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ABSTRACT. We consider the nearest-neighbor simple random walk$nd > 2, driven by a

field of i.i.d. random nearest-neighbor conductanegg € [0, 1]. Apart from the requirement

that the bonds with positive conductances percolate, we pose no restriction on the law'sf the
We prove that, for a.e. realization of the environment, the path distribution of the walk converges
weakly to that of non-degenerate, isotropic Brownian motion. The quenched functional CLT holds
despite the fact that the local CLT may fail th > 5 due to anomalously slow decay of the
probability that the walk returns to the starting point at a given time.

1. INTRODUCTION

Let Bq denote the set of unordered nearest-neighbor pairs (i.e., edgé$)pol let(wp)pep, be
i.i.d. random variables witl, € [0, 1]. We will refer tow, as theconductancef the edgeb.
Let P denote the law of the’s and suppose that

P(wp > 0) > pc(d), (1.2)

where p(d) is the threshold for bond percolation @i; in d = 1 we havep.(d) = 1 so there
we supposevs, > 0 a.s. This condition ensures the existence of a unique infinite connected
componen,, of edges with strictly positive conductances; we will typically restrict attention to
w’s for which %, contains a given site (e.g., the origin).

Each realization o¥,, can be used to define a random wlk= (X,) which moves abou#,,
by picking, at each unit time, one of itel Zicighbors at random and moving to it with probability
equal to the conductance of the corresponding edge. TechniXalya Markov chain with state
spaces,, and the transition probabilities defined by

Cl)xy
Py (Xns1 = Y| Xn = X) = — 1.2
z2(Xny1 = YIXp = X) 2 (1.2)
if X,y € € and|x —y| =1, and
1
Poz(Xns1 = XIXn =X) = 1= o ) ly_ZX|=1wxy- (1.3)

The second index oR,, ; marks the initial position of the walk, i.eR, ;(Xo = z) = 1. As s
easy to check, the counting measuredpis invariant and reversible for this Markov chain.
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Thed = 1 walk is a simple, but instructive, exercise for harmonic analysis of reversible
random walks in random environments. Let us quickly sketch the proof of the fact that, for
a.e. conductance configuration sampled from a translation-invariant, ergodic 18@y @r)®¢
satisfying the moment conditions

E(wp) < oo and E(wi) < o0, (1.4)
b

the walk scales to Brownian motion for the usual diffusive scaling of space and time. (Here and
henceforthE denotes expectation with respect to the environment distribution.)
AbbreviateC = E(1/wyp). The key step of the proof is to realize that

Po(X) =X+ < Z(

is harmonic for the Markov chain. Hengg,(X,) is a martingale whose increments are, by
(1.4) and a simple calculation, square integrable in the sEfsgo[¢,(X1)?]< oco. Invoking
the stationarity and ergodicity of the Markov chain on the space of environments “from the point
of view of the particle”—we will discuss the specifics of this argument later—the martingale
(¢, (Xp)) satisfies the conditions of the Lindeberg-Feller martingale functional CLT and so the
law of t = ¢, (X|nt))/+/N tends weakly to that of a Brownian motion. By the Pointwise Ergodic
Theorem and (1.4) we haye,(x) — X = 0(X) as|x| — oo. Thus the path — X, /+/n scales,
in the limitn — oo, to the same function a@s— ¢, (Xn)/+/N. In other words, ajuenched
functional CLT holds for almost evewy.

While the main ideas of the abode= 1 solution work in all dimensions, the situationdre> 2
is, even for i.i.d. conductances, significantly more complicated. Progress has been made under
additional conditions on the environment law. One such conditisiragg ellipticity,

Jo>0: Pla<w,<l,) =1 (1.6)

Here an annealed invariance principle was proved by Kipnis and Varadhan [17] and its queneched
counterpart by Sidoravicius and Sznitman [25]. Another natural family of environments are those
of supercriticabond percolatioronZ¢; i.e.,w, € {0, 1} with P(wp, = 1) > pc(d). For these cases
an annealed invariance principle was proved by De Masi, Ferrari, Goldstein and Wick [9, 10] and
the quenched case was established in 4 by Sidoravicius and Sznitman [25], and ina@lb 2
by Berger and Biskup [6] and Mathieu and Piatnitski [21] .

A significant conceptual deficiency of the latter proofs is that] in 3, they require the use of
heat-kernel upper bounds of the form

c) (1.5)

Wn n+1

_yl2
P,x(Xn=Y) < d—/zexp{—cz i } X, VY € G, a.7)

wherec,, ¢, are absolute constants ands assumed to exceed a random quantity depending on
the environment in the vicinity ok andy. These were deduced by Barlow [2] using sophisti-
cated arguments that involve isoperimetry, regular volume growth and comparison of graph and
Euclidean distances for the percolation cluster.

Apart from the conceptual difficulties—need of local-CLT type estimates to establish a plain
CLT—the use of heat-kernel bounds suffers from another significant problem: The bound (1.7)
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may actuallyfail once the conductance law has sufficiently heavy tails at zero. This was noted to
happen by Fontes and Mathieu [12] for the heat-kernel averaged over the environment; the more
relevant quenched situation was analyzed recently by Berger, Biskup, Hoffman and Kozma [7].
The main conclusion of [7] is that the diagonal (i>es= y) bound in (1.7) holds i = 2, 3 but

can be as bad agn~2) ind > 5 and, presumably(n—?logn) in d = 4. This is caused by the
existence ofrapsthat may capture the walk for a long time and thus, paradoxically, increase its
chances to arrive back to the starting point.

A natural question arises at this point: In the absence of heat-kernel estimates, does the
quenched CLT still hold? Our answer to this question is affirmative and constitutes the main
result of this note. Another interesting question is what happens when the conductances are
unbounded from above; this is currently being studied by Barlow and Deuschel [3].

Note While this paper was in the process of writing, we received a preprint from P. Mathieu [20]

in which he proves a result that is a continuous-time version of our main theorem. As for [6]
and [21], the proofs differ in many subtle aspects—e.g., homogenization arguments vs. computa-
tions based on geometry of the infinite cluster; the principal ideas—the use of the corrector and
the martingale CLT—are, of course, more or less the same. Our approach streamlines consider-
ably the proof of [6] ind > 3 in that it limits the use of “heat-kernel technology” to a uniform
bound on the heat-kernel decay (implied by isoperimetry) and a diffusive bound on the expected
distance of the walk from its initial position (implied by regular volume growth).

