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Abstract 
 

In this paper, we provide an introduction to the theory of isotopes in infinite 
dimensional spaces. Although we consider this to be an introduction, most of 
the results a new, and have never appeared in print. We restrict ourselves to 
Hilbert spaces and develop the linear theory, providing detailed proofs for all 
major results.  After a few examples, in the first section we consider an isotope 
as a change in operator multiplication on the space of bounded linear operators 
over a fixed Hilbert space in the second section. The basic theory is developed 
leading to the notion of an S*-algebra (in honor of R. M. Santilli), which is a 
natural generalization of C*-algebras.  The basic theory is then used in the 
third section to develop a complete theory of one-parameter linear iso-
semigroups of operators, which extend the theory of one-parameter semigroups 
of operators, which have played, and still play an important role in applied 
analysis.   In the fourth section we apply our theory of iso-semigroups of 
operators to unify and simply two different approaches to the important class 
of Sobolev-Galpern equations.  We close with a discussion of the general 
nonlinear case, where the operators may be nonlinear, singular and/or multi-
valued.  
 This paper is dedicated to Professor R. M. Santilli on the occasion of his 
seventieth birthday. He has been a mentor, a friend, a supporter and an 
inspiration to us for over twenty-five years. 
 
  



Introduction 
 
 It is well known that there are many Hamiltonians (Lagrangians) associated 
with a given set of Hamilton's (Euler-Lagrange) equations.  Professor R. M. 
Santilli (see [1], [2], [3]) was the first to observe that many of these 
Hamiltonians can be obtained from a fixed one via a change in the definition of 
the Lie algebra bracket.  He called these related algebras Lie-isotopes, by 
analogy with a similar phenomenon in nuclear physics where the same atom 
can have a varying number of neutrons. Gill et al [4] have used isotopes as a 
basic tool in one approach to the construction of a relativistic particle theory.  
This theory has been quantized by Gill [5], leading to a new approach to the 
inclusion of geometry in relativistic quantum theory.  In this introduction, we 
provide a number of distinct examples, all showing how natural this concept is.  
Our purpose is to prepare the way for the first general study of isotopes as a 
change in the definition of operator composition on the space of closed linear 
operators on Hilbert space.  This work leads to a natural generalization of C*-
algebras, which we call S*-algebras.  
 
Example 1 
 This is a modified version of an example due to Santilli and has almost all 
the basics for the general case.  Let (so(n),+,  [!,!])  be the Lie algebra of real 
n ! n  skew-symmetric matrices with the standard product [A,B] =  AB ! BA , 
where A,B !so(n) .  If J  is a symmetric invertible real n ! n  matrix, then 
define a new product: 
 
       

 
[A,B]

J
= AiB ! BiA = AJB ! BJA .               (1.1)  

 
Since A

t

= !A , B
t

= !B  and J
t

= J , it is easy to see that 
[A,B] !(so(n),+, [","]

J
) , so that the algebra is closed under the new product and 

hence, is a Lie algebra.  It is clear that a change in the product at the algebraic 
level requires a change at other levels.  In particular, if I  is the identity in the 
standard case, so that I ! I = I , then with the new product " i ", one must find Î  
such that  Îi Î = Î .  This implies that Î = J -1 .  To construct the group, use the 



universal enveloping algebra, so that  
 

 

g(s) = Î + sA + (1/ 2!)(sA)i(sA)  +!  

      = Î(exp{sJA}) = (exp{sAJ})Î ,
        (1.2) 

 
     

 
g(s)

t
ig(s) = Î ,  dg(s) ds s= 0 = A .         (1.3) 

 
Thus, it follows that g(s)  is a one-parameter group for the new product.  
Denote the groups and their corresponding algebras by: 
 
      G

1
= ( SO(n ),  !),   g

1
= (so(n),+,  [!,!]) ,          (1.4) 

 
      

 
G

2
= ( SO(n ),  i),  g

2
= (so(n),+,  [!, !]J ) ,      (1.5) 

 
The properties of G

1
 are well known, however, for G

2
, we now have two 

independent ways to define the inner product.  For  X ! R
n , we have:  

 
        

 
(g(s )iX)

t
i(g(s)iX) = X

t
JX.          (1.6a) 

        
 
(g(s )i !X)

J

t

i(g(s)i !X )
J
= ( !X

t
J !X) !I .         (1.6b) 

 
In the first case the internal vector operations and the length scale along each 
coordinate axis can changed.  In the second case, in addition to the changes 
induced by the first case, the definition of scalar multiplication can change, 
independently of the change in operator multiplication.  Thus,  !I  is the unit for 
the new number system (isounit), which is independent of Î . In order to get a 
sense of the possibilities, let n = 3  and consider the concrete case: 
 

       J =

a a
12

a
13

a
12

b a
23

a
13

a
23

c

!

"

#
#
#

$

%

&
&
&

,   det[J ] ' 0   Î = J
(1

.                 (1.7) 



 
In the first case, we have that:  
 

       

X
J

2
= [X t

JX] = ax
1

2 + a
12
x

1
x

2
+ a

23
x

1
x

3{

                        +a
12
x

2
x

1
+ bx

2

2
+ a

23
x

2
x

3

                        +a
13
x

1
x

3
+ a

23
x

2
x

3
+ cx

3

2} .

        (1.8a) 

 
Thus, the length of the vector X  has change relative to the reference value one 
would normally compute in  R

3 .  It is easy to see that the components of the 
vector and the angular relations have also changed.  

In order to provide a possible physical interpretation of the meaning of 
this, let us imagine that we have a physical system of interest that is moving in 
a given environment under the influence of forces and fields that do not affect 
the properties of the system that interests us.  For example, consider the motion 
of a ball (in air) moving near the earth under the influence of gravity, to be by 
convention, the standard case so that no isotope is required.   If this motion is 
to be compared to that of the same ball in some medium with properties (not 
radically) different from those of air, we can account for the difference in the 
motion of the ball by an isotope of the first kind and, the matrix J  would 
incorporate the difference in the properties of this new medium (relative to air) 
as it affects the motion of the ball (e.g., index of refraction, viscosity, etc.). 

