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we should 
hoose between spurious os
illation in high order non-monotones
hemes and additional dissipation in �rst order s
hemes. Flux limiter s
hemesare invented to 
ombine high resolution s
hemes in areas with smooth �eldsand �rst order s
hemes in areas with sharp gradients.The idea of 
ux limiters 
an be illustrated by 
omputation of the 
ux F0;1of the 
onserved quantity u between a 
ell marked by 0 and one of two itsneighbour 
ells marked by �1:F0;1 = (1� �(r))f low0;1 + �(r)fhigh0;1 ;where f low0; 1 , fhigh0; 1 are low and high resolution s
heme 
uxes, respe
tively, r =(u0 � u�1)=(u1 � u0), and �(r) � 0 is a 
ux limiter fun
tion. For r 
lose to 1,the 
ux limiter fun
tion �(r) should be also 
lose to 1.Many 
ux limiter s
hemes have been invented during the last two de
ades [43℄.No parti
ular limiter works well for all problems, and a 
hoi
e is usually madeon a trial and error basis.Below are several examples of 
ux limiter fun
tions:�mm(r) = max [0;min (r; 1)℄ (minmod, [36℄);�os(r) = max [0;min (r; �)℄ ; (1 � � � 2) (Osher, [10℄);�m
(r) = max [0;min (2r; 0:5(1 + r); 2)℄ (monotonised 
entral [42℄);�sb(r) = max [0;min (2r; 1) ;min (r; 2)℄ (superbee, [36℄);�sw(r) = max [0;min (�r; 1) ; (r; �)℄ ; (1 � � � 2) (Sweby, [40℄):The latti
e Boltzmann method has been proposed as a dis
retization of Boltz-mann's kineti
 equation and is now in wide use in 
uid dynami
s and beyond(for an introdu
tion and review see [38℄). Instead of �elds of moments M , thelatti
e Boltzmann method operates with �elds of dis
rete distributions f . Thisallows us to 
onstru
t very simple limiters that do not depend on slopes orgradients.All the limiters we 
onstru
t are based on the representation of distributionsf in the form: f = f � + kf � f �k f � f �kf � f �k ;where f � is the 
orrespondent quasiequilibrium (
onditional equilibrium) forgiven moments M , f � f � is the nonequilibrium \part" of the distribution,whi
h is represented in the form \norm�dire
tion" and kf � f �k is the normof that nonequilibrium 
omponent (usually this is the entropi
 norm). Lim-iters 
hange the norm of the nonequilibrium 
omponent f � f �, but do nottou
h its dire
tion or the equilibrium. In parti
ular, limiters do not 
hange the2



ma
ros
opi
 variables, be
ause moments for f and f � 
oin
ide. All limiters weuse are transformations of the formf 7! f � + �� (f � f �) (1)with � > 0. If f � f � is too big, then the limiter should de
rease its norm.The outline of the paper is as follows. In Se
. 2 we introdu
e the notions andnotations from latti
e Boltzmann theory we need, in Se
. 3 we elaborate theidea of entropi
 limiters in more detail and 
onstru
t several nonequilibriumentropy limiters for LBM, in Se
. 4 some numeri
al experiments are des
ribed:(1) 1D athermal sho
k tube examples;(2) steady state vortex 
entre lo
ations and observation of �rst Hopf bifur-
ation in 2D lid-driven 
avity 
ow.Con
luding remarks are given in Se
. 5.2 Ba
kgroundThe essen
e of latti
e Boltzmann methods was formulated by S. Su

i in thefollowing maxim: \Nonlinearity is lo
al, non-lo
ality is linear" 2 . We shouldeven strengthen this statement. Non-lo
ality (a) is linear; (b) is exa
tly andexpli
itly solvable for all time steps; (
) spa
e dis
retization is an exa
t oper-ation.The latti
e Boltzmann method is a dis
rete velo
ity method. The �nite setof velo
ity ve
tors fvig (i = 1; :::m) is sele
ted, and a 
uid is des
ribed byasso
iating, with ea
h velo
ity vi, a single-parti
le distribution fun
tion fi =fi(x; t) whi
h is evolved by adve
tion and intera
tion (
ollision) on a �xed
omputational latti
e. The values fi are named populations. If we look at alllatti
e Boltzmann models, one �nds that there are two steps: free 
ight fortime Æt and a lo
al 
ollision operation.The free 
ight transformation for 
ontinuous spa
e isfi(x; t+ Æt) = fi(x� viÆt; t):After the free 
ight step the 
ollision step follows:fi(x) 7! Fi(ffj(x)g); (2)2 S. Su

i, \Latti
e Boltzmann at all-s
ales: from turbulen
e to DNA translo
a-tion", Mathemati
al Modelling Centre Distinguished Le
ture, University of Lei
es-ter, Lei
ester UK, 15th November 2006. 3



or in the ve
tor form f(x) 7! F (f(x)):Here, the 
ollision operator F is the set of fun
tions Fi(ffjg) (i = 1; :::m).Ea
h fun
tion Fi depends on all fj (j = 1; :::m): new values of the populationsfi at a point x are known fun
tions of all previous population values at thesame point.The latti
e Boltzmann 
hain \free 
ight ! 
ollision! free 
ight ! 
ollision� � � " 
an be exa
tly restri
ted onto any spa
e latti
e whi
h is invariant withrespe
t to spa
e shifts of the ve
tors viÆt (i = 1; :::m). Indeed, free 
ight trans-forms the population values at sites of the latti
e into the population valuesat sites of the same latti
e. The 
ollision operator (2) a
ts pointwise at ea
hlatti
e site separately. Mu
h e�ort has been applied to answer the questions:\how does the latti
e Boltzmann 
hain approximate the transport equation forthe moments M?", and \how does one 
onstru
t the latti
e Boltzmann modelfor a given ma
ros
opi
 transport phenomenon?" (a review is presented inbook [38℄).In our paper we propose a universal 
onstru
tion of limiters for all possible
ollision operators, and the detailed 
onstru
tion of Fi(ffjg) is not importantfor this purpose. The only part of this 
onstru
tion we use is the lo
al equilibria(sometimes these states are named 
onditional equilibria, quasiequilibria, oreven simpler, equilibria).The latti
e Boltzmann models should des
ribe the ma
ros
opi
 dynami
, i.e.,the dynami
 of ma
ros
opi
 variables. The ma
ros
opi
 variables M`(x) aresome linear fun
tions of the population values at the same point: M`(x) =Pim`ifi(x), or in the ve
tor form, M(x) = m(f(x)). The ma
ros
opi
 vari-ables are invariants of 
ollisions:Xi m`ifi =Xi m`iFi(ffjg) (or m(f) = m(F (f))).The standard example of the ma
ros
opi
 variables are hydrodynami
 �elds(density{velo
ity{energy density): fn; nu; Eg(x) := Pif1; vi; v2i =2gfi(x). Butthis is not an obligatory 
hoi
e. If we would like to solve, by LBM methods,the Grad equations [22℄ or some extended thermodynami
 equations [25℄, weshould extend the list of moments (but, at the same time, we should be readyto introdu
e more dis
rete velo
ities for a proper des
ription of these extendedmoment systems). On the other hand, the athermal latti
e Boltzmann modelswith a shortened list of ma
ros
opi
 variables fn; nug are very popular.The quasiequilibrium is the positive �xed point of the 
ollision operator forthe given ma
ros
opi
 variablesM . We assume that this point exists, is uniqueand depends smoothly on M . For the quasiequilibrium population ve
tor forgiven M we use the notation f �M , or simply f �, if the 
orrespondent value of4



