p2α
j )

for a suitable constant C.

We define the renormalised P equations






un,m = η
fn,m

|m|2sδn,m
, (n, m) /∈

⋃

j∈N

Cj , Dn 6= |m|2,

ps
j

(
Dj + p−s

j M̂j

)
Uj = ηFj + LjUj, j ∈ N,

(8.14)

where M̂j = χ̂1,jMjχ̂1,j , and the parameter η and the counterterms Lj will have to satisfy eventually the
identities

η = ε, M̂j = Lj (8.15)

for all j ∈ N.

Remark. We note that dj can be as large as O(ε0p
1+α
j ), hence can be large with respect to pj. However

for given ε the matrix Aj = Dj + p−s
j M̂j is diagonal apart from a pα

j × pα
j (ε-depending) block. This

implies that the matrix Aj has at most pα
j eigenvalues which are different from |m|2sδn,m. This can be

proved as follows. Consider the entry Aj(a, b), with a, b ∈ Cj , with a = (n1, m1) and b = (n2, m2). The
non-diagonal part can be non-zero only if χ̄1(δn1,m1)χ̄1(δn2,m2)M(a, b) 6= 0, which requires |δni,mi | ≤ γ/4
for i = 1, 2. Therefore for fixed ε, m1 and m2 one has only one possible value for each ni, i.e. the integer
closest to ω−1|mi|2. This proves the assertion because |∆j | ≤ C1p

α
j and for all (n, m) ∈ Cj one has

m ∈ ∆j .

Definition 2.3 and Lemma 2.4 still hold, with Z
dD replaced with Z

d(D+1) in the definitions of A(m).
Definitions 2.5 (i)-(ii) can be maintained with (n, j) replaced by j, while (iii) becomes

xj = ‖χ̂1,j(Dj + p−s
j M̂j)

−1χ̂1,j‖−1. (8.16)

Finally there is no parameter s2. Equivalently we can set s2 = 0, which leads to identify yn,m with δn,m

(cf. (2.8)): this explains why there is no need to introduce the further parameters yn,m.
The main Propositions 1 and 2 in Section 2.4 still hold with the following changes.

1. (n, j) ∈ Z × N (or Ω) has to be always replaced with j ∈ N,

2. In Proposition 1, q (i.e. the solution of the Q equation) is not a parameter any more: it is substituted
with the solution, say q(0), of the bifurcation equation (8.2), whose Fourier coefficients can be incorporated
in the list of positive constants given at the beginning of the statement.
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3. In Proposition 1 (i) the bound (2.20) becomes

|un,m(η, M, ε) | ≤ K0|η|e−σ(|n|1/4+|m|1/4), (8.17)

for some constant K0, namely we have only sub-analyticity in space and time.

4. In Proposition 1 (v) one must replace s2 with s in the first line of (2.23) and in (2.26), and e−σ|ma−mb|ρ

with e−σ(|(na,ma)−(nb,mb)|ρ in the second line of (2.23), for a suitable constant ρ.

8.3. Multiscale analysis

The multiscale analysis follows in essence the same ideas as in the previous sections, but there are a few
changes, that we discuss here. It turns out to be more convenient to replace the functions χh(x) with
new functions χ̃h(x) = χh(32x), in order to have χ̃−1(xj) = 1 when χ̄1(δn,m) 6= 1 for all (n, m) ∈ Cj.
This only provides an extra factor 32 in the estimates. For notational simplicity in the following we shall
drop the tilde.

Let us call Aj = Dj + p−s
j M̂j . Note that

1 = χ̄1(δn,m) + χ̄0(δn,m) + χ̄−1(δn,m) ∀(n, m) ∈ Cj . (8.18)

Introduce a block multi-index ~b, defined as a dj-dimensional vector with components b(a) ∈ {1, 0,−1},
and set

χ̄j,~b =

dj∏

a=1

χ̄b(a)(δn(a),m(a)). (8.19)

For any ~b we can consider the permutation π~b which reorders (b(1), . . . ,b(dj)) into (bπ~b
(1), . . . ,bπ~b

(dj))
in such a way that the first N1 elements are 1, the following N2 elements are 0, and the last N3 = dj −N ,
with N = N1 + N2, elements are −1. The permutation π~b induces a permutation matrix P~b such that
P~bAjP

−1
~b

can be written in the block form

P~bAjP
−1
~b

=




A1,1 A1,2 A1,3

AT
1,2 A2,2 A2,3

AT
1,3 AT

2,3 A3,3


 , (8.20)

where the block A1,1, A2,2 and A3,3 contain all the entries Aj(a, b) with b(a) = b(b) = 1, with b(a) =
b(b) = 0 and b(a) = b(b) = −1, respectively, while the non-diagonal blocks are defined consequently.

Then for all ~b such that χ̄j,~b 6= 0 we can write

Aj = P~b




A1,1 A1,2 0
AT

1,2 A2,2 0
0 0 A3,3



P−1
~b

(8.21)

where we have used that if χ̄j,~b 6= 0 then the blocks A1,3 and A2,3 are zero. Furthermore, for the same

reason, the block A3,3 is a diagonal matrix. Note that N ≤ C1p
α
j by the Remark after (8.15).

The first N × N block of Aj in general is not block-diagonal, but it can be transformed into a block-
diagonal matrix. Indeed, we have

Aj = Sj,~bÃj,~bST
j,~b

, Ãj,~b =




Ã1,1 0 0
0 A2,2 0
0 0 A3,3


 Sj,~b = P~b




I B 0
0 I 0
0 0 I


 , (8.22)
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where
Ã1,1 = A1,1 − A1,2A

−1
2,2A

T
1,2, B = A1,2A

−1
2,2, (8.23)

while I and 0 are the identity and the null matrix (in the correct spaces). Of course also the matrices

Ai,j depend on ~b even if we are not making explicit such a dependence.
The invertibility of A2,2 is ensured by the condition b(a) = 0 for the indices a = N1 + 1, . . . , N . The

inverse A−1
2,2 can by bounded proportionally to 1/γ in the operator norm. Then also Aj can be inverted

provided Ã1,1 is invertible, i.e. provided det Ã1,1 6= 0. Hence in the following we shall assume that this
is the case (and we shall check that this holds true whenever it appears; see in particular (8.29) below).

Hence for all ~b such that χ̄j,~b 6= 0 we can write

A−1
j = S−T

j,~b
Ã−1

j,~b
S−1

j,~b
, (8.24)

and set

Gj,~b,1 = p−s
j S−T

j,~b




Ã−1

1,1 0 0
0 0 0
0 0 0



S−1

j,~b
,

Gj,~b,0 = p−s
j S−T

j,~b




0 0 0
0 A−1

2,2 0
0 0 0



S−1

j,~b
, Gj,~b,−1 = p−s

j S−T

j,~b




0 0 0
0 0 0
0 0 A−1

3,3



S−1

j,~b

(8.25)

so that (8.24) gives
p−s

j A−1
j = Gj,~b,−1 + Gj,~b,0 + Gj,~b,1 (8.26)

for all ~b such that χ̄j,~b 6= 0. We can define Gj,~b,i also for ~b such that χ̄j,~b = 0, simply by setting

Gj,~b,i = 0 for such ~b. Then we define the propagators

Gj,~b,i,h =





χ̄j,~b χh(xj) Gj,~b,1, if i = 1 and χh(xj) 6= 0,

χ̄j,~b Gj,~b,i, if i = 0,−1 and h = −1,

0, otherwise ,

(8.27)

so that we obtain

p−s
j A−1

j = p−s
j

∑

~b

χ̄j,~bA−1
j =

∑

~b

χ̄j,~b

[ (
Gj,~b,−1 + Gj,~b,0

)
+

∞∑

h=−1

χh(xj) Gj,~b,1

]

=
∑

~b

∑

i=−1,0,1

∞∑

h=−1

Gj,~b,i,h,

(8.28)

which provides the multiscale decomposition.

Remark. Only the propagator Gj,~b,1,h can produce small divisors, because the diagonal propagator
Gj,~b,−1,−1 and the non-diagonal propagator Gj,~b,0,−1 have denominators which are not really small.

We can bound |Gj,~b,i,−1|σ for i = −1, 0 by using a Neumann expansion, since by definition in the

corresponding blocks one has |δn,m| ≥ γ/8 and |Mj|σ ≤ Cε0,.