2. MAIN RESULTS AND OUTLINE

Let Q = [0, 1]%¢ be the set of all admissible random environments andP lbe an i.i.d. law
onQ. Assuming (1.1), le¥%,, denote the a.s. unique infinite connected component of edges with
positive conductances and introduce the conditional measure

Po(=) =P(-10 € %c). (2.1)

ForT > 0, let (C[0, T], #%) be the space of continuous functiofis [0, T]— RY equipped
with the Borels-algebra defined relative to the supremum topology.

Here is our main result;

Theorem 2.1 Suppose d> 2 andP(wp, > 0) > pc(d). For w € {0 € €}, let (Xn)ns0 be the
random walk with law B and let

1
Bn(t) = — (Xitn) + (tn = [tn))(X{tnj+1 — X{tn)))s t>0. (2.2)
J/n
Then for all T > 0 and forPp-almost every, the law of(By(t): 0 <t < T) on(C[O, T], #7)
converges, as r» oo, weakly to the law of an isotropic Brownian motioB;: 0 <t < T) with
a positive and finite diffusion constant.

Using a variant of [6, Lemma 6.4], from here we can extract a corresponding conclusion for
the “agile” version of our random walk (cf. [6, Theorem 1.2]) by which we mean the walk that
jumps fromx to its neighboty with probability wyy/7.,(X) wherer,,(X) is the sum otoy, over all
of the neighborg of x. Replacing discrete times by sums of i.i.d. exponential random variables,
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these invariance principles then extend also to the corresponding continuous-time processes. Fi-
nally, Theorem 2.1 of course implies also an annealed invariance principle, which is the above
convergence for the walk sampled from the path measure integrated over the environment.

The remainder of this paper is devoted to the proof of this theorem. The main line of attack is
similar to the above 1D solution: We define a harmonic coordipgte-an analogue of (1.5)—
and then prove an a.s. invariance principletfer ¢, (Xnt|)/+/n along the argument sketched
before. The difficulty comes with showing the sublinearity boyndx) — x = o(x). As in
Berger and Biskup [6], sublinearity can be proved directly along coordinate directions by soft
ergodic-theory arguments. The crux is to extend this to a bound throudhdiotensional boxes.

Following thed > 3 proof of [6], the bound along coordinate axes extendsutalinearity
on average meaning that the set of sites at whifgh,(x) — X| exceeds|x| has zero density.

The extension of sublinearity on average to pointwise sublinearity is the main novel part of the
proof which, unfortunately, still makes non-trivial use of the “heat-kernel technology.” A heat-
kernel upper bound of the form (1.7) would do but, to minimize the extraneous input, we show
that it suffices to have a diffusive bound for the expected displacement of the walk from its
starting position. This step still requires detailed control of isoperimetry, volume growth and
the comparison between the graph-theoretic and Euclidean distances, but avoids many spurious
calculations that are needed for the full-fledged heat-kernel estimates.

Of course, the required isoperimetric inequalities may not be tru€,gbecause of the pres-
ence of weak bonds. As in [7] we circumvent this by observing the random walk on the set of
sites that have a connection to infinity by bonds wittiformly positive conductances. Specifi-
cally we picka > 0 and let%,, , denote the set of sites iff that are connected to infinity by a
path whose edges obey, > «. Here we note:

Proposition 2.2 Letd > 2and p= P(wp, > 0) > pc(d). Then there exists(p, d) > 0 such
that if o satisfies
P(wp > ) > pe(d) (2.3)
and
PO < wp < a) < c(p,d) (2.4)
thené . is nonempty an@, \ 6., has only finite components a.s. In factZf(x) is the set
of sites (possibly empty) in the finite componert’gf\ 4., containing x, then
P(X € 6o & diam.Z(x) > n) < Ce™", n>1, (2.5)
for some C< oo andy > 0. Here “diant’ is the diameter in thef, distance orZd.

The restriction ofp,, to %, is still harmonic, but with respect to a walk that can “jump the
holes” of ¢, .. A discrete-time version of this walk was utilized heavily in [7]; for the purposes
of this paper it will be more convenient to work with its continuous-time countefast(Y;);>o.
Explicitly, sample a path of the random wa¥k = (X,) from P, o and denote by, T,, ... the
time intervals between successive visitsofo ¢, ,. These are defined recursively by

Tj11 = inf {n > 1: Xqy44Tj4n € (goo,a}, (2.6)
with To = 0. For eaclx, y € €4, let
é\)xy = ijx(XTl = y) (2.7)
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and define the operator
LY = D dy[fy) = FX)]. (2.8)
yecgoc,a
The continuous-time random walk is a Markov process with this generator; alternatively take
the standard Poisson procéd$ ).~ with jump-rate one and set
Yt = XT1+"‘+TNt . (29)

Note that, whileY may jump “over the holes” 0% ,, all of its jumps are finite. The counting
measure O, is still invariant for this random walk;* is self-adjoint on the corresponding
space of square integrable functions @l ¢, = 0 oN%,, (see Lemma 5.2).

The skeleton of the proof is condensed into the following statement whose proof, and adapta-
tion to the present situation, is the main novel part of this note:

Theorem 2.3 Fix o as in (2.3-2.4) and lep,,: €.« — RY be a function and lef > 0 be a
number such that the following holds for ace.

(1) (Harmonicity) £ (X + w,) = 00N % 4.

(2) (Sublinearity on average) For eveey> O,

.1
Jim =5 > Liyyoorzen =0. (2.10)
XEGso,a
[X|<n
(3) (Polynomial growth)
lim  max "”“’gx)' —0. (2.11)
N—00 X€br0,a n

[X|<n
Let Y = (Y;) be the continuous-time random walk with generat§f and suppose also:
(4) (Diffusive upper bounds) For a deterministic sequenge=n(n?) and a.ew,
Eox|Yt — X|

Sup max sup—— < @ 2.12
nzlp X€Co0,a tzbnp Vi ( )
[x|<n
and
sup max supt9?P, ,(Y; = x) < co. (2.13)

n>1 X€%xu t>hy
IX]<n

Then for almost every,

(X
im max Ye®l _ g (2.14)
N—00 X€Co0,a n

Ixj<n

This result shows that, (X) — X = 0(X) on ¢, Which then extends t@-, by the maximum
principle applied ta,, on the finite components &f,, \ ¢, and using that the component sizes
obey a polylogarithmic upper bound. The assumptions (1-3) are known to hold for the corrector of
the supercritical bond-percolation cluster and the proof applies, with minor modifications, to the
present case as well. The crux is to prove (2.12—-2.13) which requires ideas from the “heat-kernel
technology.” For our purposes it will suffice to takg= nin part (4).
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The plan of the rest of this paper is a follows: Sect. 3 is devoted to some basic percolation
estimates needed in the rest of the paper. In Sect. 4 we define the cogreetaich is a random
function marking the difference between the harmonic coordipgf®) and the geometric coor-
dinatex. Then we prove Theorem 4.1. In Sect. 5 we establish the a.s. sublinearity of the corrector
as stated in Theorem 2.3 subject to the diffusive bounds (2.12-2.13). Then we assemble all facts
into the proof of Theorem 2.1. Finally, in Sect. 6 we adapt some arguments from Barlow [2] to
prove (2.12-2.13); first in rather general Propositions 6.1 and 6.2 and then for the case at hand.