M is obvious. We use �� to denote the equilibration proje
tion operation ofa distribution f into the 
orresponding quasiequilibrium state:��(f) = f �m(f):For some of the 
ollision models an entropi
 des
ription of equilibrium is pos-sible: an entropy density fun
tion S(f) is de�ned and the quasiequilibriumpoint f �M is the entropy maximiser for given M [26,39℄.As a basi
 example we shall 
onsider the latti
e Bhatnagar{Gross{Krook(LBGK) model with overrelaxation (see, e.g., [3,12,23,28,38℄). The LBGK 
ol-lision operator is F (f) := ��(f) + (2� � 1)(��(f)� f); (3)where � 2 [0; 1℄. For � = 0, LBGK 
ollisions do not 
hange f , for � = 1=2these 
ollisions a
t as equilibration (this 
orresponds to the Ehrenfests' 
oarsegraining [15℄ further developed in [14,19,20℄), for � = 1, LBGK 
ollisions a
tas a point re
e
tion with the 
enter at the quasiequilibrium ��(f).It is shown [8℄ that under some stability 
onditions and after an initial periodof relaxation, the simplest LBGK 
ollision with overrelaxation [23,38℄ providesse
ond order a

urate approximation for the ma
ros
opi
 transport equationwith vis
osity proportional to Æt(1� �)=�.The entropi
 LBGK (ELBM) method [5,20,26,39℄ di�ers in the de�nitionof (3): for � = 1 it should 
onserve the entropy, and in general has the followingform: F (f) := (1� �)f + � ~f; (4)where ~f = (1 � �)f + ���(f). The number � = �(f) is 
hosen so that the
onstant entropy 
ondition is satis�ed: S(f) = S( ~f). For LBGK (3), � = 2. Of
ourse, for ELBM the entropi
 de�nition of quasiequilibrium should be valid.In the low-vis
osity regime, LBGK su�ers from numeri
al instabilities whi
hreadily manifest themselves as lo
al blow-ups and spurious os
illations.The LBM experien
es the same spurious os
illation problems near sharp gra-dients as high order s
hemes do. The physi
al properties of the LBM s
hemesallows one to 
onstru
t new types of limiters: the nonequilibrium entropy lim-iters. In general, they do the same work for LBM as 
ux limiters do for �nitedi�eren
es, �nite volumes and �nite elements methods, but for LBM the mainidea behind the 
onstru
tion of nonequilibrium entropy limiter s
hemes is tolimit a s
alar quantity | nonequilibrium entropy (and not the ve
tors or ten-sors of spatial derivatives, as it is for 
ux limiters). These limiters introdu
esome additional dissipation, but all this dissipation 
ould easily be evaluatedthrough analysis of nonequilibrium entropy produ
tion.5



Two examples of su
h limiters have been re
ently proposed: the positivityrule [6,31,41℄ and the Ehrenfests' regularisation [7℄. The positivity rule justprovides positivity of distributions: if a 
ollision step produ
es negative popu-lations, then the positivity rule returns them to the boundary of positivity. Inthe Ehrenfests' regularisation, one sele
ts the k sites with highest nonequilib-rium entropy (the di�eren
e between entropy of the state f and entropy of the
orresponding quasiequilibrium state f � at a given spa
e point) that ex
eed agiven threshold and equilibrates the state in these sites.The positivity rule and Ehrenfests' regularisation provide rare, intense andlo
alised 
orre
tions. It is easy and also 
omputationally 
heap to organisemore gentle transformation with smooth shift of highly nonequilibrium statesto quasiequilibrium. The following regularisation transformation distributesits a
tion smoothly: we 
an just 
hoose in (1) � = �(�S(f)) with suÆ
ientlysmooth fun
tion �(�S(f)). Here f is the state at some site, f � is the 
orre-sponding quasiequilibrium state, S is entropy, and �S(f) := S(f �)� S(f).The next step in the development of the nonequilibrium entropy limiters is inthe usage of lo
al entropy �lters. The �lter of 
hoi
e here is the median �lter: itdoes not erase sharp fronts, and is mu
h more robust than 
onvolution �lters.An important problem is: \how does one 
reate nonequilibrium entropy lim-iters for LBM with non-entropi
 quasiequilibria?". We propose a solutionof this problem based on the nonequilibrium Kullba
k entropy. For entropi
quasiequilibrium the Kullba
k entropy approa
h gives the same entropi
 lim-iters. In thermodynami
s, Kullba
k entropy belongs to the family of Massieu{Plan
k{Kramers fun
tions (
anoni
al or grand
anoni
al potentials).3 Nonequilibrium entropy limiters for LBM3.1 Positivity ruleThere is a simple re
ipe for positivity preservation [6,31,41℄: to substitutenonpositive I�0 (f)(x) by the 
losest nonnegative state that belongs to thestraight line ��f(x) + (1� �)��(f(x))j � 2 R� (5)de�ned by the two points, f(x) and 
orresponding quasiequilibrium. This op-eration is to be applied pointwise, at points of the latti
e where positivityis violated. The 
oeÆ
ient � depends on x too. Let us 
all this re
ipe thepositivity rule (Fig. 1). This re
ipe preserves positivity of populations andprobabilities, but 
an a�e
t a

