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Abstract We present (informally) some geometric structures that imply instability
in Hamiltonian systems. We also present some finite calculations which can estab-
lish the presence of these structures in a given near integrable systems or in systems
for which good numerical information is available. We also discuss some quanti-
tative features of the diffusion mechanisms such as time of diffusion, Hausdorff
dimension of diffusing orbits, etc.

1 Introduction

The goal of these lectures is to present an overview of some geometric programs to
understand instability in Hamiltonian dynamical systems.

Roughly speaking, the problem of instability is to decide whether the effect of
small time-dependent perturbations accumulates over time. Relatedly, to show that
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many orbits of a time-independent Hamiltonian system explore a large fraction of
the energy surface.

Instability is a real problem arising in applications. For example, designers of
accelerators or plasma confinement devices want to invent devices which are as de-
void of instability as possible. Designers of space missions want to find orbits which
can move freely over a wide region of space, but of course, they can only use the
intertwining gravitational fields of the nearby celestial bodies. Chemists want to un-
derstand how reactions and reconfigurations of molecules take place. As is common
with real problems, there are many mathematical formulations depending on the
precise mathematical meaning attached to the vague words of the previous para-
graph 1 and many techniques which have come to bear on these formulations. For
example, the lectures of prof Cheng, Neishtadt, and Treschev in this volume present
other points of view about the problem and will even present different treatments of
the same mathematical model.

These lectures can only aim to present informally the ideas behind some of the
methods that have been proposed. We do not aim to present all the hypothesis of the
results and much less complete proofs. Even when we restrict to geometric methods,
we cannot aim to present a complete survey. The subject is progressing very fast.
We only hope that these lectures can present an entry point to a portion the literature
and indicate what to look for while reading some papers. We just want to present
several milestones of the programs and to give some indication of the arguments.

There are two basic steps in all the results presented here. In a first step, we will
present several geometric facts that imply that there are orbits that move appreciable
lengths. In a second step, we will present some finite calculations which can verify
the existence of these objects in quasi-integrable systems or in systems of a special
form. Hence, for some systems, deciding that instability happens can be established
with a finite computation. This will have the conclusion that some types of diffusion
or instability are generic in some sense in some class of systems.

Remark 1. It should be emphasized that there are different geometric mechanisms
that lead to instability. These mechanisms involve different geometric objects, have
different hypothesis and lead to orbits with different characteristics. Several differ-
ent mechanisms can coexist in the same model. The existence of several mecha-
nisms was documented in some of the heuristic literature. An early paper, which is
still worth reading is [LT83].

Remark 2. Given the practical importance of the problem of instability, there is a
very large numerical and heuristic literature. Even if not easy to read, this literature

1 The previous paragraph contains several imprecise words such as accumulate, many, explore,
large, etc.. There are several rigorous formulations of these ideas. Some of the authors of this paper
remember a round table in [Sim99] which included Profs. Arnol’d, Gallavotti, Galgani, Herman,
Moser, Simó, Sinai. The panel was asked the question to give a canonical definition of diffusion
that was preferable to the other definitions then in use. The conclusion was that it was better that
each paper contains a precise definition.

The reader is encouraged to compare the precise definitions of diffusion or Arnol’d diffusion
used in each paper. See Remark3.
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contains considerable insights and can suggest several theorems. As representative
papers of the numerical literature — which we cannot discuss in more detail – we
mention [Chi79, Ten82, LT83, ZZN+89, Zas02, GLF05, FGL05, FLG06].

Perhaps the main insight from the numerical literature, is that resonances orga-
nize the diffusion (the so called Arnold web). This, indeed was one important mo-
tivation for several of the investigations reported here. On the other hand, we will
discuss some mechanisms which do not quite fit in this paradigm. See Section 2, 7.

Remark 3. There are many precise mathematical formulations of what is meant by
diffusion or Arnol’d diffusion. For some authors, the fact that there are whiskered
tori as discussed in Section 2 is the key feature. We however take the presence large
effects as the key feature. Many papers, for example [HM82] (which we will discuss
more fully in Section 4) consider perturbations of size ε of an integrable system and
establish existence of whiskered tori with heteroclinic intersections. These chains
of whiskered tori, however are rather short and lead only to changes in the action
variable of order ε1/2. We, on the other hand, prefer to emphasize the existence
of changes of order 1 in the actions, even if they are not accomplished through
whiskered tori. A careful discussion of these issues appears in [Moe96].

1.1 Two types of geometric programs

With some simplification, there are two types of geometric programs that we will
discuss.

Programs based on invariant objects and their relations

1. Find invariant objects (whiskered tori, normally hyperbolic invariant manifolds,
periodic orbits, horseshoes, normally hyperbolic laminations, etc. as well as their
stable and unstable manifolds).

2. Prove that if these objects satisfy some appropriate relations (e.g. there is a se-
quence of whiskered tori such that the unstable manifold of one torus intersects
transversally the stable manifold of the next torus) then, there are orbits which
move along the chain of invariant objects.

Incipient versions of programs of this type were already present in [Poi99]. The
paper which has been more influential in the mathematical literature is [Arn64,
Arn63]. The main invariant objects considered in [Arn64] were whiskered tori
and their invariant manifolds. We will discuss this paper in some more detail
in Section 2. Other early examples of instability were [Sit53, Ale68a, Ale68b,
Ale69, Ale81], which were mainly based on hyperbolic and topological properties.
The study of instability properties of oscillators was pioneered in [Lit66a, Lit66b,
Lev92]. Other papers establishing instability in oscillators are [AO98, Ort97, LY97,
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Ort04] The papers [Pus77a, Pus77b, Dou89, KPT95, Pus95] study instability in sys-
tems with collisions. The papers [Dou88, DLC83] construct examples of instability
near elliptic points. The paper [CG98] revived geometric approaches and contained
many useful techniques.

To study invariant objects, typically, one finds some representation of them as
a function. The condition of invariance is then a functional equation, which is of-
ten studied by methods of functional analysis or just numerically or by asymptotic
methods. Two very basic methods to study invariance equations are normal hyper-
bolicity or KAM theory. One often has to supplement them with some preliminary
calculations based on averaging or on perturbative calculations.

Programs based on finite orbits “with hooks”

1. Find finite segments of pseudo-orbits such that one segment ends close to the
beginning of the following segment.

2. Verify some extra properties of each of the segments.
3. Use these properties to show that there is an orbit that remains close to the whole

segment of orbits.

We picturesquely describe the above situation as saying that the segments of
orbits have hooks so that they can be chained together. The fact that one needs some
extra properties of the segments is made clear by the existence of examples — e.g.
rigid rotations of the torus — where the conclusions are false.

There are quite a number of mathematical results of this kind. The best known
results of this type are, perhaps, the shadowing theorems for hyperbolic systems
[Shu78]. The hook in this case, is hyperbolicity. For many applications, hyperbol-
icity is a hard hypothesis to verify – it is often even false! – so that there are many
variants See, for example [Pal00, Pil99] and references there.

For us, the method which so far has proved to be more useful is the method based
on correctly aligned windows. The basic idea is to use some kind of topological
index of the segments of orbits so that one can show that there is an orbit in a
neighborhood of the whole chain. One early example, is [Con68, Con78, Eas89].
We will discuss it in Section 5.

One should also mention the variational program started in the 30’s using broken
geodesics [Mor24, Hed32, Ban88]. The idea was that, if the segments are minimiz-
ers of a good variational principle, then, indeed, there are orbits that follow them.
2 Some early implementations of these ideas to the problem of diffusion appear in
[Bes96]. More recent applications appear in [BBB03, BCV01]. These methods also
have the advantage that they apply to PDE’s [RS02, Ang87] Very deep variational
methods that also involve global considerations appeared in [Mat93, Mañ97, CI99].

2 The heuristic idea is that, in the space of segments, each of our minimizers is in the center of a
ball whose boundary has more action. If we take the whole orbit, the phase space is the product
of the phase space of the segments so that the approximate orbit is contained in a ball so that the
boundary of a ball has more action.
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Remark 4. Of course, there are relations between the methods. Even in [Arn64],
the invariant objects were used to produce segments of orbits as well as some ob-
struction property which shows that there are orbits that follow the segment. In our
discussion of applications of the method of correctly aligned windows, we will con-
sider orbits suggested by the invariant objects 3. Even the more global variational
methods of [CY04b, CY04a] start by reducing the problem using the presence of a
normally hyperbolic invariant manifold.

One can hope that in the near future there will be even more relations. In particu-
lar, the more local variational theories (broken geodesic methods) seem rather close
to the geometric methods. One can find relations between variational methods and
the windows method is [Moe05].

In these lectures, we will try to present different mechanisms as well as the verifi-
cation of their presence in some quasi-integrable systems. For the geometric mecha-
nisms we will present in these lectures, the verification of their presence in concrete
systems, will involve a rather standard toolkit (averaging theory, the theory of nor-
mally hyperbolic manifolds – perturbation theory, λ -lemma —, KAM theory) and
some less standard tools such as the scattering map (Section 3.2 ) and the correctly
aligned windows (Section 5). We will omit most of the details, but refer to the lit-
erature. The only goal of these lectures is to present a road map to the programs
and to indicate the significant mileposts to be reached. Some similar expositions are
[DDLLS00, DLS03, dlL06]. The present one incorporates some progress since the
previous exposition were written. Fortunately, the new developments have lead to
more streamlined proofs.

2 Exposition of the Arnol’d example

This very explicit example was constructed in [Arn64]. It is, possibly, the best
known example in the mathematical literature. Some more detailed expositions of
several of the aspects appear in [AA67]. A very complete explanation of the model
in [Arn64] and generalizations can be found in [FM01].

In the following paragraphs, we will present the result emphasizing some of the
geometric aspects that will play a role in the following. We refer [FM01] for the
technical details of many of the proofs. We will emphasize several geometric prop-
erties that will play in the future.

Theorem 1. Consider a time-dependent system defined in the action-angle vari-
ables (I,Φ) ∈ R2×T2 by:

H(I,Φ , t) =
1
2
(I2

1 + I2
2 )+ ε(cosΦ1−1)

+ µε(cosΦ1−1)(sinΦ2 + cos t) ,
(1)

3 Strictly speaking, the windowing method only needs that they are approximately invariant
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If 0 < µ � ε � 1.
Then, there exist orbits of the Hamilton’s equation corresponding to (1) with

|I(T )− I(0)|> 1 .

We point out that the Hamiltonian (1) satisfies the conditions of KAM and
Nekhoroshev theorems (in spite of being partially degenerate). [Lla01, Nie07] so
that the for ε,µ small, the orbits that satisfy the conclusion occupy a small measure
(these orbits cannot be in KAM tori) and T has to be very large (by Nekhoroshev’s
theorem). This gives an idea of the subtleness of the phenomenon.

The system (1) can be easily understood for ε > 0,µ = 0 since it is a product
of two simple systems (a rotator and a pendulum). We note, in particular that the

Φ1, I1 plane × Φ2, I2 plane.

Fig. 1 Illustration of the dynamics of the time one map of the dynamics of (1) for ε > 0,µ = 0

manifold Λ , obtained by fixing the pendulum variables to the hyperbolic fixed point,
(i.e. (I1,Φ1) = (0,0)) and letting the (I2,Φ2) vary is a normally hyperbolic manifold.
Clearly, Λ is topologically an annulus R×T1.

It will be important (for other mechanisms) to remark that the manifold Λ is
normally hyperbolic.