3. PERCOLATION ESTIMATES

In this section we provide a proof of Proposition 2.2 and also of a lemma dealing with the max-
imal distance a random walK can travel in a given number of jumps. We will need to work
with the “static renormalization” (cf. Grimmett [14, Section 7.4]) whose salient features we will
now recall. The underlying ideas go back to the work of Kesten and Zhang [16], Grimmett and
Marstrand [15] and Antal and Pisztora [1].

We say that an eddeis occupied ifw, > 0. Consider the lattice cubes
BL(X) =x+[0,L]9NZ% and Ba (x) = x+[—L,2L]9nzZd (3.1)

and note thaBs, (x) consists of 3 copies ofB, (x) that share only sites on their adjacent bound-
aries. LetG| (x) be the “good event” which is the set of configurations such that:

(1) Every side ofB,(Lx) is connected to a site on the inner boundaryBaf (LX) by an
occupied path.
(2) Any two paths as in (1) are connected by using only occupied bonds with both endpoints
in é3|_(LX).
The sheer existence of infinite cluster implies that (1) occurs with high probabilityloigckarge
(see Grimmett [14, Theorem 8.97]) while the situation in (2) occurs with large probability once
there is percolation in half space (see Grimmett [14, Lemma 7.89]). It follows that

P(GL()) — 1 (3.2)

wheneverP(w, > 0) > pc(d). A crucial consequence of the above conditions is thag, itx)
andG_ (y) occur for neighboring sites, y € Z9, then the largest connected componenain(x)
and Bs, (y)—sometimes referred to apanning clusters-are connected. Thus, &, (x) occurs
for all x along an infinite path oY, the corresponding spanning clusters are subsets,of

A minor complication is that the event&, (x): x € Z9} are not independent. However, they
are 4-dependent in the sense thaxify and (y;) are such thakx; — y;| > 4 for eachi and j,
then the familie§G_ (x;)} and{G_(y;)} are independent. It follows (cf [14, Theorem 7.65]) that
the indicatorg1g, « : X € Z4}, regarded as a random processZsh dominate i.i.d. Bernoulli
random variables whose density (of ones) tends to ore-as oco.

Proof of Proposition 2.2In d = 2 the proof is actually very simple because it suffices to choose
o such that (2.3) holds. The#l,, \ €.« C Z2 \ G.. has only finite (subcritical) components
whose diameter has exponential tails (2.5) by, e.g., [14, Theorem 6.10].

To handle general dimensions we will have to invoke the above static renormalization. Let
GL(x) be as above and consider the ev@nt, (X) where we in addition require thai, & (0, a)
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for every edge with both endpoints B) (Lx). Clearly,
lim limP(G_ ,(x)) = L. (3.3)

L—oo al0

Using the aforementioned domination by site percolation, and adjustangda to have a suffi-
ciently high density of good blocks, we can thus ensure that the set

{x e Z%: G_,(x) occurd (3.4)

has a unique infinite compone@t,, whose complement has only finite components. Moreover,
if G(0) is the finite connected componentZst\ C., containing the origin, then a standard Peierls
argument yields

P(diamG(0) > n) < e™<" (3.5)
for somes > 0. To prove (2.5), we claim that
FO c |J BLLx). (3.6)
xe$(0)

Indeed, ifz € .%(0) andx are such that € B (Lx) then eitherB_ (LX) contains a bond with

oy € (0, a), in which caseG| (x) does not occur, or not. If not therlies in a finite connected
component of bonds witl, > a whose diameter exceedls It suffices to show that any such
component lies in a finite connected component of the setin (3.4). This is a standard consequence
of properties (1-2) in the definition @ (x): If x were adjacent to an infinite path in the set (3.4),

then the finite cluster intersectir) (L x) would have to be part of’ ., @ contradiction.  [J

Let d(x, y) be the “Markov distance” oV = % ,, i.€., the minimal number of jumps the
random walkY = (Y;) needs to make to get fromito y. Note that dx, y) could be quite smaller
than the graph-theoretic distance @ ,. To control the volume growth for the Markov graph
of the random walky—cf. the end of Sect. 6—we will need to know thdkdy) is nevertheless
comparable with the Euclidean distange- y|:

Lemma 3.1 There exist® > 0and for eachy > Othere isa > 0 obeying (2.3-2.4) such that
P(0,X € o & d(0,X) < glx]) < 7™, x e 79 (3.7)

Proof. Suppose: is as in the proof of Proposition 2.2. Léx) be independent Bernoulli that
dominate the indicators,,_, from below and let,, be the unique infinite component of the set
(x € Z9: n, = 1}. We may “wire” the “holes” ofC,, by putting an edge between every pair of
sites on the external boundary of each finite componeft afC,.; we use &0, x) to denote the
distance between 0 andon the induced graph. The procesgesd(1g, ,(x)) can be coupled so
that each connected componentaf \ ¢, with diameter exceeding is “covered” by a finite
component ofZ9 \ €., cf. (3.6). As is easy to check, this implies

1
d@mEd@%)aMIMEEM (3.8)

whenevex e By (Lx'). It thus suffices to show the above bound for distari¢e, a’).
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Letzp = 0,2z, ...,2, = X be a nearest-neighbor path @A. Let G(z) be the unique finite
component ofZ9 \ C,, that containg;—if z € C,,, we haveG(z) = . Define

(20, ...,20) = z diamG(z) ( H 1, ¢G(Zi)}). (3.9)
i—0

j<i
We claim that for eaclh > 0 we can adjust anda so that
Eetfn) < g (3.10)

for all n > 1 and all paths as above. To verify this we note that the components contributing
to {(zo, ..., zy) are distance at least one from one another. So conditioning on all but the last
component, and the sites in the ultimate vicinity, we may use the Peierls argument to estimate the
conditional expectation of‘@2mG@) (The result is finite because did®{z,) is at most order of
the boundary of5(z,).) Proceeding by induction, (3.10) follows.