Hence we can bound the propagators as

∣∣∣Gj,~b,i,−1

∣∣∣
σ
≤ Cγ−1p−s

j , i = 0,−1,
∣∣∣Gj,~b,1,h

∣∣∣
∞

≤ 2hCγ−1p−s+α
j , (8.29)
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for all j ∈ N.
Recall that we are assuming |J−1|σ ≤ C for some s-dependent constant C.
We write the counterterms as

Lj = χh(xj)
∑

~b

χ̄j,~bLj,~b,h, (8.30)

where by definition Lj,~b,h(a, b) = 0 if either b(a) = −1 or b(b) = −1.

With this modifications to (3.9) the multiscale expansion follows as in Section 3.1, with j = (n, m):

U
(k)
j =

∑

i=−1,0,1

∑

~b

∞∑

h=−1

U
(k)

j,~b,i,h
, (8.31)

with




u(k)
n,m =

f
(k)
n,m

|m|2sδn,m
, (n, m) /∈

⋃

j∈N

Cj , Dn 6= |m|2,

U
(k)

j,~b,i,h
= Gj,~b,i,hF

(k)
j + δi,1Gj,~b,1,h

( ∞∑

h1=−1

∑

~b1 6=~0

∑

i1=0,1,−1

k−1∑

r=1

L
(r)

j,~b,h
U

(k−r)

j,~b1,i1,h1

)
, j ∈ N,

u(k)
n,m = q(k)

m = J−1
∑

k1+k2+k3=k

∑

m1+m2−m3=m

n1+n2−n3=|m|2/D

∗
u(k1)

n1,m1
u(k2)

n2,m2
u(k3)

n3,m3
, Dn = |m|2,

(8.32)

where ∗ has the same meaning as in (8.9).

8.4. Tree expansion

We only give the differences with respect to Section 3.2.

(2) One has (nv, mv) ∈ Q and the node factor is ηv = q
(0)
mv .

(3) We add a further label r, p, q to the lines to evidence which term of (8.32) we are considering. We
also associate with each line ℓ a label jℓ ∈ Z+, with the constraints jℓ ∈ N if ℓ is a p-line and jℓ = 0
otherwise.

(4) The momenta are: (nℓ, mℓ), (n
′
ℓ, m

′
ℓ) ∈ Cjℓ

for a p-line, (nℓ, mℓ), (n
′
ℓ, m

′
ℓ) ∈ Q, with |mℓ − m′

ℓ| ≤ M1,
for a q-line, and finally (nℓ, mℓ) = (n′

ℓ, m
′
ℓ) /∈ ∪

j∈N
Cj ∪ Q for an r-line. For a p-line the momenta define

the labels aℓ, bℓ ∈ {1, . . . , dj}, with djℓ
= |Cjℓ

|, such that (nℓ, mℓ) = Cjℓ
(aℓ) and (n′

ℓ, m
′
ℓ) = Cjℓ

(bℓ). For a
q-line the momenta define aℓ, bℓ such that (nℓ, mℓ) = Q(aℓ) and (n′

ℓ, m
′
ℓ) = Q(bℓ).

(5) Each p-line carries also a block label ~bℓ with components bℓ(a) = −1, 0, 1, where a = 1, . . . , djℓ
.

(6) Both r-lines and q-lines ℓ have iℓ = −1 and hℓ = −1.

(7) One must replace (nℓ, jℓ) with jℓ. Moreover if two lines ℓ and ℓ′ have jℓ = jℓ′ then |bℓ(a)−bℓ′(a)| ≤ 1

and if hℓ 6= −1 then ~bℓ 6= ~0 (by the definition of functions χh).

(8) One has nℓ = nv instead of nℓ = 1 for lines ℓ coming out from end-points.

(9) One must replace (nℓ, jℓ) with jℓ.

(10) Equation (3.16) becomes

n′
ℓ = σ(ℓ1)nℓ1 + σ(ℓ2)nℓ2 + σ(ℓ3)nℓ3 =

∑

ℓ′∈L(v)

σ(ℓ′)nℓ′ (8.33)

(that is nℓ is replaced with n′
ℓ), while (3.17) does not change.
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(11) The propagator Gℓ of any line ℓ is given by gℓ = Gjℓ,~bℓ,iℓ,hℓ
(aℓ, bℓ), as defined in(8.27), if ℓ is a p-line,

while it is given by gℓ = J−1(aℓ, bℓ) if ℓ is an q-line and by gℓ = 1/δnℓ,mℓ
|mℓ|2s if ℓ is a r-line.

(12) The node factor for sv = 1 is ηv = L
(kv)

jℓ,~bℓ,hℓ
(av, bv).

The set Θ
(k)
j is defined as in Definition 3.4, with j instead of n, m, by taking into account also the new

rules listed above. This will lead to a tree representation (3.20) for (8.32), which can be proved as for
Lemma 3.6.

In Lemma 3.5 the estimate |nℓ| ≤ Bk does not hold any more because there is no longer conservation
of the momenta nℓ (i.e. (3.18) has been replaced with (8.33)), and all the bounds on the momenta should
be modified into |nℓ|, |n′

ℓ|, |mℓ|, |m′
ℓ| ≤ Bk1+4α for some constant B. This can be proved by induction on

the order of the tree. The bound is trivially true to first order. It is also trivially true if either the root
line has i = −1 or it is q-line or a r-line (one just needs to choose B appropriately). Suppose now that
the root line is a p-line with i 6= −1: call v0 the node which the root line exits. If sv0 = 3, call θ1, θ2, θ3

the sub-trees with root lines ℓ1, ℓ2, ℓ3, respectively, entering the node v0. We have |(nℓi , mℓi)| ≤ k1+4α
i by

the inductive hypothesis, and by definition |(n′
ℓ, m

′
ℓ)| ≤

∑3
i=1 Bk1+4α

i ≤ B(k− 1)1+4α. Then |(nℓ, mℓ)| ≤
B(k − 1)1+4α + C2(k − 1)2α(1+4α) ≤ Bk1+4α. If sv = 1 the proof is easier.

8.5. Clusters and resonances

Definition 3.7 of cluster is unchanged, while Definition 3.8 of resonance becomes as follows.

Definition 8.6. We call 1-resonance on scale h ≥ 0 a cluster T of scale h(T ) = h with only one entering

line ℓT and one exiting line ℓ1
T of scale h

(e)
T > h + 1 with |V (T )| > 1 and such that

(i) one has

(a) jℓ1
T

= jℓT , (b) pjℓT
≥ 2(h−2)/τ , (8.34),

(ii) for all ℓ ∈ L(T ) not on the path P(ℓT , ℓ1
T ) one has jℓ 6= jℓT .

We call 2-resonance a set of lines and nodes which can be obtained from a 1-resonance by setting iℓT =
0,−1. Resonances are defined as the sets which are either 1-resonances or 2-resonances. Differently from
3.8 we do not include among the resonant lines the lines exiting a 2-resonance.

Definition 3.9 is unchanged provided that we replace (n, j) with j, we require pj ≥ 2(h−2)/τ , we associate
with the node e the labels (ne, me) ∈ Cj and with ℓ0 the labels (nℓ0 , mℓ0) ∈ Cj .

Since we do not have the conservation of the momentum n, Lemma 3.10 does not hold in the same
form: the bounds have to be weakened into |nℓ|, |mℓ|, |n′

ℓ|, |m′
ℓ| ≤ Bk1+4α for the lines ℓ not along the

P(ℓe, ℓ0), and |nℓ|, |mℓ|, |n′
ℓ|, |m′

ℓ| ≤ B(|n| + k)1+4α for the lines along the path.

8.6. Choice of the counterterms

The choice of the counterterm (8.30) is not unique and therefore is rather delicate.

Resonances produce contributions that make the power series to diverge. We want to eliminate such
divergences with a careful choice of the counterterms.

The sets Θ
(k)
R,j and R(k)

R,h,j are defined slightly differently with respect to Definition 3.11.

Definition 8.7. We denote by Θ
(k)
R,j the set of renormalised trees defined as the trees in Θ

(k)
j with the

following differences:
(i) The trees do not contain any 1-resonance T with ~bℓ1

T
= ~bℓT .