In the second case, we have that: 
 
X! !X = !x

1
, !x

2
, !x

3[ ]
t

,   !x
i
= x

i

!I  and:  
 

        

 

[ !Xt
J !X]!I = ax

1

2 + a
12
x

1
x

2
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x

1
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x
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1
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2
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3

2} !I .
    (1.8b) 

 
The second case comes into play when the fields, forces and/or new media 
begin to affect the physical properties and relative internal relationship 
between the material constituents of the ball, in such a way that it might began 
to exhibit properties and motion that are unrelated to any known motion of a 



ball moving near the earth. Then an isotope of the second kind would give us 
an additional degree of freedom in order to provide a faithful representation of 
the systems behavior. 
 

Before turning to other examples, let us see what mathematical advantages 
occur independent of physics.  In the first case, suppose that aij = 0, i ! j  and 
a = c = !b = 1 , so that  
 

J = Î =

1 0 0

0 !1 0

0 0 1

"

#

$
$
$

%

&

'
'
'

.  

 
With this definition of J , it is easy to see that 

 
G

2
= ( SO(3),  i) ! ( SO(2,1),  ") .  

Since the group (SO(3),  !)  is compact while (SO(2,1), !)  is noncompact, this 
is a nontrivial result.  It implies that one can study noncompact groups via their 
isotopic relationship to the corresponding compact group (see Sourlas and 
Tsaras [6]).   In order to understand the geometric and analytic sides of this 
example, consider the following two Hamiltonians: 
 

      H
1
=
1

2m
P
t
P +

k

2
X

t
X =

i=1

3

!
1

2m
p
i

2

+
k

2
x
i

2"
#
$

%
&
'

,   (1.9) 

 

 

H
2
=
1

2m
P
t
iP +

k

2
X

t
iX =

1

2m
p
i

2
+
k

2
x
i

2!
"
#

$
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p
2

2
+
k

2
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2

2!
"
#

$
%
&
.

i=1

2

(     (1.10) 

 
A simple calculation shows that both H

1
 and H

2
 lead to Newton's equations of 

motion for a (3-dimensional) harmonic oscillator, F = !kX .  Clearly, H
1  is 

invariant under SO(3)  while H
2  is invariant under SO(2,1) .  It is easy to see 

that both H
1  and H

2  are conserved, and are in involution.  This is an example 
of a bi-Hamiltonian structure for the oscillator.   
 



Example 2. 
  Another important example is the Feshbach-Villars representation [8] for 
the Klein-Gordon equation.  In a very important and insightful paper, Feshbach 
and Villars showed that the Klein-Gordon equation could be transformed into a 
system of coupled differential equations, which are first order in time.  This 
Schrödinger form made it possible to clearly demonstrate the charge degrees of 
freedom. The transformation is easy and shows that Feshbach and Villars had 
actually constructed what we will later define as an S*- algebra.  Writing the 
Klein-Gordon equation as 
 

          
  

1

c
2

!2"

!t
2
= #" $

mc
2

!
2
" ,        (1.11) 

 
set ! = " + #,  and

  
i! !" ! t = (mc

2
)(# $ % )," = (# , % )

t .  Equation (1.11) 
becomes 
 

      
  

i!
!"

!t
= H" = (#3 + i#2 )

p2

2m
" +mc

2
#3".     (1.12) 

 

   ! =
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0 1

" 

# 
$ 
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' ,   (

1
=

0 1

1 0
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$ 

% 
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'  ,    (

2
=

0 )i

i 0

" 

# 
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% 

& 
' ,     (

3
=

1 0

0 )1

" 

# 
$ 

% 

& 
' .   (1.13) 

The above (Pauli) matrices satisfy the conditions ! i
2
= 1, ! i ! j" ! j ! i= 2!k , (i, j, 

k cyclic). In order to obtain the isotope form, set J = !
3
" Î = !

3
, and define 

H
1

 as 
 

      
 

H
1
= (I ! i"

2
)
p

2

2m
+ mc

2
I #  i!

$%

$t
= H

1
•% .    (1.14) 

 
 It is quite remarkable that their approach was so complete.  They recognized 
the need to change the definition of a unitary operator, inner product and 
expectation value, thus giving one of the first examples of an isotope in 
quantum theory. 



Example 3 
 
 The next example is due to Gill and Chachere (see [4], [9]) and offers a 
different approach to the problem of non-conservation of species number.  Let 
J = a(t )x

2
+ b(t )(y

2
+ z

2
)( )

!1/2

, r,r
J
= J(x

2
+ y

2
+ z

2
) , where a(t ) = 1 + 3t  

and b(t ) = 1! t .  If the norm is constrained to r,r
J
= 1 , for all t ![0,1]  then 

a(t )x
2
+ b(t)(y

2
+ z

2
) = (x

2
+ y

2
+ z

2
)
2  when t = 0 , so that 

(x
2
+ y

2
+ z

2
)(x

2
+ y

2
+ z

2
!1)  = 0 (see fig.1 for a few snap shots of the change 

as t varies).  At t = 1 , ((x-1)2 + y2 + z2 ! 1)((x+1)2 + y2 + z2 !1) = 0 , which 
gives two unit spheres (touching).   
 

Figure 1 
 

                       

                  
 
 It is shown in [4] that V = !mc 2 1 ! a(t)x

2
+ b(t)(y

2
+ z

2
)"

#
$
%

is the potential 

energy, which generates the above geometric/topological process while the 
Hamiltonian is of the harmonic oscillator type (in the proper time formulation 
of relativistic quantum theory).   
 