As the number of nearest-neighbor patas= 0, ..., z, = x) is bounded by2d)", we can
adjustL anda so that

}P’(El(zo =0,...,2,=X): (20, ...,2Zn) > g) <e"m (3.11)
for any giveny > 0. Butif (zp =0, ..., z, = n) is the shortest nearest-neighbor interpolation of
a path that achieves(@, x), then
d(©0,x) >n—{(2,...,2z). (3.12)
Since, trivially, |x| < n we deducé(d'(0, x) < 3|x|) < e7I, O

4. CORRECTOR

The purpose of this section is to define, and prove some properties abtteetor y (w, X) =
0,(X) — X. This object could be defined probabilistically by the limit

2@, %) = im (Eqx(Xn) = Eq0(Xn)) = X (4.1)

unfortunately, at this moment we seem to have no direct (probabilistic) argument showing that
the limit exists. The traditional definition of the corrector involves spectral calculus (Kipnis and
Varadhan [17]); we will invoke a projection construction from Mathieu and Piatnitski [21].
Let P be an i.i.d. law on(Q, .%) whereQ = [0, 1]®¢ and.Z is the natural product-algebra.
Let 7. Q — Q denote the shift by, i.e., (1,0)xy = ®x4zy+z and note thal o o l=P
for all x € Z9. Recall thaté,, is the infinite connected component of edges with> 0 and,
fora > 0, let ¢, denote the set of sites connected to infinity by edges with> a. If
PO € €x.«) > 0, let

P, (_) = P(_lo € Cgoo,a) (42)

and letE, be the corresponding expectation. Giver Q and siteX, Y € (@), letd? (x, y)
denote the graph distance betweeandy as measured o, ,. We will also usel,, to denote
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the generator of the continuous-time version of the wélke.,

1
(LoD =55 D oy[fy) = fX]. (4.3)

yily—x|=1

The following theorem summarizes all relevant properties of the corrector:

Theorem 4.1 Supposé(0 € €,) > 0. There exists a functiop: Q x Z¢ — RY such that the
following holdsPy-a.s.:

(1) (Gradient field)y (0, w) = 0and, forall X, y € € .(®),

x(@,X) = x(w,y) = x(zyw, X —Y). (4.4)
(2) (Harmonicity)e,,(X) := X + y (o, X) obeysL,p,, = 0.
(3) (Square integrability) There is & C(a) < oo suchthatforall xy e Z9 with [x—y| = 1,
Eo(1xCoy) = 2 X) P oxy Lixer)) < C (4.5)
Leta > 0be such thaP(0 € ¢ ) > 0. Then we also have:
(4) (Polynomial growth) For every > d, a.s.,
lim max 12 (@, %)l

N—>00 X%y  NO
[X|<n

—0. (4.6)

(5) (Zero mean under random shifts) Let 2 — Z9 be a random variable such that
(@) Z(©) € Grou(®),
(b) PP, is preserved by = 77(,)(w),
(€) E,(d(0, Z(w))%) < oo for some g> 3d.

Theny (., Z(\)) € LY(Q, #,P,) and

Eo[x(, Z()] =0. (4.7)

As noted before, to construct the corrector we will invoke a projection argument from [21].
AbbreviateL?(Q) = L?(Q, .7, Py) and letB = {&, ..., &} be the set of coordinate vectors.
Consider the spade?(Q x B) of square integrable functions Q x B — RY equipped with the
inner product

(U, v) = Eo(Zu(w, b) - v(w, b) a)b). (4.8)
beB

We may interpreti e L%(Q x B) as a flow by puttingi(w, —b) = —u(z_p, b). Some, but not
all, elements of_2(Q x B) can be obtained as gradients of local functions, whergtheientV
is the mapL2(Q) — L?(Q x B) defined by

(V@) (w,0) = ¢ o 1p(w) — ¢(w). (4.9)

Let L2 denote the closure of the set of gradients oflaial functions—i.e., those depending
only on the portion of in a finite subset oZ.—and note the following orthogonal decomposi-
tion L2(Q x B) = L2 @ (L2)*.
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The elements ofL2 )+ can be characterized using the concegtioérgencewhich foru: Q x
B — RYis the function diwi: Q — RY defined by

divu(@) = D [mpu(, b) — o_pu(r_po, b)]. (4.10)
beB

The sums converge ib?(Q x B). Using the interpretation af as a flow, diw is simply the net
flow out of the origin. The characterization df2)* is now as follows:

Lemma 4.2 u e (L2)* if and only if div u(w) = O for Py-a.e.w.

Proof. Letu € L?(Q x B) and lety € L2(Q) be a local function. A direct calculation and the
fact thatw_p, = (r_pw)y, Yield

(U, Vo) = —E0(¢(w) div u(w)). (4.11)
If ue (L2)*, then diwu integrates to zero against all local functions. Henceudiv 0. a
It is easy to check that eveny e L2 is curl-free in the sense that for any oriented loop
(X0, X1, « . ., Xn) ON G (@) With X, = Xg We have
n-1
> Uy, Xj11 — X)) = 0. (4.12)

j=0

On the other hand, every: Q x B — RY which is curl-free can be integrated into a unique
functiong: Q x € (-) — RY such that

n—-1
$(@.%) = D U(ty o, Xj41 — X)) (4.13)
j=0
holds for any pathiXg, . .., Xn) 0N G (@) With Xo = 0 andx, = X. This function will automati-
cally satisfy theshift-covarianceproperty
¢(C(), X) - ¢(CO, y) = ¢(Tywa X — y)a X, y € (goo(a)) (414)

We will denote the space of such functiohgQ). To denote the fact that is assembled from
the shifts ofu, we will write

u = gradg, (4.15)
i.e.,“grad” is a map front{(Q) to functionsQ x B — RY assigningp € H(Q) the collection
of values{¢ (-, b) — ¢(-,0): b € B}.