(ii) If a node v has sv = 1 then ~bℓ 6= ~bℓ′ , where ℓ and ℓ′ are the lines exiting and entering, respectively,

the node v. The factor ηv = L
(kv)

jℓ,~bℓ,hℓ
associated with v will be defined in (8.39).
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(iii) The propagators of any line ℓ entering any 1-resonance T (recall that by (i) one has ~b1
ℓT

6= ~bℓT ),
where ℓ1

T = ℓ, is

gℓ = χhℓ
(xjℓ

)χ̄jℓ,~bℓ

(
Gjℓ,~bℓT

,0(aℓ, bℓ) + Gjℓ,~bℓT
,−1(aℓ, bℓ) − Gjℓ,~bℓ,0(aℓ, bℓ) − Gjℓ,~bℓ,−1(aℓ, bℓ)

)
, (8.35)

and the same holds for the propagator of any line ℓ with iℓ = 1 entering a node v with sv = 1.

In the same way we define R(k)
R,h,j. We call R(k)

R,h,j(a, b) the set of trees θ ∈ R(k)
R,h,j such that the entering

line has me = Cj(a) while the root line has m′
ℓ0

= Cj(b). Finally we define the sets Θ
(k)
R and R(k)

R as the

sets of trees belonging to Θ
(k)
R,j for some j and, respectively, to R(k)

R,h,j for some h, j.

By proceeding as in Section 3.5 we introduce the following matrices:

T (k)
j,h (a, b) =

∑

h1<h−1

∑

θ∈R(k)

R,j,h1
(a,b)

Val(θ). (8.36)

We use a different symbol for such matrices, as we shall see that the counterterms will not be identified
with the matrices in (8.35), even if they will be related to them. We shall see that, by the analog of

Lemma 3.14, the matrices T (k)
j,h are symmetric.

To define the counterterms Lj we note that, in order to cancel at least the 1-resonances, we need the
following condition:

Gj,~b,1,h

(
L

(k)

j,~b,h
+ T (k)

j,h

)
Gj,~b,1 = 0. (8.37)

Moreover in order to solve the compatibility condition we need a solution Lj,~b,h(a, b) which is proportional

to χ̄1(δn(a),m(a))χ̄1(δn(b),m(b)), and clearly the solution L
(k)

j,~b,h
+ T (k)

j,h = 0 does not comply with this

requirement. However, since Gj,~b,1,h is not invertible, (8.37) does not imply L
(k)

j,~b,h
= −T (k)

j,h ; indeed there

exists a solution such that Lj,~b,h(a, b) 6= 0 only if b(a) = b(b) = 1. This solution does not cancel the

resonances T with ~bℓ1
T
6= ~bℓT , and does not even touch the 2-resonances. Nevertheless, if (8.37) holds,

we shall see that we are left only with 2-resonances and partially cancelled 1-resonances, which admit
better bounds (see (8.17)).

By definition L
(k)

j,~b,h
(a, b) = 0 if either b(a) or b(b) is equal to −1. Then (8.37) reduces to the following

equation for the matrix X = L
(k)

j,~b,h
+ T (k)

j,h :




I
0
0




T

S−1

j,~b
XS−T

j,~b




I
0
0


 = 0 =⇒ X1,1 −

(
BXT

1,2 + X1,2B
T
)

+ BX2,2B
T = 0, (8.38)

where we define:

P−1
~b

XP~b =




X1,1 X1,2 X1,3

XT
1,2 X2,2 X2,3

XT
1,3 XT

2,3 X3,3




In (8.38) there are two matrices which act as free parameters. A (non-unique) solution is

P−1
~b

L
(k)

j,~b,h
P~b =




L
(k)
1,1 0 0
0 0 0
0 0 0


 =




I −B 0
0 0 0
0 0 0


Tj,h




I 0 0
−B 0 0
0 0 0


 . (8.39)
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In this definition, Lj,~b,h(a, b) 6= 0 only if b(a) = b(b) = 1, so that Lj,~b,h has the correct factors χ̄1.

Moreover the 1-resonances with ~bℓ1
T

= ~bℓT are cancelled, while the 2-resonances are untouched since

Lj,~b,h(Gj,~b,0,−1 + Gj,~b,−1,−1) = 0.

Let us now consider a 1-resonance T with ~bℓ1
T
6= ~bℓT . We can write

Gj,~b,1,h

(
L

(k)

j,~b,h
+ T (k)

j,h

)
Gj,~b1,1,h1

(8.40)

= Gj,~b,1,h

(
L

(k)

j,~b,h
+ T (k)

j,h

)
χh1(xj)χ̄j,~b1

(
p−s

j A−1
j − Gj,~b1,0 − Gj,~b1,−1

)

= Gj,~b,1,h

(
L

(k)

j,~b,h
+ T (k)

j,h

)
χh1(xj)χ̄j,~b1

(
Gj,~b,0 + Gj,~b,−1 − Gj,~b1,0 − Gj,~b1,−1

)
,

which does not vanish since ~bℓ1
T
6= ~bℓT . In that case we say that the 1-resonance is regularised.

Then Lemma 3.13 holds true, with L
(k)
n,j,h) substituted with T

(k)
j,h , provided that in the definition of

renormalised trees (cf. Definition 3.11) we add the condition that all 1-resonances T with ~bℓ1
T
6= ~bℓT and

all the nodes with sv = 1 and iv = 1 are regularised.
Also Lemma 3.14 is still true, as the property for the matrix to be symmetric depends only the non-

linearity.

8.7. Bryuno Lemma in Θ
(k)

R

The set S(θ, γ) is defined by (4.1), provided we substitute (n, j) with j and γ with γ/32. (4.2) is replaced
by:





|δn(a),m(a)| ≤ 2−2γ, bℓ(a) = 1,

2−3γ ≤ |δn(a),m(a)| ≤ 2−1γ, bℓ(a) = 0,

2−2γ ≤ |δn(a),m(a)|, bℓ(a) = −1,

(8.41)

for all jℓ ≥ 1 and a = 1, . . . , djℓ
.

For the definition of the set D(θ, γ) we require only the condition (4.3), which becomes

|xjℓ
| ≥ γ

pτ
jℓ

. (8.42)

We define Nh(θ) as the set of lines ℓ with iℓ = 1 and scale hℓ ≥ h, which do not enter any resonance.
Then, with this new definition of Nh(θ), Lemma 4.1 remains the same. The proof follows the same lines
as in Section 4.1, with the following minor changes.

In order to have a line on scale h we need that Bk1+4α ≥ Cpjℓ
≥ C2(h−1)/τ for some constant C. We

proceed as in the proof of Lemma 4.1, up to (4.8), where again nℓi should be substituted with pjℓi
with

i = 0, 1.

1. If jℓ1 = jℓ0 then, since ℓ1 by hypothesis does not enter a (regularised) resonance, there exists a line ℓ′

with iℓ′ ∈ {0,−1}, not along the path P(ℓ̄, ℓ0), such that jℓ′ = jℓ0 . By the Remark after Definition 8.5,
we know that |nℓ′ | ≥ |nℓ0/2| > 2(h−2)/τ . In this case one has (k(θ) − k(θ1)

1+4α > B−1|nℓ′ | ≥ Eh.

2. If jℓ1 6= jℓ0 then we call ℓ̄ ∈ P(ℓ0, ℓ1) the line with i 6= −1 which is the closest to ℓ0.

2.1. If pjℓ̄
≤ pjℓ0

/2 then (k(θ) − k(θ1))
1+4α ≥ Cpjℓ0

.

2.2. If pjℓ̄
> pjℓ0

/2 then one reasons as in case 2.2. of Lemma 4.1, with the following differences.

2.2.1. If jℓ0 6= jℓ̄, then |(nℓ̄, mℓ̄) − (nℓ0 , mℓ0)| ≥ const.pβ
jℓ0

. For all the lines ℓ along the path P(ℓ̄, ℓ0) one

has iℓ = −1, hence either nℓ = n′
ℓ and mℓ = m′

ℓ (if ℓ is a p-line) or |mℓ − m′
ℓ| ≤ M1 (if ℓ is a q-line), so
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that |(nℓ̄, mℓ̄)− (nℓ0 , mℓ0)| ≤ 2B(k(θ)− k(θ1))
1+4α, with the same meaning for the symbols as in Section

4.1, and the assertion follows once more by using (4.8).