Example 4.  Iso-Dual 
   

The next example, (due to Santilli [10]) shows that even in the simplest of 
cases, the use of isotopes offers new physical insights.  Let  

 
R ,+ , !( )  be the 

field of real numbers and define a new field by changing the definition of 
multiplication so that 

 
a!b" aib = (a)(-1)(b) so that 

  
R ,+ ,i( )  is a field with J = 

-1.  Santilli calls this field the Iso-dual numbers.  This clearly induces an 
isomorphism on  R  which is equivalent to reversing the direction of the real 
line so that the new unit becomes -1.  Note that to be consistent conceptually, 
we should replace  !  by 

 
R = a{ a = -a,  a  !R} , so that 

  
R ,+ ,i( )  is the Iso-

dual numbers.   Let 
 
!
µ

,  µ = 0,!, 3 , be the Dirac gamma matrices (see Greiner 
[7]), so that: 
 

! = " 0
=

I 0

0 # I
$

%
&

'

(
) ,  " i

=

0 *
i

#*
i

0

$

%
&

'

(
) ,    (i= 1,2, 3) .     (1.15) 

 
If we split the above representation by replacing the second row by its isodual, 
they become:  
 

     ! 0
=

I 0

0 I

"

#
$

%

&
' ,  ! i

=

0 (
i

(
i

0

"

#
$

%

&
' ,    (i = 1, 2,3) .      (1.16) 

 
It follows that the Dirac gamma matrices are invariant under the Iso-dual 
transformation.  With a straightforward interpretation, Santilli used the above 
to show that the Dirac equation is invariant under the Iso-dual transformation if 
we identify  H  as a vector space over 

 
R ,+ , !( )  and  H

*  (the dual Hilbert 

space), as a vector space over 
  
R ,+ ,i( ) . He also provided a consistent 

formulation of the Stuckelberg-Feynman theory of anti-matter as matter in the 
iso-dual state over the dual (Hilbert space  H

* ), and proved the equivalence of 
charge conjugation and iso-duality. 
  



2.0 S*-algebras 
 
  We now introduce a class of algebras, called S*-algebras, as the natural 
framework to study isotopes of the first kind, on infinite dimensional spaces.  
We restrict ourselves to the most transparent case, which is sufficient for a first 
introduction.  A more general theory is in preparation but will not materially 
affect the results of this paper.  Let J  be a positive, bounded, invertible 
operator on a fixed Hilbert space  H , with dense range.   If 

 
L(H)  is the set of 

bounded linear operators on  H , and  C[H]  is the set of closed and densely 
defined linear operators on  H , then define 

 
L
J
(H) , 

 
C

J
(H)  by: 

 
Definition 2.1  

 
L
J
(H) = {A !C(H) | (AJ ),  (closure)!L (H)} , 

 
C

J
(H) = {A !C(H) | (AJ )!C(H)}.   

Definition 2.2 Let 
 
A,B !L

J
(H)  and let 

 
f !H , then define 

 
Ai f =:(AJ ) f  and  

 
(AiB)i f =: (AJBJ ) f . 
 
The next result follows from our definition. 
 
Theorem 2.3 If 

 
A,B !L

J
(H)  and 

 
f , g !H  and a,b,c  are scalars, then 

 
 Ai( f + g) = Ai f + Aig,    Ai(af ) = aAi f ,         (2.1) 

 
(aA + bB)i f = aAi f + bBi f .           (2.2) 

The proof of our next result follows from the definition of 
 
L
J
(H)  and the 

properties of the identity operator. 
 
Theorem 2.4 

  
(L

J
(H),+,i)  is a * algebra of operators such that 

 
1) 

 
L
J
(H) ! L(H), for J "L(H)  and 

 
2) 

  
J

-1
= Î ,  Î iÎ = Î ,  ÎiA = AiÎ = A, ! A "C

J
(H) .  

 



Theorem 2.5 If 
 
A !L

J
[H]  and 

 
A

!1
"L(H)  then the operators Â-1

= ÎA
-1

Î  
and 

 
!A = ÎAÎ  satisfy: 

 
1) 

 
A

!1
"L

J
[H] ,  

2) 
 
AiÂ

-1

= Â
-1

iA = Î  and  
3) 

 
A
-1

i !A = !AiA
-1

= Î . 
    
Proof:  The proofs of 1 and 2 follow from the definitions and properties of the 
identity operator.  To prove 3, we first note that 

  
(L

J
[H],+,i) is a *algebra and 

then use the uniqueness of the inverse.  (It should be noted that, in general, 
neither  !A  nor Â-1  is in 

 
L
J
[H] , but both are in 

 
C

J
(H) ). 

 
Definition 2.6 The operators in 

 
L
J
[H]  are called bounded iso-linear operators. 

 
  If !  is a bounded linear functional on  H , the Riesz Representation 
theorem assures us that !f = !g f = f g  for a unique element 

 
g!H , where 

f g  is the inner product on  H  (see Yosida [11], page 90).  It follows that, as 
an element of 

 
L
J
[H] , !  induces a unique representation of the form: 

 
!i f = !g i f = f g J= f J g , for a unique element 

 
g!H .  

 
Definition 2.7 

 
A!L

J
[H]  is iso-bounded if 

 
A

J
= sup Ai f | Ai f J{ }

1/2

<! , 
where the sup is over all 

 
f !H  with f

J
= 1 .  

 
Lemma 2.8 Î

J

=1  (In general Î  is unbounded as an operator on  H  in the 

standard norm.) 
 
Definition 2.9 An operator U  is said to be:  
1) Iso-self-adjoint (Hermitian) iff 

 
Ui f | g J= f |U ig J for all 

 
f , g !H , 



2) Iso-unitary iff 
 
U iU

*

=U
*

iU = Î . 
 
Lemma 2.10 An operator U is: 
1) Iso-Hermitian if and only if it is Hermitian.  
2) Iso-unitary if and only if U *

= ÎU
!1

Î .  
 
 Before going further, we need a recent result on bounded approximation for 
closed operators (see Gill et al [12]).  Let  V[H]  denote the set of contraction 
operators on  H  (

 
A !V(H)" Af # f ).  The following result is due to 

Kaufman [13], and extends earlier work of von Neumann [14].   
 
Theorem 2.11 If 

 
A !C(H)  then 

 
I + A

*
A( )

!1/2

"L[H]  and the operator 

!(A) = A I + A
*
A( )

"1/2

, defines an invertible function from 
 
C(H)  onto  V[H] , 

with inverse defined by !"1
(C) = C I " C

*
C( )

"1/2

 for all  C !C[H] . 
 
