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efficient method for extracting σ(Ĥ) components, in the vicinity of ζ, from a few
specially selected eigenvectors of the inverse of the covariance matrix is derived.
The method encapsulates (and improves on) the three most successful quantum
spectrum scanning schemes: Filter-Diagonalization, Shift-and-invert Lanczos and
Folded Spectrum Method. It gives physical insight into the scanning process. The
new method can also be employed to probe the nature of underlying potential energy
surfaces. A sample application to the near-dissociation vibrational spectrum of the
HOCl molecule is presented.

PACS numbers: 03.65.-w,02.70.-c,02.10.10.Yn,02.30.Tb,02.50.Sk,02.30.Zz,02.30Yy

Keywords: Eigensolver, Mixed state, Quantum Control



Inverse-covariance matrix of linear operators for quantum spectrum scanning 2

1. Introduction

Quantum mechanics provides our understanding of the behaviour of microscopic objects

such as atoms, molecules and their constituents. Thus non-relativistic studies of these

objects and any process involving them essentially requires solving the appropriate

Schrödinger equation. However, apart from few cases, solving this equation accurately

is a major problem — in fact it was identified as a computational challenges of the last

century and still remains one [1]. A well documented examples which reflect this fact are

the difficulties one faces in order to understand/explain chemical reactions, molecular

spectroscopy, and thermodynamic properties from first principles [1, 2, 3, 4].

Usually, the time-independent Schrödinger eigenproblem

Ĥ | ψk >= Ek | ψk >, (1)

of the Hamiltonian operator Ĥ is solved for the eigenpairs (Ek,| ψk >) which are the

quantum mechanically allowed energy values and their associated eigenstates of the

physical system. In this work we assume that the eigenvalue spectrum is discrete

and finite: k = 1, 2, ..., n. Generally Ĥ is real symmetric or Hermitian. However,

non-Hermiticity can arise, in particular, when studying dissipative quantum states

which often play an important role in energy transfer processes, such as scattering

and unimolecular reactions, see [4, 5] and references therein.

The eigenvalue problem is typically handled by expanding | ψk > in an

appropriately chosen basis set {| φj >}n
j=1, | ψk >=

∑n
j=1 ujk | φj >, and then finding

the eigenpairs of Ĥ in a n- dimensional Hilbert space spanned by the set. For clarity

and without loss of generality, we will assume that Ĥ is real symmetric; generalisation

to non-Hermitian operators is straightforward.

Since in finite-dimensional Hilbert spaces all operations, physical or otherwise,

simplify to manipulating ordinary linear algebra, finding solutions of Eq. (1) amounts

to solving an eigenvector problem

H́uk = Ekuk (2)

In other words diagonalising H́ = (< φi | Ĥ | φj >)n
i,j=1, a n-dimensional matrix

representation of Ĥ in {| φj >}n
j=1, for yielding Ek and its corresponding eigenvector

uk ∈ Rn×1 which is the | ψk > representative in the chosen basis set — that is, uk

elements are the values of different features which characterise | ψk > in the space

defined by the basis set.

With conventional matrix diagonalisers one has to calculate the entire spectrum

and the corresponding eigenvectors of H́, from the bottom up even when one wishes to

examine only eigenstates with specific energy levels [2]. Furthermore the computational

work with canonical eigensolvers scale badly with n, as n3. Thus, with the current

computer power, these diagonalisers are useful only for studying physical systems

represented by small and moderately large matrices.

The last two decades have seen the development of methods that can scan the energy

spectrum region-by-region as desired by employing function operators: A commonly
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used function operator is the Green operator (H́ − Iζ)−1, where ζ is the centre of the

energy region that one wishes to scan, but ζ itself is not an eigenvalue of H́.

The most successful of these methods are filter-diagonalization (FD) [3, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19], Shift-and-invert Lanczos (SaiL) [2, 20, 21, 22, 23, 24]

and Folded Spectrum Method (FSM) [25, 26]. Despite their remarkable success these

algorithms have shortcomings. Here we propose and derive a method which not only

improves them, but also encapsulates all three methods.

The new method can also be employed as a probe of the nature of potential

energy surfaces, which can give physical insight into system. We show that the Green

operator (H́ − Iζ)−1 is not a mere mathematical trick in the scanning schemes, but

can be associated with the covariance matrix of a mixed quantum state composed of

an ensemble of pure states. We also illustrate that the mixed state is related to what

is commonly known as filtered states in the spectrum scanning literature. A possible

connection between the proposed scanning scheme and quantum control theory [29] is

also pointed out. All of this can be deduced from an analysis of (H́− Iζ)2.

The following section gives a brief pedagogical introduction to FD, SaiL and FSM

using a simple framework with which all the scanning schemes can be analysed. The

framework lacks mathematical rigor, but is adequate for the intended purpose. In each

case a complete treatment of the methods is given in the cited references. The proposed

Covariance Based Eigensolver (CoBaE) algorithm is derived in Section 3 and some of

its implications are given in Section 4. Test results and their analyses are presented in

Section 5. Section 6 gives our concluding remarks.

2. Overview of Quantum spectral scanning schemes

From the outset we note that scanning algorithms, including the proposed method,

require a few n-dimensional vectors to be stored in computer memory at one time. This

means that the algorithms are not universal — they do not work for problems where n is

too huge for the few vectors to be kept in computer memory. In this scenario, currently

there is no known algorithms which can accurately calculate σ(H́). However, schemes,

such the stochastic diagonalisers [27, 28], can yield approximate eigenpairs.

We develop the framework from the following basic notions in canonical quantum

formalism.

(i) An isolated quantum system is described in terms of abstract vectors and operators

in a Hilbert space H. The state vectors represent quantum mechanically allowable

states of the system while its physical observables are associated with the operators

whose actions determine how the state vector resides in H.

(ii) Hamiltonian operators can be both Hermitian and unitary (real-symmetric and

orthonormal) if and only if the modulus of Ek is 1, ∀k, i.e., Ek = ±1. Most

unitary operators are not Hermitian and therefore cannot represent physical

observables. Nevertheless there are some Hermitian-unitary operators, fortunately

their corresponding matrices can be diaganalised quite easily. The majority
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of Hamiltonian quantum systems are associated with matrices that are real

symmetric/Hermitian, H́ = H́T , but not orthonormal/unitary, H́T H́ 6= I, and

difficult to solve.

(iii) A Hilbert space H can be spanned by infinitely many suitable basis sets. For

the finite Hilbert space of dimension n, one possible basis set consists of all the

eigenvectors of H́, {uk}n
k=1. Due to the linearity of H, any possible state vector b

can be expressed as b =
∑n

k=1 ckuk.

H́T H́ 6= I suggests that bTb 6= (H́b)T (H́b), i.e., the norm of b is not conserved.

The operation of H́ upon b transforms b into another state vector in H in one of two

ways: (a) The magnitude of b is dilated, but its direction is left unchanged, i.e., b

is an eigenvector of H́; (b) One of the eigenvectors in the expansion b =
∑n

k=1 ckuk

is magnified/stretched more than the others. In this case b is skewed towards the

eigenvector whose length increased the most, the so-called dominant eigenvector ud.

Linearly shifting H́ by ζ gives (H́− ζI). Elementary linear algebra [30, 31, 32, 33]

shows that the action of (H́ − ζI)κ, where κ is a positive or negative integer, on

b shrinks/folds or respectively dilates/magnifies the eigenvectors in the expansion

b =
∑n

k=1 ckuk whose corresponding eigenvalues are near ζ. The eigenvector which

is folded the most is the smallest eigenvector, us, of (H́ − ζI)κ>0, whereas the

eigenvector that is magnified the most is ud of (H́ − ζI)κ<0. Henceforward the terms

‘smallest/largest eigenvalue’ and ‘smallest/largest eigenvector’ mean the eigenvalue that

is the smallest/largest in magnitude and the eigenvector whose corresponding eigenvalue

is the smallest/largest in the sense aforementioned.