The main remark in [Arn64] is that the manifold Λ is foliated by invariant tori
(corresponding to fixing I2). These tori are not normally hyperbolic (perturbations
along the I2 direction do not grow exponentially), but they are whiskered tori . That
is, tori, whose normal directions contain stable directions (i.e. directions which con-
tract exponentially fast in the future) and unstable directions (i.e. directions that
contract exponentially fast in the past). The rates of contraction in the future and
in the past are the contracting and expanding eigenvalues of the fixed point of the
pendulum. It is easy to see that they are equal to λ =∓ε1/2.

It is shown, in general, that to whiskered tori, one can attach invariant stable (resp.
unstable) manifolds consisting of the orbits which converge exponentially fast –with
a rate similar to the rate of convergence of the linearization — in the future (resp. in
the past). In the uncoupled case that we are considering now, the stable and unstable
manifolds can be computed explicitly. The (un)stable manifolds are just the product
of the tori and the separatrix of the pendulum. In particular, the stable and unstable
manifolds of a torus agree.
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Now, we consider 0 < µ � ε and we will treat the term containing µ as a per-
turbation. In such a case, we can use the general theory of whiskered tori and their
manifolds. The application of the general theory to (1) is rather simple because the
example has been chosen carefully so that the perturbation and its gradient vanish
on Λ . Hence, the family of tori, remains the same. It is part of the general theory that
the tori keep being whiskered under the new dynamics and that they have (un)stable
manifolds. Furthermore, the manifolds depend smoothly on µ . The first order in the
µ expansion can be computed easily by matching powers in formal expansions 4 and
it is not difficult to show that the manifolds of nearby tori intersect transversally. In
some ways the result is to be expected since the µ term, even if leaving Λ invariant,
is significant in the region occupied by the whiskers. It would be very easy to make
perturbations with compact support intersecting the separatrices and which move
them.

The construction so far, for any δ > 0 allows to construct a δ pseudo-orbit that
moves I2 by 1. If we start in a torus τ with an irrational rotation, we wait for the
appropriate moment, then, jump in its unstable manifold, in such a way that the
orbit is also in the stable manifold of another torus τ ′. Once we are close enough to
τ ′, we jump into a torus with an irrational rotation – such tori are dense –. Then, we
can restart again.

Fig. 2 Illustration of some orbits in the dynamics of (1) for 0 < µ � ε . The 2 refers to the fact that
Λ is 2-dimensional.

Unfortunately, this step does not allow to take the limit δ → 0 since the orbits
change widely. If we make δ smaller, the orbits we constructed have to give more
turns till the irrational rotation sets the phase exactly right for the jump.

4 Of course, matching powers in formal expansions does not justify that the expansions exist. In this
case, using the general theory of whiskered tori, we know that these expansions exist. Historically,
power matching in cases similar to this one was routinely used many years before it was justified.
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2.1 The obstruction property

The program of [Arn64] contains an extra step, the obstruction property – that con-
structs a true orbit shadowing some of the pseudo-orbit.

There is a substantial literature on the obstruction argument. We just call atten-
tion to the reader that part of the literature includes – sometimes without making
it explicit – the assumption that one of the terms in the normal form of the torus
vanishes. Some papers rely on normal forms to high order – hence only apply com-
fortably to C∞ or Cω systems. Others assume that all the tori can be fit in a common
system of coordinates. In some papers, the construction depends on the number of
tori that the orbit has to explore. Therefore, increasing the number of tori changes
substantially the orbit (the time the orbit has to spend in the neighborhood of each
tori increases with the total number of tori to be visited). These constructions do not
allow to pass to the limit and construct orbits which visit infinitely many tori. Of
course, the diversity of arguments is just a reflection of the fact that there are many
types of diffusing orbits each with different quantitative and qualitative properties.
We cannot survey the rather extensive literature but just call attention on some points
to watch for. We certainly hope somebody will write such a survey.

We also note that the obstruction argument is not the only way of constructing
orbits which shadow the pseudo-orbits. In this lecture we will discuss the method
of correctly aligned windows in other context, which is a topological method –
applications to the shadowing of whiskered tori happen in [Rob02, GR04, CG03].
There are also variational methods [Bes96, BBB03, BCV01] for this step.

In practice, the step of constructing the shadowing orbits is what controls the
time T in the statement of the result. Many of the methods above lead to differ-
ent estimates for T and presumably to different orbits. This again reinforces the
belief that diffusion is really a superposition of several mechanisms. Here, we
will just present some simple argument – we follow closely [DLS00] – which
makes more precise some of the ideas in the original papers [AA67] –. See also
[FM01, FM03, FM00, Cre97]. The main ingredient is a somewhat sharp version of
the λ -lemma – for example that in [FM00] and a point set topology argument. Since
no normal forms to higher order are used the method has only modest differentiabil-
ity requirements. It can also accommodate infinitely long chains. A more elaborate
argument along similar lines, but also giving more control on the orbits appears in
[DLS06c].

If {Ti}∞
i=1 is a sequence of whiskered tori with irrational rotations and {εi}∞

i=1
a sequence of strictly positive numbers, we can find a point P and an increasing
sequence of numbers Ti such that

ΨTi(P) ∈ Nεi(Ti)

where Nεi(Ti) is a neighborhood of size εi of the torus Ti. Here Ψt represents the
flow associated to the system.

To establish this result, note that if x∈W s
T1

, we can find a closed ball B1, centered
at x, and such that
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ΨT1(B1)⊂ Nε1(T1). (2)

By the λ -lemma,
W s

T2
∩B1 6= /0.

Hence, there is a closed ball B2 ⊂ B1, centered at a point in W s
T2

such that, besides
satisfying (2):

ΨT2(B2)⊂ Nε2(T2).

Proceeding by induction, we can find a sequence of closed balls

Bi ⊂ Bi−1 ⊂ ·· · ⊂ B1

ΨTj(Bi)⊂ Nε j(T j), i≤ j.

Since the closed balls are compact, they have non-empty intersection and any
point in the intersection satisfies the desired property.

This argument as presented above does not give estimates on the time needed
to transfer. On the other hand, it gives several other information on the orbits. For
example, the orbits never leave an ε neighborhood of the segments of W s,u

Ti
so that

we can be sure that the energy, or the actions, are described, up to errors of size ε by
the values along the sequences visited. For future purposes, it is important to point
out that the argument only uses that the tori are whiskered and it does not use at all
the way that the tori fit together. Later, in Section 4, we will apply this argument
to sequences of tori which are not homotopic and that, therefore, cannot be fit in
common system of coordinates.

2.2 Some final remarks on the example in [Arn64]

The example (1) is remarkable for many reasons. Here, we just note that the diffu-
sion happens in places where there are no resonances. Indeed, detecting the diffu-
sion numerically in (1) is much harder than in other examples. It is somewhat ironic
that much mathematical effort was spent proving instability in models for which the
result is indeed very weak.

One feature of the example (1) which is important for the construction is that
the second perturbation vanishes identically on a manifold. This is very non-generic
and, indeed, it does not happen in many models of interest. 5

We have done the first order expansion in µ , assuming ε > 0 and fixed. The
dependence on ε of this theory is rather complicated. The first order term in the
expansion in µ of the angle between the stable and the unstable manifoldso of a torus
is of the order exp(−Aε−1/2)µε . The remainder, on the other hand, is not easy to

5 One should remark, however, that it does happen in some models of interest. For example
[dlLRR07] shows that perturbations which vanish on manifolds, happen naturally in some systems
of physical interest such as billiards with moving boundaries and in oscillators provided that they
have some symmetries and that an analysis very similar to that of [Arn64] leads to the existence of
orbits of unbounded energy in these systems
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bound better than Cµ2ε2. This is, of course, perfectly fine if µ � exp(−A/2ε−1/2),
but if µ = ε p, then, it could happen that the leading order of the perturbation in µ

does not give the whole story.
As a consequence, the treatment above – based on just first order perturbation

theory in µ can not establish the existence of instability in a whole ball in ε,µ or
for µ = ε p.

3 Return to a normally hyperbolic manifold. The two dynamics
approach

In the exposition of [Arn64] in the previous section, we have emphasized the nor-
mally hyperbolic manifold Λ – which only appeared implicitly in [Arn64].

The reason is that the persistence of normally hyperbolic manifolds holds rather
generally as was recognized in the 60’s. [Sac65, Fen72, Fen74, HP70, HPS77,
Pes04]. Of course, for examples other than the carefully chosen (1), one does not
expect that the dynamics in the invariant manifold remains integrable. Indeed, as it
is well known (we will present some ideas in Section4.3) the resonant tori break up
under perturbation so that the foliation by invariant tori gets interrupted.

The general theory of normally hyperbolic invariant manifolds establishes not
only the persistence of the normally hyperbolic invariant manifolds but also the
existence of stable and unstable manifolds and the regularity of the dependence on
parameters of these objects. A short summary of the theory of normally hyperbolic
invariant manifolds can be found in Appendix A. Of course, this is no substitute for
the references above.

The theory of dependence with respect to parameters, justifies the perturbation
theory.

3.1 The basics of the mechanism of return to a normally
hyperbolic invariant manifold

The basic assumption is that the stable and unstable manifolds of Λ intersect
transversally. This means that there are orbits that leave the manifold but come back.
We will refer to these orbits as homoclinic excursions. Note that a simple dimension
counting — justified by the regularity given by the theory of normally hyperbolic
invariant manifolds —- shows that the set of homoclinic excursions is, locally, a
manifold of the same dimension as Λ . Hence, we expect that there is an open set
H− ⊂ Λ such that all the points in H− can make an arbitrarily small jump and, go
into the unstable manifold of Λ , perform an homoclinic excursion and come back
to Λ . Since this homoclinic excursion moves the orbit far away from Λ it is quite
possible that it can be really affected by the perturbation and the action variables can
change. In Section 3.2, we will describe some concrete descriptions of these sets.
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When the system is conservative, one expects that some of the homoclinic ex-
cursions are favorable – e.g. the excursion gains energy or action – and others are
unfavorable – the excursions looses energy or actions. Since there are rather explicit
formulas – which we will explain in Sections 3.2 and 4.1, one expects that the points
in H− which lead to favorable or unfavorable excursions are open sets separated by
a codimension 1 manifold, which can be calculated as the zero set of a function (in
the models discussed in Section 4 perturbative formulas for this function are rather
standard).

Fig. 3 Illustration of orbits that gain energy by intertwining homoclinic excursions with staying
around an invariant manifold

Note that H− and the separation between the favorable and unfavorable regions
depend very strongly on the perturbation far away from Λ . Hence, we can expect
that the dynamics on Λ — which is unaffected by the perturbations away from the
manifold — is completely unrelated to the separation between favorable and unfa-
vorable excursions. Hence, unless this separation is invariant under the dynamics in
Λ , one can stay around Λ for a carefully chosen time and move into the favorable
region. We emphasize that, explicit perturbative computations can give approxima-
tions to the manifold separating the favorable from the unfavorable excursions, so
that a finite computation can establish that there are orbits in Λ that move into the
favorable region.

In this way, for many systems, one can construct pseudo orbits by interleaving
orbits that follow a homoclinic excursion and orbits that remain in Λ so that we go
from the end of a homoclinic excursion to another favorable excursion. This can be
compared to primitive sailing: When the wind is favorable, the boat moves. When
the wind turns bad, it moves to the coast and anchors waiting till the wind becomes
favorable again.