ura
y of approximation. The same rule is ne
-6
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Positivity domain Fig. 1. Positivity rule in a
tion. The motions stops at the positivity boundary.essary for ELBM (4) when the positive \mirror state" ~f with the same entropyas f does not exists on the straight line (5).3.2 Ehrenfests' regularisationTo dis
uss methods with additional dissipation, the entropi
 approa
h is very
onvenient. Let entropy S(f) be de�ned for ea
h population ve
tor f = (fi)(below we use the same letter S for lo
al in spa
e entropy, and hope that
ontext will make this notation always 
lear). We assume that the globalentropy is a sum of lo
al entropies for all sites. The lo
al nonequilibriumentropy is �S(f) := S(f �)� S(f); (6)where f � is the 
orresponding lo
al quasiequilibrium at the same point.The Ehrenfests' regularisation [6,7℄ provides \entropy trimming": we moni-tor lo
al deviation of f from the 
orresponding quasiequilibrium, and when�S(f)(x) ex
eeds a pre-spe
i�ed threshold value Æ, perform lo
al Ehrenfests'steps to the 
orresponding quasiequilibrium: f 7! f � at those points.So that the Ehrenfests' steps are not allowed to degrade the a

ura
y of LBGKit is pertinent to sele
t the k sites with highest �S > Æ. The a posterioriestimates of added dissipation 
ould easily be performed by analysis of entropyprodu
tion in Ehrenfests' steps. Numeri
al experiments show (see, e.g., [6,7℄)that even a small number of su
h steps drasti
ally improve stability.To avoid the 
hange of a

ura
y order \on average", the number of sites withthis step should be � O(Nh=L) where N is the total number of sites, h isthe step of the spa
e dis
retization and L is the ma
ros
opi
 
hara
teristi
length. But this rough estimate of a

ura
y in average might be destroyedby 
on
entration of Ehrenfests' steps in the most nonequilibrium areas, forexample, in the boundary layer. In that 
ase, instead of the total number ofsites N in O(Nh=L) we should take the number of sites in a spe
i�
 region.The e�e
ts of 
on
entration 
ould be easily analysed a posteriori.7



3.3 Smooth limiters of nonequilibrium entropyThe positivity rule and Ehrenfests' regularisation provide rare, intense andlo
alised 
orre
tions. Of 
ourse, it is easy and also 
omputationally 
heap toorganise more gentle transformation with a smooth shift of highly nonequilib-rium states to quasiequilibrium. The following regularisation transformationdistributes its a
tion smoothly:f 7! f � + �(�S(f))(f � f �): (7)The 
hoi
e of fun
tion � is highly ambiguous, for example, � = 1=(1+��Sk)for some � > 0 and k > 0. There are two signi�
antly di�erent 
hoi
es: (i)ensemble-independent � (i.e., the value of � depends on lo
al value of �Sonly) and (ii) ensemble-dependent �, for example�(�S) = 1 + (�S=(�E(�S)))k�1=21 + (�S=(�E(�S)))k ; (8)where E(�S) is the average value of �S in the 
omputational area, k � 1,and � & 1. For small �S, �(�S) � 1 and for �S � �E(�S), �(�S) tendsto q�E(�S)=�S. It is easy to sele
t an ensemble-dependent � with 
ontrolof total additional dissipation.3.4 Monitoring of total dissipationFor given �, the entropy produ
tion in one LBGK step in quadrati
 approxi-mation for �S is: ÆLBGKS � [1� (2� � 1)2℄Xx �S(x);where x is the grid point, �S(x) is nonequilibrium entropy (6) at point x,ÆLBGKS is the total entropy produ
tion in a single LBGK step. It would bedesirable if the total entropy produ
tion for the limiter ÆlimS was small relativeto ÆLBGKS: ÆlimS < Æ0ÆLBGKS: (9)A simple ensemble-dependent limiter (perhaps, the simplest one) for a givenÆ0 operates as follows. Let us 
olle
t the histogram of the �S(x) distribution,and estimate the distribution density, p(�S). We have to estimate a value�S0 that satis�es the following equation:Z 1�S0 p(�S)(�S ��S0) d�S = Æ0[1� (2� � 1)2℄ Z 10 p(�S)�S d�S: (10)8



In order not to a�e
t distributions with small expe
tation of �S, we 
hoosea threshold �St = maxf�S0; Æg, where Æ is some prede�ned value (as inthe Ehrenfests' regularisation). For states at sites with �S � �St we pro-vide homothety with quasiequilibrium 
enter f � and 
oeÆ
ient q�St=�S (inquadrati
 approximation for nonequilibrium entropy):f(x) 7! f �(x) +s�St�S (f(x)� f �(x)): (11)3.5 Median entropy �lterThe limiters des
ribed above provide pointwise 
orre
tion of nonequilibriumentropy at the \most nonequilibrium" points. Due to the pointwise nature,the te
hnique does not introdu
e any nonisotropi
 e�e
ts, and provides someother bene�ts. But if we involve the lo
al stru
ture, we 
an 
orre
t lo
al non-monotone irregularities without tou
hing regular fragments. For example, we
an dis
uss monotone in
rease or de
rease of nonequilibrium entropy as regularfragments and 
on
entrate our e�orts on redu
tion of \spe
kle noise" or \saltand pepper noise". This approa
h allows us to use the a

essible resour
e ofentropy 
hange (9) more thriftily.Among all possible �lters, we suggest the median �lter. The median is a morerobust average than the mean (or the weighted mean) and so a single veryunrepresentative value in a neighborhood will not a�e
t the median valuesigni�
antly. Hen
e, we suppose that the median entropy �lter will work betterthan entropy 
onvolution �lters.The median �lter 
onsiders ea
h site in turn and looks at its nearby neighbours.It repla
es the nonequilibrium entropy value �S at the point with the medianof those values �Smed, then updates f by the transformation (11) with thehomothety 
oeÆ
ient q�Smed=�S. The median, �Smed, is 
al
ulated by �rstsorting all the values from the surrounding neighbourhood into numeri
al orderand then repla
ing that being 
onsidered with the middle value. For example,if a point has 3 nearest neighbors in
luding itself, then after sorting we have3 values �S: �S1 � �S2 � �S3. The median value is �Smed = �S2. For 9nearest neighbors (in
luding itself) we have after sorting �Smed = �S5. For27 nearest neighbors �Smed = �S14.We a

ept only dissipative 
orre
tions (those resulting in a de
rease of �S,�Smed < �S) be
ause of the se
ond law of thermodynami
s. The analogueof (10) is also useful for a

eptan
e of the most signi�
ant 
orre
tions.Median �ltering is a 
ommon step in image pro
essing [34℄ for the smoothingof signals and the suppression of impulse noise with preservation of edges.9