The discussion above can be generalised to any function operator of the Hamiltonian

system, f(H́|ζ), that satisfies the following: (a) ∀ζ in [E1, En], provided that ζ 6= Ek,

and f(E k | ζ)) exists and is finite; (b) (uk, f(Ek | ζ)) ⇒ (Ek,uk), an eigenpair of H́

[34, 35]. However, due to perhaps the fundamental role that it plays in many physical

applications, the Green operator (H́ − ζI)−1 is the most commonly employed function

operator in the majority of spectrum scanning approaches [2]. It is this operator and

those closely related to it, in particular (H́− ζI)p with p = 1,−2, 2, we are principally

concerned with.

Now we come to the central idea of the framework. If one wishes to calculate ud of

a function operator (say, a magnifier), a method as simple as the power method should

suffice provided that the operation (H́−ζI)pb can be performed [30, 31, 32, 33]. Clearly

it would be highly desirable to extract a portion of the energy spectrum rather than one

eigenpair at a time. Sophisticated subspace based methods [30, 33] are suitable for this

objective.

It can be surmised from (iii) above that any subset of {uk}n
k=1, say {uk+j}l

j=1(l ¿
n), determines a l-dimensional subspace S ⊂ H where the corresponding eigenvalues lie

in the energy range [Ek+1,Ek+l] [30, 31]. Like H, S can also be spanned by other basis

sets. Let {si}l
i=1, si ∈ Rn×1, be one such basis set and for clarity sake assume that

it is orthogonal. As the eigenvectors of H́ in S are expressible in terms of {si}l
i=1:
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uk+j =
∑l

i=1 q′jisi, the coefficients {q′j}l
j=1 are the eigenvectors of a small matrix

Q ∈ Rl×l = (si, H́si′)
l
i,i′=1 , the representation of matrix H́ in {si}l

i=1; {q j}l
j=1 are the

corresponding eigenvalues of Q and of H́ in the energy range [Ek+1,Ek+l] of σ(H́).

The question of how to find {si}l
i=1 in order to build Q is the core one for the

scanning methods. However, these methods differ from each other in the manner they

compute, or rather estimate, the set.

2.1. SaiL method: ‘a set of Lanczos vectors’ as {si}l
i=1

Repeated operations on b, with any function operator, generates a sequence known as

the Krylov sequence [31, 33]. {((H́− ζI)−1)ib}l−1
i=0 is the Krylov sequence of the Green

operator, where ((H́ − ζI)−1)l−1b is a vector pointing to the same direction as ud [33]

of the operator.

The elements of the sequence are linearly independent [31] and orthogonalising

them results in a set of Lanczos vectors [33, 36, 37] {vi}l−1
i=0, a viable basis set for S

[31, 33], in which H́ can be expressed in order to produce Q. As explained before, the

construction of Q is what is being sought: This matrix is easy to diagonalise and its

eigenpairs subsequently provide the eigenpairs of H́ in the immediate vicinity of ζ.

The essence of the SaiL scheme is generating this small Krylov sequence efficiently.

The scheme was first introduced by Ericsson and Ruhe (E&R) where the multiplications

{((H́ − ζI)−1)ib}l−1
i=0 were performed via LU decomposition of (H́ − Iζ). For small

and moderately large (H́ − Iζ), LU factorization is not only computationally feasible,

but quickly converges the Krylov sequence [17, 22, 24]. However, as n increases

computer memory requirements makes E&R’s approach prohibitive. This drawback

can be circumvented by iteratively solving the following linear system

(H́− Iζ)wi+1 = wi (3)

where i = 0, 1,.., l -1 ; w0 = b; w1 = (H́− Iζ)−1b.

Wyatt [2] was probably the first to adapt this strategy for molecular spectral

scanning. It has since been used by a number of researchers including Carrington

and co-workers [21, 23]. Unfortunately, (H́ − Iζ) in Eq. (3) is ill-conditioned.

Thus preconditioning it first is essential before one can employ suitable accelerators

[33, 38, 39]. Poirier and Carrington [23] reported a remarkable reduction of the value

of l when they appropriately pre-conditioned (H́ − Iζ). Note that l determines both

the computer memory required for storing the Lanczos vectors and how many times the

linear system in Eq. (3) has to be solved.

To our knowledge there is no systematic way in which one can build a suitable

pre-conditioner for a given Hamiltonian system [39]. Clearly this is a major hindrance

to the computational efficiency of the SaiL algorithm.

Iung and Leforestier [40], and Kono [41] have also used spectrum scanning schemes

where non-Green function operators were employed to generate the Krylov sequence.
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2.2. FD: ‘filtered state vectors’ as {si}l
i=1

A second suitable basis set for S is {y(ζj)}l
j=1 where y(ζj) = (H́ − Iζ)−1b, and

{ζj}l
j=1 ∈ [Ek+1, Ek+l], but ζj 6= Ek+j. Superficially y(ζj), the so-called filtered state,

can be seen as the projection of b into S by (H́− Iζ)−1 [3, 7, 8, 10, 17]. In this scheme,

the spectrum of the Hamiltonian system is scanned over an energy range unlike SaiL.

Orthogonalising the set {y(ζj)}l
j=1 results in {si}l

i=1, in which H́ can be represented in

order to obtain Q. Again diagonalising Q leads to yielding the eigenpairs of H́ in the

energy interval [Ek+1, Ek+l].

The method was introduced by Neuhauser [6]. In its original form, the filtered

states are generated in the time domain and {y(ζj)}l
j=1 is the Fourier transform. Full

details of Neuhauser’s approach can be found in Ref. [6].

The method has been adapted and modified by several authors, see [3, 7, 8, 9, 17]

and references therein, by building the filtered states in the energy domain. However,

there are several schemes for “projecting” out {y(ζj)}l
j=1 from b. Mandelshtam and

Taylor [7], and Chen and Guo [8] construct the set {y(ζj)}l
j=1 by expanding magnifying

function operators, such as the Green operator, in some kind of polynomials, usually

Chebyshev polynomials,

y(ζj) =
K∑
i

qi(ζj)Ti(H)b. (4)

where K is the order of expansion; qi(ζj)s are polynomial co-efficients; H is a rescaled H́,

such that its σ(H) is confined to the interval [-1,1]. It is worth noting that Chebyshev

polynomial terms Ti(H) are independent of ζj. Hence {y(ζj)}l
j=1 can be generated in a

single epoch.

Smith and co-workers [3, 9, 10] tridiagonalises H́ first. The resulting Lanczos vectors

{vi}l−1
i=0 are then used to estimate the state filtered at ζj,

y(ζj) =
l−1∑
i=0

ai(ζj)vi, (5)

In order to solve for the coefficients ai(ζj), usually a linear problem (similar to that in

SaiL, where the operator matrix is replaced with a shifted tridiagonal matrix) is solved.

For more details on this and related schemes see Refs. [3, 11] and references there in.

Besides the Green operator, all the groups cited above employed other function

operators, such as Dirac and Gaussian.

In realistic Hamiltonian systems, the resultant representative matrices are very

large. This makes the memory requirement of {y(ζj)}l
j=1 significant when l is of

the order of 100’s or more. Wall and Neuhauser cleverly circumvented this potential

computer memory bottle-neck by building Q on the fly [12]. Once again, their algorithm

was in the time-domain. Mandelshtam and Taylor [13, 14], Zhang and Smith[16],

Chen and Guo [15], and Alacid et al [17] have developed equivalent time-independent

versions. However, this modified FD, known as low-storage FD (LSFD), yields only
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the eigenvalues of H́. Eigenvector calculations demand knowledge of the set {y(ζj)}l
j=1

whose regeneration can be computationally very expensive.