Of course, if one is interested in true orbits rather than on δ pseudo-orbits with
δ arbitrarily small, one still needs an extra step – shadowing or obstruction. Some
versions of these arguments are discussed in Section 2.1 and 5.
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To make the above heuristic ideas rigorous, one uses: a) a tool to describe the ho-
moclinic excursions, which allows explicit computations b) some explicit descrip-
tion of the dynamics on Λ , c) some tools to pass from the pseudo-orbits to the orbits.

Of course, the analysis of the dynamics restricted to Λ is just the general problem
of dynamical systems. The description of homoclinic intersections will be under-
taken in Section 3.2.

We note that the scattering map is not the only way to discuss homoclinic ex-
cursions. The paper [Tre02a, Tre02b] introduce the separatrix map. We also call
attention to [BK05].

3.2 The scattering map

The scattering map is a particularly convenient way of describing the behavior on
a homoclinic excursion. It was introduced explicitly in [DLS00] as a geometrically
natural alternative to Melnikov theory so that issues of domain and monodromy
could be discussed in detail. Related ideas for center manifolds were introduced in
[Gar00]. A much more systematic theory of the scattering map was developed in
[DLS06a].

An orbit is homoclinic if the future and the past converge exponentially fast to
Λ . We adopt the same notation as in Appendix A.

We recall that the stable and unstable manifolds can be decomposed into stable
manifolds of single points, namely: W s

Λ
=

⋃
x∈Λ W s

x , W u
Λ

=
⋃

x∈Λ W u
x . The above

decompositions are are foliations because if x,y ∈ Λ , x 6= y, then W s
x ∩W s

y = /0,
W u

x ∩W u
y = /0. We will refer to these foliations as Fs,u respectively.

Using the foliations Fs,u we can define the “wave operators” Ω+, Ω−

Ω± : W s,u
Λ
−→Λ (3)

defined by
x ∈W s

Ω+(x) x ∈W u
Ω−(x) (4)

If there is a manifold Γ ⊂W s
Λ
∩W u

Λ
such that Ω− is a diffeomorphism from Γ to

its range Ω−(Γ )≡ HΓ
− , then we can define (ΩΓ

−)−1 : HΓ
− → Γ and relatedly,

sΓ = Ω+ ◦ (ΩΓ
−)−1 (5)

This set H−Γ is the set of initial points of trajectories having the property that an
small push can make them go through Γ . This is a more precise version of the set
H− wich we discussed in Section 3.1. The set HΓ

− specifies that the connections go
through Γ .

The map sΓ : H− → H+, gives an encoding of the homoclinic excursions that
pass through Γ . If we consider one such excursion, the orbit is asymptotically close
to one orbit in Λ in the past and to another orbit in Λ in the future. The map sΓ
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Fig. 4 Illustration of the definition of the scattering map.

gives the future orbit as a function of the asymptotic orbit in the past. 6 Of course,
the scattering map depends very strongly on the manifold Γ we have chosen. Escap-
ing from Λ along different routes will, clearly, have very different effects and the
scattering map will be very different. Some examples of celestial mechanics with
explicit computations appear in [CDMR06].

Now, we discuss some natural hypothesis that imply that ΩΓ
− is invertible from

its range to Γ and that this is maintained under perturbations and that there is good
dependence with respect to parameters. Basically, we will reduce the definitions to
transversality conditions so that the implicit function theorem gives the persistence
and smooth dependence on parameters.

A natural set of conditions to define scattering map is that for all x ∈ Γ ,

TxW s
Λ +TxW u

Λ = TxM

TxW s
Λ ∩TxW u

Λ = TxΓ
(6)

TxW s
Ω+x⊕TxΓ = TxW s

Λ

TxW u
Ω−x⊕TxΓ = TxW u

Λ

(7)

The conditions in (6) mean that W s
Λ

, W u
Λ

“intersect transversally” along Γ . The
first condition in (7) means that Γ is “transversal to the foliation” {W s

x }x∈Λ inside
W s

Λ
. The second equation in (7) means that Γ satisfies an analogous property relative

to the unstable foliation.
If we have (6) for just one x0, the implicit function theorem tells us that we can

find a smooth manifold Γ containing x0 such that (6) holds for all x ∈ Γ . Since the

6 This is remarkably similar to the definition of the scattering matrix in the time-dependent scat-
tering theory in quantum mechanics. Indeed, there are many more analogies and we have chosen
the notation to reflect them.

Other classical analogues of quantum scattering theory, somewhat different from those consid-
ered here, were considered in [Hun68, BT79, Thi83] and in a more general context in [Nel69].
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Fig. 5 Illustration of the conditions in (7).

manifold Γ is obtained applying the implicit function theorem, if both W s
Λ

, W u
Λ

, are
Ck manifolds in a neighborhood of x, then Γ will also be a Ck manifold.

Similarly, applying the the implicit function theorem, the regularity theory for
the manifolds and their smooth dependence on parameters, discussed in Appendix
A, we conclude that if fε is a C1 family and f0 has a Λ0, Γ0 satisfying the normal
hyperbolicity and transversality conditions, that there is a C1 family of manifolds
Λε which are normally hyperbolic and another family of manifolds Γε satisfying the
properties. In the case that we can guarantee that W s,u

Λε
are C`−1 families, we obtain

that Γε is a C`−1 family and we can also obtain smooth dependence on parameters
for the Ω

Γε

± and for the scattering map. 7

The properties in (7) are very different. Even if the formulation of (7) does not
require that the foliations Fs,u are smooth, they become more interesting when these
foliations are C1 foliations. In this case, the implicit function theorem tells that,
when we move along Γ , we have to move across the foliation.

The implicit function theorem shows that, if the foliations Fs,u are C1 – this is
implied by properties of the hyperbolicity constants, so that it holds true in some
C1 open sets of examples – and (7) hold, then, Ω± are locally invertible. Again,
because this is just an application of the implicit function theorem and there is a
good dependence on parameters, we obtain if (6), (7) are satisfied for a map, they
will be satisfied – with a similar Λ , Γ – for all the small C1 perturbations. Further-
more, if we consider smooth families of maps, there will be smooth dependence on
parameters.

Remark 5. One could argue heuritically that (7) could fail in a codimension 1 set
of Γ – transversality is a codimension 1 phenomenon –. Of course, this heuristic
argument, could be false. Notably, the heuristic argument is false for the models

7 The smooth dependence of a map in domains which are changing, should be understood in the
sense that there is smooth family of maps from a fixed domain to the domains so that the composed
map is smooth.
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considered in [DLS00, DLS06c]. It however, applies to some examples considered
in [DLS06b].

Nevertheless, as shown in [DLS06b], the existence of an open set is enough for
the construction of orbits that move appreciable amounts. One can also note that
one expects to have infinitely many Γ , each of which with a different scattering
map. The argument does not require that all the excursions go through the same Γ ,
so that the set of points which cannot be moved by this argument should be empty
in manu examples.

3.3 The scattering map and homoclinic intersections of
submanifolds

One important application of the scattering map is that it allows us to discuss
transversal intersections of W u

Σ1
, W s

Σ2
where Σ1,Σ2 ⊂ Λ are invariant manifolds un-

der the map f . One example is, of course, the whiskered tori inside the manifold Λ

that were discussed in Section 2. In Section 4 we will see other examples that are
more challenging.

It was shown in [DLS00, DLS06b, DLS06c] that if, for some manifold Γ , satis-
fying (6) (7), we have 8

sΓ (Σ1) tΛ
Σ2. (8)

Then,
W u

Σ1
t W s

Σ2
. (9)

This result is useful because the hypothesis (8) is a hypothesis by calculations
on the invariant manifold Λ . The conclusions is that the invariant manifolds are
transverse in the full manifold M.

In the case that Σ1, Σ2 are invariant circles which are close together, the transver-
sality of intersections is usually discussed using Melnikov theory. Notice, however
that Melnikov theory – since it is based on first order calculations often done in a
concrete coordinate system – requires that the manifolds Σ1,2 are expressed in the
same system of coordinates, in particular, they are homotopically equivalent. The
above result, however, is coordinate independent. This is crucial for the applications
in [DLS06b], discussed in Section 4, where Σ1,2 are not topologically equivalent.

As we will see in Section 3.7 there are rather explicit – rapidly convergent – for-
mulas for the perturbative computation of the scattering map. Therefore, the theory
outlined above can give rather efficient ways of establishing intersections.

8 We use the notation tΛ to indicate that the manifolds intersect transversally as manifolds in Λ .
In particular, when we use this symbol, we assume that the intersection is not empty.
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3.4 Monodromy of the scattering map

Even if ΩΓ
± are locally invertible, they could fail to be invertible in a domain which

is large enough to include non-contractible closed loops. One interesting example
was discussed already in [DLS00] and, in more detail in [DLS06c, DLS06a]. For
example, when considering stable manifolds of a periodic orbit λ , the intersection
manifold Γ looks like a helix. That is, if we increase the phase of the intersection,
then, eventually we go into a different homoclinic intersection of the time-1 map.
This is a geometric counterpart of the fact that, in some calculation in first order
perturbation theory of intersections of invariant manifolds – often called Melnikov
theory – one has to add real variables to angle variables.

λ
Ω+(x)

T(x)

x

Fig. 6 Illustration of the monodromy of the scattering map for the stable manifolds of periodic
orbits.

3.5 Smoothness and smooth dependence on parameters

Note that the sufficient conditions (6), (7) that ensure the existence of the scattering
map in a neighborhood are transversality conditions that are robust under perturba-
tions. Hence, given a concrete system, they can be established with a finite precision
calculation. Later, in Section 4.1 we will see how they can be verified by perturba-
tive calculations from an integrable system. See [DLS06b, GL06a]. The conditions
can also be verified numerically if one controls the precision of the calculations
[CDMR06].
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It follows from the general theory of dependence on parameters that, under the
conditions (6), (7), and smoothness of the foliations Fs,u then, the scattering map is
smooth jointly on the manifold and on parameters. 9

3.6 Geometric properties of the scattering map

So far, the discussion of the scattering map has only used normal hyperbolicity and
regularity of the maps considered.

If the maps fε have some geometric structure, the scattering map also inher-
its some geometric properties. Notably, if fε is symplectic (resp. exact symplectic)
and Λ0 is a symplectic manifold (hence, exact symplectic if fε is exact symplectic)
then sε is a symplectic (resp. exact symplectic) family of maps. This was proved in
[DLS06a]. In the context of center manifolds it was proved in [Gar00].

There are two important consequences of the symplectic character.

• There are many techniques to discuss intersections of Lagrangian manifolds un-
der symplectic mappings, see [Wei73, Wei79].

• There are very efficient perturbation theories for symplectic mappings. Histori-
cally this one of the reasons why Hamiltonian formalism was invented. We will
discuss several versions of Hamiltonian perturbation theory here.

Taking advantage of both features at the same time, one gets a very efficient
perturbative theory for the intersections of manifolds under the scattering map. In
view of the results mentioned in Section 3.3, this is very useful to obtain transition
tori.

In [DLS06a] it was proved that there is a unique smooth parameterization
kε(Λ0) = Λε such that k0 is the immersion and that k∗ε ω – the pull–back by kε of
the symplectic form ω – is independent of ε . This later condition is a natural nor-
malization and it is shown in [DLS06a] that this natural normalization determines
uniquely the deformation.