Definition 2.15 An operator T  is said to be relatively bounded with respect to 
A  if D(T ) ! D(A)  and there are constants a , b  such that 
 
        Tf ! a f + b Af ,   " f # D(A) .  
    
Definition 2.16 An operator  W !L[H]  is called a partial isometry if there is a 
closed linear subspace  M! H,with Wf = f  on  M  and Wf = 0  on  M

! .  
 

The following result can be found in Kato [15]. 
 
Theorem 2.17 If  A !C[H] , then T = A

*

A  is a positive self-adjoint operator, 
A =WT

1/2 , where W  is a partial isometry.  Furthermore, D(T 1/2
) = D(A)  and 

Af = T
1/ 2

f .   
 



Theorem 2.18 If  A !C[H] , set T = A
*

A  and R(!,T ) = (!I " T )-1 , with 
! > 0 .  If A

!
= !AR(!,T ) , then for  f !D(A) , 

 
A

!
"L (H)  and lim

!"#
A

!
f = Af .  

   
Proof: Let Af = T

1/ 2
f ,  and recall (Pazy [16]) that T  is the generator of a 

contraction semigroup and R(!, T ) "
1

!
.  Use theorem 2.11 to get that 

 
A

!
"L (H) .  Now A

!
f " A

! '
f = A R(!,T ) " R(! ',T )[ ] f .  From the resolvent 

identity, we have  
 

    
A

!
f " A

! '
f = (! " ! ')A R(!,T )R(! ',T )[ ] f

                         = (! " ! ')W R(!, T )R(! ',T )[ ]T 1/2 f
. 

 
In the last result, we use the fact that T 1/2  commutes with R(!,T ) .  Taking 
norms, and using theorem 2.17, it is easy to see that  
 

          A
!
f " A

! '
f #

1

!
"
1

! '
T
1/2
f . 

 
Thus, the family A

!
{ f ! > 0}  is Cauchy on D(A) , so that the limit exists. 

 
Theorem 2.19 Suppose that A  generates a contraction semigroup.  Then 
lim
!"#

e
$A

! f = e
$ A
f . 

 
Proof: Let f !D(A) , then  

   
exp{!A"} # exp{!A" '}[ ] f =

0

1

$
d

ds
exp{s!A"}exp{(1 # s)!A" '}[ ] fds

                          =
0

1

$ ! exp{s!A"}exp{(1# s)!A" '} A" # A" '[ ]{ } fds
.  

 
Taking norms we have  



 
      exp{!A

"
} # exp{!A

" '}[ ] f $ ! A
"
# A

" '[ ] f .   
 
Using theorem 2.18, the limit exists for f !D(A)  which is dense in  H .  Using 
the uniform boundedness theorem, the limit exists on  H . 
 
 
Theorem 2. 20 (Fundamental Theorem of Iso-Bounded Linear Operators)  
For each  A !C[H] , there is an operator  J !L[H]  such that A  is iso-bounded 
with respect to J  (i.e. 

 
A !L

J
[H] ), and J ! 1 . Furthermore, if T is relatively 

bounded with respect to A , then 
 
T !L

J
[H] . 

 
Proof: To prove 1, set J = I + A

*

A( )
!1

 and use theorem 2.18.  To prove 2, 
note that if T  is relatively bounded with respect to A  then, for all 

 
f !H , we 

have TJf ! a Jf + b AJf .  Divide by Jf  to get that 
TJf Jf ! a +  b AJf Jf .   It follows that TJ  is a bounded operator, hence 

 
T !L

J
[H] . 

 
Theorem 2. 21 If  A ! L[H]  is a C*-algebra, then so is 

 
A

J
! L

J
[H] .  We 

call 
 
A

J
 the S*-algebra over  H  associated with J . 

 
 A study of S*-algebras, which parallels the research program on C*-
algebras represents an interesting and fruitful (open) research area. As one 
might have noticed, 

 
L
J
[H]  can contain certain classes of unbounded operators 

depending on the properties of J .  The study of unbounded operator algebras 
is more natural for physical applications. (For some of the early work in this 
area, see Powers [17], [18].).  Antoine, Inoue and Trapani [19] provide a recent 
review of the work on unbounded operator algebras and give a clear discussion 
of the problems and prospects. 
 
 



3.0 Iso- Semigroups of Operators 
 
 Isotopes have shown up in physics, engineering and mathematics wearing a 
number of different faces.  In this section, we use the theory of Section 2 to 
develop a general theory of iso-semigroups that will be used in Section 4 to 
unify these diverse approaches under the natural umbrella of isotopes.  
  
Definition 3.1 A family of linear operators 

  

{S(t),0 ! t < "}  (not necessarily 
bounded), defined on  H , is an iso-semigroup if 
 
1) 

 
S(t+s)!=S(t)iS(s)!  for 

  

! "D, the domain of the S(t) and 0 < t < ! .   
  
2) The family is iso-strongly continuous if 

 

lim
! "0

S(t + ! )i#=S(t )i# , !" #D , 

t > 0 . 
 
3) S(t )  is a 

  

C
0
-iso-semigroup if  D =H , it is iso-strongly continuous, S(0)=Î  

and 
 

lim
t! 0

S(t)i"=" . 

  
4) The semigroup 

  

S(t)  is a contraction 

  

C
0
-iso-semigroup if 3) holds and 

S(t)
J
! 1 .  

 
5) The family 

  

S(t)  is an 

  

C
0
-iso -unitary group if 

 
S(t)iS(t )

!

= S(t)
!

iS(t ) = Î , 

and S( ! t) = S(t)" . 
    
6) 

  

S(t)  is uniformly continuous if it is 

  

C
0
 and lim

t!0
S(t ) " Î

J

= 0.   

 
7) The operator A  defined by: 

  
D(A) = ! "H{ lim

t#0
(1 h)[S(h)i! $! ] exists}  

and 
 
Ai! = lim

t"0
(1 h)[S(h)i! # !],  ! $D(A) , is called the generator of 

  

S(t) , 
and D(A)  is the domain of A .  
 



Definition 3.2 The operator A  is said to be iso-dissipative if, for ! "D(A) , 

 
Re Ai!,!