Skokov et al [44] computed all the vibrational energy levels of HOCl employing

Cullum and Willoughby’s Lanczos [37] and LSFD methods. They reported that the

latter required about 4.8 times more CPU-time than the former. According to Skokov

et al, this difference could be attributed to the implementation of a Fourier transform

in the Lanczos code employed in their calculation, which was not a specific feature of

the method. However, Huang and Carrington (HC) compared the performance of LSFD

with a simple Cullum and Willoughby’s Lanczos version for calculating the vibrational

energy levels of a one-dimensional Morse oscillator and of the water molecule [45]. They

cautiously concluded that a simple Lanczos method may be better suited than LSFD

to calculating eigenvalues. The work of Zhang and Smith [46] seems to support this

claim. Comparing the performances of LSFD and their LHFD (Lanczos homogenous

filter diagonalisation) on computing the quasi-bound energies of HO2, Zhang and Smith

reported that LHFD required 2 to 6 fold fewer iterations (matrix-vector multiplications)

than LSFD. In our view, however, it is not that clear that the LHFD approach improves

on the LSFD algorithms or on the fast and cheap conventional triadiagonal matrix

eigensolvers.

Overall, these studies suggest that a simple and easy to use Lanczos algorithm, a

conventional eigensolver, is faster than LSFD.

2.3. FSM: Filtered or Lancsoz vectors as {si}l
i=1

The third and final set {si}l
i=1 for S is obtained by replacing the magnifier in

{((H́−ζI)−1)ib}l−1
i=0 with a folder (i.e., {((H́−ζI)2)ib}l−1

i=0 and at the same time imposing

a condition that ((H́− ζI)2)ib should skew b towards us of (H́− ζI)2. Alternatively a

set of filtered states {y(ζj)}l
j=1 is generated, where each y(ζj) is close to us of (H́−ζjI)

2.

In both cases and like SaiL and FD, orthogonalising the constructed vectors produces

a good basis set to represent H́ and yield Q.

When the energy levels of H́ are not dense, there is efficient software [51, 52] which

can be used with SFM to form Q quite easily. In this case, the FSM approach becomes

competitive with the other two methods. However, in general the inner part of the H́

spectrum is dense rendering (H́ − ζI)2 badly conditioned [26] so to avoid singularity

good pre-conditioners are essential for its efficacy.

The FSM method was introduced by Wang and Zunger [25], although their original

form of the method differs slightly from the descriptions given above. Wang and Zungerg

developed FSM to find one eigenvalue at time — the lowest eigenvalue of ((H́ − ζI)2

which is equivalent to the eigenvalue of H́ closest to ζ. For this they solved the problem

via minimization of a functional.

In the discussions above it was assumed implicitly that the set {si}l
i=1 was computed

accurately. This can be computationally expensive so the set is usually approximated.

One consequence is that not all of the eigenvectors of Q converge to eigenpairs in the
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vicinities of ζ. Henceforth lc denotes the number of eigenvectors Q which also belong

to H́.

In summary, conceptually the scanning methods make use of the following self-

evident idea: Any subspace S of H, in which H́ is defined, is associated with a portion

of the energy spectrum. The methods, therefore, differ only in how to “project” out

some components of b into S which entails: (1) The f(H́|ζj) to employ (2) The strategy

for performing f(H́|ζ)b.

Both the FSM and SaiL methods require appropriate pre-conditioners [2, 21, 26],

for which there is no existing systematic method for large Hamiltonian systems. The

drawback of FD/LSFD is speed. Yu and Nyman [3] attributed this slowness to f(H́|ζj)

being expressed in polynomials in H́: Since the polynomials are built up directly from

H́, the convergence rate of the spectrum computed by FD is strongly influenced by

the convergence rate of the H́ spectrum. Similar assertions were made by HC [21].

These arguments are important because the convergence rate of the Hamiltonian matrix

H́ spectrum is generally bad in the interior of the spectrum, the energy region for

which FD was primarily developed [3]. However, we are aware of neither heuristic nor

rigorous mathematical proofs tying the slowness of FD to the relative separation of the

Hamiltonian matrix eigenvalues. In any case, it can be hard to avoid missing energy

levels with FD [21, 47, 48], which often necessities repeated re-estimation of the filtered

states.

In principle, all these shortcomings can be handled by inverting (H́−Iζ)−2, although

in practice this has proved impossible [20]. Our proposed algorithm addresses this

problem.

3. The CoBaE Algorithm

The proposed method is based on the basic concept of that (H́− Iζ)−2 can be obtained

from (H́ − Iζ). The derivation is given below but for simplicity of exposition we put

most of the technical material in appendices.

3.1. Derivation

Theorem: Any H́ can be associated with a scaled real symmetric positive definite

covariance matrix of (H́− Iζ),whose eigenvectors and those of H́ are the same.

Proof :—

Consider Eq. (2) as a linear fitting problem. If ζ is very close to an eigenvalue of the

eigen-problem, for w to become the corresponding ‘eigenvector’, the following equation

should be true

(H́− Iζ)w = τ , (6)

where τ ∈ Rn×1(6= 0) is a residual vector. In essence (H́− Iζ) can be seen as the input

data and τ as the outputs, where w contains the fitting parameters which are to be

estimated. The optimal value of w can be found by minimising the cost/loss function
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of Eq. (6), J (w,H− Iζ) =
[
τ − (H− Iζ)w

]T [
τ − (H− Iζ)w

]
, with respect to w, i.e.,

solving
∂J (w)

∂w
= 0 for w. This yields the well known closed form solution

[
(H́− Iζ)T (H́− Iζ)

]
w = (H́− Iζ)T τ , (7)

where 1
n

[
(H́ − Iζ)T (H́ − Iζ)

]
and 1

n
(H́ − Iζ)T τ are the covariance matrix of the input

data, and the cross correlation between the input data and the output respectively

[49, 50]. Therefore B = (H́− Iζ)T (H́− Iζ) can be seen as a scaled covariance matrix of

the input data (the shifted Hamiltonian matrix). Since (H́− Iζ) is symmetric and does

not have zero eigenvalues, B is symmetric positive definite (σj(B) > 0, j = 1, 2, ..., n),

diagonalizable and invertible as well. For completeness these properties are proved in

Appendix B.

Since B is diagonalizable, it can written as

B = (H́− Iζ)2 = ZDZT (8)

where D ∈ Rn×n = diag(d1 < d2 <, ...., < dn); ZTZ = I; the columns of Z ∈ Rn×n

consist of the orthonormal eigenvectors zj of B; dj are the corresponding eigenvalues

[49, 50].

Eq. (8) can be rearranged to

D = ZT (H́− Iζ)2Z

⇒| D 1
2 | = ZT H́Z− Iζ (9)

⇒ σ(H́) = ZT H́Z =| D 1
2 | +Iζ

i.e., the columns of Z are also eigenvectors of H́ as required.

The last line of Eq. (9) says that σj(H́) =| d
1
2
j | +ζ, that is finding the eigenvalues

of H́ in the vicinity of ζ ( eHvζ) means yielding the smallest eigenpairs of B. However, a

close inspection of the proof reveals that it is actually similar to the FSM method whose

major difficulty was mentioned earlier. Fortunately B is invertible hence, in principle,

B−1 = ZD−1ZT which simplifies to

| D− 1
2 | = (σ(H́)− Iζ)−1

⇒ σ(H́) = | D 1
2 | +Iζ (10)

Eq. (10) shows that the larger | d−
1
2

j | is, the closer σj(H́) =| d
1
2
i | +ζ becomes to ζ. Thus,

as | d
− 1

2
1 |>| d

− 1
2

2 |> .... >| d
− 1

2
n |, the task of obtaining eHvζ amounts to calculating

the few eigenvectors of B−1 with the largest eigenvalues. Recall the smallest eigenvalue

of (H́ − Iζ)2 and the largest eigenvalue of (H́ − Iζ)−2 have the same eigenvector [30].