3.6 Entropi
 steps for non-entropi
 quasiequilibriaBeyond the quadrati
 approximation for nonequilibrium entropy all the logi
 ofthe above mentioned 
onstru
tions remain the same. There exists only one sig-ni�
ant 
hange: instead of a simple homothety (11) with 
oeÆ
ient q�St=�Sthe transformation (7) should be applied, where the multiplier � is a solutionof the nonlinear equationS(f � + �(f � f �)) = S(f �)��St:This is essentially the same equation that appears in the de�nition of ELBMsteps (4).More di�eren
es emerge for LBM with non-entropi
 quasiequilibria. The mainidea here is to reason that non-entropi
 quasiequilibria appear only be
ause ofte
hni
al reasons, and approximate 
ontinuous physi
al entropi
 quasiequilib-ria. This is not an approximation of a density fun
tion, but an approximationof measure, i.e., from the 
ubature formula:f(v) �Xi fiÆ(v � vi)Z '(v)f(v) dv �Xi '(vi)fi:The dis
rete populations fi are 
onne
ted to 
ontinuous (and suÆ
ientlysmooth) densities f(v) by 
ubature weights fi � wif(vi). These weights forquasiequilibria are found by moment and 
ux mat
hing 
onditions [37℄. Itis impossible to approximate the BGS entropy R f ln fdv just by dis
retiza-tion (to 
hange integration by summation, and 
ontinuous distribution f bydis
rete fi), be
ause 
ubature weights appear as additional variables. Never-theless, the approximate dis
retization of the Kullba
k entropy SK [30℄ doesnot 
hange its form:SK(f) = � Z f(v) ln f(v)f �(v)! dv � �Xi fi ln fif �i ! ; (12)be
ause fi=f �i approximates the ratio of fun
tions f(v)=f �(v) and Pi fi : : :gives the integral R f(v) : : :dv approximation. Here, in (12), the state f � is thequasiequilibrium with the same values of the ma
ros
opi
 variables as f . More-over, for given values of the ma
ros
opi
 variables, SK(f) a
hieves its maxi-mum at the point f = f � (both for 
ontinuous and for dis
rete distributions).The 
orresponding maximal value is zero. Below, SK is the dis
rete Kullba
kentropy. If the approximate dis
rete quasiequilibrium f � is non-entropi
, we
an use �SK(f) instead of �S(f).For entropi
 quasiequilibria with perfe
t entropy the dis
rete Kullba
k entropy10



gives the same �S: �SK(f) = �S(f). Let the dis
rete entropy have thestandard form for an ideal (perfe
t) mixture [27℄.S(f) = �Xi fi ln fiWi!:After the 
lassi
al work of Zeldovi
h [44℄, this fun
tion is re
ognised as auseful instrument for the analysis of kineti
 equations (espe
ially in 
hemi
alkineti
s [21℄). If we de�ne f � as the 
onditional entropy maximum for givenMj = Pkmjkfk, then ln f �k =Xj �jmjk;where �j(M) are the Lagrange multipliers (or \potentials"). For this entropyand 
onditional equilibrium we �nd�S = S(f �)� S(f) =Xi fi ln fif �i !; (13)if f and f � have the same moments, m(f) = m(f �). The right hand sideof (13) is �SK(f).In thermodynami
s, the Kullba
k entropy belongs to the family of Massieu{Plan
k{Kramers fun
tions (
anoni
al or grand
anoni
al potentials). There isanother sense of this quantity: SK is the relative entropy of f with respe
t tof � [18,35℄.In quadrati
 approximation,�SK(f) =Xi fi ln fif �i ! �Xi (fi � f �i )2f �i :3.7 ELBM 
ollisions as a smooth limiterOn the base of numeri
al tests, the authors of [41℄ 
laim that the positivityrule provides the same results (in the sense of stability and absen
e/presen
eof spurious os
illations) as the ELBM models, but ELBM provides bettera

ura
y.For the formal de�nition of ELBM (4) our tests do not support 
laims thatELBM erases spurious os
illations (see below). Similar observation for Burgersequation was previously published in [4℄. We understand this situation in thefollowing way. The entropi
 method 
onsists at least of three 
omponents:(1) entropi
 quasiequilibrium, de�ned by entropy maximisation;11



(2) entropy balan
ed 
ollisions (4) that have to provide proper entropy bal-an
e;(3) a method for the solution of the trans
endental equation S(f) = S( ~f) to�nd � = �(f) in (4).It appears that the �rst two items do not a�e
t spurious os
illations at all,if we solve the equation for �(f) with high a

ura
y. Additional vis
osityis, potentially, added by expli
it analyti
 formulas for �(f). In order not tode
rease entropy, errors in these formulas always in
rease dissipation. This
an be interpreted as a hidden transformation of the form (7), where the
oeÆ
ients in � depend also on f �.3.8 Monotoni
 and double monotoni
 limitersTwo monotoni
ity properties are important in the theory of nonequilibriumentropy limiters:(1) a limiter should move the distribution to equilibrium: in all 
ases of (1)0 � � � 1. This is the dissipativity 
ondition whi
h means that limitersnever produ
e negative entropy.(2) a limiter should not 
hange the order of states on the line: if for twodistributions with the same moments, f and f 0, �S(f) > �S(f 0) beforethe limiter transformation, then the same inequality should hold after thelimiter transformation too. For example, for the limiter (7) it means that�S(f � + x�(�S(f � + x(f � f �))(f � f �)) is a monotoni
ally in
reasingfun
tion of x > 0.In quadrati
 approximation, �S(f � + x(f � f �)) = x2�S(f);�S(f � + x�(�S(f � + x(f � f �))(f � f �)) = x2�2(x2�S(f));and the se
ond monotoni
ity 
ondition transforms into the following require-ment: y�(y2s) is a monotoni
ally in
reasing (not de
reasing) fun
tion of y > 0for any s > 0.If a limiter satis�es both monotoni
ity 
onditions, we 
all it \double mono-toni
". For example, Ehrenfests' regularisation satis�es the �rst monotoni
ity
ondition, but obviously violates the se
ond one. The limiter (8) violates the�rst 
ondition for small �S, but is dissipative and satis�es the se
ond one inquadrati
 approximation for large �S. The limiter with � = 1=(1+��Sk) al-ways satis�es the �rst monotoni
ity 
ondition, violates the se
ond if k > 1=2,and is double monotoni
 (in quadrati
 approximation for the se
ond 
ondi-tion), if 0 < k � 1=2. The threshold limiters (11) are also double monotoni
.12