2.2.2. If jℓ0 = jℓ̄ then there are two further sub-cases.

2.2.2.1. If ℓ̄ does not enter any resonance, we proceed as in item 1.

2.2.2.2. If ℓ̄ enters a resonance, then we continue up to the next line ℓ̃ on the same path with i 6= −1.
If jℓ̃ 6= jℓ0 the proof is concluded as in 2.2.1. since 2Bk1+4α ≥ |(nℓ̄, mℓ̄) − (nℓ̃, mℓ̃)| ≥ C1p

β
j . Likewise –

using item 2.2.2.1– the proof is concluded if the line ℓ̃ does not enter a resonance. If ℓ̃ enters a resonance
with jℓ̃ = jℓ0 , we proceed until we reach a line with i 6= −1 which either has j 6= jℓ0 or does not enter a
resonance: this is surely possible, because by definition ℓ1 does not enter a resonance and jℓ1 6= jℓ0 . This
completes the proof of the lemma.

Lemma 4.2 holds with |n|, |m| ≤ Bk1+4α and q = 1, and with p
−3s/4
j in all the lines of (4.9). The proof

is the same (recall that we can set s2 = 0); we only need to substitute pα
j (which bounded the dimension

of the non-diagonal block) with dj . In (iii) the labels (n′, j′) should be substituted by j′.

8.8. Bryuno Lemma in R(k)

R

The definitions of S̃(θ, γ) and D̃(θ, γ) are changed exactly as S(θ, γ) and D(θ, γ), respectively, in the
previous Section 8.7.

Definition 8.8. We divide RR,h,j into two sets R1
R,h,j and R2

R,h,j: R1
R,h,j contains all the trees such

that either P(ℓ0, ℓe) = ∅ or at least one line ℓ ∈ P(ℓ0, ℓe) has jℓ 6= j, and R2
R,h,j = RR,h,j \ R1

R,h,j. This

naturally yields a decomposition R(k)
R,h,j = R(k,1)

R,h,j ∪R(k,2)
R,h,j for all k ∈ N.

The two properties (i) and (ii) of Lemma 4.3 should be restated as follows.

(i) There exists a positive constant B2 such that if k ≤ B2p
β/(1+4α)
j then R(k,1)

R,j,h contains only trees with
P(ℓ0, ℓe) = ∅;
(ii) for all θ ∈ R(k,1)

R,h,j(a, b) we have |(n(a), m(a))− (n(b), m(b))|ρ ≤ k, with ρ a constant depending on D.

The proof of (i) can be obtained by reasoning as in the cases 2.1. and 2.2.1. of Section 8.7, while that
of (ii) proceeds as in the proof of Lemma 4.3 (ii).

For the trees in R(k,2)
R,h,j all the lines ℓ along the path P(ℓ0, ℓe) have jℓ = j, and we can bound the

product of the corresponding propagators as

( ∏

ℓ∈P(ℓ0,ℓe)

4Cγ−1p−s
jℓ

)
exp

(
− σ

∑

ℓ∈P(ℓ0,ℓe)

|(nℓ, mℓ) − (n′
ℓ, m

′
ℓ)|ρ
)
≤ Cke−σ|(nℓ0

,mℓ0
)−(nℓe ,mℓe )|ρ , (8.43)

where the factor is due to regularisation of the propagators with iℓ = 1 (see (8.35)), and we have used
(8.29) to bound |Gj,~b,i,−1|σ for i = 0,−1. Hence also |Val(θ)|σ is bounded by Ck.

Lemma 4.4 and properties (i) and (ii) of Lemma 4.6 are modified exactly as the corresponding 4.1 and
4.2. In (4.17) (ii) |n| should be substituted by |pj|1+4α. Finally (4.17) (iii) should be replaced with

∑

j′∈N

dj′∑

a′,b′=1

|∂Mj′ (a
′,b′)Val(θ)| ≤ Dk2−h

( h∏

h′=−1

22h′Nh′ (θ)
)∏

ℓ

p
3s/4
jℓ

, (8.44)

which can be proved as follows.

1. Let us first consider R1
R,j,h. We have no difficulty in bounding the sums and derivatives applied on lines

ℓ /∈ P(ℓ0, ℓe). By the analog of Lemma 4.3 discussed above, if B2k ≤ p
β/(1+4α)
j then P(ℓ0, ℓe) = ∅ and we
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have no problem. Otherwise we have at most (2pj + k)1+4α possible values of (n, m) and (n′, m′) which
can be associated with a line ℓ along the path P(ℓ0, ℓe) and by our assumption one has (2pj +k)1+4α ≤ Ck

for some constant C.

2. If all the lines ℓ ∈ P(ℓ0, ℓe) have jℓ = j then the sums with a′ 6= b′ contain at most p2α
j terms, whereas

the sums with a′ = b′ contain at most k terms, since there are at most k lines on P(ℓ0, ℓe).

The rest of Section 4 is unchanged. In Section 5.1 we remove the second Melnikov condition (the ∗∗
and ∗ ∗ ∗ products) in (5.3) and (5.5).

8.9. Measure estimates

By definition we have to evaluate the measure of the set

{
ε :
∥∥∥χ̂1,j(Dj + p−s

j M̂j)
−1χ̂1,j

∥∥∥
−1

≥ 2γ

pτ
j

∀j ∈ N

}
. (8.45)

By Lemma 2.4 (iii) one has

xj ≥ min
i=1,...,dj

∣∣∣λ(i)(Dj + p−s
j M̂j)

∣∣∣ , (8.46)

since the matrices are symmetric and the minimum is attained for some i such that χ̄1(δn(i),m(i)) 6= 0.
The set (8.45) contains the set

E =

{
ε ∈ (0, ε0) :

∣∣∣λ(i)(Dj + p−s
j M̂j)

∣∣∣ ≥ 2γ

pτ
j

∀i = 1, . . . , dj , ∀j ∈ N,

}
. (8.47)

We estimate the measure of the subset of (0, ε0) complementary to E, i.e. the set defined as union of the
sets

Ij,i :=

{
ε ∈ (0, ε0) :

∣∣∣λ(i)(Dj + p−s
j M̂j

∣∣∣ ≤ 2γ

pτ
j

}
(8.48)

for j ∈ N and i = 1, . . . , dj .
First we notice that if |pj | ≤ C/ε0, for an appropriately small C, then

∣∣∣λ(i)(Dj − pjI + p−s
j M̂j)

∣∣∣ ≤ ε2
0p

3
j ≤ pj

2
, (8.49)

which implies that

λ(i)(Dj + p−s
j M̂j) ≥

pj

2
,

so that we have to discard the sets Ij,i only for pj ≥ C/ε0.
Let us now recall that for a symmetric matrix M(x) depending analytically on a parameter x, the

derivatives of the eigenvalues are: ∂xλ(i)(x) = 〈vi, ∂xM(x)vi〉, where vi are the corresponding eigenvectors
[16].

Since Dj depends linearly – and therefore analytically – on ε we consider λi(x, ε) := λ(i)(Dj(x)+p−s
j M̂j)

with x, ε independent parameters.
Clearly |∂xλi(x, ε)| ≥ pj, and by Lidskii’s Lemma

|∂ελi(x, ε)| ≤ p−s
j

dj∑

i=1

∣∣∣λ(i)(∂εM̂j)
∣∣∣ .
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Now M̂j is a dj × dj matrix which for each fixed ε̄ has only a nonzero block of size pα
j ; the properties of

the functions χ̄j,1 imply that also ∂εM̂j has only a nonzero block of size pα
j . So one has

|∂ελi(x, ε)| ≤ C(1 + ε0p
1−s+5α
j ),

for some constant C.
Then the measure of each Ij,i can be bounded from above by

4γ

pτ
j

sup
ε∈(0,ε0)

∣∣∣∣∣

(
d

dε
λ(i)

(
Dj(ε) + p−s

j M̂j(ε)
))−1

∣∣∣∣∣ ≤
8γ

pτ+1
j

. (8.50)

Therefore we have

∑

j∈N

dj∑

i=1

meas (Ij,i) ≤ const.
∑

p≥C/ε0

γpD+α

(
1

pτ+1

)
≤ const.

(
ε
(τ−D−α)
0

)
, (8.51)

provided τ > D+1+α, so that the measure of the complementary of E is small in (0, ε0) if τ > D+1+α.

Appendix A1. Preliminary measure estimate

We estimate the measure of the complement of E0(γ), defined in (2.2), with respect to the set (0, ε0),
under the condition µ ∈ M. For all n, p ∈ N we consider the set

In,p =
{

ε ∈ (0, ε0) : |ωn − p| ≤ γ

nτ1

}
. (A1.1)

The measure of such a set is bounded proportionally to |n|−(τ1+1). Moreover one has

∞∑

n,p=1

meas(In,p) ≤ const.
∞∑

n=1

|n|−(τ1+1) + const. ε0

∞∑

n=1

|n|−τ1 , (A1.2)

because the number of values that p can assume is at most 1 + ε0n (simply note that |ωn− p| ≥ 1/2 if p
is not the integer closest to ωn and |ω − D − µ| ≤ ε0).