Lemma 4.3 Letg e H(Q) be such thagradp e (L2)+. Theng is (discrete) harmonic for the
random walk oré¢,, i.e., forPo-a.e.w and all X € €. (w),

(Log)(w,x) = 0. (4.16)
Proof. Our definition of divergence is such that “div grad & 2,,” holds. Lemma 4.2 implies

thatu e (L2)* if and only if divu = 0, which is equivalent to£,¢)(w, 0) = 0. The translation
covariance extends this to all sitesdf.. O
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Proof of Theorem 4.1(1-3)Consider the functio (w, X) = x and letu = gradg. Clearly,
u e L?(Q x B). LetG € L2 be the orthogonal projection efu onto L2 and defingy € H(Q)
to be the unique function such that

G=grady and x(,0)=0. (4.17)

This definition immediately implies (4.4), while the definition of the inner produdt &2 x B)

directly yields (4.5). Since projects to—G on L2, we haveu + G € (L2)%. Butu+ G =

grad X + y (w, X)] and so, by Lemma 4.% — X + y (w, X) is harmonic with respect tg,,. O
For the remaining parts of Theorem 4.1 we will need to works@y),. However, we do not yet

need the full power of Proposition 2.2; it suffices to note #iat, has the law of a supercritical
percolation cluster.

Proof of Theorem 4.1(4).etd > d and abbreviate
Ry = max|y(w,X)|. (4.18)

XECo0,a
[X|<n

By Theorem 1.1 of Antal and Pisztora [1],

(a)
A(w):= sup 4,°0.) <

00, P,-a.s. (4.19)
XEGoo,a |X|

and so it suffices to show th&,/n’ — 0 on{A(w) < 1} for everyi < oco. But on{i(w) < 1}
everyx € %s., With |x| < n can be reached by a path @, , that does not leave-{in, in]¢
and so, of{A(w) < A},

Ris 2 2 %\X(w,X+b)—x(w,X){. (4.20)

X€Goo,q DEB
[X|<in

Invoking the bound (4.5) we then get
IRy Lii@)<iy l2 < Cn (4.21)

for some constar® = C(a, 4, d) < co. Applying Chebyshev’s inequality and summingver
powers of 2 then yield®,/n’ — 0 a.s. oni(w) < 1}. O

Proof of Theorem 4.1(5).et Z be a random variable satisfying the properties (a-c). By the fact
thatG e L2, there exists a sequengg e L?(Q) such that

ynotx—yn —> z(,X) in L2(Q x B). (4.22)

Abbreviatey,(w, X) = wno1x(w) — wn (@) and without loss of generality assume that:, x) —
x (-, X) almost surely.

By the fact thatZ is P,-preserving we havé&,(yn(-, Z)) = 0 as soon as we can show
that yn(-, Z) € L1(Q). It thus suffices to prove that

an( Z(0) — x( Z()) in LY(Q). (4.23)
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AbbreviateK (w) = d* (0, Z(w)) and note that, as in part (4),

@, Z@D[ = D 3 PR @, x4 b) = nl@, )], (4.24)
€6noq be
|§|j<(‘w> °

The quantities /oy x1bl xn(@, X + b) — yn(®@, X)| Lixes,, ) are bounded in.2, uniformly inx, b
andn, and assumption (c) tells us thidt € LY for someq > 3d. Ordering the edges iy ac-
cording to their distance from the origin, Lemma 4.5 of Berger and Biskup [6]—with the choices
p=2-s=gq/dandN = (2K + 1)4 e LS(Q)—implies that|| yn(-, Z(-))|l; are bounded uni-
formly in n, for somer > 1. Hence, the family{y,(-, Z(-))} is uniformly integrable and (4.23)
thus follows by the fact that, (-, Z(-)) converge almost surely. a

5. CONVERGENCE TOBROWNIAN MOTION

Here we will prove Theorem 2.1. We commence by establishing the conclusion of Theorem 2.3
whose proof draws on an idea, suggested to us by Yuval Peres, that sublinearity on average
plus heat kernel upper bounds imply pointwise sublinearity. We have reduced the extraneous
input from heat-kernel technology to the assumptions (2.12—-2.13). These imply heat-kernel upper
bounds but generally require significantly less work to prove.

The main technical part of Theorem 2.1 is encapsulated into the following lemma:
Lemma 5.1 Abusing the notation frort4.18)slightly, let
Ro = max |y, (x)|. (5.1)
XECo0,a
[X|<n
Under the conditions (1,2,4) of Theorem 2.1, for each 0 ando > 0, there exists an a.s. finite
random variable g = ng(w, €, J) such that
Ry <en+J6Rs. N> no. (5.2)

Before we prove this, let us see how this and (2.11) imply (2.14).
Proof of Theorem 2.3Suppose thaR,/n 4 0 and pickc such that O< ¢ < limsup,_, ., R./N.
Letd beisasin (2.11) and choose

1

a.nd 5= ﬁ,

(5.3)

NI O

€ =

Note that therr’ —e > 3/6¢ forall ¢’ > c. If R, > cn—which happens for infinitely manys—
andn > ng, then (5.2) implies
— €

Ran > n> 3cn (5.4)

and, inductively,Ry,, > 3*“cn. However, that contradicts (2.11) by whid®,/3* — 0 as
k — oo (with n fixed). O

The idea underlying Lemma 5.1 is simple: We run a continuous-time random(alkor
timet = o(n?) starting from the maximizer aR, and apply the harmonicity of — X + ,,(X)
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to derive an estimate on the expectationy;). The right-hand side of (5.2) expresses two char-
acteristic situations that may occur at timeEither |y, (Y;)| < en—which, by “sublinearity on
average,” happens with overwhelming probability—Yowill not yet have left the box+3n, 3n]¢

and soy,,(Y;) < Rsn. The point is to show that these are the dominating strategies.

Proof of Lemma 5.1Fix ¢, 6 > 0 and letC; = C;(w) andC, = Cy(w) denote the supprema in
(2.12) and (2.13), respectively. Lebe the site where the maximuRy, is achieved and denote

On={X € Cn: IXI <N, x(w,X)] > 2en}. (5.5)

LetY = (Y;) be a continuous-time random walk @0, , with expectation for the walk started
atz denoted byE,, ;. Define the stopping time

S =inf{t > 0: Y| > 2n} (5.6)

and note that, in light of Proposition 2.2, we ha¥g,s, — z| < 3n for allt > O provided
n > ny(w) whereni(w) < oo a.s. The harmonicity of — X+ y,,(X) and the Optional Stopping
Theorem yield

R, < E(u,Z|l//a)(Yt/\Sq) + Yt/\Sn — Z|- (5-7)
Restricting tat satisfying
t>b, and t > bz, (5.8)

we will now estimate the expectation separately on the e&hts t} and{S, > t}.