Then, denoting by sε the scattering maps generated by a smooth family of mani-
folds Γε satisfying (6), (7), and invertibility of ΩΓ

− , we have that

s̃ε ≡ k−1
ε ◦ sε ◦ kε (10)

is symplectic under k∗ε ω ≡ k∗0ω . Note that s̃ε : Λ0 → Λ0 can be thought of as the
expression of sε in the coordinates kε mentioned above.

Furthermore, in [DLS06a], one can find explicit perturbative formulas for the
canonical perturbation theory of s̃ε . We will summarize them in Section 3.7.

9 The discussion of smoothness with respect to parameters of the scattering map presents some
technical annoyances such as that the domain of sε is Λε , which changes as ε changes. An easy
solution is to consider smooth (jointly with respect to the coordinates and the parameters) param-
eterizations kε of the invariant manifold Λε . That is kε (Λ0) = Λε . See Section 9.
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3.7 Calculation of the scattering map

Given families of exact symplectic mappings there are very efficient ways of com-
puting perturbation theories using the deformation method of singularity theory
[LMM86].

If gε is a family of exact symplectic mappings, it is natural to study instead the
vector field Gε generating the family.

d
dε

gε = Gε ◦gε . (11)

The fact that gε is exact symplectic for all ε is equivalent to g0 being exact sym-
plectic and ıGε

ω = dGε (here ıGε
ω is the contraction of vectors and forms). Under

enough regularity conditions, equation (11) admits a unique solution.
Hence, it is the same to work with Gε or Gε . The interesting thing is that the

family of functions Gε satisfies much simpler equations. The reason is that the Gε –
and hence Gε can be thought as infinitesimal deformations and the only equations
that one can form with infitesimal quantities are linear.

In the following, we will apply this idea to gε being several of the families ap-
pearing in the problem. We will keep the convention of keeping the same letter for
the objects corresponding to a family. We will use caligraphic for the vector field
and capitals for the Hamiltonian.

In [DLS06a], it is shown that there are remarkably simple formulas for S̃ε , the
generator of the the map s̃ε – the expression of sε in coordinates.

S̃ε = lim
N±→+∞

N−−1

∑
j=0

Fε ◦ f− j
ε ◦ (ΩΓε

ε−)−1 ◦ s−1
ε ◦ kε −Fε ◦ f− j

ε ◦ s−1
ε ◦ kε

+
N+

∑
j=1

Fε ◦ f j
ε ◦ (ΩΓε

ε+)−1 ◦ kε −Fε ◦ f j
ε ◦ kε

= lim
N±→+∞

N−−1

∑
j=0

Fε ◦ f− j
ε ◦ (ΩΓε

ε−)−1 ◦ kε ◦ s−1
ε −Fε ◦ kε ◦ r− j

ε ◦ s−1
ε

+
N+

∑
j=1

Fε ◦ f j
ε ◦ (ΩΓε

ε+)−1 ◦ kε −Fε ◦ kε ◦ r j
ε

(12)

Similarly, for Hamiltonian flows, we have

Sε = lim
T±→∞

∫ 0

−T−

dHε

dε
◦Φu,ε ◦ (ΩΓε

ε−)−1 ◦ (sε)−1 ◦ kε

− dHε

dε
◦Φu,ε ◦ (sε)−1 ◦ kε

+
∫ T+

0

dHε

dε
◦Φu,ε ◦ (ΩΓε

ε+)−1 ◦ kε −
dHε

dε
◦Φu,ε ◦ kε

(13)
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It is not difficult to see that the sums or the integrals converge uniformly.
The formulas (12) and (13) give the hamiltonian of the deformation as the integral

of the generator of the perturbation over the homoclinic orbit minus the generator
of the perturbation evaluated on the asymptotic orbits.

Note that, because of the exponential convergence of the homoclinic orbits and
their asymptotic orbits, it is not difficult to see that the integrals in (12) and (13)
converge exponentially fast. In [DLS06a] one can also find that derivatives up to an
order (which is given by ratios of convergence exponents) also converge exponen-
tially fast.

The effect of the homoclinic excursions on slowly changing variables can be
computed using more conventional methods – we will present some of these com-
putations in Section 4.1 –.

One novelty of the geometric theory presented in this section is that it allows
computation of the effect of the homoclinic excursions not only on the slow vari-
ables, but also on the fast variables.

Notice also that, we can compute the intersection between objects of different
topologies very simply. This extends many calculations usually done using Mel-
nikov theory. It suffices to apply (8). Note that the present theory only involves
convergent integrals. This was somewhat controversial in the so-called Melnikov
theory. See [Rob88]. 10

The Hamiltonian theory is particularly effective when the manifolds Σ are level
sets of a function. We will see some examples in Section 4.6.

4 The large gap model

The model is basically a rotor coupled to one or several penduli and subject to a
periodic perturbation.

This model was introduced in [HM82], but it appears naturally as a model of the
motion near a multiplicity 1 resonance. A fuller treatment of multiplicity 1 reso-
nances appears in [DLS07].

One could consider that it is a version of the example (1) when we set ε = 1
(hence rename as ε the parameter µ in (1)) but we allow the perturbing term to be
a general one. In the paper [GL06b] it was remarked that the fact that the pendulum
variables have only 1 degree of freedom can be easily removed and one could con-
sider many penduli. Hence, the geometric treatment can be easily generalized to the
case that the hyperbolic variables have several components.

Hence, we consider the model

10 Unfortunately, many references in Melnikov theory still invoke the use of Melnikov functions
given by integrals of quasi-periodic functions. The textbook explanation is that these integrals
converge along subsequences. Unfortunately, the resulting limit – and hence the predictions of
these theories – depend on the sequence taken, so that the textbook explanation cannot be true. The
real explanation is that these references forgot to take into account some important effect. In many
cases, it is the change of the target manifold.
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Hε(p1, . . . , pn,q1, . . . ,qn, I,φ , t) =
n

∑
i=1
±

(
1
2

p2
i +Vi(qi)

)
+h0(I)

+ εh(p1, . . . , pn,q1, . . . ,qn, I,φ , t;ε),
(14)

where (pi,qi), (I,φ) are symplectically conjugate. We will assume that V ′
i (0) = 0,

V ′′
i (0) > 0. This means that Vi has a non-degenerate local minimum – that we set

at 0. We will also assume that the pendulum Pi has a homoclinic orbit to 0. This
is implied by the fact that there is no other critical point p with Vi(p) = 0. Both
conditions are implied by Vi being a Morse function.

The version of (14) considered in [HM82, DLS06b, GL06a] consider only the
case n = 1, but, as we will see, the complications introduced by several variables
is not too important. A full treatment of (14) for general n appears in [GL06b]. We
will explain it in Section4.1.

One extra assumption in [DLS06b] – which we will maintain in the discussion
in this section – is that the perturbation term h was a trigonometric polynomial in
the angle variables. This assumption simplifies the calculations since there is only a
finite number of resonances to be studied. It allows us to emphasize the geometric
objects appearing at each resonance. When h is not a polynomial, for each value of
ε > 0 it suffices to study a finite number of resonances, but the number of resonances
to be considered is ε−α . One needs to do some rather explicit quantitative estimates
on the resonances. The assumption that the perturbation is a polynomial has been
removed by very different methods. The paper [DH06] contains a very deep study of
resonances taking into account the effect of the size of the Fourier coefficients on the
size of the resonant region. The paper [GL06b] considers very large windows, much
larger than the resonance zones and uses the method of correctly aligned windows
to conclude existence of diffusion without having to analyze what happens in the
region of resonance. This leads to less conditions than the analysis in [DLS06b,
GL06a]. Also, the method in [GL06b] leads to optimal estimates on the time.

The analysis of (14) we will present starts by noting that Λ0 = {pi = 0,qi = 0} is a
normally hyperbolic invariant manifold for the time-1 map. Applying the theory of
normally hyperbolic manifolds, we conclude that, for ε small enough, it persists. In
contrast with the example (1), the motion on the invariant manifold will not remain
integrable. Indeed, the foliation of KAM tori will present gaps of size ≈ ε1/2. In the
rest of the section, we will describe how to construct orbits that indeed jump over
the resonance zone. 11

11 The paper [HM82] showed only that there were heteroclinic intersections between some
whiskered tori. The length of the heteroclinic chains constructed in [HM82] goes to 0 as ε → 0.
This was the meaning of Arnol’d diffusion adopted in that paper. It is very interesting to compare
the Melnikov theory developed there with the based on the scattering map.
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4.1 Generation of intersections. Melnikov theory for normally
hyperbolic manifolds

In the model (14), even if the manifold Λ0 is normally hyperbolic, its stable and
unstable manifolds coincide.

In this section, we want to argue that, under some non-degeneracy conditions
on h which we will make explicit, for 0 < |ε|, there is a manifold Γε satisfying the
conditions (6), (7). Furthermore, one can define the scattering map in a patch which
is rather large and uniform with respect to ε .

The fact that there is a Γε which depends smoothly on parameters and, in partic-
ular, can be continued through ε = 0 is well known to experts and we present the
ideas of a simple proof later. See also [GL06b]. These are sometimes called primary
intersections of the stable and unstable manifolds, to distinguish them from other in-
tersections which do not have a limit as ε → 0. See [Mos73, p. 99 ff.]. Subsequent
steps of the construction of diffusing orbits could use any of these intersections for
which the next non-degeneracy assumptions can be verified. The calculations we
will develop here will work just as well for any of the primary intersections. The
use of the secondary intersections deserves more study.

Very elegant geometric theories of intersections of stable and unstable manifolds
can be found in [LMS03]. In these lectures, we will follow [GL06b] and present a
very simpleminded calculation for the model using coordinates. The paper [GL06b]
contains significantly more details than those presented here.

We call attention that the calculation here does not assume that the variables I,φ
in (14) are one-dimensional. This will play a role in Section 7.

A key observation is that, by the theory of normally hyperbolic manifolds, we al-
ready know that Λε , W s,u

Λε
depend smoothly on parameters. We just need to compute

explicitly what are the derivatives of these objects. The non-degeneracy conditions
alluded above are just that the first order in ε calculation predicts an intersection sat-
isfying (6), (7). If the first order perturbation predicts a transversal intersection, the
implicit function theorem allows us to conclude that indeed there is an intersection,
and that the formal calculation gives the leading order.

For this calculation, the fundamental theorem of calculus will play an important
role, hence it is better to consider flows rather than time-1 maps. To make it au-
tonomous, we will just add a variable t. We will use the notation Λ̃ to refer to the
invariant manifold in these coordinates.

For each of the penduli, we choose a homoclinic orbit xi and consider the unper-
turbed homoclinic manifold {(x1(τ1),x2(τ2), . . . ,xn(τn))}. 12 The variables τi are
variables parameterizing the separatrix of the i pendulum.

12 Note that, in general, each of the penduli will have 2 homoclinic orbits to the critical point
(one going in one direction and the other going in the opposite direction). So that, there will be 2n

homoclinic manifolds with parameterizations similar to the ones considered in the text. Since the
conditions we will considering be are sufficient conditions for existence of unstable orbits, having
many orbits at our disposal makes it more likely that we have instability.
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We note that in a neighborhood of the homoclinic manifold – excluding a neigh-
borhood of the critical points – we can extend the variables τi. The variables τi and
Pi constitute a good system of coordinates in this neighborhood.

Again, appealing to the smoothness of the dependence of the stable manifolds on
parameters, we know that the perturbed manifolds can be written as the graph of a
function that gives the Pi as a function of τ, I,φ , t. Furthermore, this function will
depend smoothly on parameters. Our only goal, then, is to compute the first order
expansion of this function, knowing already that such an expansion exists.