Finally we note that, by (2.1), for n < (γ0/2ε0)
1/(τ0+1) one has

|ωn − p| ≥ |(D + µ)n − p| − ε0|n| ≥ γ|n|−τ0 , (A1.3)

provided γ ≤ γ0/2. Hence the sum in (A1.2) can be restricted to n ≥ (γ0/2ε0)
1/(τ0+1), so that

∑

n,p

meas(In,p) ≤ const. ε
τ1/(τ0+1)
0 + const. ε

1+(τ1−1)/(τ0+1)
0 , (A1.4)

which is infinitesimal in ε0 provided τ1 > τ0 + 1.

Appendix A2. Proof of the separation Lemma 2.2

Let D ∈ N be fixed, D ≥ 2. For all D > d ≥ 1 and for all r > 1 let Sd(r) be a d-sphere of radius r and
Sd

0 (r) the sphere Sd(r) centred at the origin. Set δ(ε, d) := 2ε/d(d + 2)!, and let us denote with |A| the
number of elements of the finite set A.

Lemma A2.1. For all ε ≪ 1 one can define sets of integer points Λα = Λα(ε, r, D, d), with α =
1, . . . , N = N(ε, r, D, d), such that

|Λα| ≤ C(D, d) max{rε, d + 2}, Sd
0 (r) ∩ Z

D =
N⋃

α=1

Λα, dist(Λα, Λβ) ≥ C′(D, d) rδ(ε,d), (A2.1)
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where C(D, d) and C′(D, d) are suitable (ε, r)-independent constants.

The proof of this lemma follows easily from the following result.

Lemma A2.2. There exist constants C and C′ such that the following holds. Let n1, . . . , nk ∈ Sd(r)∩Z
D.

If for all i = 1, . . . , k − 1 one has |ni − ni+1| < Crδ(ε,d) then k < C′ max{rε, d + 2}.

Proof. Let us first recall some trivial facts:

1. |Sd(r) ∩ Z
D| ≤ C̄(D, d) rd, for some constant C̄(D, d);

2. given p linearly independent vectors v1, . . . , vp ∈ Z
D the volume of the p-dimensional simplex they

identify is given by

1

p!
| detNNT | 12 , N =




v11 . . . v1D

. . . . . . . . .
vp1 . . . vpD



 , (A2.2)

and, since N has integer coefficients, the volume of the simplex is bounded from below as 1/p!.

Let us fix also some notations. Given p linearly independent vectors connecting points in Sd(r), consider
the p-dimensional simplex generated by these vectors. Suppose that the angles between the vectors are
small enough: the volume of the simplex is bounded from above by the volume of the spherical cap in
which the vectors are contained. If Γ is the radius of the base of the cap, then the volume of the spherical
cap is of order Γd+2/r; see Figure 8.

w1

w2

Γ

Figure 8. Simplex generated by two linearly independent vectors w1 and w2 which connects points
on the sphere S1(r). Γ is the basis of the spherical cap in which the two vectors are contained. If
the angle between the two vectors is small then the volume (=area) of the cap is of order Γ3/r, with
Γ = O(|w1| + |w2|).

Now we pass to the proof of the lemma. For k ≤ d + 1 the assertion is trivially satisfied, hence we can
assume from now on k ≥ d + 2. We proceed recursively.

Step 1. Consider three vectors in {n1, . . . , nk} such that the two difference vectors are linearly indepen-
dent: possibly reordering the vectors we can assume that they are n1, n2 and n3, and set w1 = n2 − n1

and w2 = n3 − n2. The last two vectors connect points of some 1-sphere S1(r1), with r1 ≤ r.

Then there exists a constant C1 such that max{|w1|, |w2|} > C1r
1/3
1 . The proof is by reductio ad

absurdum: consider the 2-dimensional simplex generated by {w1, w2}; by the assumption on the distance
between the vectors and fact 2. we can say that there exist two constants D1 and D̄1 such that r1 ≤
D1Γ

3 ≤ D̄1C
3
1r1, which is contradictory if C1 is small enough.

One must have r1 < A1r
α1δ, with δ = δ(ε, d), for α1 = 3 and a suitably large constant A1: otherwise

max{|w1|, |w2|} > C1r
1/3
1 ≥ A1C1r

δ, which is not possible if A1C1 > C. By fact 1. we have at most
C̄(D, 1) r1 ≤ C̄(D, 1)A1r

3δ other integer vectors on S1(r1) ∩ Sd(r).
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Step 2. Next, consider another vector (if any) in {n1, . . . , nk}, say n4, such that {w1, w2, w3}, with
w3 = n4 − n3, are linearly independent and generate a simplex which is contained in a 2-sphere S2(r2)
for some r2 ≤ r. Of course the distance between n4 and any vector found in step 1. is bounded by
Crδ + B̄1r1 ≤ B1r

3δ, for suitable constants B̄1 and B1.

Therefore we can prove, again by relying on fact 2., that max{|w1|, |w2|, |w3|} > C2r
1/4
2 for a suitable

small constant C2 (otherwise one would find r2 ≤ D2Γ
4 ≤ D̄2C

4
2r2, hence a contradiction for C2 small

enough).
Moreover, one must have r2 < A2r

α2δ, for α2 = 4α1 and a suitably large constant A2; otherwise

max{|w1|, |w2|, |w3|} > C2r
1/4
2 ≥ C2A2r

α2δ/4 > B1r
α1δ, which is not possible if α2 = 4α1 and C2A2 > B1.

By fact 1. we have at most C̄(D, 2) r2
2 ≤ C̄(D, 2)A2r

2α2δ other integer vectors on S2(r2) ∩ Sd(r).

Step j. The proof is performed by induction. Assume that, up to step j − 1., we have found at most
a C̄(D, 1)A1r

α1δ + C̄(D, 2)A2r
2α2δ + . . . + C̄(D, j − 1)Aj−1r

jαj−1δ vectors, with αi = (i + 2)!/2 and
suitably large constants Ai, such that the distance between any two among these vectors is less than
Bj−1r

aj−1δ for a suitable constant Bj−1.
Moreover there are at least j vectors, which are linearly independent: we can assume are {n1, . . . , nj}

and set wi = ni+1 − ni for i = 1, . . . , j − 1. Suppose that there is at least another vector nj+1 on Sd(r)
which does not depend linearly on {n1, . . . , nj}, and set wj = nj+1−nj (if there is no such vector the proof
becomes easier). Call Sj(rj) the j-sphere which contain the j-simplex generated by {w1, . . . , wj}. Once

more fact 2. implies that there is a constant Cj , small enough, such that max{|w1|, . . . , |wj |} > Cjr
1/j
j .

One must have rj < Ajr
αjδ for αj = (j + 2)αj−1 and Aj suitably large: if this were not true then

one would have Cjr
1/j
j ≥ CjAjr

αjδ/j > Bj−1r
αj−1δ, hence a contradiction if αj = jαj−1 and CjAj >

Bj−1. Hence the number of other vectors that we have to add at this step is at most C̄(D, j) rj
j ≤

C̄(D, j)Ajr
jαjδ, and the distance between all the points is bounded by B̄jr

j
j ≤ Bjr

αjδ, for suitable

constants B̄j and Bj . Hence the inductive hypothesis is satisfied.

The inductive estimate for j = d yields the result, provided one sets ε = d(d + 2)!δ/2 and one chooses
C and 1/C′ small enough. This completes the proof.

Remarks. (1) A careful look at the proof of Lemma A2.2 shows that C′ = C′(D) is the maximum of
dC(D, d)Ad for 1 ≤ d < D, hence C′ = (D−1)C(D, D−1)AD−1, whereas C = C(D) is obtained as the
minimum between the constant C and the constants Bd for 1 ≤ d < D − 2, hence C′ = C. This shows
that in Lemma A2.1 one can choose C(D, d) and C′(D, d) as functions of the only D.
(2) In the proof of Lemma A2.2 the construction in step 1. shows that if one takes three vectors n1,
n2 and n3 on a 1-sphere S1(r1) then (with the notations used in the proof of the lemma) one has

max{w1, w2} > C1r
1/3
1 . Therefore for d = 1 these sets Λj can be chosen in such a way that each set

contains at most two elements, and the distance between two distinct sets on the same sphere S1(r) is
larger than a universal constant times r1/3.