Onthe eventS, < t}, the absolute value in the expectation can simply be bound&day3n.
To estimate the probability &, < t we decompose according to whethéx — z| > gn or not.
For the former, (5.8) and (2.12) imply
V2t

2
—C—. 5.9
53 1 n (5.9)

E Yo — 2
Poz(IY2 — 2| > 2n) < —“”Z|3 |
=N
2

For the latter we invoke the inclusion
{IVa — 2zl < Sn} (S <t} c {IYa — Ys| > 30} N{S <t} (5.10)

and note that 2— §, € [t, 2t], (5.8) and (2.12) give us similarl, x(|Ys — X| > n/2) <
2C1+/2t/n for the choicex = Ys, ands = 2t — S,. From the Strong Markov Property we thus
conclude that this serves also as a boundFp§(S, < t, Yo > %’n). Combining both parts and

using$+/2 < 4 we thus have

4 [
Poa(S < 1) < Crlf .

The S, < t part of the expectation (5.7) is bounded Ry, + 3n times as much.
On the eventS, > t}, the expectation in (5.7) is bounded by

Ew,Z(ll//co(Yt)l l{Snzt}) + Ew,Z|Yt - Z|- (512)

The second term on the right-hand side is then less@aft providedt > b,. The first term is
estimated depending on whethérg &5, or not:

(5.11)

1
Ew,z(ll//w(Yt)l 1{qut}) < éfn + Ran Pw,Z(Yt € ﬁZn)- (5-13)
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For the probability ofY; € 0>, we get
Po.(Yt € O2) < D Poz(Yi =X) (5.14)

XGﬁZn

which, in light of the Cauchy-Schwarz estimate
P,2(Yt = X)? < P, .(Yy = 2)P,x(Y; = X) (5.15)

and the definition o€,, is further estimated by

| O2nl
Poz(Yi € On) < Co =g (5.16)
From the above calculations we conclude that
4C1/t 1 %
Ry < (Ran + 3n) :]\/_ +CiVt + Een + R3,Co ltd—igl (5.17)
Since|0y,| = o(n) asn — oo by (2.10), we can chooge= £n? with & > 0 sufficiently small
so that (5.8) applies and (5.2) holds for the giveando oncen is sufficiently large. O

We now proceed to prove convergence of the random wakle (X,,) to Brownian motion.
Most of the ideas are drawn directly from Berger and Biskup [6] so we stay rather brief. We will
frequently work on the truncated infinite componég , and the corresponding restriction of
the random walk; cf (2.6—2.8). We assume throughoutdhatsuch that (2.3-2.4) hold.

Lemma 5.2 Let y be the corrector or,,. Theng,(X) = X + y(w, X) is harmonic for the
random walk observed only ¢fi. ., i.e.,

LPg,(x) =0, VX € Cooa- (5.18)

Proof. We have

(LN9,)(X) = Eox(00(X1,)) = 00 (X) (5.19)
But X, is confined to a finite component @, \ ¢, for n € [0, T1], and say,, (X,) is bounded.
Since(p,(Xn)) is a martingale and; is an a.s. finite stopping time, the Optional Stopping The-
orem tells usE, x¢,(X1,) = 90 (X). O

Next we recall the proof of sublinearity of the corrector along coordinate directions:
Lemma5.3 Forw € Q, let(x,(w))nez Mmark the intersections &f, , and one of the coordinate
axis so that ¥(w) = 0. Then

. , X
i 2@ X(@)

n— o0 n

0, P,-a.s. (5.20)

Proof. Let 7, be the “shift byx” on Q and leto(w) = 14, (@) denote the “induced” shift.
Standard arguments (cf. [6, Theorem 3.2]) prove ¢hatP, preserving and ergodic. Moreover,
E, (d“ (0, X1(»))P) < oo, p < oo, (5.21)
by [6, Lemma 4.3] (based on Antal and Pisztora [1]). Theorem 4.1(5) tells ustttat:=
1 (@, X1 (w)) obeys
vYell®, and E,¥(w)=0. (5.22)
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But the gradient property of implies

-1
2(@, % (@) _ 1%
S p .2
. . kz(‘; o d*(w) (5.23)
and so the left-hand side tends to zero a.s. by the Pointwise Ergodic Theorem. a

We will also need sublinearity of the corrector on average:

Lemma5.4 Foreache > OandP,-a.e.w:

.1
nlem n_d Z 1{|)((w,x)lzen} =0. (524)
X€b0,a
Ix|<n
Proof. This follows from Lemma 5.3 exactly as [6, Theorem 5.4]. d

Finally, we will assert the validity of the bounds on the return probability and expected dis-
placement of the walk from Theorem 2.3:

Lemma 5.5 Let (Y;) denote the continuous-time random walk g ,. Then the diffusive
bounds (2.12-2.13) hold f@,-a.e.w.

We will prove this lemma at the very end of Sect. 6.

Proof of Theorem 2.1Let o be such that (2.3-2.4) hold and letdenote the corrector d#,, as
constructed in Theorem 4.1. The crux of the proof is to show thgtows sublinearly withx,
i.e., x(w,X) = o(|X|) a.s.

As in the Introduction, lep,(X) = X + y(w, X). By Lemmas 5.2 and 5.4, Theorem 4.1(4)
and Lemma 5.5, the corrector satisfies the conditions of Theorem 2.3. It followg tkagub-
linear oné, , as stated in (2.14). However, by (2.4) the largest compone#tof ¢ . in a
box [-2n, 2n] is less tharC logn in diameter, for some random but finiie= C(w). Invoking
the harmonicity ofp,, 0n %, the Optional Stopping Theorem gives

mgx\x(w, X)| < max |x (@, X)| + 2C(w) log(2n), (5.25)
XE€bC o XE€b0,a
|X|<n |X|<n

whereby we deduce thatis sublinear or¢,, as well.
Having proved the sublinearity gf on ¢, we proceed as in the = 2 proof of [6]. Abbre-
viate My, = ¢,,(Xp). Fix ¥ € RY and define

f (@) = Euo((@ - M1)? Ljamy =k))- (5.26)

By Theorem 4.1(3),fx € LY(Q, .7, Py) for all K. Since the Markov chain on environments,
n— 7x,(w), is ergodic (cf. [6, Section 3]), we thus have