P

τ

xsε

xuε

Ws
Λε

Λε

~

~

Wu
Λε
~

Λε

~

Fig. 7 Illustration of the system of coordinates in a neighborhood of the homoclinic manifold

We will denote the time evolution of a point by Ψ s
ε . Remember that, to make the

system autonomous, we consider t as a variable, which takes values on a circle. We
will denote the invariant manifolds in the extended phase space as Λ̃ .

Let x be a point in W s
Λ̃ε

, by the fundamental theorem of calculus, we have, for
any T ,

Pi(x)−Pi(Ω ε
+x) =Pi(Ψ T

ε (x))−Pi(Ψ T
ε (Ω ε

+x)

−
∫ T

0

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ω ε

+x))
]

ds

and, taking limits T → ∞, we obtain

Pi(x)−Pi(Ω ε
+x) =−

∫
∞

0

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ω ε

+x))
]

ds (15)

Now, recalling that we are only computing up to order ε , we can simplify signifi-
cantly the formula.
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We note that because Pi has a critical point at 0, we have Pi(Ω ε
+x) = O(ε2), We

also note that

d
ds

[
Pi(Ψ s

ε (x))−Pi(Ψ s
ε (Ω ε

+x)
]
= ε

(
{Pi,h}◦Ψ

s
ε (x))−{Pi,h}◦Ψ

s
ε (Ω ε

+(x)))
)

= O(ε)

where {·, ·} is the Poisson bracket.
Notice also that the integrand in (15) is converging exponentially fast to zero.

Hence, we have:

Pi(x) =−ε

∫ c| log(ε)|

0
ds,

[
{Pi,h}(Ψ s

ε (x))−{Pi,h}(Ψ s
ε (Ω ε

+x))
]
+O(ε2)

Since the integral is over a finite interval, we observe that, if |s| ≤ c| ln(ε)|, then

|Ψ s
ε (x)−Ψ

s
0 (x)| ≤ c| ln(ε)|ε

Also, using the smooth dependence of the stable and unstable foliations, we obtain
that

|Ψ s
ε (Ω x

+)−Ψ
s

0 (Ω 0
+x)| ≤ c| ln(ε)|ε

Hence, we can transform the integral into

Pi(x) =−ε

∫ c| log(ε)|

0
ds,

[
{Pi,h}(Ψ s

0 (x))−{Pi,h}(Ψ s
0 (Ω 0

+x))
]
+O(ε2| ln(ε)|)

Remark 6. The above calculation identifies the derivative of the manifold with re-
spect to ε when we consider the C0 topology of functions.

In the case that we know that the derivative in Cr sense exists, the previous ex-
pression has to be the derivative in the Cr sense too.

In [GL06b], one can find justification of the slightly stronger result that the in-
tegrals above converge uniformly in Cr – provided that the Hamiltonians are uni-
formly Cr+2.

A very similar formula – reversing the time – can be obtained for an expression
of the unstable manifold as a graph. Subtracting them, we obtain an expression for
the first order expansion of the separation ∆ of the Pi coordinates of the manifolds
as a function of the τi, I,φ , t

∆i(τ, I,φ , t;ε) = ε∆
0
i (τ, I,φ , t)+O(ε2)

where the O(ε2) can be understood in the sense that the C1 norm is bounded by Cε2.
The implicit function theorem shows that if we find a zero of ∆ 0

i = 0 which
is non-degenerate (i,e, rankDτ ∆ 0 = n) then we can find τ∗(ε, I,φ , t) such that
∆(τ∗(ε, I,φ , t), I,φ , t;ε) = 0. Hence, substituting in the variables P we can onbtain
a parameterization of the intersection.
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A more detailed analysis shows that the expressions of Deltai are derivaties of
a potential function with some periodicities [DR97]. Hence they have to have ze-
ros. The assumption that these zeros are non-degenerate is a mild non-degeneracy
assumption that can be verified in practical problems. It also holds generically. The
case n = 1 is studied in great detail in [DLS06b]. In [GL06b] one can find an study
of how to produce several of these solutions for n > 1.

4.2 Computation of the scattering map

The calculation of the scattering map in this case can be done as a particular case of
the general theory of Section 3.2.

Notice that the formulas (12) are given in terms of limit of the intersection as ε →
0, which we computed in the previous section using the easy part of the Melnikov
theory.

The calculation in [DLS06b], was done by a different method since at the time
that [DLS06b] was written, the authors were not aware of the symplectic theory of
the scattering map.

The method of [DLS06b] was more elementary. Only the effect of the scattering
map in one of the coordinates was computed. This was done using the fact that one
of the coordinates in the invariant manifold – namely the energy – has a slow varia-
tion, so that in the calculation of the change of energy along a homoclinic excursion,
one can use – up to the accuracy needed – just the fundamental theorem of calcu-
lus integrating over the unperturbed trajectory. The calculation can be done in very
similar way to the calculation done in Section 4.1. 13 The fact that in [DLS06b] one
only got control on one of the variables made the calculation of subsequent proper-
ties more complicated than what is nowadays possible using geometric theory. See
[DLS07]. On the other hand, the calculation based on estimating the change of en-
ergy is natural for the purposes of the study of the intersection with KAM tori –
which are given as level sets of the averaged energy.

For the purpose of this exposition, we will just mention that, for the model con-
sidered, once we settle on one primary homoclinic intersection, the scattering map
can be computed as an explicit perturbation series with well controlled remainders.
As in all the steps of this strategy, the calculations required can be done by very
different methods. Te more modern methods, taking more advantage of geometric
cancellations seem more efficient even if the older methods can compute some fea-
tures faster.

The conclusions is that – under conditions which can be checked explicitly and
which, in particular, hold generically – the domain of definition of the scattering
map contains a set which is independent of ε as ε → 0. We call attention to the

13 The actual calculation done in [DLS06b] uses not the energy – which is easily seen to be an
slow variable – but rather a linear approximation to the energy –. This makes only higher order
differences. This linear approximation had been used customarily in the literature. At the time that
[DLS06b] was written, it was important to make contact with the previous literature.
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fact that the formulas for the scattering map depend heavily on the behavior of the
perturbation along the whole homoclinic excursion.

4.3 The averaging method. Resonant averaging

The averaging method for nearly integrable systems goes back at least to [LP66].
Modern expositions are [LM88, AKN88, DG96]. An introduction for practitioners
is [Car81]. See also [Mey91].

The basic idea is very simple. Given a quasi-integrable system, one tries to make
changes of variables that reduce the perturbed system to another integrable system
up to high powers in the perturbation parameter. This is accomplished by solving
recursively cohomology equations.

There are many contexts and variations which make the literature extensive, even
if there is only one guiding principle. For example one can consider autonomous
perturbations or periodic perturbations, maps, flows etc. There are different possible
meanings of “as simple as possible”. One difference that leads to several variants is
the fact that one can parameterize perturbations in different ways (generating func-
tions, several types of Lie Series, deformation method, etc.) A systematic compari-
son of differences between these perturbation theories was undertaken in [LMM86].

In the present problem, we consider periodic perturbations of integrable flows
with one degree of freedom. To make comparisons with the literature easier, it will
be convenient to make the system autonomous and symplectic by adding an extra
variable A symplectically conjugated to t

Hε(I,φ , t,A) = H0(I)+A+ εH1(I,φ , t)+ ε
2H2(I,φ , t)+ · · · (16)

where, of course, H(I,φ , t + 1,A) = H(I,φ , t,A), so that t can be considered as an
angle variable. The A is added to keep the symplectic structure. Notice that it does
not enter into the evolution of the other variables.

Again, for the sake of expediency in this presentation, we will omit considera-
tions of issues of differentiability, estimates of reminders etc. We refer to [DLS06b,
Section 8], but the averaging method is covered in many other references, including
some of the lectures in this volume.

For simplicity also, we will assume that all the terms in the expansion in ε are
trigonometric polynomials with the same set of indices. That is,

H i(I,φ , t) = ∑
k,l∈Ni⊂Z2

H i
k,l(I)exp(kφ + lt). (17)

Note that in the Appendix A, we show that this assumption for the case that we
are interested in, follows from the assumption that the h in (14) is a trigonometric
polynomial. The general theory of averaging does not require this assumption, but it
involves several analysis consideration, which we prefer to avoid in an exposition.
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We try to find a time periodic family of symplectic changes of variables kε(I,φ , t)=
(I,φ)+O(ε) in such a way that Hε(kε(I,φ , t), t) is as simple as possible.

One possible way to try to generate the kε ’s is to write them as the time-1 solu-
tions of a differential equation

d
ds

ks
ε = εJ∇Kε ◦ ks

ε , k0
ε = Id,

where J is the symplectic matrix. In this case, we consider the evolution in the
p,q,A, I,φ , t variables and the ε is just a parameter (this is not what we did in the
section on deformation method). The gradient ∇ refers to the p,q,A, I,φ , t variables.
The function Kε is called the Hamiltonian. This way of parameterizing changes of
variables is one of the variants of Lie transforms, [Car81, Mey91]. We will assume
that Kε = εK1 + ε2K2 + · · · ,

It is well known from Hamiltonian mechanics [Arn89, AM78, Car81, Mey91]
that

Hε ◦ kε = H0 + ε(H1 +{H0 +A,K1})+O(ε2)

where {·, ·} denotes the Poisson bracket in the variables I,φ ,A, t.
Therefore, our goal is to find K1 in such a way that

R1 ≡ H1 +{H0 +A,K1} (18)

is somewhat simple (we will make precise what “simple” means in our case). Since
R1 is the dominant term in Hε ◦ kε , one can hope that the dynamics expressed in the
new coordinates is simple.

In terms of Fourier coefficients, (18) is equivalent to

R1
k,l(I) = H1

k,l(I)+ i(kω(I)+ l)K1
k,l(I), (19)

where ω(I) = ∂

∂ I H0(I). The assumptions include that H0 is twist. That is that ω(I) is
monotonic, so that for each k, l there is one and only one pk,l such that kω(Ik,l)+ l =
0. Of course, Ink,nl = In,k. The points Ik,l are called resonances.

Because of the assumption that the perturbation is a polynomial, we have to con-
sider k, l ranging only over the finite set N ⊂ Z2.

We see that (19) has very different character depending on whether (kω(I)+ l) =
0 or not. If (kω(I)+ l) = 0, we have to set R1

j,k(I) = H1
j,k(I) but we can choose Ki

k,l(I)
arbitrary. Since we want that our solutions are differentiable, we have to make sure
that the choices are made in a differentiable way. A particularly simple way – used
in [DLS06b] to make these choices is to take a fixed C∞ cut-off function Ψ and a
fixed number L so that denoting ΨL(t) = Ψ(t/L), we take the choice

R1(I,φ , t) = ∑
k,l∈N

ΨL(I− Ik,l)H1
k,l(Ik,l)exp(i(kφ + lt)),

K1(I,φ , t) = ∑
k,l∈N

(1−ΨL(I− Ik,l))/i(ω(I)k + l)H1
k,l(I)exp(i(kφ + lt).

(20)
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If we choose conveniently L – we are considering only a finite number of reso-
nances – we can ensure that the intervals [−2L + Ik,l ,2L + Ik,l ] do not intersect for
different resonances.