Lemma A2.1 implies that it is possible to decompose the set Z
D ∪ SD

0 (r) as the union of sets ∆ such
that diam(∆) < const.rδ+ε (cf. [2], p. 399), and |∆| < const.rD(δ+ε). Hence, if we take α small enough
and we set β = δ and α = D(δ + ε), by using that ε/δ = (d + 2)!d/2, Lemma 2.1 follows.

Appendix A3. Constructive scheme for Lemma 8.1

Here we prove that the sets M+ verifying the conditions (a) and (b) in the proof of Lemma 8.1 are
non-empty. The proof consists in providing explicitly a construction.
1. Fix a list of parameters α2, . . . , αN ∈ R such that αi < αi−1 for i = 2, . . . , N , with α1 = 1, and

2D
N∑

i=2

α2+2s
i ≤ 3D + 2D(N − 2). (A3.1)
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2. Given r ∈ R
+ and for i = 2, . . . , N consider the regions Ri(r) := {x ∈ Z

D
+ : αi−1r ≤ |x| ≤ αir} with r

so big that it is not possible to cover any of the Ri(r) with 3N222D planes and spheres.

3. Choose an integer vector m1 ∈ Z
D
+ such that |m1|2 = r2 is divided by D, and construct the “orbit”

O(m1) := {m ∈ Z
D : |mi| = |(m1)i|.

4. For each pair m, m′ ∈ O(m1) consider the two planes orthogonal to m − m′ and passing respectively
through m and m′, and the sphere which has m − m′ as diameter (there are at most 3 · 2D−1(2D − 1)
planes and spheres).
5. Choose the second integer vector m2 ∈ R2(r) such that |m2|2 divides D and the orbit O(m2) does not
lie on any of the planes and spheres defined at step 4.
6. For each pair m, m′ ∈ O(m1)∪O(m2) proceed as in step 4. We have at most further 3 · 2D(2D+1 − 1)
planes and spheres.
7. Then we proceed iteratively. When we arrive to mN we have to remove at most 3N2D−1(N2D − 1)
planes and spheres.

Appendix A4. Blocks of the matrix J

Write M = {m1, . . . , mM}, with M = 2DN , and set V = {v = (m, m′) : m, m′ ∈ M, m 6= m′}: clearly
L := |V| = M(M − 1). We call alphabet the set V and letters the elements (vectors) of V . We call word
of length ℓ ≥ 1 any string v1v2 . . . vℓ, with vk ∈ V for k = 1, . . . , ℓ. Let us denote with A the set of all
words with letters in the alphabet V plus the empty set (which can be seen as a word of length 0).

For v ∈ V with v = (mi, mj) we write v(1) = mi and v(2) = mj . Given two words a = v1 . . . vn

and b = v′1 . . . v′n′ we can construct a new word ab = v1 . . . vnv′1 . . . v′n′ of length n + n′. Finally we can
introduce a map a → w(a), which associates with any letter v ∈ V the vector v(1) − v(2), to any word
a = v1 . . . vn the vector w(a) = w(v1) + . . . + w(vn) and finally w(∅) = 0. We say that a is a loop if
w(a) = 0.

Remarks. (1) Given a set M let V be the corresponding alphabet. If |M| = M then |V| = L(M) =
M(M − 1). If we add an element mN+1 to M so to obtain a new set M′ = M ∪ {mN+1}, then the
corresponding alphabet V ′ contains all the letters of V plus other 2M letters. We can imagine that this
alphabet is obtained through 2M steps, by adding one by one the 2M new letters. In this way, we can
imagine that the length L of the alphabet can be increased just by 1.
(2) By construction w(v1v2) = w(v2v1). In particular w(a) depends only on the letters of a (each with
its own multiplicity), but not on the order they appear within a.

Define a matrix J , such that

(i) Jjk = J(qj , qk), with qj , qk ∈ Z
D,

(ii) J(q, q′) 6= 0 if there exist m1, m2 ∈ M such that q −m1 = q′ −m2 and 〈m′ − m2, m1 − m2〉 = 0, and
J(q, q′) = 0 otherwise.

A sequence C = {q0, q1, . . . , qn} will be called a chain if J(qk−1, qk) 6= 0 for k = 1, . . . , n. We call
n = |C| the length of the chain C. A chain can be seen as a pair of a vector and a word, that is

C = (q0; a), where q0 ∈ Z
D and a = v1 . . . vn, with w(vk) = qk − qk−1. Note that, by definition of the

matrix J , given a chain C as above, one has

qk = qk−1 + w(vk), 〈qk − vk(2), w(vk)〉 = 0, (A4.1)

for all k = 1, . . . , n.

Lemma A4.1. Given a chain C = (q0; a), if the word a contains a string v0a0v0, with v0 ∈ V and
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a0 ∈ A, then 〈w(v0a0), w(v0)〉 = 0.

Proof. As the word a of C contains the string v0a0v0, by (A4.1) there exists j ≥ 1 such that

〈qj − v0(2), w(v0)〉 = 0, 〈qj + v0 + w(a0) − v0(2), w(v0)〉 = 0,

so that 〈w(v0) + w(a0), w(v0)〉 = 0.

Lemma A4.2. Given a chain C = (q0; a), if the word a contains a string a0b0a0, with a0, b0 ∈ A and
a0 containing all the letters of the alphabet V, then a0b0 is a loop.

Proof. For any v ∈ V we can write a0 = a1va2, with a1, a2 ∈ A depending on v. Then a0b0a0 =
a1va2b0a1va2. Consider the string va2b0a1v: by Lemma A4.1 one has 〈w(va2b0a1), w(v)〉 = 0. On the
other hand (cf. Remark (2) after the definition of loop) one has w(va2b0a1) = w(a1va2b0) = w(a0b0), so
that 〈w(a0b0), w(v)〉 = 0. As v is arbitrary we conclude that

〈w(a0b0), w(v)〉 = 0 ∀v ∈ V =⇒ w(a0b0) = 0,

i.e. a0b0 is a loop.

Lemma A4.3. There exists K such that if a word has length k ≥ K then the word contains a loop. The
value of K depends only on the number of letters of the alphabet.

Proof. The proof is by induction on the length L of the alphabet V (cf. Remark (1) after the definition
of loop).

For L = 1 the assertion is trivially satisfied. Assume that for given L there exists an integer K(L) such
that any word of length K(L) containing at most L distinct letters has a loop: we want to show that
then if the alphabet has L + 1 letters there exists K(L + 1) such that any word of the alphabet with
length K(L + 1) has also a loop.

Let N(L) be the number of words of length K(L) written with the letters of an alphabet V with
|V| = L + 1. Consider a word a = a1 . . . aN(L)+1, where each ak has length K(L). We want to show
by contradiction that a contains a loop. If this is not the case, by the inductive assumption for each k
either ak contains a loop or it must contain all the L + 1 letters. As all words ak have length K(L) and
there are N(L) + 1 of them, at least two words, say ai and aj with i < j, must be equal to each other.
Therefore we can write a = a1 . . . ai−1aibaiaj+1 . . . aN(L)+1, where b = ai+1 . . . aj−1 if j > i+1 and b = ∅
if j = i + 1. Hence a contains the string aibai, with ai containing all the letters. Hence by Lemma A4.2
one has w(aib) = 0, i.e. aib is a loop.

Remark. Note that the proof of Lemma A4.3 implies

K(L + 1) ≤ K(L) (N(L) + 1) ≤
L∏

ℓ=1

(N(ℓ) + 1) , (A4.2)

which provides a bound on the maximal length of the chains in terms of the length of the alphabet V .

Lemma 8.2 follows immediately from the results above, by noting that all the spheres with diameter a
vector v(1) − v(2) with v ∈ V are inside a compact ball of Z

D.

Appendix A5. Invertibility of J for D=2

In the following we assume D = 2 and N > 4. We first prove that (i) implies (ii). As seen in Appendix
A3 condition (8.4) is implied by

αi ≤
( |mi|
|m1|

)2+2s

≤ αi+1 , ∀i = 2, . . . , N − 1, (A5.1)

54



where the αi > 1 are fixed in Appendix A3.