1 n-1
— Z fK o ’L')(k(a)) e Eo fK, (527)
n o n— oo

for Pp-a.e.w and P, p-a.e. pathX = (X) of the random walk. Using this fdk = 0 andK =
€,/n along with the monotonicity oK +— fx verifies the conditions of the Lindeberg-Feller
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Martingale Functional CLT ([11, Theorem 7.7.3]). Thereby we conclude that the random contin-
uous function

t— %(\7- Mg + (Nt = [Nt V- (Ming41 — Ming)) (5.28)
converges weakly to Brownian motion with mean zero and covariance
Eo fo = EoEe,o((V - M1)?). (5.29)
This can be written ag - DV whereD is the matrix with coefficients
Di,j = EoE,o((& - M) (&) - My)). (5.30)

Invoking the Crarar-Wold device ([11, Theorem 2.9.5]) and the fact that continuity of a stochastic
process inRY is implied by the continuity of itsl one-dimensional projections we get that the
linear interpolation of — My, /4/n scales tal-dimensional Brownian motion with covariance
matrix D. The sublinearity of the corrector then ensures, as in [6, (6.11—-6.13)], that

Xn = Mq = x (@, Xn) = 0(1Xa]) = 0(|Mn]) = 0(/n), (5.31)

and so the same conclusion applies to By (t) in (2.2).

The reflection symmetry dPg forcesD to be diagonal; the rotation symmetry then ensures
thatD = ¢? 1 where ofe? = (Y4)EoE,, 0| M1|?. To see that the limiting process is not degenerate
to zero we note that i# = 0 theny (-, x) = —x a.s. for allx e Z9. But that is impossible since,
as we proved above,— x (-, X) is sublinear a.s. O

6. HEAT KERNEL AND EXPECTED DISTANCE

Here we will derive the bounds (2.12-2.13) and thus establish Lemma 5.5. Most of the derivation
will be done for a general countable-state Markov chain; we will specialize to random walk
among i.i.d. conductances at the very end of this section. The general ideas underlying these
derivations are fairly standard and exist, in some form, in the literature. A novel aspect is the way
we control the non-uniformity of volume-growth caused by local irregularities of the underlying
graph; cf (6.4) and Lemma 6.3(1). A well informed reader may wish to read only the statements
of Propositions 6.1 and 6.2 and then pass directly to the proof of Lemma 5.5.

Let V be a countable set and Igly)x yev denote the collection of positive numbers with the
following properties: For alk, y € V,
ay=ayx and z(x):= Zaxy < 0. (6.1)
yeVv
Consider a continuous time Markov chdij) on V with the generator

1
(LX) = =00 > ay[fy) - ] (6.2)
yeV

We useP* to denote the law of the chain started fromand E* to denote the corresponding
expectation. Consider a gragh= (V, E) whereE is the set of all pair¢x, y) such thag,, > 0.
Let d(x, y) denote the distance betwermndy as measured 0B.
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Foreachx € V, letB,(x) = {y e V: d(X,y) < n}. If A c V, we useQ(A, A to denote

the sum
QA AY =D > ay. (6.3)
XeA yeA®
Suppose that there are constamts 0 andv e (0, 1) such that, for soma > 0,
Cvol(X, @)= sup [sd Zn(y)e‘Sd(X’y)] <00 (6.4)
O<s<a yeV
and .
A, A
Ciso(X) ;= inf inf{ Q(—d_l) A C Bon(X), m(A) > n”} > 0. (6.5)
= a()T

LetV(e) C V denote the set of at € V that are connected to infinity by a self-avoiding path
(Xo = X, X1, ...) with ay, »,, > e foralli > 0. Suppose that

a, = inf{e >0:V(e) = V} > 0. (6.6)
(Note that this does not requieg, be bounded away from zero.)

The first observation is that the heat-kernel, defined by

PX(Y, =
a(x,y)i= o, 67)

can be bounded in terms of the isoperimetry constagtx). Bounds of this form are well known

and have been derived by, e.g., Coulhon, Grigor'yan and Pittet [8] for heat-kernel on manifolds,
and by Lovasz and Kannan [18], Morris and Peres [19] and Goel, Montenegro and Tetali [13]
in the context of countable-state Markov chains. We will use the formulation for infinite graphs
developed in Morris and Peres [19].

Proposition 6.1 There exists a constant & (1, co) depending only on d and, auch that for
t(X) := ¢1[log(Ciso(X) V €1)] % we have

Ci —d
Sup supG(z,y) < Cl%, t > t(x). (6.8)
zeBi(x) yeV td/
Proof. We will first derive the corresponding bound for the discrete-time versiofY9f Let
P(X,y) = ayy/7 (x) and define® = %(1+ P). LetGn(x, y) = P"(x, y)/z (y). We claim that, for
some absolute constanitand anyz € B (X),

. Ciso(x)™@
Gh(z, y) < cl'sg%, n > t(x). (6.9)
To this end, let us define
. A, A°
H(r) = mf{Q(TA)): (A <rt, AC BZn(x)}. (6.10)
Theorem 2 of Morris and Peres [19] then implies that once
4fe 4d
n> 1+/ _r2 (6.11)
Az @nr(y) FP)
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we have(,(z, y) < e¢. Here we noted that, by time the Markov chain started at € B,(x)

will not leave B, (X) and so the restriction td. C By, (X) is redundant up to this time. (We can

modify the chain by “attaching” a random walk on a binary tree to each site ouBsidr); this

keeps the conductances insiBg (x) intact and makea C B,n(X) superfluous up to tima.)
Now (6.5-6.6) give us

o(r) > %(Ciso(x)r_l/d Aa.n™’) (6.12)

where the extra half arises due the consideration of time-delayed léhaié(l + P). The two
regimes cross over at := (Ciso(X)/a,)9n?; the integral is thus bounded by

4/ 4dr n% fn 4y 2/d
<4— log(—) +2dCse(¥)?(=) . 6.13
/4(7r(z)/\7r(y)) ro(r)? a2 9(43*) GisolX) (6) ( )

The first term splits into a harmless factor of ora@f logn = o(n) and a term proportional
to n? log Ciso(X) Which is O(n) by n > t(x). To make the second term orderwe choose
€ = ¢[Ciso(x)?n]~9/2 for some constant. Adjustingc appropriately, (6.9) follows.