Of 
ourse, it is not forbidden to use any type of limiters under the lo
al andglobal 
ontrol of dissipation, but double monotoni
 limiters provide some nat-ural properties automati
ally, without additional 
are.
4 Numeri
al experimentTo 
on
lude this paper we report some numeri
al experiments 
ondu
ted todemonstrate the performan
e of some of the proposed nonequilibrium entropylimiters for LBM from Se
. 3.
4.1 Velo
ities and quasiequilibriaWe will perform simulations using both entropi
 and non-entropi
 quasiequi-libria, but we always work with an athermal LBM model. Whenever we usenon-entropi
 quasiequilibria we employ Kullba
k entropy (13).In 1D, we use a latti
e with spa
ing and time step Æt = 1 and a dis
retevelo
ity set fv1; v2; v3g := f0;�1; 1g so that the model 
onsists of stati
, left-and right-moving populations only. The subs
ript i denotes population (notlatti
e site number) and f1, f2 and f3 denote the stati
, left- and right-movingpopulations, respe
tively. The entropy is S = �H, withH = f1 log(f1=4) + f2 log(f2) + f3 log(f3);(see, e.g., [27℄) and, for this entropy, the lo
al entropi
 quasiequilibrium statef � is available expli
itly:f �1 = 2�3 �2�p1 + 3u2�;f �2 = �6�(3u� 1) + 2p1 + 3u2�;f �3 = ��6�(3u+ 1)� 2p1 + 3u2�; (14)
where � :=Xi fi; u := 1�Xi vifi: (15)13



The standard non-entropi
 polynomial quasiequilibria [38℄ are:f �1 = 2�3  1� 3u22 !;f �2 = �6(1� 3u+ 3u2);f �3 = �6(1 + 3u+ 3u2): (16)
In 2D, we employ a uniform 9-speed square latti
e with dis
rete velo
itiesfvi j i = 0; 1; : : : 8g: v0 = 0, vi = (
os((i � 1)�=2); sin((i � 1)�=2)) for i =1; 2; 3; 4, vi = p2(
os((i � 5)�2 + �4 ); sin((i � 5)�2 + �4 )) for i = 5; 6; 7; 8. Thenumbering f0, f1; : : : ; f8 are for the stati
, east, north, west, south, north-east, northwest, southwest and southeast-moving populations, respe
tively.As usual, the entropi
 quasiequilibrium state, f �, 
an be uniquely determinedby maximising an entropy fun
tionalS(f) = �Xi fi log� fiWi�;subje
t to the 
onstraints of 
onservation of mass and momentum [2℄:f �i = �Wi 2Yj=1�2�q1 + 3u2j�0�2uj +q1 + 3u2j1� uj 1Avi;j : (17)Here, the latti
e weights, Wi, are given latti
e-spe
i�
 
onstants: W0 = 4=9,W1;2;3;4 = 1=9 and W5;6;7;8 = 1=36. Analogously to (15), the ma
ros
opi
 vari-ables � and u = (u1; u2) are the zeroth and �rst moments of the distributionf , respe
tively. The standard non-entropi
 polynomial quasiequilibria [38℄ are:f �i = �Wi 1 + 3viu+ 9(viu)22 � 3u22 !: (18)4.2 LBGK and ELBMThe governing equations for LBGK arefi(x + vi; t+ 1) = f �i (x; t) + (2� � 1)(f �i (x; t)�fi(x; t)); (19)where � = 1=(2� + 1).For ELBM (4) the governing equations are:fi(x + vi; t+ 1) = (1� �)f �i (x; t) + � ~fi(x; t); (20)14



with � as above and ~f = (1��)f+�f �. The parameter, �, is 
hosen to satisfya 
onstant entropy 
ondition. This involves �nding the nontrivial root of theequation S((1� �)f + �f �) = S(f): (21)To solve (21) numeri
ally we employ a robust routine based on bise
tion. Theroot is solved to an a

ura
y of 10�15 and we always ensure that the returnedvalue of � does not lead to a numeri
al entropy de
rease. We stipulate thatif, at some site, no nontrivial root of (21) exists we will employ the positivityrule instead (Fig. 1).4.3 Sho
k tubeThe 1D sho
k tube for a 
ompressible athermal 
uid is a standard ben
hmarktest for hydrodynami
 
odes. Our 
omputational domain will be the interval[0; 1℄ and we dis
retize this interval with 801 uniformly spa
ed latti
e sites.We 
hoose the initial density ratio as 1:2 so that for x � 400 we set � = 1:0else we set � = 0:5. We will �x the kinemati
 vis
osity of the 
uid at � = 10�9.4.3.1 Comparison of LBGK and ELBMIn Fig. 2 we 
ompare the sho
k tube density pro�le obtained with LBGK(using entropi
 quasiequilibria (14)) and ELBM. On the same panel we alsodisplay both the total entropy S(t) := Px S(x; t) and total nonequilibriumentropy �S(t) := Px�S(x; t) time histories. As expe
ted, by 
onstru
tion,we observe that total entropy is (e�e
tively) 
onstant for ELBM. On the otherhand, LBGK behaves non-entropi
ally for this problem. In both 
ases we ob-serve that nonequilibrium entropy grows with time.As we 
an see, the 
hoi
e between the two 
ollision formulas LBGK (19)or ELBM (20) does not a�e
t spurious os
illation, and reported regularisa-tion [29℄ is, perhaps, the result of approximate analyti
al solution of the equa-tion (21). Ina