J
" 0 .  

 
Theorem 3.3 Let S(t)  be a C0 -iso-semigroup of contraction operators on  H ; 
then 
 

1) 
 

Ai!=lim
t"0

S(t )i! # !

t
 exists for !  in a dense set and 

 
A !C

J
(H) .  

 
2) A  is iso-dissipative and 

 
R( Î ! A) =H  (range). 

 

3) R(!,  A) = Î (!Î " A)
-1
Î  exists for ! > 0  and R(!,  A)

J
"

1

!
. 

 
Definition 3.4 If an operator A  is densely defined, and satisfies 2), it is called 
an m-iso-dissipative operator. The next two results follow the proofs in Pazy 
[16].  
 
Theorem 3.5 Suppose A is an m-iso-dissipative operator.  Then A  is the 
generator of a C0-iso-semigroup S(t)  of contraction operators on  H .  
 
Theorem 3.6 If A  is densely defined with both A  and A*  iso-dissipative, then 
A  is m- iso-dissipative. 
 
Theorem 3.7 If 

  

S(t)  is a C
0
-iso-semigroup of contraction operators on  H , 

then  
 
1) 

 
S(t)i!  is a continuous function in t  for every 

 
! "H .  

 
2) 

 

lim
h!0
(1 h)

t

t+ h

" S(# )i$d# = S(t )i$  for all !  in  H .  

  



3) 
 0

t

! S(" )i#d" $D(A)  for all !  in  H , and 
 

Ai
0

t

! S(" )i#d" = S(t )i# $# .  

 
4) If 

 
! "D(A)# S(t )i! "D(A)  and 

 
(d dt )S(t)i! = AiS(t )i! = S(t)iAi! . 

  
5) If 

 

! "D(A)# S(t )i! $ S(% )i! =
%

t

& S(' )iAi!d' . 

 
Proof: To prove 1), suppose that t,h ! 0 , then: 
 
     

 
S(t + h)i! " S(t )i!

J
# S(t )

J
S(h)i! "!

J
# S(h)i! "!

J
.  

 
If t ! h ! 0 , then 
 
     

 
S(t ! h)i" ! S(t )i"

J
# S(t ! h)

J
" ! S(h)i"

J
# " ! S(h)i"

J
.   

 
The result now follows from strong continuity. 
 
The proof of 2) follows from 1).  To prove 3), let ! "D(A),  h > 0 , then:  
 

 

(1 h)(S(h) ! Î )i
0

t

" S(# )i$d# = (1 h)
0

t

" [S(# + h)i$ ! S(# )i$]d#

         = (1 h)
t

t+h

" S(# )i$d# ! (1 h)
0

h

" S(# )i$d# % S(t)i$ !$.

 

 
To prove 4), let ! "D(A) , then 
 

   
 
(1 h)(S(h) ! Î )iS(t)i" = S(t )i(1 h)(S(h) ! Î )i"# S(t)iAi" . 

 
Thus we have that 
 
     

 
AiS(t)i! = S(t)iAi! " (d

+

dt )S(t)i! = AiS(t )i! = S(t)iAi! .   
 



To complete the proof, let h > 0 .  Then,  
 

 

lim
h!0

(1 h)[S(t)i" # S(t # h)i" ] # S(t )iAi"{ }

= lim
h!0

(1 h)[S(t)i" # S(t # h)i" ]# S(t # h)iAi"{ }

+ lim
h! 0
[S(t # h)iAi" # S(t)iAi" ]

= lim
h!0
S(t # h)i (1 h)[S(h)i" #" ] # Ai"{ }

+ lim
h! 0
[S(t # h)iAi" # S(t)iAi" ] = 0.

 

 
To prove 5), integrate 

 
(d dt)S(t )i! = S(t)iAi!  from !  to t . 

 
Theorem 3.8 If A  is the generator of a C0-iso-semigroup of contractions 
S(t), t ! 0 , then A  is closed and densely defined.  Furthermore, every ! > 0 , 
! "#(A)  and R(!, A) " 1 ! . 
 
Proof: For h > 0 , we have by part 3 of Theorem 3.7 that 

 

!
h
= (1 h)

0

h

" S(# )i!d# $D(A)  and by part 2, lim
h!0

"
h
= " .  It follows that 

 
D(A) =H .  To prove that A  is closed, let !

n
"!  and

  
Ai!

n
"#  as n! " .  

From part 5 of Theorem 3.7, we have that: 
  

 

(1 t)[S(t)i!
n
" !

n
] = (1 t )

0

t

# S($ )iAi!
n
d$

% (1 t)[S(t)i! "! ] = (1 t )
0

t

# S($ )i&d$
. 

 
Letting   t ! 0 , it follows that ! "D(A)  and 

 
Ai! =" , so that A  is closed.  

To complete our proof, let ! > 0  and define R(!)  by: 
 
          

 

R(!)i" =
0

#

$ e
%!t
S(t)i"dt . 

 



The above integral is well defined as an improper Riemann integral (since 
 
S(t)i!  is continuous and uniformly bounded).  It follows that R(!)  is a 
bounded linear operator on  H  and  
 

 

R(!)i"
J
=

0

#

$ e
%! t
S(t)i"dt

J

& S(t)i"
J 0

#

$ e
%!t
dt & (1 !) "

J
. 

 
Now note that  
 

 

(1 h)(S(h) ! I )iR(")i# = (1 h)
0

$

% e
!"t [S(t + h)i# ! S(t )i#]d&

         = (1 h)(e
! "h !1)

0

$

% e
!" t
S(& )i#d& ! (1 h)e

!" h

0

h

% e
! "t
S(t )i#dt

h! 0' ('' "R(")i# !# ) AiR(")i# = "R(")i# ! Î i#.

  (3.1) 

 
Thus, 

 
R(!)i"#D(A)  for all 

 
! "H  and 

 
(! Î " A)iR(!) = Î .  On the other 

hand, for ! "D(A) , we have 
 
   

 

R(!)iAi" =
0

#

$ e
%!t
S(t )iAi"dt = Ai

0

#

$ e
% !t
S(t )i"dt = AiR(!)i" ,  

 
so that 

 
R(!)i(! Î " A) = Î # R(!) = Î(! Î " A)

"1
Î := R(!,A) . 