Eq. (10) also implies that the largest eigenvalues of B−1 are well separated when | d
1
2
1 |,

| d
1
2
2 |,...,and | d

1
2
l | of B near ζ are quite close to each other. In other words if B−1 is

known, generating {si}l
i=1 is equivalent to approximating the few largest eigenvectors of

B−1.
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Here we propose a scanning algorithm based on estimating the few dominant

eigenpairs of ξ2B−1 without inverting B directly. The scheme consists of three main

steps: (1) The Inversion Step (IS), calculating ξ2B−1, (2) Subspace Generating Step

(SGS), constructing {si}l
i=1, and (3) Construction and diagonalization Step (CDS),

obtaining and diagonalising Q.

Steps 1 and 2 could be amalgamated, but for clarity we treat them separately. The

significance of ξ2 is discussed in Section 4. In the meantime, we note that ξ2 ∈ R+, a

positive real number.

3.2. Inversion and Subspace Generation Steps

As discussed in Appendix A, Eq. (A.11), ξ2B−1 can be expressed as

ξ2B−1 = I−
n∑

j=1

gjg
T
j

ςj
(11)

Given ξ2B−1, the set {si}l
i=1 can be obtained with the basic Krylov subspace algorithms

that we discussed in the previous section, or with any of its sophisticated variants, such

as the basic Lanczos schemes, Implicitly Restarted Lanczos Methods [51], Simultaneous

Iterations algorithms [52], to name but a few. Without loss of generality, as an

illustration, a basic Krylov algorithm is employed for generating the small subspace

where, in the vicinity of ζ, the eigenpairs pertaining to H́ reside.

The Krylov sequence {(ξ2B−1)mb}l−1
m=0 is formed via the following two term

recurrence

νm+1 = νm −
n∑

j=1

gjg
T
j

ςj
νm, m = 0, 1, 2, ..., l − 1 (12)

where νm ∈ Rn×1, ν0 = b; gj and ςj are as defined in Eq. (A.15).

H́ is then expressed in the orthogonalised version of {νm}l−1
m=0, {sm}l

m=1, to obtain

Q = (sm, H́sm′)l
m,m′=1 whose diagonalisation yields the lc eigenpairs of H́ in the

neighbourhood of ζ.

This completes the derivation of the proposed method which we call Covariance

Based Eigensolver (CoBaE).

4. Implications

Drawing upon the above findings, some possible implications are discussed below.

4.1. Computational: Cost, the role of ξ2, and CoBaE stability

To determine the computational cost of the CoBaE algorithm we use η to denotes the

average number of non-zero elements per gj, λ is defined as the lower bound for a given

value of ζ2, see Appendix A, and l gives the number of matrix-vector multiplications

required to construct the basis set spanning the subspace.
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The CPU-time cost of the inversion step (IS), gj = xj −
∑j−1

i=1
βij

ςi
gi and gj =

xj−
∑j

i=j−λ
βij

ςi
gi, are given by (λ−1)

2
[2η +(λ−1)η] and ≈ O[(η−1)(λ×η)] respectively;

j×η and λ×η words respectively are their memory requirements. Storing {gj}n
j=1 costs

about n× η words.

In the subspace generation step (SGS), the main CPU-time cost is≈ O(l×n×η) and

is due to performing the matrix-vector multiplication νm+1 = νm −
∑n

j=1

gjg
T
j

ςj
νm, m =

0, 1, 2, ..., l − 1. The memory requirements depend mainly on the subspace generating

algorithm (SGA) employed.

The computational cost of constructing and diagonalising Q step (CDS) is negligible

when the generated basis set is not orthogonalised, but instead the Singular Value

Decomposition of the basis set overlap matrix is computed.

For CoBaE to be efficient computationally, l, λ and in particular η must be much

less than n.

Substituting Eq. (A.15) into Eq. (11) results in

ξ2B−2 = I−
n∑

j=1

xjx
T
j

ςj
+

n∑
j=1

j−1∑
i=1

βij

ςjςi
(gix

T
j + xjg

T
i )−

n∑
j=1

j−1∑

ik=1

βijβkj

ςjςiςk
gjg

T
k

where ςj,k,i = ξ2 + xT
j,k,igj,k,i.

In the case ξ2 + xT
j,k,igj,k,i ≈ ξ2, the above equation simplifies in matrix form to

ξ2B−1 = I−
[(H́− ζI)2

ξ2
− ΥΥT

(ξ2)2
+

ΞΞT

(ξ2)3

]

⇒

ξ2B−1 ≈ I− (H́− ζI)2

ξ2
= I− ξ−2H́2 + 2ξ−2ζH́− ξ−2ζ2I (13)

A closer look at Eq. (13) reveals that the largest eigenvalues of ξ2B−1, those pertaining

to its dominant eigenvectors, are close to 1.0 ( or to ε, see Eq. (20) below.) In

subspace generating approaches, it is a basic knowledge that converging tightly clustered

eigenvalues takes a significant amount of matrix-vector multiplications. In other words

increasing ξ2 can result in large number of matrix-vector multiplications, i.e., a large

value of l. On the other hand by induction, reducing the value of ξ2 causes l to decrease.

However, the reduction of l, i.e., ξ2, is achieved at the cost of increased λ to maintain

the positive definiteness of ξ2B−1, see Appendix A. A disadvantage of the rise in the λ

value is a consequent increase in CPU-time requirements of IS which is quadratically or

linearly dependent on λ. Nevertheless as λ has an upper limit of ≤ n−1, the worse-case

time requirement of IS is always less than O(n2). One may therefore not worry about

the value of λ becoming large. Furthermore, as mentioned in Appendix A, due to the

linearity of the Hamiltonian systems, even if the covariance matrix loses its positive

definiteness, one can still extract the desired eigenpairs of the Hamiltonian matrix from

ξ2B−1 spectrum, provided that all the dominant eigenvalues of the covariance matrix

remain positive.
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Another consequence of small ξ2 is that it indirectly increases the value of η, see

above and Eq. (A.16). CoBaE scales unfavourably with η, in particular its memory

requirements. Fortunately, the Hamiltonian matrices that we are mainly concerned with

are sparse or diagonally dominant. Thus, in principle, the value of η can be controlled

with an appropriately chosen ε as described in Appendix A.

To summarise it, both in principle and in practice, small values of l, η, and,

to certain extent, λ are attainable rendering the proposed method computationally

efficient.

Now we comment on the statement that in SGS the memory requirements depend

mainly on the subspace generating algorithm (SGA) one employs. In Krylov algorithms,

it is necessary to store the generated sequence {νm+1}l−1
m=0. In IRLM or Simultaneous

Iterations methods, the size of the basis set is pre-defined, and therefore memory

requirements are not directly determined by l. When a Lanczos algorithm is employed

as the SGA, only the storage of three vectors are required. Ultimately the values of l

and n determine which method should be used as the SGA.

Note that in the case where the basic Lanczos method is the SGA, CoBaE yields

only the eigenvalues of the Hamiltonian matrix in the vicinities of ζ. However, as we

have just described, for a small ξ2, the order of propagation ( l ) is small. Thus, unlike

LSFD and LHFD, the computation of the corresponding eigenvectors can be relatively

much cheaper.