For |m1| large enough, (A5.1) contains a 2N -dimensional ball of arbitrarily large radius. By definition
an algebraic variety is the set of solutions of some polynomial equations and therefore cannot contain all
the positive integer points of a ball provided the radius is large enough (depending on the degree of the
polynomial).

To prove (i) let us start with some notations. We consider Z
2N

as a lattice in C
2N

, we denote x =

{x1, . . . , xN} ≡ M+ ∈ C
2N

, where each xi is a point in C
2
; we denote the points in M still as mi ∈ C

2
,

and for each point xi ∈ M+ we have the orbit O(xi) ∈ M i.e. the four points in M obtained by changing
the signs of the components of xi.

Definition A5.1.(i) Given two points mi, mj in M we consider: the circle with diameter mi−mj (curve
of type 1) the two lines orthogonal to mi − mj and passing respectively through mi (curve of type 2) and
through mj (curve of type 3). Note that the curve is identified by the couple (mi, mj) and by the type
label. We call C the finite set of distinct curves obtained in this way for all couples mi 6= mj in M.
(ii) Let C be a curve in C identified by the couple (mi, mj). We say that a point m′ is g-linked by (mi, mj)
to m ∈ C if one has either (1) m′ = −m+mi +mj, if C is a curve of type 1, or (2) m′ = m+(mj −mi),
if C is a curve of type 2, or (3) m′ = m − (mj − mi), if C is a curve of type 3. Notice that in case (1)
also m′ is on the circle, while in cases (2) and (3) m′ is on a curve of type 3 and 2, respectively. We say
that two points m, m′ ∈ Z

2
+ are linked by (mi, mj) if there are two points m̄ ∈ O(m) and m̄′ ∈ O(m′)

such that m̄, m̄′ are g-linked by (mi, mj).
(iii) Given M+ we consider the set H of points yj /∈ M which lie on the intersection of two curves
in C, counted with their multiplicity. Set r := |H |: we denote the list of intersection points as y =
{y1, . . . , yr(N)}. Note that r depend only on N .

We first prove that the points x ∈ C
2N which do not satisfy Lemma 8.1 lie on an algebraic variety. As

seen in Appendix A3, Lemma 8.1 is verified by requiring that if either a curve of type 1 contains three
points in M or a curve of type 2 or 3 contains two points in M, then such points are on the same orbit.
It is clear (see Appendix A3) that this condition can be achieved by requiring that x does not belong to

some proper algebraic variety, say Wa, in C
2N

.

Let us now consider the set of points x ∈ Z
2N
+ where detJ1,1 is identically equal to zero (as a function

of s); since J1,1 is a block diagonal matrix we factorise the single blocks and treat them separately. The
matrix J1,1 has some simple blocks which we can describe explicitly. Recall that

16A = c1

N∑

i=1

|xi|2 , 2a2
xi

= (1 − c1)|xi|2 − c1

∑

j=1,...,N
j 6=i

|xj |2, (A5.2)

where c1 = 8/(8N + 1).

1. For all m ∈ Z
2
+ such that m does not belong to any curve C ∈ C one has Ym,m′ = 0 for all m′; by

considering the limit s → ∞ one can easily check that Jm,m = |m|2+2s/2 − 8A = 0 is never an identity
in s (independently of the choice of M+).

2. For all linked couples m, m′ ∈ Z
2
+ such that each point belongs to one and only one curve one has

either a diagonal block |m|2+2s/2 − 8A − 4a2
xi

for some xi ∈ M+ if m = m′, or a 2 × 2 matrix

(
|m|2+2s/2 − 8A −2amiamj

−2amiamj |m′|2+2s/2 − 8A

)

if m 6= m′ and (mi, mj) is the couple linking m′ to m. In both cases a trivial check of the limit s → ±∞
will ensure that the determinant is not identically null.
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3. There is a block matrix containing all and only the elements of M+. Such a matrix is easily obtained
by differentiating the left hand side of (8.5):

−2




am1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 amN







9 8 . . . 8

8
. . .

. . .
...

...
. . .

. . . 8
8 . . . 8 9







am1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 amN


 .

Since all the ami are non-zero we only need to prove that the matrix in the middle is invertible, which is
trivially true since the determinant is an odd integer.

We now have considered all those blocks in J1,1 whose invertibility can be easily checked directly. We

are left with the intersection points in H ′ := H ∩ Z
2
+ \M+ and all those points m′ which are linked to

some yj ∈ H ′. We call J̃ the restriction of J1,1 to such points; the crucial property of J̃ is that it is a
K × K matrix with K bounded by above by some constant depending only on N .

We will impose that J̃ is invertible at s = 0 by requiring that M+ does not lie on an appropriate
algebraic variety in C

2N .

By definition the points in H (and the points linked to them) are algebraic functions of x ∈ C
2N . By

construction J̃m,m − Ym,m = |m|2+2s/2 − 8A and moreover Ym,m′ contains a contribution −2amiamj for

each couple (mi, mj) linking m′ to m. We want to prove that for s = 0 the equation det J̃ = 0 (which is

an equation for x ∈ C
2N

) defines a proper algebraic variety, say Wf , in C
2N

.

We consider the space C
T := C

2N×C
N×C

2r and, with an abuse of notation, we denote the generic point
in C

T by (x, a, y) = (x1, . . . , xN , ax1 , . . . , axN , y1, . . . , yr) (therefore we consider (x, a, y) as independent

variables). Note that det J̃ = 0 is a polynomial equation in C
T . We call Wb the algebraic variety defined

by requiring both that the axi satisfy (A5.2) and that each yj lies on at least two curves of C (Wb is

equivalent to a finite number of copies of C
2N ).

We now recall a standard theorem in algebraic geometry which states: Let W be an algebraic variety
in C

n+m and let Π be the projection C
n+m → C

n then Π(W ) is an algebraic variety (clearly it may be
the whole C

n!) We set n = 2N (the first 2N variables), m = 2r + N and apply the stated theorem to
Π(Wb ∩Wf ); we now only need to prove that the algebraic variety we have obtained is proper; to do so
it is convenient to treat separately the invertibility conditions of each single block of J̃ .

The first step is to simplify as far as possible the structure of the intersections and therefore of the
matrix J̃ . The simplest possible block involving an intersection point yj is such that

(i) only two curves in C pass through yj ;

(ii) the two points linked to yj (by the couples of points in M identifying the curves) are not intersection
points.

Such a configuration gives either a 3 × 3 matrix or a 2 × 2 matrix – if one of the curves is either an
horizontal or vertical line or a circle centred at the origin.

Definition A5.2.We say that a curve C ∈ C depends on the two – possibly equal – variables xi, xj ∈ C
2

if C is identified by the couple (mi, mj), such that mi ∈ O(xi) and mj ∈ O(xj).

The negation of (i) is that yj is on (at least) three curves of C: such condition defines a proper algebraic

variety in C
T , say Wj . We now consider the projection of Wb ∩ Wj on C

2N : its closure is an algebraic
variety and either it is proper or the triple intersection occurs for any choice of x (which unfortunately
can indeed happen due to the symmetries introduced by the Dirichlet boundary conditions).

Three curves in C depend on at most six variables in C
2. If four or more of such variables are different

then at least one variable, say xk, appears only once. By moving xk in C
2 we can move arbitrarily one of
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the curves, while the other two (which do not depend on xk) remain fixed. This implies that the triple

intersection cannot hold true for all values of xk and thus Π(Wb ∩Wj) is a proper variety in C
2N .

In the same way the negation of (ii) is that one point linked to yj lies on (at least) two curves of C
(one curve is fixed by the fact that the point is linked to yj); again the intersection is determined by six
points in M and the same reasoning holds.

We call Wc the variety in C
T defined by the union of all those Wj such that Π(Wb ∩Wj) is proper.

In Wb \Wc we can now classify the possible blocks appearing in J̃ (notice that only intersection points
which are integer valued have to be taken into account when constructing the blocks in J̃).

1. We have a list of at most 3 × 3 blocks corresponding to the intersection points of type (i)-(ii). Such
intersection points are identified by two curves which can depend on at most four different variables xik

with k = 1, . . . , 4.

2. There are more complicated blocks corresponding to multiple intersections (or intersection points

linked to each other), which occur for all x ∈ C
2N due to symmetry. As we have proved above the curves

defining such intersections depend on at most three different variables xik
.