 
Theorem 3.9 Suppose that A  is closed, densely defined and, for every ! > 0 , 
! "#(A)  with R(!, A) = Î (!Î " A)

"1
Î # 1 ! .  Then: 

 
1) 

 
lim!!" !R(!,A)i# = #  for all 

 
! "H . 

 
2) 

 
A

!
= !AiR(!,A)" A

!
= !

2
R(!,A) # ! Î  and, for all ! "D(A)  A!" # A",  

as ! " # . 
 



3) A
!

, known as the Yosida approximator for A , is a (uniformly bounded) 
generator for a C0-iso-semigroup of contractions and !",µ > 0 , 

 
! "H , 

 
[(e

tA! J " e
tAµ J )Î ]i#

J

$ t [A! " Aµ ]i#
J

. 

 
4) A  is the generator of a C0-iso-semigroup of contractions S(t), t ! 0 . 
 
5) 

 
R(!,A) " R(µ,A) = (! " µ)R(!, A)iR(µ ,A)  (resolvent equation). 

 
Proof: To prove 1), recall from the last part of equation (3.1) that 
 
AiR(!)i" = !R(!)i" # " , so that 
 
   

 
!R(!, A)i" #"

J
= AiR(!,A)i"

J
= R(!,A)iAi"

J
$ (1 !) Ai"

J
. 

 
To prove 2), use 

 
AiR(!,A) = !R(!, A)" Î  to get that 

 
!AiR(!) = !

2
R(!) " ! Î .  

If ! "D(A)  then, from 
 
!AiR(!,A)i" = !R(!,A)iAi"  and 1, we get that 

 
lim!!" A! i# = Ai# . 
 To prove 3, recall from the last part of Theorem 2.2 that 

 
R(!,A)i" #D(A)  

for all 
 
! "H , so that A

!
 is a iso-bounded.  It generates a iso-semigroup since 

 
e
tA!J Î := "

n=0

#
(tA! i)

n

n!$% &' Î = Îe
JtA!  converges uniformly for all t  and 

e
tA

!
J

Î
J

" e
t A

! J
= e

t !
2
R( ! )#!Î

J
= e

# !t
e
t! !R(! )

J " 1 , so it is a contraction (see 

Example 1).  It is clearly strongly continuous.  To complete the proof of 3, 
observe that  
 

 

[(e
tA! J " e

tAµ J ) Î]i#
J
=

0

1

$
d

ds
[(e

tsA!J
ie

t (1"s)Aµ J )Î ]i#ds
J

% t
0

1

$ ds [(etsA! J
ie

t (1"s )Aµ J )Î ]i[A! " Aµ ]i#
J

% t [A! " Aµ ]i#
J
.

   (3.2) 

 
 



 To prove 4, note from equation (3.2) that, for all ! "D(A) , 
 
[e

tA! J Î ]i"  
converges as ! " # .  Furthermore, the convergence is uniform on bounded 
intervals and, since etA! J Î

J

" 1  and D(A)  is dense,  

 

  
lim

t!"[e
tA# J Î ]i$ = S(t )i$,  %$ &H.       (3.3) 

 
It is clear that S(t)  has the semigroup property, S(0) = Î , S(t )

J
! 1  and the 

convergence is uniform on bounded intervals.  Since 
 
S(t)i!  is the uniform 

limit of continuous functions in t , it is a continuous function of t .  It follows 
that S(t)  is a C0-iso-semigroup of contractions on  H .  Now, if ! "D(A) , it 
follows from equation (3.3), part 3 of Theorem 2.1 and the fact that 

 
[e

tA! J Î ]iA! i"# S(t )iAi"  uniformly on bounded intervals that: 

 

S(t)i! " ! = lim#$% [(e
tA# J Î)i! "! ]

= lim#$%
0

t

& [etA# J Î ]iA# i!d' =
0

t

& S(' )iAi!d'
.    (3.4) 

Dividing (3.4) by t  and letting t ! 0 , we see that A  is the generator of S(t) , 
which is easily seen to be unique. 
 
To prove 5, note that  

 

R(!,A) = R(!,A)i(µ Î " A)iR(µ, A)

            = R(!,A)i{(µ " !)Î + (! Î " A)}iR(µ,A)

            = (! " µ)R(!,A)iR(µ,A)+ R(µ,A).

 

 Combining Theorems 2.2 and 2.3, we get the iso-version of the famous 
Hille-Yosida Theorem (see Hille and Phillips [20] or Pazy [16]): 
 
Theorem 3.10 (Hille-Yosida) The linear operator A  is the generator of a C0-
iso-semigroup of contractions S(t), t ! 0 , if and only if A  is closed, densely 
defined and every ! > 0"! #$(A) , with R(!, A)

J
"1 ! . 

 



 We now develop the Lumer-Phillips approach, which has a number of 
advantages in applications.  Recall that a linear operator 

  

A  is said to be iso-
dissipative if 

 
Re Ai!,!

J
" 0  

  

 !" #D(A ) .  It is said to be m-iso-dissipative if 

it is iso-dissipative, closed, densely defined and 
   
R(!Î !A)= H .  

 
Theorem 3.11 Let 

  

A  be a closed densely defined linear operator on  H . 
 
1) If 

  

A  is iso-dissipative, then:  
 

 
! "

J
# [! Î $ A]i"

J

 !" #D(A) , ! > 0 .    (3.5) 

 
2) The operator 

  

A  generates a C
0
-iso-semigroup of contractions on  H , 

  

S(t) | 0 ! t < "{ } , if and only if 

  

A  is m-iso-dissipative.  
 
3) If 

  

A  is closed and densely defined with both 

  

A  and 

  

! A  (on  !H , the dual of 
 H ) iso-dissipative, then 

  

A  is m-iso-dissipative. 
 
Proof: To prove 1, let 

  

A  is iso-dissipative, ! > 0  and ! "D(A) , then 

 
Re Ai!,!