ura
y in the solution of (21) 
an be interpreted as a hiddennonequilibrium entropy limiter. But it should be mentioned that the entropi
method 
onsists not only of the 
ollision formula, but, what is important, in-
ludes a spe
ial 
hoi
e of quasiequilibrium that 
ould improve stability (see,e.g., [13℄). Indeed, when we 
ompare ELBM with LBGK using either entopi
 orstandard polynomial quasiequilibria, there appears to be some gain in employ-ing entropi
 quasiequilibria (Fig. 3). We observe that the post-sho
k regionfor the LBGK simulations is more os
illatory when polynomial quasiequilibriaare used. In Fig. 3 we have also in
luded a panel with the simulation result-ing from a mu
h higher vis
osity (� = 3:3333 � 10�2). Here, we observe noappre
iable di�eren
es in the results of LBGK and ELBM.15
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Fig. 2. Density and pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9after 400 time steps using (a) LBGK (19); (b) ELBM (20). In this example, nonegative population are produ
ed by any of the methods so the positivity rule isredundant. For ELBM in this example, (21) always has a nontrivial root. Totalentropy and nonequilibrium entropy time histories are shown in panels (
), (d) and(e), (f) for LBGK and ELBM, respe
tively.
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ity pro�le of the 1:2 isothermal sho
k tube simula-tion after 400 time steps using (a) LBGK (19) with polynomial quasiequilib-ria (16) [� = 3:3333 � 10�2℄; (b) LBGK (19) with entropi
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4.3.2 Nonequilibrium entropy limiters.Now, we would like to demonstrate just a representative sample of the manypossibilities of limiters suggested in Se
. 3. In ea
h 
ase the limiter is im-plemented by a post-pro
essing routine immediately following the 
ollisionstep (either LBGK (19) or ELBM (20)). Here, we will only 
onsider LBGK
ollisions and entropi
 quasiequilibria (14).The post-pro
essing step adjusts f by the update formula:f 7! f � + �(�S)(f � f �);where �S is de�ned by (6) and � is a limiter fun
tion.For the Ehrenfests' regularisation one would 
hoose�(�S)(x) = ( 1; �S(x) � Æ;0; otherwise,where Æ is a pre-spe
i�ed threshold value. Furthermore, it is pertinent to sele
tjust k sites with highest �S > Æ. This limiter has been previously applied tothe sho
k tube problem in [6{8℄ and we will not reprodu
e those results here.Instead, our �rst example will be the following smooth limiter:�(�S) = 11 + ��Sk : (22)For this limiter, we will �x k = 1=2 (so that the limiter is double monotoni
 inquadrati
 approximation to entropy) and 
ompare the density pro�les for � =Æ=(E(�S)k), Æ = 0:1; 0:01; 0:001. We have also ensured an ensemble-dependentlimiter be
ause of the dependen
e of � on the average E(�S). As with Fig. 2,we a

ompany ea
h panel with the total entropy and nonequilibrium entropyhistories. Note the di�erent s
ales for nonequilibrium entropy. Note also thatentropy (ne
essarily) now grows due to the additional dissipation.Our next example (Fig. 5) 
onsiders the threshold �lter (10). In this examplewe 
hoose the estimates �S0 = 5E(�S); 10E(�S); 20E(�S) and �x the tol-eran
e Æ = 0 so that the in
uen
e of the threshold alone 
an be studied. Onlyentropi
 adjustments are a

epted in the limiter: �St � �S. As the thresholdin
reases, nonequilibrium entropy grows faster and spurious begin to appear.Finally, we test the median �lter (Fig. 6). We 
hoose a minimal �lter so thatonly the nearest neighbours are 
onsidered. As with the threshold �lter, weintrodu
e a toleran
e Æ and we try the values Æ = 10�3; 10�4; 10�5. Onlyentropi
 adjustments are a

epted in the limiter: �Smed � �S.17
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Fig. 4. Density and pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9after 400 time steps using LBGK (19) and the smooth limiter (22) with k = 1=2,� = Æ=(E(�S)k) and (a) Æ = 0:1; (b) Æ = 0:01 and (
) Æ = 0:001. Total entropy andnonequilibrium entropy time histories for ea
h parameter set fk; �(Æ)g are displayedin the adja
ent panels.We have seen that ea
h of the examples we have 
onsidered (Fig. 4, Fig. 5and Fig. 6) is 
apable of subduing spurious post-sho
k os
illations 
omparedwith LBGK (or ELBM) on this problem (
f. Fig. 2). Of 
ourse, by limitingnonequilibrium entropy the result is ne
essarily an in
rease in entropy.From our experien
es our re
ommendation is that the median �lter is thesuperior 
hoi
e amongst all the limiters suggested in Se
. 3. The a
tion of themedian �lter is found to be both extremely gentle and, at the same time, verye�e
tive.4.4 Lid-driven 
avityOur se
ond numeri
al example is the 
lassi
al 2D lid-driven 
avity 
ow. Asquare 
avity of side length L is �lled with 
uid with kinemati
 vis
osity �(initially at rest) and driven by the 
avity lid moving at a 
onstant velo
ity(u0; 0) (from left to right in our geometry).18
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Fig. 5. Density and pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9after 400 time steps using LBGK (19) and the threshold limiter (10) with (a)�St = 5E(�S); (b) �St = 10E(�S) and (
) �St = 20E(�S). Total entropy andnonequilibrium entropy time histories for ea
h threshold �St are displayed in theadja
ent panels.We will simulate the 
ow on a 100 � 100 grid using LBGK regularised withthe median �lter limiter. Unless otherwise stated, we use entropi
 quasiequilib-ria (17). The implementation of the �lter is as follows: the �lter is not appliedto boundary nodes; for nodes whi
h immediately neighbour the boundary thesten
il 
onsists of the 3 nearest neighbours (in
luding itself) 
losest to theboundary; for all other nodes the minimal sten
il of 9 nearest neighbours isused.We have purposefully sele
ted su
h a 
oarse grid simulation be
ause it is read-ily found that, on this problem, unregularised LGBK fails (blows-up) for allbut the most modest Reynolds numbers Re := Lu0=�.4.4.1 Steady-state vortex 
entresFor modest Reynolds number the system settles to a steady state in whi
h thedominant features are a primary 
entral rotating vortex, with several 
ounter-rotating se
ondary vorti
es lo
ated in the bottom-left, bottom-right (and pos-19
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Fig. 6. Density and pro�le of the 1:2 athermal sho
k tube simulation with � = 10�9after 400 time steps using LBGK (19) and the minimal median limiter with (a)Æ = 10�5; (b) Æ = 10�4 and (
) Æ = 10�3. Total entropy and nonequilibriumentropy time histories for ea
h toleran
e Æ are displayed in the adja
ent panels.sibly top-left) 
orners.Steady state has been extensively investigated in the literature. The studyof Hou et al [24℄ simulates the 
ow over a range of Reynolds numbers usingunregularised LBGK on a 256�256 grid. Primary and se
ondary vortex 
entredata is provided. We 
ompare this same statisti
 for the present median �ltered
oarse grid simulation. We will employ the same 
onvergen
e 
riteria usedin [24℄. Namely, we deem that steady state has been rea
hed by ensuringthat the di�eren
e between the maximum value of the stream fun
tion forsu

essive 10; 000 time steps is less that 10�5. The stream fun
tion, whi
h isnot a primary variable in the LBM simulation, is obtained from the velo
itydata by integration using Simpson's rule. Vortex 
entres are 
hara
terised aslo
al extrema of the stream fun
tion.We 
ompare our results with the LBGK simulations in [24℄ and [41℄. To alignourselves with these studies we spe
ify the following boundary 
ondition: lidpro�le is 
onstant; remaining 
avity walls are subje
t to the \boun
e-ba
k"
ondition [38℄. In our simulations, the initial uniform 
uid density pro�le is� = 2:7 and the velo
ity of the lid is u0 = 1=10 (in latti
e units).20