Finally we briefly discuss the numerical stability of the method. In Appendex A, we

noted that the Sherman-Morrison scheme may become numerically unstable owing to

accumalative residual errors. As detailed in [53, 54], this can be mitigated in a number

of different ways by: Adding artificial noises to Eq. (A.6), computing the square root of

ξ2B−1 instead of ξ2B−1, or using a higher precision floating point arithmetic; the latter

two options are quite easy to implement and computationally efficient. In the test results

presented in this article double precision floating point arithmetic in Fortran was used.

The above semi-qualitative analysis of the computational role of ξ2 in CoBaE was

tested and some of the results are given in Section 5. A full computational analysis

including parallelization of the algorithm, which is highly parallelisable, will be given

elsewhere [65].

4.2. Physical interpretation

One of the important consequence is that CoBaE can extract not only eigenpairs, but

H́ itself from quantum states which are prepared experimentally. Another possible

implication is the apparent connections between the scanning algorithms and quantum

statistics, and in particular with quantum control.

4.2.1. Mixed Quantum State: In the absence of other information, a Gaussian

distribution with a unit variance I(∈ Rn×n) was implicitly invoked to describe possible

variations in τ resulting in the least square problem given in Eq. (6) [50, 61]. In this
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section we explore the variations in τ and subsequent variations in the ‘eigenvector’ in

Eq. (6) a bit more carefully to reveal much more of the structure underlying the scanning

schemes and any physical insight this might offer.

If τ is considered as a n-dimensional random vector which has a multivariate

normal distribution density function with a covariance matrix O∈ Rn×n, the linearity

of (H́− Iζ) ascertains that the parameter vector in Eq. (6) should also be characterised

by a multivariate Gaussian probability density function with a covariance matrix F

∈ Rn×n [60]. The relationship between the two covariance matrices is given by the law

of covariances [50, 60] as

F = ((H́− Iζ)T )−1O(H́− Iζ)−1 (14)

which means O → 0(∞) ⇒ F → 0(∞).

Eq. (14) simplifies to F = ξ2
i (H́ − Iζ)−2 = ξ2

i B
−1 if O = ξ2

i I (i = 1, 2, ..., n), i.e,

there is no correlation between the errors in the different components of τ . ξ2
i denotes

the variance in the ith element of τ . F = ξ2
i B

−1 further reduces to F = ξ2B−1 [ cf.

Eq. (11)] when all the variances are equal ξ2
i = ξ2, ∀i.

Evidently the unknown quantum state, the ‘eigenvector’ associated with ζ in Eq. (6)

is not a point (pure state) in the Hilbert space, but a distribution, mixed state, of an

ensemble of pure states whose classical probability density function is Gaussian with

a covariance matrix F where F is proportional to the square of the Green operator,

ξ2(H́ − Iζ)−2. Moreover, the optimal value of the random vector w in Eq. (6) can be

seen as an instance and corresponds to a pure state in the Hilbert space of (H́− Iζ).

From mathematical perspective a Gaussian probability density function (pdf) is

completely specified by its first and second moments. The latter not only quantifies the

uncertainties/variances, but it also determines the shape of the pdf in state space. Thus

ξ2B
−1

decides how isotropic/anisotropic the pdf, which characterises the mixed state,

is in Hilbert space. Isotropicity suggests the mixed state is equally likely to be found

anywhere in Hilbert space (total ignorance) — that is, the shape of the pdf in Hilbert

space is that of a hypersphere whose all principal axes ( the eigenvectors of ξ2B
−1

) are

equal. Conversely a pdf with a small ξ2B
−1

is sharply anisotropic, a hyperellipsoid.

In other words the mixed state associated with the shifted Hamiltonian operator is

highly likely to be found in a small region/subspace of Hilbert space. Besides the notion

of strong anisotropicity indicates the dominance of few principle axes (eigenvectors) of

ξ2B−1, and in fact this small set of eigenvectors approximately span the subspace [62].

Obviously the statistics (in particular the covariance) of the unknown mixed

quantum state can be extracted from H́, ζ and O. However, knowledge of H́, ζ and

O is not always necessary. For instance, the covariance matrix of the mixed state can

be estimated from experimental data. Furthermore, we have shown that given H́, ζ and

O, CoBaE obtains the eigenpairs of H́ in the vicinities of ζ from ξ2
i B

−1, the covariance

matrix of the mixed state.

Therefore, in principle, CoBaE can extract not only its eigenpairs, but H́ itself from

a covariance matrix associated with an ensemble of pure states which might be prepared
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experimentally.

4.2.2. Potential Energy Surface Probe Since the covariance matrix is a squared

quantity ξ2(H́ − ζI)−2, d
1
2
j can carry either a positive or negative sign. Thus Eq. (10)

produces a sign pattern signature (SPS) unique to the given H́ spectrum. For a simple

vibrator this pattern is determined by the potential energy surface (PES). For instance

the SPS and | d
1
2
j | for the spectrum in an energy region where the PES is harmonic is

different than those for a PES which is Morse in nature — we have found that the SPS

of the Harmonic and Morse spectra are given by (−1)j+1 and (−1)j respectively, where

j = 1, 2, ..., l. This means that our scanning method could be used as a probe of the

underlying PES.

4.3. Encapsulation of FD, SaiL and FSM

Encapsulation means that although superficially it may appear that the CoBaE and

FSM, SaiL and FD methods give estimates for different states for a given ζ, a closer

look reveals the states are in fact the same. It is a mixed state which is likely to be

found in a subspace spanned by a small set of eigenvectors — effectively it is this set of

vectors the four methods are estimating. The eigenvectors are the principal axes of the

covariance matrix associated with the state when ξ2 equals unity.

Rearranging Eq. (7) gives the optimal value of the state as w = B−1t, where

t = (H́− ζI)τ . In a spectral representation, this state is rewritten as

w = ZD−1ZT t (15)

Although B−1 is n-dimensional matrix, its lc eigenvectors {zi}lc
i=1in the subspace S,

which pertain to the lc largest eigenvalues {d−1
i }lc

i=1of the matrix are far more significant,

in their information content, than the other eigenpairs. Thus one can approximate B−1

by [62],

B−1 ≈
lc∑

i=1

d−1
i ziz

T
i (16)

⇒ w ≈
lc∑

i=1

aizi

where ai = d−1
i (zT

i t).

Recall that while the matrices (H́ − Iζ)k ( k = 2,−2, 1, or − 1) have the same

eigenvectors z i, their corresponding eigenvalues are different: di, d−1
i , d

1
2
i , or d

− 1
2

i

respectively [30, 31]. Thus considering each method in turn.

(i) SaiL: Solving Eq. (6)

(H́− Iζ)w = τ (17)
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amounts to solving (ZD
1
2ZT )w = τ ⇒ ∑n

i d
1
2
i=1ziz

T
i w = τ , i.e., w ≈ ∑lc

i=1 aizi,

where ai = d
− 1

2
i (zT

i τ). In this case the eigenvectors of (H́ − Iζ) with the smallest

eigenvalues contribute to the estimation of w the most.

(ii) FD: Here w is the filtered state y(ζj) in Eq. (4). Thus

w = (H́− Iζ)−1τ =
K∑

i=1

qi(ζj)Ti(H̄|ζj)τ (18)

is equivalent to w =
∑n

i d
− 1

2
i=1ziz

T
i τ ⇒ w ≈ ∑lc

i=1 aizi where ai = d
− 1

2
i (zT

i τ). In this

case the eigenvectors of (H́ − Iζj)
−1 with the largest eigenvalues (in magnitude)

contribute the most to the estimation of w. As explained in Section 1, these are

the eigenvectors in b ( here τ), which are magnified the most by (H́− Iζj)
−1.

(iii) FSM: As B = ZDZT , its lc smallest eigenvectors contribute most to the estimation

of w. As described in Section 2, these are eigenvectors that the FSM methods

incidentally computes.

Below we present test results for the method, but before that we address the

initializations of P0 in Eq. (A.8) which we skipped at the time.