J
" 0 . Then: 

 

 

! "
J

2
= !","

J
= Re !" # Ai","

J
+ Re Ai","

J
$ Re !" # Ai","

J

                           $ !" # Ai","
J
$ [! Î # A]i"

J

"
J
= [! Î # A]i"

J

"
J

.
 

 
To prove 2, suppose 

  

A  is m-iso-dissipative, so that 
 
R(! Î " A) = H, ! > 0 .  It 

follows from equation (3.5) that R(!,A)  is an iso-bounded linear operator on 

 H  and that, for each ! > 0 , R(!, A)
J
"1 ! .  Thus, by the Hille-Yosida 

theorem, 

  

A  is the generator of a C0-iso-semigroup of contractions on  H . 
On the other hand, if 

  

A  is the generator of a C0-iso-semigroup of contractions 

  

S(t) | 0 ! t < "{ }  on  H , then !(A) " (0,#) , so that 
 
R(! Î " A) = H, ! > 0 .  



Furthermore, if ! "D(A) , then:
 
S(t )i!,!

J
" !

J

2 , so that  
 

 
(1 h)Re S(h)i! "!,!

J
= (1 h) Re S(h)i!,!

J
" !

J

2#
$

%
& ' 0 . 

 
Letting h ! 0 , we get that 

 
lim

h!0
(1 h)Re S(h)i" # ","

J
= Re Ai","

J
$ 0 , 

so that 

  

A  is m-iso-dissipative. 
 To prove 3, we need only show that for any 

 
 ! > 0,  R(! Î " A) = H .  Since 

  

A  is iso-dissipative and closed, it follows that 
 
R(! Î " A)  is a closed subspace 

of  H .  Let !
0
> 0  be such that there exists at least one !  in  H  with 

 
!
0
" # Ai",$

J
= 0  for all ! "D(A) .  This implies that: 

 
 

 

0 = !
0
" # Ai",$

J
= ",!

0
$

J
# Ai",$

J
= ", !

0
$

J
# ", %A i$

J

= ",!
0
$ # %A i$

J
,  &" 'D(A) (!

0
$ # %A i$ = 0.

 

 
Since !A  is iso-dissipative, by equation (3.5), we have that 

 
0 = [! Î " #A ]i$

J

% ! $
J

, so that ! = 0 , contradicting our assumption that 

! " 0 .  Thus, it follows that for any ! > 0 , we must have 
 
R(! Î " A) = H .      

 
Example  
 

The following example is an extension of one used by deLaubenfels [21] to 
motivate the development of the theory of C-semigroups.  Let 

  
H = H

0

0
(R

n

) , 
the Hilbert space of functions mapping  R

n  to itself, which vanish at ! , along 
all approaches.   Consider the Cauchy problem:   
 

d

dt
u(x, t ) = a x u(x,t ),   u(x, 0) = f(x) , 

 



where a = !
i=1

n
sign( x

i
) .  Let S(t)f(x) = e ta x f(x) , where 

 
x = [x

1
,!, x

n
]
t .   It is 

easy to see that S(t)  is a semigroup on  H  with generator A  such that 
Af(x) = a x f(x) .  It follows, that u(x, t) = S(t)f(x)  solves the above initial-
value problem.  If we compute the resolvent, we get that: 
 

  R(!,A)f(x) =
0

"

# e
$ !t
exp{$t x } f(x)dt =

1

! $ a x
f (x) . 

 
It is clear that the spectrum of A  is the real line, so that R(!,A)  is an 
unbounded operator for all real ! .  However, it can be checked that the 
bounded linear operator A

!
= a! x [! + x ]  converges strongly to A  as 

! " # , and lim
!" 0

S
!
(t)f(x) = S(t )f(x) .  We do not prove this since it is a 

special case of the next theorem. 
 
For any closed densely defined linear operator 

  

A  on  H , let T = ! A
"
A#$ %&

1/2

,  

 T = ! A
"
A#$ %&

1/2

.  It is easy to see that 

  

T (T )  is m-iso-dissipative, and thus, 
generates a C0-contraction iso-semigroup.  We can now write 

  

A  as 

  

A = W T , 
where 

  

W  is a partial isometry.    Define 
 
A
!
= !AiR(!,T ) , so that 

 
A

!
= !

2
W iR(!,T ) " !W  and, although in general 

 
AiR(!,T ) " R(!,T )iA , we 

have that 
 
!AiR(!,T ) = !R(!,T )iA , which is sufficient for the following 

theorem, which is a generalization of Theorem 2.18. 
 
Theorem 3.12 If 

  

A  is a closed densely defined linear operator on  H , then:  
 
1. The operator A

!
 is bounded and 

 

lim
!"#

A! i$ = Ai$ %$ &D(A) , 

2. For !, t > 0 , exp tA
!
J[ ] Î = S! (t)  is a iso-contraction semigroup and 

3. If 

  

A  generates an iso-semigroup S(t) = exp tAJ[ ] Î  on D ! D(A)  for t > 0 , 
then 

 

lim
!"#

S! (t)i$ % S(t)i$
J
= 0  !" #D .  



 
Proof: To prove 1., first note that 

 
A

!
= !

2
W iR(!,T ) " !W , W

J
= 1, so that 

A
! J

" 2! , and then use the fact that 
 
A! i" = !R(!,T )iAi" , with 

 
lim!"#!R(!,T )i$ = $ . 
To prove 2, use 

 
A

!
= !

2
W iR(!,T ) " !W , !R(!,T )

J
" 1 , and W

J
= 1 to get 

that  
  
 S! (t) J

" exp #t! W
J

$% &'exp t! W
J
!R(!,T )

J
$% &' " 1.  

 
To prove 3., let t > 0  and ! "D(A) .  Then  
 

 

 

S! (t)i" # S(t)i"
J
=

d

ds
S! (t # s)iS(s)[ ]

0

t

$ i"ds
J

                    % S! (t # s)i A # A!( )iS(s)i"&' ()0

t

$
J

% A # A!( )iS(s)i"&' ()0

t

$
J

ds.