To extend the bound (6.9) to continuous time, we note fhat 2(f> —1). ThusifN; is Poisson
with parameter @ then

qt (Z, y) = Eth (Z, y) (614)

But P(N; < gt orN; > 3t) is exponentially small irt, which is much less than (6.8) for
t > c1logCiso(X) With ¢, sufficiently large. Asy, < (a,)7?, theN; ¢ (%t, 3t) portion of the
expectation in (6.14) is negligible. Fdk e (t, 3t) the uniform bound (6.9) implies (6.8). O

Our next item of business is a diffusive bound on the expected (graph-theoretical) distance
traveled by the walky; by timet. As was noted by Bass [4] and Nash [23], this can be derived
from the above uniform bound on the heat-kernel assuming regularity of the volume growth. Our
proof is an adaptation of an argument of Barlow [2].

Proposition 6.2 There exist constants ¢= c,(d), ¢3 = c3(d) and ¢ = c4(d) such that the
following holds: Let xe V and suppose A 0and t(x) > 1 are numbers for which

A
supch(x,y) < 57, t=t(X), (6.15)
yeV t
holds and let Tx) = %(Aa*)“‘/d V [t(X)logt(x)]. Then
EXd(x, Y;) < A'(x, )1, t > T(x), (6.16)

with A(X,t) = ¢, + czlog A + c4Cyoi(X, t~Y2).

Much of the proof boils down to the derivation of rather inconspicuous but deep relations
(discovered by Nash [23]) between the following quantities:

M(x, 1) i= EXd(X, Yo) = D 7 (Y)a (X, )d(X, ) (6.17)
y
and

Q(x, 1) := —EXlog (X, Yo) = — D 7 () (X, ¥) l0g G (X, ¥). (6.18)
y
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Note thato (x, -) < (a,)~! implies Q(x, t) > loga,.

Lemma 6.3 There exists a constant such that forallt> Oand all xe V,
(1) M(x, ) > exp{—1 — Cyoi(X, M(X,1)™1) + Q(x, 1)}
(2) M'(x, )% < Q'(x,1).
Proof. (1) The proof follows that of [2, Lemma 3.3] except for the use of the qua@jgx).
Pick two numbers > 0 andb € R and note that the boundlogu + Au > —e~*~implies
—Q(X, t) +aM(x,t) + b > = >z (y)e 7Y (6.19)
y
Using the definition o, (X, @) and bounding &' < 1 we get
—Q(X,t) +aM(x,t) + b > —Cya(x, a) ePa™® (6.20)

Now set € = a“ to make the right-hand side a constant tinflgs (x). Settinga = M(x, t)~*
then yields the result.
(2) This is identical to the proof of Lemma 3.3 in Barlow [2]. a
These bounds imply the desired diffusive estimatévbix, t):

Proof of Proposition 6.2.Suppose without loss of generality thit(x, t) > /t, because oth-
erwise there is nothing to prove. We follow the proof of [2, Proposition 3.4]. The key input is
provided by the inequalities in Lemma 6.3. Define the function

L(t) = é(Q(x,t) +logA— glogt) (6.21)

and note that.(t) > 0 fort > t(x). Letty = (Aa,) %9 v supt > 0: L(t) < 0}. We claim
thatM (x, to) < +/dT(X). Indeed, wheity = (Aa,)~%9 then this follows by

M(X, to) < to = (Aa) 2 < /dT(x) (6.22)

due to our choice oT (x). On the other hand, whep > (Aa,)~%9 we use Lemma 6.3(2), the
Fundamental Theorem of Calculus and the Cauchy-Schwarz inequality to derive

M(X, to) < VE[Q(X, to) — Q(x, 0)] (6.23)
SinceQ(x, 0) > loga, andL (tg) = 0 by continuity, we have
1/2
M (X, to) < +/to ( g logto — log A — Iog&) < /dtylogt (6.24)

where we used thag > (Aa,)~%2implies logA+loga, > —9logty. Asty < t(x) andt(x) > 1,

this is again less thag/d T (x).
Fort > tg we havelL (t) > 0. Lemma 6.3(2) yields

t
M(x, t) — M(x, to) < v/d (i n L’(s))l/zds
to 128 (6.25)
t 1 .
< \/a/to (\/—2_5 +L (S)«/S/z)ds < v2dt + L(t)\/ dt,
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where we used integration by parts and the positivity. @b derive the last inequality. Now put
this together withM (x, ty) < +/dt and apply Lemma 6.3(1), noting th&tq(z, M(x, 1)) <
Cvol(z, t~1/?) by the assumptioM (x, t) > +/t. Dividing out an overall factox/t, we thus get

A Ydgm/d-esCua L0 < 3/d 4+ /d L(b). (6.26)
This implies that_ (t) < &log A + €:Cvo(X, t~?) for some constani@ and¢, depending only
ond. Plugging this in (6.25), we get the desired claim. g

We are now finally ready to complete the proof of our main theorem:

Proof of Lemma 5.5We will apply the above estimates to obtain the proof of the bounds (2.12—
2.13). We use the following specific choices

V - cgoo,a, a)(y - é)xy, 7T(X) - Zd, and bn =nN. (627)

As a, > a, all required assumptions are satisfied.

To prove (2.13), we note that by Lemma 3.3 of Berger, Biskup, Hoffman and Kozma [7]
(using the isoperimetric inequality on the supercritical bond-percolation cluster, cf. Benjamini
and Mossel [5] and Rau [24, Proposition 1.2]) we h&g(0) > 0 a.s. Hence, Proposition 6.1
ensures that, for alt € ¢, with |z| < n,

t92P, ,(Y; = 2) < 2d¢;Ciso(0) ™ (6.28)

providedt exceeds somig depending o1€is(0). From here (2.13) immediately follows.
To prove (2.12), we have to show that, a.s.,

sup sup max Cyo(z,t7Y?) < 0. (6.29)

n>1 t>n 2€%x.
Izl<n

To this end we note that Lemma 3.1 implies that there is a.s. fihite C(w) such that for
allz, y € €., With |z| < nand|z—y| > Clogn,

d(z,y) > elz—-yl. (6.30)
It follows that, oncéy, > Clogn, for everyz € ¢, , with |z| < n we have
> e cgal+ > e < gal (6.31)
yectr)ﬂoo)(l yecgoo,a
ly—z|>1/a

wherecg andc; are constants depending drandp. Settinga = t=%/?, (6.29) follows.
Once we have the uniform bound (6.29), as well as the uniform bound (6.15) from Proposi-
tion 6.1, Proposition 6.2 yields the a.s. inequality

EordzY) _

Sup sup max 6.32
nzf t>np 2€C0.q Jt ( )
[z]<n
To convert dz, Yy) into |z — Y| in the expectation, we invoke (6.30) one more time. O
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