In any given block, call it Bh, the contribution from Y involves only terms of the form −2amiamj

such that mi, mj ∈ ∪4
k=1O(xik

). Each amj depends on all the components of x; in particular, a2
mj

can

be written as a term depending only on the xik
plus the term − 1

2c1

∑
j 6=i1,...,i4

x2
j . Since by hypothesis

N > 4 and k ≤ 4 the second sum is surely non-empty.
Finally one has the diagonal contributions (from J − Y ): |yj |2 − 1

2c1

∑
j 6=i1,...,i4

x2
j + z, where z is a

polynomial function in the xik
’s.

In the limit
∑

j 6=i1,...,i4
x2

j → ∞ the terms depending on the xik
’s become irrelevant and we are left

with a matrix (of unknown size) whose entries, apart from the common factor − 1
2c1

∑
j 6=i1,...,i4

x2
j , are

integer numbers. It is easily seen that these numbers are odd on the diagonal, while all the off-diagonal
terms are even; indeed Y contributes only even entries while J − Y is diagonal and odd due to the term
8A. Thus the determinant (apart form the common factors) is odd and hence the equation detBh = 0 is

not an identity on Wb. If we call Wh the variety in C
T defined by detBh = 0 then Π(Wb ∩Wh) is surely

proper. Finally we call Wd the union of all the Wh and set Wf = Wd ∪Wc ∪Wc.

Appendix A6. Proof of the separation Lemma 8.4

The following proof is adapted from [4]. Given ε > 0 define δ = δ(ε, D) = ε/2D−1D!(D + 1)!. Then
Lemma 8.4 follows from the results below.

Lemma A6.1. Let x ∈ R
d. Assume that there exist d vectors ∆1, . . . , ∆d, which are linearly independent

in Z
d, and such that |∆k| ≤ A1 and |x ·∆k| ≤ A2 for all k = 1, . . . , d. Then |x| ≤ C(d)Ad−1

1 A2 for some
constant C(d) depending only on d.

Proof. Call βk ∈ [0, π/2] the angle between ∆k and the direction of the vector x. Without any loss of
generality we can assume βk ≥ βd for all k = 1, . . . , d − 1. Set β′

d = π/2 − βd. One has β′
d > 0 because

∆1, . . . , ∆d are linearly independent.
Consider the simplex generated by the vectors ∆1, . . . , ∆d. By the fact 2. in the proof of Lemma 8.4

one has, for some d-dependent constant C(d),

1 ≤ C(d) |∆1| |∆2| . . . |∆d| |sin α1,2| |sin α12,3| . . .
∣∣sinα1...(d−1),d

∣∣ , (A6.1)

where α1...(j−1),j , j ≥ 2, is the angle between the vector ∆j and the plane generated by the vectors
∆1, . . . , ∆j−1. Hence

1 ≤ C(d)Ad−1
1 |∆d|| sin α1...(d−1),d|. (A6.2)

Moreover one has

|x · ∆d| = |x| |∆d| |cosβd| = |x| |∆d| |sin β′
d| ≥ |x| |∆d|

∣∣sin α1...(d−1),d

∣∣ , (A6.3)
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so that, from (A6.2) and (A6.3), we obtain |x|A−(d−1)
1 ≤ C(d)A2, so that the assertion follows.

Lemma A6.2. There exist constants C and C′ such that the following holds. Let n1, . . . , nk ∈ Z
D be a

sequence of distinct elements such that |Φ(nj) − Φ(nj+1)| ≤ Crδ. Then k ≤ C′ max{rε, D + 2}.

Proof. Since the vectors nj are on the lattice Z
D there exist a constant C1(D) and j0 ≤ k/2 such

that |nj0 | > C1(D)k1/D. Set ∆j = nj − nj0 . By assumption one has |Φ(nj) − Φ(nj+1)| ≤ Crδ , hence
|Φ(nj) − Φ(nj0 )| ≤ C(j − j0)r

δ for all j0 + 1 ≤ j ≤ k. Then |Φ(nj) − Φ(nj0)| ≤ A1 := CJ1r
δ for all

j0 + 1 ≤ j ≤ j0 + J1. Fix J1 = k1/α(D), with α(n) = 2n(n + 1). By using that

Φ(nj) − Φ(nj0) =
(
∆j , 2∆j · nj0 + |∆j |2

)
, (A6.4)

we find |∆j | ≤ A1 and |nj0 · ∆j | ≤ A2 := A2
1 for all j0 + 1 ≤ j ≤ j0 + J1.

If Span{∆j0+1, . . . , ∆j0+J1} = D then by Lemma A6.1 one has |nj0 | ≤ C(D)AD+1
1 . Then, for this

relation to be not in contradiction with |nj0 | > C1(D)k1/D, we must have C1(D)k1/D < C(D)AD+1
1 ,

hence k ≤ C2(D) rα(D) δ for some constant C2(D).
If Span{∆j0+1, . . . , ∆j0+J1} ≤ D − 1 then there exists a subspace H1 with dim(H1) = D − 1 such that

nj ∈ nj0 + H1 for j0 + 1 ≤ j ≤ j0 + J1. Choose j1 ≤ J1/2 such that PH1nj1 := nj1 − nj0 ∈ H1 satisfies

|PH1nj1 | > C(D−1)J
1/(D−1)
1 , and fix J2 = J

1/α(D−1)
1 . Redefine ∆j = nj−nj1 for j ≥ j1+1, A1 = CJ2r

δ

and A2 = A2
1: by reasoning as in the previous case we find again |∆j | ≤ A1 and |nj1 · ∆j | ≤ A2 for all

j0 + 1 ≤ j ≤ j0 + J1.
If Span{∆j1+1, . . . , ∆j1+J2} = D − 1 then by Lemma A6.1 one has |nj1 | ≤ C(D − 1)AD

1 , which implies

C1(D − 1)J
1/D−1
1 < C(D)AD

1 . By using the new definition of A1, we obtain J1 ≤ C2(D − 1) rα(D−1) δ,
hence k ≤ C3(D) rα(D−1) α(D) δ for some other constant C3(D).

If Span{∆j1+1, . . . , ∆j0+J2} ≤ D − 2 then there exists a subspace H2 with dim(H1) = D − 1 such
that nj ∈ nj1 + H2 for j1 + 1 ≤ j ≤ j1 + J2. Then we iterate the construction until either we find
k ≤ Cn+2(D) rα(D−1)...α(D−n) δ for some n ≤ D − 1 and some constant Cn+2(D) or we arrive at a
subspace HD−1 with dim(HD−1) = 1.

In the last case the vectors ∆jD−2+1, . . . , ∆jD−2+JD−1 , with JD−1 = J
1/α(2)
D−2 , are linearly dependent by

construction, so that they lie all on the same line. Therefore, we can find at least JD−1/2 of them, say
the first JD−1/2, with decreasing distance from the origin. If we set njD−2+1 = a, njD−2+JD−1/2 = b, and
njD−2+1 − njD−2+JD−1/2 = c, and sum over jD−2 + 1 ≤ j ≤ jD−2 + JD−1/2 the inequalities

|nj − nj−1| + |nj |2 − |nj−1|2 ≤ const. |Φ(nj) − Φ(nj−1)| ≤ const. Crδ , (A6.5)

we obtain

|c| + |c|2 ≤ |c| + |a|2 − |b|2 ≤ const. Crδ JD−1

2
, (A6.6)

where |c| ≥ JD−1/2. Hence JD−1 ≤ (Crδ)2.
By collecting together all the bound above we find k ≤ CD(D) r2α(D)...α(2) δ, so that, by defining

C′ = CD(D) and using that ε/δ = α(D) . . . α(2) = 2D−1D!(D + 1)!, the assertion follows.

Lemma A6.3. There exist constants ε′, δ′, C and C′ such that the following holds. Given n0 ∈ Z
D

there exists a set ∆ ⊂ Z
D, with n0 ∈ ∆, such that diam(∆) < C′rε′

and |Φ(x) − Φ(y)| > C′rδ′

for all
x ∈ ∆ and y /∈ ∆.

Proof. Cf. [4], p. 399, which proves the assertion with ε′ = δ + ε and δ′ = δ = δ(ε, D).

Lemma A6.4. Let ∆ be as in Lemma A6.3. There exists a constant C′′ such that one has |∆| ≤
C′′rD(ε+δ).

Proof. The bound follows from Lemma A6.3 and from the fact that diam(∆) < C′rε, by using that the
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points in ∆ are distinct lattice points in R
D.
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