 

 
Use 

 
AiS! (s)i"[ ]

J
= !R(!,T )iAiS(s)i"#$ %&

J

' AiS(s)i"[ ]
J
 to get 

 
A ! A"( )iS(s)i#$% &'

J

( 2 AiS(s)i#[ ]
J
.  Now, since 

 
AiS(s)i![ ]

J
 is 

continuous, by the bounded convergence theorem we have  

   

lim
!"#

S(s)i$ % S! (s)i$ J
& lim

!"#
A % A!( )iS(s)i$'( )*0

t

+
J

ds = 0.
 

 
4.0 Application (C-semigroups and B-Evolutions)  
 

The theory of C-semigroups was developed by deLaubenfels [21], and 
applied to a number of interesting problems.  In particular, he shows that C-
semigroups are general enough to include the theory of integrated semigroups.  
Unaware of the work of deLaubenfels, Sauer [22] developed the theory of B-
evolutions (see also [23]).  As an application of the theory in Section 3, we 
show that the theory of C-semigroups and B-evolutions are contained in the 



theory of S*-algebras.  
 
Definition 4.1 A one parameter family S(t),  0 ! t < " of bounded linear 
operators on  H  is a strongly continuous C-regularized semigroup if  
i) S(0) = C , where C  is a bounded and injective linear operator. 
ii) S(t)S(s) = CS(t + s ) , t,s ! 0  (semigroup property). 
iii) 

 
lim
t!0

S(t ) f = Cf ,  "f #H .  

 
Definition 4.2 A one parameter family S(t),  0 ! t < "  of bounded linear 
operators on  H  is a B-evolution semigroup if B  is a closed, densely defined 
linear operator with a bounded inverse and   
i) S(0) = B!1 ,  
ii) S(t)BS(s) = S(t + s ) , t,s ! 0  (semigroup property), 
iii) 

 
lim
t!0

S(t ) f = B
"1
f ,  #f $H .  

 The work of Sauer was motivated by the desire to develop a theory for the 
class of Sobolev-Galpern type equations.  These equations are of the form 
 

Bu(x, t)( )
t
= Au(x, t) + f (t), u(x,0) = u

0
(x) ,     (4.1) 

 
where A  and B  are linear elliptic operators on  H  (see Sauer [22], and 
references therein).  These problems received intense investigation in this 
country starting around 1970 (see Showalter [24], [25], Lagnese [26] and Brill 
[27]).  It should be noted that in general Bu( )

t
! Bu

t
 so that B  cannot be 

factored out in the obvious way.  
  
Theorem 4.3 If the operator B  has a bounded inverse, and A  is relatively 
bounded with respect to B , then 

 
A !L

J
[H]  with J = B!1 .  If f !D(A)  and 

v = Bu , then the solution to the initial value problem  
 

 
vt (x,t) = Aiv(x,t ) + f (t ), v(x, 0) = v

0
(x) = Bu( )(x, t) |t= 0 ,    (4.2) 

 



solves (4.1).  If the solution iso-semigroup is S(t) , then  
 

 

v(x, t) = S(t)iv
0
(x) + S(t ! s)i f (s)ds

0

t

" , u(x,t) = B
-1
v( x,t).     (4.3) 

 
Note that in this case, A  is an iso-bounded linear operator so that S(t)  is a 
uniformly continuous iso-semigroup.  In the general (linear) case, A  need not 
be relatively bounded with respect to B , but the theorem still holds.  
 
Discussion (Nonlinear Case) 
 
 From the beginning, it was clear that Sobolev-Galpern type equations take 
on additional importance when A  or B  (or both) are nonlinear operators (see 
Showalter [28], [29]).  Many of the important cases can be reduced to the case 
where A  is linear and J = B!1  is nonlinear.  This case includes the porous 
medium (nonlinear diffusion) equation.  The Crandall-Liggett theory of 
nonlinear semigroups has been used quite successfully to attack problems of 
this type (see Crandall [30] and Konishi [31], [32]).  Work by Bandle, Nanbu 
and Stakgold [33] has focused on the issue of extinction in finite time for such 
problems.  It should be noted that the nonlinear case was studied earlier by 
Strauss [34], [35], see also Brezis [36].   
 
 From the above discussion, it is clear that we need to develop a "restricted" 
theory of nonlinear operator algebras as a part of a different approach to 
problems of this type.  The theory of nonlinear operator algebras has not 
received much attention for obvious reasons.  In order to make the approach 
clear, some definitions are required. 
 
Definition 4.4 A set of operators, 

 
N[H],+,!( )  is called a nonlinear operator 

algebra if 
 
1. The pair 

 
N[H],+( )  is a vector space,  

2. The pair 
 
N[H],!( )  is a non-Abelian semigroup with unit I, and 



3. 
  
A + B( )C = AC + BC,  (ab)A = a(bA),  A, B,  C !N[H], a,b !C .  

 
There is no standard terminology; Martin [37] calls 

 
N[H],+,!( )  a near ring 

while Masani [38] calls it a pseudolinear algebra. 
 
Definition 4.5 If J  is a positive nonlinear operator, 

 
L
J
[H]  is called an NS*-

algebra. 
 
The following result shows why 

 
L
J
[H]  is called a *-algebra. 

 
Theorem 4.6 If 

 
L
J
[H]  is an NS*-algebra, then for 

 
f , g !LJ [H] , we have:   

 
          

 
Ai f ,  g

J
= A

!

ig,  f
J

c

.       (4.4) 
 
 There is much work to be done but it should be clear that this approach 
provides closer contact between abstract analysis and applications. 
 
Degenerate Parabolic Equations 
  
 The recent book on degenerate parabolic equations by DiBenedetto [39] 
approaches the problem 
  

 
!u !t = Ai(u) = AJ(u)       (4.5) 

 
from an analysis point of view with interest in the continuity and growth 
properties of the solutions ( J  is nonlinear).  More important from our point of 
view is the issue of the degenerate or singular nature of the problem.  This 
work and the recent book by Favini and Yagi [40], which considers problems 
of the above type where AJ  is a multi-valued operator, makes it clear that the 
most general class of isotopes is required for problems of this type. 
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