Unfortunately the appropriate a priori information about the quantum state is not

generally available. Thus in CoBaE P0 is initialised with the matrix εI, where ε is set

arbitrarily to a large positive real number: Positive because it denotes a variance, and

large because where in the Hilbert space to look at for the quantum state is unknown

a priori. Replacing I with εI in Eqs. (11) and (A.15) results in the general form of the

proposed algorithm.

ξ2B−1 = εI−
n∑

j=1

ε2gjg
T
j

ςj
(19)

gj = xj −





j−1∑
i=1

βij

ςi
εgi for j − 1 ≤ λ ≤ n− 1

j∑

i=j−λ

βij

ςi
εgi for λ < j ≤ n

(20)

whereas ςj = ξ2 + xiεgi.

Once again, the uncertainties in τ are also generally unknown a priori. Hence ξ2 is

treated as a parameter in CoBaE whenever ξ2, or O, is not available.

5. Analyses and Test Results

As a sample application of the method we use the vibrational energy levels of the

HOCl molecule to demonstrate CoBaE. The Hamiltonian operator is real symmetric

and defined in Jacobi co-ordinate (R, r, θ) system [4]. In this work the co-ordinates

were chosen such that R is the distance of Cl from the centre of mass of OH, r is the OH
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inter- nuclear distance and θ is the angle between R and r. The Hamiltonian operator

was represented in Discrete Variable Representation (DVR), in particular the sequential

diagonalisation and truncation version [63, 64]. In this representation, motions in R and

r are expressed in radial DVR functions (β and α respectively) based on Morse-oscillator-

like functions which have variationally optimisable parameters (re, ωe and De) [64, 66].

The bending vibration, motion in θ, is expressed in angular DVR functions (γ) based

on (associated) Legendre polynomials.

In this work the primitive DVR basis were 96, 45 and 60 DVR functions β, α and γ

in R, r, and θ, respectively. The variational parameters re, ωe and De, were optimised for

the two radial motions [66]. For r they were set to 4.8295a0, 0.01654Eh, and 0.00230Eh

respectively; for R to 8.980a0, 0.000080Eh, and 0.0000554Eh [66]. The primitive DVR

basis set and the variational parameters are those employed in Ref.[4] where all the

energy levels were found to be stable and well converged with these parameters and

basis.

After a single sequential diagonalisation and truncation step (as described in

Ref.[4]), a dense 3D-Hamiltonian matrix H́ with a dimension of 9600 was constructed.

The denseness of the matrix, in particular, made this test case realistically challenging

for CoBaE. This allowed us to verify the validity of some of our speculation on the roles

of ξ2 and ε in the method.

In the following analyses we concentrated on the most dense, and hence difficult,

part of the vibrational spectrum, an energy window centred at ζ = 19267.907 cm−1.

This was about 20 cm−1 below the dissociation threshold (D0) of the potential energy

surface (PES) employed, that of Skokov et al [67]. All the calculations were performed

on a three year old Intel-Pentium 3.60 GHz PC and 1 GB RAM.

In both the paragraph above and the rest of the discussion, the quoted energy

values are band origins.

A threshold ε was pre-selected to 0.0 or 1 × 10−5. The covariance matrix P0 of

Eq. (20) was initialised with ε = 100000.0. The small l-dimensional subspaces were

generated employing basic ARPACK, an algorithm based on the Implicitly Restarted

Lanczos Methods (IRLM) [51]. It is arguably the most sophisticated method for

generating subspaces, but at the cost of increased computer memory where storing

two vectors, vv(n,% ) and work(%2+8%), are its main core-memory overheads.

In order to put things into prospective, to converge the energy levels in the window

above, in its basic form the ARPACK suite would require % of 1700, but a much smaller

% value for calculating the eigenpairs at the lower end of the spectrum as the energy

levels are well separated. Moreover, % does not only determine the memory overhead,

but it also affects the performance of ARPACK: The larger % is the smaller the number

of matrix-vector multiplication operations, l, required which leads to a reduction in

CPU-time requirements. For full details of ARPACK, see Ref. [51].

Note that unlike the basic Krylov approach we used to illustrate CoBaE, in

ARPACK it is necessary to pre-define the dimension of the subspace, %. In this work

% was set to 50, not only to reduce memory overhead, but also to test how well IS of
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CoBaE separates the eigenpairs of ξ2B−1 near ζ. Finally the convergence tolerance of

ARPACK was set to 1× 10−5 and no effort was to made to optimise the seeding vector,

it was set to one.

The new method was tested against FSM. To a lesser extent the method was also

compared with the performance of FD and the Lanczos algorithm. Our results are

summarised in Table 1. We started by setting ε to zero.

To test how varying ξ2 affects the speed of CoBaE, ξ2 was set to 0.0025 and 400.0

respectively. With ξ2 = 0.0025, IS took 1.75 mins while SGS required 48.62 mins and

125 matrix-vector multiplication operations (MVO) to converging the 10 energy levels

closest to 19267.907 cm−1 to within 0.01 cm−1 of the exact results or better. Here none

of the terms in gj = xj −
∑j−1

i=1
βij

ςi
gi was dropped, i.e, instead of Eq. (20), Eq. (A.10)

was employed. With ξ2 = 400.0, only 10 (i.e., λ=10) terms were required to construct

gj (see Eq. (20)). IS took 0.23 mins while SGS required 31878 MVO and 327.91 mins

to converge the same number of energy levels to similar accuracy.

Columns 2 and 3 of Table 1 give the 10 vibrational energy levels in the immediate

vicinity of 19267.907 cm−1 that resulted from the two calculations. Clearly these energies

are in excellent agreement with the energy levels yielded by a conventional diagonaliser,

the NAG subroutine F02ABF [68].

Keeping λ to 10, but setting ξ2 to 0.0025, we repeated the last calculation. As

expected, see the discussion following Eq. (A.14), the covariance matrix ξ2B−1 lost

its positive definiteness — that is, all the largest eigenvalues (in magnitude) of ξ2B−1

became negative.

Next both ξ2 and λ were changed to 1.0 (= 400/400) and 800 (=4
√

400 × 10)

respectively. IS took 7.92 mins whereas SGS required 10.18 mins and 959 MVO. The

fourth column of Table 1 shows that the same 10 energy levels resutling from this

calculation are again in excellent agreement with the vibrational energy levels yielded

by F02ABF.

These results appear to confirm our speculation that ξ2 not only determines the λ

values, but also influences the speed of the different components of CoBaE. However,

so far the set {gj}n
j=1, which was dense, was retained in computer memory in all the

calculations.

Next the threshold ε was arbitrarily set to 1 × 10−5 and then the last calculation

was repeated. Over 90% of the contents of the set {gj}n
j=1 became zero. Moreover, the

only notable differences between the two runs were in the accuracy of the energy levels

as column 5 of Table 1 shows.

Given the fact that the Hamiltonian matrix was dense and the set {gj}n
j=1 was

made sparse arbitrarily, some deterioration in accuracy of the computed spectrum

was understandably inevitable. However, it was quite surprising that the level of

deterioration in the accuracy of the relevant 10 energy levels was actually far less than

expected. The energy levels are within 0.5 cm−1 of the exact results. This observation

was found to be true over the entire vibrational spectrum.

Again these results appear to verify some of the inferences made above. In particular
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that gj can be rendered sparse even when the Hamiltonian matrix is dense and (not

necessarily) diagonally dominant while maintaining the accuracy of the Hamiltonian

operator spectrum.

The lower energy windows of the system were far much less costly than the energy

window described above.

FSM was employed to compute the 10 energy levels in the vicinities 19267.907cm−1.