So, we can divide the phase space into two regions:
•One “non-resonant region” where – in the appropriate coordinates – the system

is integrable up to an error of order ε2.
• A finite number of “resonant regions”. Each of the resonant regions can be

labeled by a frequency l/k expressed in an irreducible fraction. In one of these
resonant regions, in the appropriate coordinates, the Hamiltonian is: 14

H0(I)+A+ ε ∑
n∈\

H1
nk,nl(Ik,l)exp(in(kφ + lt))+O(ε2)

= H0(I)+A+ εV (kφ + lt)+O(ε2).
(21)

The dynamics of the Hamiltonian (21) are easy to understand. If we introduce
the variables φ̃ = kφ + lt, Ĩ = I− Ik,l – this change of variables is not symplectic,
but it just multiplies the symplectic structure by a constant, so that the equations of
motion – up to a constant change in time are also given by a Hamiltonian. Note also
that in this change of variables, the period of the angle variables is changed. Hence,
in the new variables, the hamiltonian is:

αHk,l(Ĩ)+A+ εVk,l(φ̃)+O(ε2) (22)

Since at the resonance the variable φ̃ has frequency 0, we have that

Hk,l(Ĩ) = αk,lI2 +O(Ĩ3)

Furthermore, α will not be zero since it will be close to the second derivative of the
unperturbed Hamiltonian, which we assumed is strictly positive (twist condition).

Note that the dynamics of (22) is very similar to the dynamics of a pendulum
with a potential of size ε . In this case, the variable A does not play any role at all.
There will be homoclinic orbits to the maximum of the potential. These orbits will
be given by the conservation of energy and the form of the kinetic energy as

Ĩ =±ε
1/2

√
α−1(maxV −V (φ̃))+O(ε). (23)

Inside these curves, the system does a rotation.
If the maximum is non-degenerate – another hypothesis which is easy to verify

in practice and which holds for generic V – we see that the orbits described in (23)
are orbits that start and end in a critical point, which is hyperbolic. They are at the
same time the stable and the unstable manifolds of this hyperbolic fixed point.

Note that these orbits are very different from the KAM tori. This is the reason
why the KAM foliation gets interrupted by gaps of order ε1/2.

14 Again, we ignore regularity issues. It is not hard to show that if we assume that the function
H1 is Cr , then, K1, R1 are Cr−2 so that the error term in (21) can be considered in the Cr−2 norm.
Again, we refer to [DLS06b].
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It is important to remark that the stable and unstable manifolds of these periodic
points have Lyapunov exponents O(ε1/2). This is much smaller than the Lyapunov
exponents in the transverse directions, which are independent of ε . Hence, when
we talk about the stable manifolds restricted to Λ this is not the same as the W s in
the sense of the theory of normally hyperbolic invariant manifolds , which requires
convergence at an exponential rate of order 1.

The dynamics of the averaged system – we will see that many of these features
are preserved in the full system – consists of the foliation of – more or less horizontal
– curves given by the orbits of the integrable system interrupted by a group of eyes
or islands. At a resonance of type k, l we obtain k eyes. The amplitude of these eyes
is O(ε1/2).

Remark 7. The above classification ignores some stripes of width O(ε) near the sep-
aration of the regions. The conclusions remain valid if we realize that the separation
between the zones – the choice of L – was a choice we made. We can repeat the same
analysis with an slightly different L and see that the ambiguous zones are different
in the two procedures. So that by doing the analysis twice with slightly different L
one establishes the conclusions above for all the phase space.

Remark 8. The choice of separation between the resonances zones is rather wasteful
(even if it makes the estimates and the concepts easier). We assign the same width
to all the resonances even if it is clear that the real width will decrease with ε . (In
particular, we expect that the optimal size would be close to ε1/2). Furthermore, if
the original Hamiltonian is several times differentiable, then, its Fourier coefficients
will decrease at least like a power of k, l. Hence the Vk,l will become smaller with
k, l. Hence, if for a fixed ε we decide to consider only resonant regions of size εB,
we only need to consider a finite number of resonances – which will grow as ε → 0
if B > 1/2.

Considerations of these type were known heuristically since at least [Chi79].
A rigorous implementation appears in [DH06]. The paper [DH06] includes also
considerations of repeated averaging – discussed in the next section – and a very
detailed analysis of the motion in each resonance with error terms.

4.4 Repeated averaging

The method of averaging can be applied several times. Indeed, in celestial mechan-
ics it has been common for centuries to do at least two steps of averaging.

In the region that was marked as integrable in the first step, after we perform the
change of variables, we are left with a quasi-integrable system. The perturbation
parameter is ε2. We can restart the procedure and get again some regions where the
system can be made integrable up to O(ε2) and new resonant regions in which the
dynamics has eyes, which will now be of size ε rather than ε1/2.

In the resonant regions, nothing much happens except that the resonant potential
Vk,l gets deformed.
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In the case that the perturbation is a trigonometric polynomial, the number of
resonances we get at each step is finite and given a number of steps, we can get an
L which works for all cases.

The result of applying averaging twice is depicted crudely in Figure 8 15 For
future analysis, the only important thing is that near resonances, we encounter sepa-
ratrices well approximated by other tori and that, outside the resonances the system
is very approximately integrable.

Fig. 8 Schematic description of the predictions for the dynamics by the averaging method.

4.5 Invariant objects generated by resonances: Secondary tori,
Lower dimensional tori

The resonant averaging described above, gives very accurate predictions of the dy-
namics.

The difference between the perturbed system expressed in a system of coordi-
nates and the true system – in a smooth norm – is smaller than CNεN . The constants
CN grow very fast.

This can be taken advantage off in two different ways:

A) If some perturbation theories apply, we can conclude that some of the invariant
objects for the integrable system, persist for the true system.

15 We have ignored, for example, the fact that inside the big islands of size ε1/2 there are other
baby islands of size ε going around.
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B) We have good control of some long orbits that, using some conditions can be
glued together or shadowed.

This can be applied to the two types of geometric programs mentioned in
Section1.1.

In this section, we will be concerned mainly with point A) and will produce
invariant objects. We will come to point B) in Section 6.

If we consider the averaged system, we see that near resonances of order j,
we obtain hyperbolic orbits, whose Lyapunov exponents are Cε j/2 + O(ε( j+1)/2)
and such that the angle between the stable and unstable directions are Cε j/2 +
O(ε( j+1)/2). Then, applying the implicit function theorem if N > j, we get that
there are periodic orbits that persist. 16 More importantly for our later applications
we obtain that the stable and unstable manifolds are very similar to those of the
integrable system. The results are depicted in Figure 9.

We also can show that some of the quasi-periodic orbits with sufficiently large
Diophantine constant persist. It is important to note that, one can get invariant tori
of two types. One is tori which “go across”. These are the “primary tori” which are
continuous deformations of the tori that were present in the unperturbed system. The
tori inside the eyes of the resonance are of a completely different type. These are
the “secondary tori” which were not present in the unperturbed system, but rather
were created by the resonances. Note that as ε → 0, the eyes become flatter and the
limit of the tori is just a segment of periodic points. The tori merge with the stable
and unstable manifolds. So that at the limit ε = 0 there is change of the topology.

One point which is important is that there are invariant tori very close to the
resonances both from the inside and from the outside. These problems had been
considered in [Neı̆84, Her83] under slightly different hypothesis. The method used
in [DLS06b] was, mainly, to study in detail the expansion of the action-angle co-
ordinates in a neighborhood of the separatrix. Using the – more or less explicit –
formulas one can find in textbooks, it is possible to show that the Cr norm of the
change to action angle variables can be bounded by d−rA where A is an explicit
number. As it turns out the twist constant does not degenerate – the frequency is
singular, but in the good direction that the twist becomes infinite. On the other hand,
remember that the error of the averaging method was less than CNεN . It follows that
one can apply the KAM theorem at a distance εN/B. So that, one can get KAM tori
– both rotating or librating – faster that a power of ε . The power is arbitrarily large
assuming that the system is differentiable enough.

The paper [DLS06b, Section 8] contained other considerations on properties of
the KAM tori as graphs and how the set of KAM tori close to the invariant circle
can be interpolated with the others where the averaging method is different. The
problem is somewhat difficult because depending on how does one relate the ε to
the distance to the separatrix, and to the fixed point, the expression of the KAM tori
has different leading expressions.

16 There are many versions of this argument on persistence of periodic orbits. The basic idea goes
back at least to Poincaré and Birkhoff.
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It seems possible that using more the geometric methods developed after [DLS06b]
was written, many of these technical calculations can be eliminated or improved in
many ways. A significant extension of the results can be found in [DH06]. Another
line of argument that seems promising is the use of KAM theory without action
angle coordinates – the singularity of the action angle variables and the different ex-
pressions in different regions is one of the source of problems – [dlLGJV05, FS07]
so that one can prove directly the persistence of the orbits in the level sets of the
averaged energy. We hope to come back to this.

In summary, it is possible to show that one can get persistence of many of the
orbits predicted by the averaging method. For our purposes, it is enough to claim
that we get an scaffolding of orbits which are much closer that ε – the size of the
effect of the scattering map.

Fig. 9 Illustration of an scaffolding of invariant objects in Λ . These invariant objects are ε3/2 dense
in the manifold.

4.6 Heteroclinic intersections between the invariant objects
generated by resonances

Now we want to argue that the objects discussed in the previous sections possess
heteroclinic intersections. Since these objects have different topologies and very
different characteristics, it is useful to use the scattering map and the argument dis-
cussed in Section 3.3.

To establish this intersection, we just compute the image of these invariant ob-
jects under the scattering map and check whether one can verify (8).
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Given that we have computed rather explicitly the leading expansions of the scat-
tering map and the leading expansions of the invariant objects, it is possible to com-
pute the angles of intersections of manifolds. If these angles are not zero in the
leading approximation, then, the implicit function theorem will establish that the
true invariant manifolds satisfy (8).

The effect of the scattering map on the invariant objects is depicted schematically
in Figure 10

Fig. 10 Effect of the scattering map on the invariant objects found in Figure 4.5
.

Therefore, the above calculation gives – rather explicit – expressions so that, if
they do not vanish, then indeed we can obtain heteroclinic excursions between a
primary torus below the resonance, to a secondary torus inside the resonance, and
then to another torus above the resonance.

The non-vanishing of these explicit expressions giving the angles is a non-
degeneracy assumption on the perturbation.

It is intuitively clear that the conditions hold rather generically. Basically, they
are a comparison of two effects: the deformation of the invariant objects in Λ and
the effect of the scattering map. We note that the first effect, is very much affected
by the behavior of the perturbation near Λ , but not by the behavior of the pertur-
bation near Γ . The scattering map has the opposite properties. Hence, if by some
miracle, the angles happened to be zero, some perturbation near Γ could destroy
this coincidence.

Remark 9. The calculation of the scattering map in [DLS06b] was based on tradi-
tional methods of perturbations of slow variables. This had the consequence that
only the energy component of the scattering map could be computed.
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The use of the symplectic properties, which was developed in [DLS06a] and
explained in Section3.7, simplifies and extends the calculation. Note also that we
mentioned that the invariant objects are very close to the level sets of a function
Ψε . Since the scattering map is a symplectic map close to the identity, the images
of the level sets of Ψε will be level sets of the function Ψε + ε{Ψε ,S0}+h.o.t.. See
[DH06].

5 The method of correctly aligned windows

The method of correctly aligned windows is a way of proving that given segments
of orbits – with some extra conditions – one can get an orbit that tracks them. Since
we never have to consider more than finite orbits, in principle, we do not need the
existence of invariant objects. On the other hand, considerations about times become
relevant. This is the reason why one gets explicit estimates on diffusion time.