Colle
ted in Table 1, for Re = 2000; 5000 and 7500, are the 
oordinates ofthe primary and se
ondary vortex 
entres using (a) unregularised LBGK; (b)LBGK with median �lter limiter (Æ = 10�3); (
) LBGK with median �lter lim-iter (Æ = 10�4), all with non-entropi
 polynomial quasiequilibria (18). Lines(d), (e) and (f) are the same but with entropi
 quasiequilibria (17). The re-maining lines of Table 1 are as follows: (g) literature data [24℄ (unregularisedLBGK on a 256�256 grid); (h) literature data [41℄ (positivity rule); (i) litera-ture data [41℄ (ELBM). With the ex
eption of (g), all simulation are 
ondu
tedon a 100 � 100 grid. The top-left vortex does not appear at Re = 2000 andno data was provided for it in [41℄ at Re = 5000. The unregularised LBGKRe = 7500 simulation blows-up in �nite time and the simulation be
omesmeaningless. The y-
oordinate of the two lower-vorti
es at Re = 5000 in (i)appear anomalously small and were not reprodu
ed by our experiments withthe positivity rule (not shown).We have 
ondu
ted two runs of the experiment with the median �lter param-eter Æ = 10�3 and Æ = 10�4. Despite the in
reased number of realisations thevortex 
entre lo
ations remain e�e
tively un
hanged and we dete
t no signif-i
ant variation between the two runs. This demonstrates the gentle nature ofthe median �lter. At Reynolds Re = 2000 the median �lter has no e�e
t at allon the vortex 
entres 
ompared with LBGK.We �nd no signi�
ant di�eren
es between the experiments with entropi
 andnon-entropi
 polynomial quasiequilibria in this test.The 
oordinates of the primary vortex 
entre for unregularised LBGK at Re =5000 are already quite ina

urate as LBGK begins to lose stability. Stabilityis lost entirely at some 
riti
al Reynolds number 5000 < Re � 7500 and thesimulation blows-up.Furthermore, we have agreement (within grid resolution) with the data givenin [24℄. Also 
ompiled in Table 1 is the data from the limiter experiments
ondu
ted in [41℄ (although not expli
itly dis
ussed in the language of limitersby the authors of that work). In [41℄ the authors give vortex 
entre data forthe positivity rule (Fig. 1) and for ELBM (whi
h we interpret as 
ontaining ahidden limiter). In [41℄ the positivity rule is 
alled FIX-UP.As Reynolds number in
reases the 
ow in the 
avity is no longer steady and amore 
ompli
ated 
ow pattern emerges. On the way to a fully developed tur-bulent 
ow, the lid-driven 
avity 
ow is known to undergo a series of perioddoubling Hopf bifur
ations. On our 
oarse grid, we observe that the 
oordi-nates of the primary vortex 
entre (maximum of the stream fun
tion) is a veryrobust feature of the 
ow, with little 
hange between 
oordinates (no 
hangein y-
oordinates) 
omputed at Re = 5000 and Re = 7500 with the median �l-ter. On one hand, be
ause of this observation it be
omes in
on
lusive whether21



Table 1Primary and se
ondary vortex 
entre 
oordinates for the lid-driven 
avity 
ow atRe = 2000; 5000; 7500.Primary Lower-left Lower-right Top-leftRe x y x y x y x y2000 (a) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (b) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (
) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (d) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (e) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (f) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not appli
able2000 (g) 0.5255 0.5490 0.0902 0.1059 0.8471 0.0980 Not appli
able2000 (h) 0.5200 0.5450 0.0900 0.1000 0.8300 0.0950 Not appli
able2000 (i) 0.5200 0.5500 0.0890 0.1000 0.8300 0.1000 Not appli
able5000 (a) 0.5152 0.6061 0.0808 0.1313 0.7980 0.0707 0.0505 0.89905000 (b) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (
) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (d) 0.5152 0.5960 0.0808 0.1313 0.8081 0.0808 0.0505 0.89905000 (e) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.89905000 (f) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.88895000 (g) 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745 0.0667 0.90595000 (h) 0.5150 0.5680 0.0950 0.0100 0.8450 0.0100 Not available5000 (i) 0.5150 0.5400 0.0780 0.1350 0.8050 0.0750 Not available7500 (a) | | | | | | | |7500 (b) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (
) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (d) | | | | | | | |7500 (e) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.89907500 (f) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.88897500 (g) 0.5176 0.5333 0.0706 0.1529 0.7922 0.0667 0.0706 0.9098
22



the median limiter is adding too mu
h additional dissipation. On the otherhand, a more studious 
hoi
e of 
ontrol 
riteria may indi
ate that the �rstbifur
ation has already o

urred by Re = 7500.4.4.2 First Hopf bifur
ationA survey of available literature reveals that the pre
ise value of Re at whi
hthe �rst Hopf bifur
ation o

urs is somewhat 
ontentious, with most 
urrentstudies (all of whi
h are for in
ompressible 
ow) ranging from around Re =7400{8500 [9,32,33℄. Here, we do not intend to give a pre
ise value be
auseit is a well observed grid e�e
t that the 
riti
al Reynolds number in
reases(shifts to the right) with re�nement (see, e.g., Fig. 3 in [33℄). Rather, wewill be 
ontent to lo
alise the �rst bifur
ation and, in doing so, demonstratethat limiters are 
apable of regularising without e�e
ting fundamental 
owfeatures.To lo
alise the �rst bifur
ation we take the following algorithmi
 approa
h.Entropi
 quasiequilibria are in use. The initial uniform 
uid density pro�leis � = 1:0 and the velo
ity of the lid is u0 = 1=10 (in latti
e units). Were
ord the unsteady velo
ity data at a single 
ontrol point with 
oordinates(L=16; 13L=16) and run the simulation for 5000 non-dimensionless time units(5000L=u0 time steps). Let us denote the �nal 1% of this signal by (usig; vsig).We then 
ompute the energy Eu (`2-norm normalised by non-dimensionalsignal duration) of the deviation of usig from its mean:Eu := 




s Lu0jusigj(usig � usig)