Like CoBaE ARPACK was used as SGA, where both v and the convergence tolerance

were the same as in CoBaE. FSM required 63528 MVO and 603.25 mins. The results

are as given in column 6 of Table 1. To our knowledge this was the first time FSM was

used to calculate vibrational energy levels of a molecule.

Finally the 10 eigenstates were computed using FD, as given in Eq.(4), where

the the range of the energy window was set to [19224.328cm−1,19306.535cm−1]. 26000

Chebyshev terms — that is, 26000 MVO — and a total of 50 filtered states were required.

In this calculation, the singular values of the filtered state overlap matrix were computed

with a LAPACK routine, dgesvd. All the significant eigenvectors ( 25 in total ) of the

overlap matrix were then used for the construction of Q whose diagonalisation yielded

the required 10 energy levels, see column 7 of Table 1. The calculation took 319.40

mins.

Evidently the results obtained with CoBaE, FD and FSM are in excellent

agreement. The computaional performances of FD and FSM ( which are equal or about

2 times slower than CoBaE when ξ2 was set to 400, the worst case scenario of CoBaE )

are in line with the prediction of Eq. (13). In all other cases, both FD and FSM are far

much slower than CoBaE. For instance, FD required respectively about 18 and 27 times

more CPU time and MVO than the best case of the CoBaE examples given above.

In all the computations in which ε was 1×10−5, we did not make any effort to drop

the zero components of {gj}n
j=1, i.e, over 90% of the set, from the calculations. This

significantly overestimates the CPU-time requirements of CoBaE indeed. A more robust

comparison will be given elsewhere.

6. Conclusion

The method proposed here is simple, versatile and generic. We expect that it will

be applied for spectral scanning, be it with energy or otherwise. Furthermore the

scheme gives a different perspective on scanning algorithms and physical insight into

solving Hamiltonian systems. The test case we studied clearly supports some of the

inferences made during the derivation. For example, the test shows that even when the

Hamiltonian matrix is dense and cannot be made sparse, CoBaE can still work well and

yield the spectrum of the matrix with acceptable accuracy.

Here we have focused on the derivation of the algorithm, applications of the

method will be given elsewhere [65], where a rigorous comparison against other scanning

algorithms, in particular LSFD, will be given in detail. However, we point out two

observations that in our view warrant further research.
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The results from Eq. (13), CoBaE and FSM with ξ2 of 400.0 and 1.0 respectively,

appear to confirm Yu and Nyman (YN)’s analysis concerning the slowness of the FD

scheme [3, 21], see Section 2 of this article. Although ξ2B−1 is constructed ( or rather

approximated ) directly from H́, the cause of the slowness which the equation describes

is different from what YN attributed to the low convergence rate of FD. They argue

that the speed of FD depends on the spectral range and the separation of the desired

eigenvalues of the Hamiltonian matrix since FD’s function operators are directly built

from the Hamiltonian matrix.

However, in the case of CoBaE, the convergence rate of ξ2B−1 spectrum, as given

in Eq. (13), is independent of the spectral range of the Hamiltonian matrix. Instead it

depends on the relative separtion of the dominant eigenvalues of ξ2B−1. (Recall that a

large ξ2 tightly clusters these eigevalues around ε.) Thus, here the clustering effect of

ξ2, rather than the covariance operator being built directly from polynomials in H́, is

the source of the slowness. Even though the eigenpairs of interest are tightly clustered,

nevertheless they are significantly dilated and well separated from the rest of ξ2B−1

spectrum. By making use of these facts one might be able to develop mathematical

techniques capable of reducing the number of matrix-vector multiplications and speed

up CoBaE in the scenario where ξ2 is noticeable large.

The second point is that scanning algorithms are similar in spirit to, and might

be relevant for, Quantum Control problems [29], where one controls the dynamics or

measurements of quantum systems via the manipulation of external parameters. When

treated as parameters, ξ2 and ζ control ( in a pseudo sense ) the Hamiltonian and in

doing so steer the physical system from a probabilistically known initial state to a target

state with certain probability. Further studies might shed some light on this.
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Appendix A. Inversion Step

In Section 2 we show that

B = (H́− Iζ)T (H́− Iζ) (A.1)

This allows us to express B in terms of the contents of the shifted Hamiltonian matrix

B =
n∑

i=1

xix
T
i (A.2)

=
n−1∑
i=1

xix
T
i + xnx

T
n

where xi ∈ Rn×1 is the ith column of (H́− Iζ)T .
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Table 1. Results for the 10 vibrational energy levels near the dissociation limit of
HOCL. The energy levels are band origins in cm−1. “SN” means state number; “Exact”
stands for results from a conventional, full matrix eigensolver [68]; other results are
given as a difference from the exact values. The matrix has n = 9600; ε denotes the
threshold value; NA indicates that Eq. (A.10), instead of Eq. (20), was used to generate
gj . λ, FSM and FD are as described in the text.

ε= 0.0 ε= 10−5 FSM FD Exact

ξ2=400.0 ξ2=0.0025 ξ2=1.0 ξ2=1.0 ξ2=1.0

SN λ=10 λ=NA λ=800 λ=800

809 0.000 0.000 0.009 0.109 0.000 0.000 19248.923

810 0.000 0.000 0.008 0.247 0.000 0.001 19257.279

811 0.000 0.000 0.000 0.113 0.000 0.000 19261.263

812 0.000 0.000 0.000 0.158 0.000 0.000 19269.842

813 0.000 0.000 0.001 0.231 0.000 0.000 19272.611

814 0.000 0.000 0.001 0.163 0.000 0.000 19274.805

815 0.000 0.000 0.003 0.124 0.000 0.000 19280.526

816 0.000 0.000 0.001 0.114 0.000 0.000 19284.114

817 0.000 0.000 0.003 0.046 0.000 0.000 19287.981

818 0.000 0.000 0.001 0.007 0.000 0.000 19289.965

Letting

Cn−1 =
n∑

i=1

xix
T
i (A.3)

Hence Eq.A.3 becomes

B = Cn−1 + xnx
T
n = Cn (A.4)

The inverse of B is given by the Sherman-Morrison formula [32] as follows

B−1 = (Cn−1 + xnx
T
n )−1 (A.5)

= C−1
n−1 −

C−1
n−1xnx

T
nC−1

n−1

1 + xT
nC−1

n−1xn

i.e.,

B−1 = C−1
n = C−1

n−1 −
C−1

n−1xnx
T
nC−1

n−1

1 + xT
nC−1

n−1xn

(A.6)

It is known that the Sherman-Morrison scheme may become numerically unstable owing

to accumulative rounding errors resulting from the matrix-matrix subtractions [53, 54].

Mitigations for this problem are discussed in Section 4.

For reasons that will be later elobrated in Section 4 , let us slightly modify the

above equation by multiplying ξ2 on both sides of the equation, and then for notation

clarity denote ξ2C−1 by P.

ξ2B−1 = Pn−1 − Pn−1xnx
T
nPn−1

ξ2 + xT
nP−1

n−1xn

(A.7)
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By induction, evidently, ξ2B−1 can be given by a simple and initializable recursive

algorithm, i.e.,

ξ2B−1 = P0 −
n∑

j=1

Pj−1xjx
T
j Pj−1

ςj
(A.8)

where ςj = ξ2 + xT
j Pj−1xj; P0 encapsulates any a priori information we have about the

physical system. We will come back to this, but for the time being ( with no loss of

generality ) for clearity sake we set P0 to a unit matrix In×n.

Nevertheless, there is a problem with the algorithm: P, a matrix of order n, is

required in each iteration. In order to address this obvious core memory bottleneck,

we express Eq. (A.8) in terms of vectors and scalars. This allows us to take advantage

of the fact that in some judiously selected basis set [63, 64] the Hamiltonian matrix is

very sparse — indeed the effectiveness of the scanning algorithms that were described

in Section 2 rely on this very fact.