The method has its origins in [Eas78, EM79, Eas89]. The version we will discuss
comes from [ZG04, GZ04].

One can think of a window, as a topological version of a rectangle with some
marked sides. Windows are correctly aligned when the image of one stretches across
the other.

A window in a n-dimensional manifold M is a compact subset W of M together
with a C0-coordinate system (x,y) : U →Ru×Rs defined in neighborhood U of W ,
where u + s = n, such that the homeomorphic image of W through this coordinate
system is the rectangle [0,1]u× [0,1]s. The subset W− of W that corresponds through
the coordinates (x,y) to ∂ [0,1]u× [0,1]s is called the ‘exit set’ and the subset W+ of
W that corresponds through the local coordinates (x,y) to [0,1]u×∂ [0,1]s is called
the ‘entry set’ of W . Here ∂ denotes the topological boundary of a set. If we want
to specify the dimension u of the unstable-like direction and the dimension s of the
stable-like direction of a window W , we refer to W as an (u,s)-window. We will
assume that u > 0.

Let W1, W2 be two (u,s)-windows in M, and let (x1,y1) : U1 → Rn and (x2,y2) :
U2 → Rn be the corresponding coordinates systems. Let f be a continuous map on
M; we will denote its expression (x2,y2) = f (x1,y1) in local coordinates also by f .
Assume f (U1)⊆U2. We say that W1 is correctly aligned with W2 under f provided
that the following conditions are satisfied:

(i) f (∂ [0,1]u×[0,1]s)∩[0,1]u×[0,1]s = /0, f ([0,1]u×[0,1]s)∩([0,1]u×∂ [0,1]s)=
/0.

(ii)there exists a point y0 ∈ [0,1]s such that

(ii.a)
f ([0,1]u×{y0})⊆ int([0,1]u× [0,1]s∪ (Ru \ (0,1)u)×Rs) ,

(ii.b) The map Ay0 : Ru → Ru defined by Ay0(x) = π1 ( f (x,y0)) satisfies
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Ay0 (∂ [0,1]u)⊆ Ru \ [0,1]u,
deg(Ay0 ,0) 6= 0.

The main result is that “One can see through correctly aligned windows”. See
[ZG04, GZ04].

Let Wi be a collection of (u,s)-windows in M, where i ∈ Z or i ∈ {0, . . . ,d−1},
with d > 0 (in the latter case, for convenience, we let Wi := W(imodd) for all i ∈ Z).
Let fi be a collection of continuous maps on M. If Wi is correctly aligned with Wi+1,
for all i, then there exists a point p ∈W0 such that

fi ◦ . . .◦ f0(p) ∈Wi+1,

Moreover, if Wi+k = Wi for some k > 0 and all i, then the point p can be chosen so
that

fk−1 ◦ . . .◦ f0(p) = p.

If one takes very small windows, the behavior of the windows is determined by
the derivative of the orbit. If the orbit is hyperbolic, by choosing the rectangles as
products of balls along the stable direction and the unstable direction with the un-
stable being the exit direction, we can get the correct alignment. Then the result
that one can see through chains of correctly aligned windows becomes the stan-
dard shadowing result. On the other hand, the method is more flexible since we can
choose the sizes of the windows and the time we take to put them along the orbits.
This has some advantages for non-uniformly hyperbolic systems. See the proof of
the non-uniformly hyperbolic closing lemma in [Pol93].

On the other hand, the windows do not need to be small. As we will see in the
next section, one can take advantage of large scale effects to get the alignment of
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windows. Notably, when one has some twist – shear – that causes some stretching,
this can be used in place of the stretching caused by the hyperbolicity. It is also
important to notice that, to check whether windows are well aligned or not, one can
just study what happens on the boundary.

In our applications the time of diffusion can be computed by the time that it takes
the windows to stretch.

An important technical tool [GL06a] is that, for systems that are close to product
of systems, one can construct product windows and verify the alignment checking
conditions on each of the factors.

6 The large gap model: The method of correctly aligned windows

The method of correctly aligned windows has been applied to the large gap model
in [GL06a, GL06b].

The construction of windows adapted to the problem of diffusion basically re-
quires to choose the parameters of a sequence of windows (the length of the sides,
the center in a good coordinate system) and choose the times taken to go from one to
the next. Then, one has to verify that all the steps match. In practice this amounts to
choosing two dozen of parameters and verifying about a dozen of trivial inequalities.

Even if verifying the validity of the choices is not very hard, coming up with the
good choices requires a good understanding of the behavior of the model. We now
discuss some of the reasons behind the choices.

We have already discussed the pseudo-orbits that appear. We go from the inter-
section to the manifold, rotate around and then escape back again.

It is important to note that even the unperturbed system is not hyperbolic. The
vector along the separatrices of the pendulum contracts both in the future and in the
past. So that, these vectors in the intersection of the stable and unstable subspace and
the forward Lyapunov exponent is different from the backward Lyapunov exponent.
17

The construction of windows, however, can take advantage of the fact that there
are some direction with good hyperbolicity for a long stretch ( O(| ln(ε)|) ) of time
while the orbit moves from Γ to Λ or back. The fact that one can control the behavior
in the hyperbolic directions is possible because of the transversal intersection. (On
the other hand, the windowing method, being a topological method could work with
much weaker assumptions. [GR04].)

The treatment of the center directions is much more interesting. Of course, the
windows that start close to Λ , go to Γ and come back to Λ are very well described
by the scattering map. One does not have any hyperbolicity in these directions, but
on the other hand, the twist does distort the windows and one can use this distortion
to construct windows that are correctly aligned. This is very similar to the torsion-
hyperbolicity mechanism.

17 The equality of these two exponents was called regularity by Lyapunov and plays a very impor-
tant role. See [BP01].
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In the paper, [GL06a] the windows were taken very thin in the action variables,
but they were taken of order 1 in the angle. This allowed to avoid discussions of
ergodization times and produced rather concrete estimates on the time. In [GL06b]
the windows are chosen in a scale O(1/| ln(ε)|). This, of course, goes to zero, but it
is much larger than the scales of the resonance. The orbits also do not come too close
to the manifold. This has the effect that the method does not need to analyze what
happens in the resonances. This method also leads to times of order O(ε| ln(ε)|) that
– up to, perhaps, a constant – match the upper bounds obtained in [BBB03]. Similar
results appear in [Tre04].

7 The large gap model in higher dimensions

Some of the analysis in Section 4 can be adapted to higher dimensional models. See
[DLS07].

We consider the same model as in (14), but now I, φ are higher dimensional
variables. Again, for simplicity, for the moment, we assume that the perturbation h
is a trigonometric polynomial.

The averaging method described in Section4.3 can be carried out pretty much
the same way. The only difference is that now, that the resonances ω(I) · k = n are
codimension 1 manifolds. If the number of degrees of freedom is more than 1, there
will be intersections of these resonant surfaces. The intersection of two independent
resonances are called multiple resonances. The multiplicity of the resonance – not to
be confused with the order – is the dimension of the module of vectors k,n for which
there is resonance relation. The order is the power of ε of the terms that cannot be
eliminated.

The mathematical analysis of multiple resonances and their role in diffusion
remains a very interesting problem. Very important progress has been done in
[Hal97, Hal99].

Nevertheless in [DLS07] it is argued that there exist diffusing orbits – under the
assumption that h is polynomial – plus some non-degeneracy assumptions.

The key observation is that, under a twist condition, the multiple resonances can
be contoured. (Since they happen on sets of codimension 2 or higher, there are paths
that go around them).

The analysis of resonances of order 1 in higher dimensional systems is very sim-
ilar to the analysis carried in Section 4 18

The upshot is that, under explicit non-degeneracy conditions, for any path in
the space of actions that crosses only multiplicity one resonances, for 0 < ε small
enough there orbits whose actions evolve along the path – up to errors that go to
zero with ε .

18 The scattering map does not require any change, but the persistence of tori of lower dimension
becomes more complicated (one has to use KAM theory rather than the implicit function theorem).
Also the secondary tori require some extra considerations.
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First order resonances.
Second order resonances.
Balls of radius δ.
Resonance zones of distance L.
Allowable diffusion path.
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Fig. 11 Illustration of the paths of diffusion avoiding higher order resonances

8 Instability caused by normally hyperbolic laminations

One of the standard heuristics in the numerical studies is that of modulational dif-
fusion [Chi79, TLL80]. It is often described as saying that A degree of freedom
becomes chaotic and drives another one.

Mathematically, one can formulate this as perturbing a system which is the prod-
uct of a system with some hyperbolic behavior, and another system which is in-
tegrable: Fε = Fh × Fi + O(ε), where Fh(Λ) = Λ and Λ is a hyperbolic set, and
Fi : M 7→M is an integrable map.

In the mathematical literature, some rigorous results have been obtained. The
paper [MS02] constructed a specific system of this type. The paper [Moe02] used
topological methods in two dimensions. Closely related to this paper is [EMR01].

One systematic way to make sense of the above [Lla04, dlL06] is to observe that
the set ∪x∈Λ{x}×M is a normally hyperbolic lamination for F0. See Appendix A.3.
The laminae are {x}×M are permuted by the map and the normal directions are
hyperbolic.

It was shown in [HPS77, Ch. 15] that these structures persist under perturbations
in the sense that one can get slightly deformed collections of laminae which are
also permuted under the map Fε . Of course, the dynamics on these laminae is not
integrable anymore. The dynamics on the integrable parts is a random composition
of maps, which one can consider as uncoupled as in [MS02].
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8.1 Models with two time scales: geodesic flows, billiards with
moving boundaries, Littlewood problems

The above mechanism is particularly effective in systems that have two time scales.
One important system is the model of a geodesic flow perturbed by a periodic

or quasi-periodic potential considered by other methods in [Mat96, BT99, DLS00,
DLS06c].

This dynamical system is defined on the cotangent bundle T ∗M of a compact
manifold M. It has the form:

ṗ =−∇V (q,ωt), q̇ = p, (24)

where the potential V : M×Td and ω ∈ Rd is a non-resonant vector. When d = 1,
the potential depends periodically on time.

We note that the system satisfies some scaling properties. Setting p = ε p̃, q =
q̃, t = ε−1t̃ and denoting by ′ the derivative with respect to t̃, the system, above
becomes

p̃′ =−ε
2
∇V (q̃,εωt) q̃′ = q̃ (25)

So that, for high energy, the potential can be considered as a slow and weak pertur-
bation.

We will assume that the unperturbed geodesic flow has a horseshoe in the unit
energy surface. Using the above scaling, we obtain that, considering the system for
all the energies it possesses an invariant lamination. By the theory of persistence
of normally hyperbolic invariant laminations, we obtain that this structure just gets
deformed.

Fig. 12 Invariant normally hyperbolic laminations associated to the geodesic flow and the periodic
geodesic flow.
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If γ1, . . . ,γN are periodic orbits in the horseshoe, we denote |γi| the period and
define:

Gi(t) =
1
|γi|

∫ |γi|

0

∂

∂ t
V (γi(s), t)ds

This has the meaning of the gain of energy per unit time for orbits that stay in a
close proximity to the periodic orbit. Note that

∫ 1
0 Gi(t)dt = 0.