`2 ; (23)where jusigj and usig denote the length and mean of usig, respe
tively. We
hoose this robust statisti
 instead of attempting to measure signal amplitudebe
ause of numeri
al noise in the LBM simulation. The sour
e of noise in LBMis attributed to the existen
e of an inherently unavoidable neutral stabilitydire
tion in the numeri
al s
heme (see, e.g., [8℄).We opt not to employ the \boun
e-ba
k" boundary 
ondition used in the pre-vious steady state study. Instead we will use the di�usive Maxwell boundary
ondition (see, e.g., [11℄), whi
h was �rst applied to LBM in [1℄. The essen
eof the 
ondition is that populations rea
hing a boundary are re
e
ted, propor-tional to equilibrium, su
h that mass-balan
e (in the bulk) and detail-balan
eare a
hieved. The boundary 
ondition 
oin
ides with \boun
e-ba
k" in ea
h
orner of the 
avity.To illustrate, immediately following the adve
tion of populations 
onsider thesituation of a wall, aligned with the latti
e, moving with velo
ity uwall andwith outward pointing normal to the wall in the negative y-dire
tion (this is23



the situation on the lid of the 
avity with uwall = u0). The implementationof the di�usive Maxwell boundary 
ondition at a boundary site (x; y) on thiswall 
onsists of the updatefi(x; y; t+ 1) = 
f �i (uwall); i = 4; 7; 8;with 
 = f2(x; y; t) + f5(x; y; t) + f6(x; y; t)f �4 (uwall) + f �7 (uwall) + f �8 (uwall) :Observe that, be
ause density is a linear fa
tor of the quasiequilibria (17),the density of the wall is in
onsequential in the boundary 
ondition and 
antherefore be taken as unity for 
onvenien
e. As is usual, only those populationspointing in to the 
uid at a boundary site are updated. Boundary sites do notundergo the 
ollisional step that the bulk of the sites are subje
ted to.We prefer the di�usive boundary 
ondition over the often preferred \boun
e-ba
k" boundary 
ondition with 
onstant lid pro�le. This is be
ause we haveexperien
ed diÆ
ulty in separating the aforementioned numeri
al noise fromthe genuine signal at a single 
ontrol point using \boun
e-ba
k". We remarkthat the di�usive boundary 
ondition does not prevent unregularised LBGKfrom failing at some 
riti
al Reynolds number Re > 5000.Now, we 
ondu
t an experiment and re
ord (23) over a range of Reynoldsnumbers. In ea
h 
ase the median �lter limiter is employed with parameterÆ = 10�3. Sin
e the transition between steady and periodi
 
ow in the lid-driven 
avity is known to belong to the 
lass of standard Hopf bifur
ationswe are assured that E2u / Re [16℄. Fitting a line of best �t to the resultingdata lo
alises the �rst bifur
ation in the lid-driven 
avity 
ow to Re = 7135(Fig. 7). This value is within the toleran
e of Re = 7402� 4% given in [33℄ fora 100�100 grid. We also provide a (time averaged) phase spa
e traje
tory andFourier spe
trum for Re = 7375 at the monitoring point (Fig. 8 and Fig. 9)whi
h 
learly indi
ate that the �rst bifur
ation has been observed.5 Con
lusionsEntropy and thermodynami
s are important for stability of the latti
e Boltz-mann methods. It is now 
lear: after almost 10 years of work sin
e the pub-li
ation of [26℄ proved this statement (the main reviews are [5,28,39℄). Thequestion is now: \how does one utilise, optimally, entropy and thermody-nami
 stru
tures in latti
e Boltzmann methods?". In our paper we attempt topropose a solution (temporary, at least). Our approa
h is appli
able to bothentropi
 as well as for non-entropi
 polynomial quasiequilibria.24
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Fig. 7. Plot of energy squared, E2u (23), as a fun
tion of Reynolds number, Re, usingLBGK regularised with the median �lter limiter with Æ = 10�3 on a 100� 100 grid.Straight lines are lines of best �t. The interse
tion of the sloping line with the x-axiso

urs 
lose to Re = 7135.We have 
onstru
ted a system of nonequilibrium entropy limiters for the latti
eBoltzmann methods (LBM):� the positivity rule that provides positivity of distribution;� the pointwise entropy limiters based on sele
tion and 
orre
tion of mostnonequilibrium values;� �lters of nonequilibrium entropy, and the median �lter as a �lter of 
hoi
e.All these limiters exploit physi
al properties of LBM and allow 
ontrol of totaladditional entropy produ
tion. In general, they do the same work for LBM as
ux limiters do for �nite di�eren
es, �nite volumes and �nite elements meth-ods, and 
ome into operation when sharp gradients are present. For smoothly
hanging waves, the limiters do not operate and the spatial derivatives 
an berepresented by higher order approximations without introdu
ing non-physi
alos
illations. But there are some di�eren
es too: for LBM the main idea behindthe 
onstru
tion of nonequilibrium entropy limiter s
hemes is to limit a s
alarquantity | the nonequilibrium entropy | or to delete the \salt and pepper"noise from the �eld of this quantity. We do not tou
h the ve
tors or tensorsof spatial derivatives, as it is for 
ux limiters.Standard test examples demonstrate that the developed limiters erase spuriousos
illations without blurring of sho
ks, and do not a�e
t smooth solutions. Thelimiters we have tested do not produ
e a noti
eable additional dissipation and25



Fig. 8. Velo
ity 
omponents as a fun
tion of time for the signal (usig; vsig) at themonitoring point (L=16; 13L=16) using LBGK regularised with the median �lterlimiter with Æ = 10�3 on a 100 � 100 grid (Re = 7375). Dots represent simulationresults and the solid line is a 100 step time average of the signal.allow us to reprodu
e the �rst Hopf bifur
ation for 2D lid-driven 
avity on a
oarse 100� 100 grid. At the same time the simplest median �lter deletes thespurious post-sho
k os
illations for low vis
osity.Perhaps, it is impossible to �nd one best nonequilibrium entropy limiter forall problems. It is a spe
ial task to 
onstru
t the optimal limiters for a spe
i�

lasses of problems.
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