In the vector and scalar representation, the recursive algorithm is given as

P1 = I− 1

ς1
x2t

1 (A.9)

P2 = I− 1

ς1
x2t

1 −
1

ς2
(x2 − β12x1

ς1
)2t

..... = ....

ξ2B−1 = I− 1

ς1
x2t

1 −
1

ς2
(x2 − β12x1

ς1
)2t

− 1

ς3

(
x3 − β13x1

ς1
− β23

ς2
(x2 − β12x1

ς1
)
)2t

. . . . . .

− 1

ςn

{
xn − β1nx1

ς1
− β2n

ς2
(x2 − β12x1

ς1
)

− β3n

ς3

(
x3 − β13x1

ς1
− β23

ς2
(x2 − β12x1

ς1
)
)
− . . .

− βn−1n

γn−1

[
xn−1 − β1n−1x1

ς1
− β2n−1

ς2
(x2 − β12x1

ς1
)

− β3n−1

ς3

(
x3 − β13x1

ς1
− β23

ς2
(x2 − β12x1

ς1
)
)
− . . .

]}2t

where,

A2t means AAT ;

β1j = xT
1 xj; β2j = (x2 − β12

ς1
x1)

Txj; β3j =
(
x3 − β13

ς1
x1 − β23

ς2
(x2 − β12

ς1
x1)

)T

xj; ......

ς1 = ξ2 +xT
1 x1; ς2 = ξ2 +xT

2 (x2 − β12

ς2
x1); ς3 = ξ2 +xT

3

(
x3− β13

ς1
x1− β23

ς2
(x2− β12

ς1
x1)

)
; .....

Let

g1 = x1

g2 = x2 − β12

ς1
x1

g3 = x3 − β13

ς1
x1 − β23

ς2
(x2 − β12

ς1
x1);
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....

⇒ gj = xj −
j−1∑
i=1

βij

ςi
gi (A.10)

where ςi = ξ2 + xT
i gi; βij = gT

i xj; j = 1,2, ...n. Note that g is a vector of order n,

whereas β and ς are scalars.

Putting all this together, Eq. (A.10) becomes

ξ2B−1 = I−
n∑

j=1

gjg
T
j

ςj
(A.11)

Obviously the number of terms on the RHS of Eq. (A.10) increase as j becomes

bigger which creates CPU-time bottle-neck for calculating Eq. (A.11) when n is large.

B is symmetric positive definite, see Section 3, whose elements are given by

Bij =< xi,xj >= xT
i xj (A.12)

This means B can be associated with a Reproducing Kernel Hilbert Space (RKHS) where

xis have representers that can span the RKHS [55, 56] in which xT
i xj corresponds to

a canonical dot product [57, 58], a linear Mercer kernel [59]. Moreover, according to

Hilbert space theory [42], any pair of vectors in a Hilbert space satisfies the Cauchy-

Schwartz inequality. In the RKHS case, (xT
i xi)

1
2 (xT

j xj)
1
2 ≥| xT

i xj |, i.e.,

| xT
i xi |> (xT

i xi)
1
2

(xT
j xj)

1
2

| xT
i xj | (A.13)

⇒ ξ2+ | xT
i xi |> (xT

i xi)
1
2

(xT
j xj)

1
2

| xT
i xj | +ξ2

⇒ (xT
j xj)

1
2

(xT
i xi)

1
2

[
1− ξ2

ξ2 + xT
i xi

]
>| xT

i xj

ξ2 + xT
i xi

| (A.14)

The equality sign is dropped as j > i. With the appropriate value of ξ2, | xT
i xj

ξ2+xT
i xi

|<1.

After some algebra, by the same token, it can also be deduced that | gT
i xj

ξ2+xT
i gi

|<1.

Therefore only (λ = j − i) terms where i is close to j are significant for calculating

gj in Eq. (A.10): Since | gT
i xj

ξ2+xT
i gi

| = | βij

ςi
|, terms containing | βij

ςi
| or the products

| βkjβmjβνj ....

ςkςmςν ...
|→0 quickly, where λ < j−i, can be dropped from the calculation rendering

only few terms necessary to accurately calculate gj.

In principle, the value of λ can be estimated through Eq. (A.14), but in practice it

can be chosen arbitrarily. In the latter case, one should bear in mind that λ is a lower

bound for a given value of ξ2. In principle, therefore, the pre-defined λ value must not be

less than its lower limit for the given ξ2, otherwise ξ2B−1 loses its positive definiteness

and the Cauchy-Schwartz inequality does not hold. Nonetheless, since the Hamiltonian

system is linear, ( in practice ) one can afford to ignore the positive definiteness lost as

long as the eigenvalues of the few dominant eigenvalues of ξ2B−1 remain positive.
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On this basis gj = xj−
∑j−1

i=1
βij

ςi
gi (j = 1, 2, ..., n -1 ) can be divided into two parts

gj = xj −





j−1∑
i=1

βij

ςi
gi for j − 1 ≤ λ ≤ n− 1

j∑

i=j−λ

βij

ςi
gi for λ < j ≤ n

(A.15)

This alleviates the CPU-time bottle-neck problem.

In solving Eq. (12) constructing {gj}n
j=1 once and storing the set would have

been far more effecient computationally than generating the set for each matrix-vector

multiplication step. However, storing a set of n dense vectors of size n×1 is as difficult

as keeping a n×n matrix in core-memory. Fortunately, as discussed before, for most

physical systems the Hamiltonian matrix is sparse or diagonally dominant [63, 64].

This suggests that for a small λ, the set {gj}n
j=1 is sparse as well. One can prove and

quantify the level of {gj}n
j=1 sparseness, but the mathematics is lengthy. Below we only

motivate the proof.

In principle, gj can be written as

gj =





j−1∑
i=1

γixi for j − 1 ≤ λ ≤ n− 1

j∑

i=j−λ

γixi for λ < j ≤ n

(A.16)

where γi(∈ R) is a collective index for all the
βij

ςi
’s coefficients of xi in Eq. (A.15). For

small λ, one easily sees that the sparsity of gj is determined by the sparseness of x′is.
Thus when the Hamiltonian matrix is sparse or dense (but diagonally dominant), gj is

sparse, as well, in absolute or relative terms: Absolute in the sense that some of the

vector entries are already zeroes; relative in the sense that some values of the vector

elements are negligible with respect to components with larger values. In the latter

scenario, an arbitrary threshold ε can be pre-chosen, such that any value of gj below ε

is set to zero.

Appendix B. The rest of the proof in Section 2.1

B is (i) positive definite ( ii) invertible ( iii) diagonalizable.

First let us define what these terms mean:

• A square real symmetric matrix is positive definite if none of its eigenvalues ≤0.

• The matrix is invertible if it is nonsingular, i.e., none of its eigenvalues is zero.

• It is diagonalizable if there is diagonal matrix similar to it.

(i) Positive definiteness: As (H́ − Iζ) is nonsingular and real symmetric matrix, and

B= (H́− Iζ)T (H́− Iζ), then σj(B) > 0 ∀ j



Inverse-covariance matrix of linear operators for quantum spectrum scanning 24

(ii) invertibility: B−1 =
[
(H́− Iζ)(H́− Iζ)

]−1

⇒ (H́− Iζ)−1(H́− Iζ)−1. It has already

been stated that (H́− Iζ)−1 exists ⇒ B−1 = (H́− Iζ)−2. Thus B is invertible.

(iii) diagonalizability: We know that (H́−Iζ) is diagonalizable — that is, ZT (H́−Iζ)Z =

Λ where Λ is a diagonal matrix ⇒ B = (H́− Iζ)2 = ZΛ2ZT ⇒ ZTBZ = Λ2. Hence

B is diagonalizable.
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