Recall that, in the horseshoe, we have a symbolic dynamics for the hyperbolic
orbits. That is, if we fix neighborhoods of these orbits, we can move from one to the
other in arbitrary order. Each of the steps can be accomplished in a fixed time.

By the persistence of the normally hyperbolic laminations, the same property
persists when we consider the perturbation by the potential. So, we can switch from
a neighborhood of an orbit to another one in a fixed time for the geodesic flow. For
the potential, this is a slow time.

In the periodic case, d = 1, we assume without loss of generality that V (q, t +
1) = V (q, t), ω = 1. If we assume that there exist 0 = a0 < a1 < · · · < aN = 1 in
such a way that

A≡
N

∑
i=1

∫ ai

ai−1

Gi(t)dt > 0 (26)

then, we can construct orbits whose energy as function of time is larger than At−B.
The idea is very simple. We stay close to γ1 during the macroscopic times [a0,a1].
Using the symbolic dynamics, we can move to γ2, etc. Hence, during a cycle, we
have gained roughly A.

Fig. 13 Illustration of the mechanisms of gain of energy based in locally hyperbolic manifolds



40 A. Delshams, M. Gidea, R. de la Llave, T. M.-Seara

In the quasi-periodic case, we just need to assume that it is possible to write
Td = ∪N

i=1Oi where Oi are sets with smooth boundary transversal to the rotation,
which only overlap in the boundary, and such that A≡ ∑

N
i=1

∫
Oi

Gi(τ)dτ > 0.
If we look at the symbolic dynamics, we see that the space of sequences that

lead to linear gain in energy has positive Hausdorff dimension. Then, using that
the conjugacy given by the stability, we obtain that, when the (26) are satisfied, the
orbits with energy growing linearly are of positive Hausdorff dimension.

It is shown in [Lla04] that if the metric is of negative curvature and, in case that
it has dimension ≥ 3, that it satisfies some pinching conditions, then, the only C3

potentials for which it is impossible to find orbits satisfying the hypothesis of the
above result are the potentials of the form V (q, t) = V1(q)+V2(t).

Very similar analysis applies to other systems which have two scales.
One example is what we call the Littlewood models in higher dimensions.

H(p,q, t) =
1
2

p2 +Vn(q)+Vm(q, t) (27)

where p,q ∈Rd , d ≥ 2, Vn, Vm are homogeneous of degree n,m respectively, n > m,
n > 2,Vn > 0, Vm periodic or quasi-periodic in t. The fact that different terms have
different homogeneities makes the geometric analysis similar to that of the geodesic
flows.

In the case d = 1, [Lit66a, Lit66b] constructed examples of potentials – which
are not polynomials and with not very smooth dependence on time – with orbits
with unbounded energy. Unfortunately, the papers contain a serious error. The pa-
pers [LL91, LZ95] showed that for terms which are like polynomials, and with
smooth quasiperiodic perturbations the orbits stay bounded. An excellent survey of
the history of these models and simplification of the results is [Lev92].

When the number of degrees of freedom is greater or equal than 2, a very similar
analysis to the one carried out above for geodesic flows applies. We note that if we
scale, p = εm/2 p̃,q = ε q̃, t = ε−m we get that the system (27) can be rewritten as:

H(p̃, q̃, t̃) =
1
2
(p̃)2 +Vm(q̃)+ ε

2m−nVn(q,εmt)

so that the low degree polynomial can be considered as a small and slow perturbation
and an analysis very similar to the one carried above for the geodesic flow applies.
The only difference is that one gets that the orbits grow like a power. This is optimal
due to a calculation in [LZ95].

One interesting example, which does not fit in the above theory proposed as a
challenge by M. Levi is the system defined by a Hamiltonian

1
2

p2 +q6
1 +q4

1 +ηq2
1q2

2 +q1 f (t)

This is a challenging model because for large energy, the dominant term is the one
degree of freedom system for which the theorem of [LZ95] applies.
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Another model which has scaling behavior is the billiard with moving bound-
aries. A higher dimensional model of the Fermi acceleration.

For all these systems, when they are sufficiently chaotic, it seems possible to
derive – heuristically – stochastic models for the growth of energy. These stochas-
tic models can be analyzed rigorously and the final results compared satisfactorily
with numerical simulations. [DdlL06]. Even if parts of a stochastic theory of diffu-
sion can be made rigorous, deriving a fully rigorous stochastic theory of diffusion
remains a very challenging problem.
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grangians. 22o Colóquio Brasileiro de Matemática. [22nd Brazilian Mathematics
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Pustyl’nikov. J. Math. Pures Appl. (9), 68(3):297–317, 1989.

[DR97] A. Delshams and R. Ramı́rez-Ros. Melnikov potential for exact symplectic maps.
Comm. Math. Phys., 190:213–245, 1997.

[Eas78] Robert W. Easton. Homoclinic phenomena in Hamiltonian systems with several de-
grees of freedom. J. Differential Equations, 29(2):241–252, 1978.

[Eas89] Robert Easton. Isolating blocks and epsilon chains for maps. Phys. D, 39(1):95–110,
1989.

[EM79] Robert W. Easton and Richard McGehee. Homoclinic phenomena for orbits doubly
asymptotic to an invariant three-sphere. Indiana Univ. Math. J., 28(2):211–240, 1979.

[EMR01] R. W. Easton, J. D. Meiss, and G. Roberts. Drift by coupling to an anti-integrable
limit. Phys. D, 156(3-4):201–218, 2001.

[Fen72] N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana
Univ. Math. J., 21:193–226, 1971/1972.



44 A. Delshams, M. Gidea, R. de la Llave, T. M.-Seara

[Fen77] N. Fenichel. Asymptotic stability with rate conditions. II. Indiana Univ. Math. J.,
26(1):81–93, 1977.

[Fen79] N. Fenichel. Geometric singular perturbation theory for ordinary differential equa-
tions. J. Differential Equations, 31(1):53–98, 1979.

[Fen74] N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J.,
23:1109–1137, 1973/74.
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global Arnold diffusion in quasi-integrable systems. Discrete Contin. Dyn. Syst. Ser.
B, 5(3):687–698, 2005.

[GR04] Marian Gidea and Clark Robinson. Symbolic dynamics for transition tori II. In New
advances in celestial mechanics and Hamiltonian systems, pages 95–109. Kluwer,
2004.
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[Sim99] Carles Simó, editor. Hamiltonian systems with three or more degrees of freedom,
Dordrecht, 1999. Kluwer Academic Publishers Group.

[Sit53] K. A. Sitnikov. On the possibility of capture in the problem of three bodies. Mat.
Sbornik N.S., 32(74):693–705, 1953.

[Ten82] Jeffrey Tennyson. Resonance transport in near-integrable systems with many degrees
of freedom. Phys. D, 5(1):123–135, 1982.

[Thi83] W. Thirring. Classical scattering theory. In Conference on differential geometric
methods in theoretical physics (Trieste, 1981), pages 41–64. World Sci. Publishing,
Singapore, 1983.

[TLL80] J. L. Tennyson, M. A. Lieberman, and A. J. Lichtenberg. Diffusion in near-
integrable Hamiltonian systems with three degrees of freedom. In Melvin Month and
John C. Herrera, editors, Nonlinear dynamics and the beam-beam interaction (Sym-
pos., Brookhaven Nat. Lab., New York, 1979), pages 272–301. Amer. Inst. Physics,
New York, 1980.

[Tre02a] D. Treschev. Multidimensional symplectic separatrix maps. J. Nonlinear Sci.,
12(1):27–58, 2002.

[Tre02b] D. Treschev. Trajectories in a neighbourhood of asymptotic surfaces of a priori unsta-
ble Hamiltonian systems. Nonlinearity, 15(6):2033–2052, 2002.

[Tre04] D. Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems.
Nonlinearity, 17(5):1803–1841, 2004.

[Wei73] A. Weinstein. Lagrangian submanifolds and Hamiltonian systems. Ann. of Math. (2),
98:377–410, 1973.

[Wei79] Alan Weinstein. Lectures on symplectic manifolds, volume 29 of CBMS Regional
Conference Series in Mathematics. American Mathematical Society, Providence, R.I.,
1979. Corrected reprint.

[Zas02] G. M. Zaslavsky. Chaos, fractional kinetics, and anomalous transport. Phys. Rep.,
371(6):461–580, 2002.
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A: Normally hyperbolic manifolds

In this section, we recall some results in the literature on normally hyperbolic man-
ifolds. Good references are [Fen72, Fen74, Fen77, HPS77, Pes04].

For simplicity, we will discuss only the case of diffeomorphisms. The case of
flows is very similar. For many of the applications (persistence of invariant man-
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ifolds, regularity) the case of flows follows from the case of diffeomorphism by
taking time-1 maps.

Let M be a smooth d-dimensional manifold, f : M → M a Cr diffeomorphism,
r ≥ 1.

Definition 1. Let Λ ⊂M be a C1 submanifold invariant under f , f (Λ) = Λ . We say
that Λ is a normally hyperbolic invariant manifold if there exist a constant C > 0,
rates 0 < λ < µ−1 < 1 and a splitting for every x ∈Λ

TxM = Es
x ⊕Eu

x ⊕TxΛ

in such a way that

v ∈ Es
x ⇔ |D f n(x)v| ≤Cλ

n|v| n≥ 0

v ∈ Eu
x ⇔ |D f n(x)v| ≤Cλ

|n||v| n≤ 0

v ∈ TxΛ ⇔ |D f n(x)v| ≤Cµ
|n||v| n ∈ Z

(28)

In this exposition, we will assume that Λ is compact and, without loss of generality,
connected.

Remark 10. The set up can be weakened in several directions which appear in ap-
plications.

For example, as remarked in [HPS77], instead of assuming that Λ is compact, it
suffices to assume that f is Cr in a neighborhood of Λ with all the derivatives of or-
der up to r uniformly bounded. The non-compact case involves some complications
such as study of extension operators. These considerations become much more im-
portant in the extension of the theory to infinite dimensional Banach spaces, which
we will also not consider [BLZ98]. In these infinite dimensional cases, the standard
arguments often give one or two derivatives less in the conclusions than the finite
dimensional compact arguments.

We also note that some parts of the theory are also true for manifolds with bound-
ary such that f (Λ)⊂Λ , d( f (∂Λ),∂Λ)> 0 (inflowing) or f (Λ)⊂Λ , d( f (∂Λ),∂Λ)>
0 (outflowing). Note that the definition of stable (resp. unstable) directions in (28)
requires serious changes in the outflowing (resp. inflowing) cases. An adaptation
of the theory to the inflowing and outflowing cases is done in [Fen72]. Note that,
even if these definitions become possible, the resulting objects may lack some of
the properties of the more standard definitions. For example, the stable spaces are
not unique in the inflowing case, so that issues of regularity are more delicate, even
if well understood in the literature.

In some applications to instability, one often gets systems with two time scales,
so that the hyperbolicity degenerates. Therefore it is useful to keep explicit track of
how C,λ ,µ , the parameters affecting the quality of the hyperbolicity in (28) enter
in the hypothesis of the theorems. See [Fen79].

A self-contained detailed treatment of a case that involves several of these com-
plications can be found in Appendix A of [DLS06c].
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It follows from (28) that Es
x , Eu

x depend continuously on x. In particular, the
dimension of Es

x , Eu
x are independent of x. In fact, using the invariant section theorem

[HP70] or some direct arguments [Fen74, Fen77] they are C`−1,

` < min
(

r,
| logλ |
log µ

)
. (29)

Indeed, using some variants of these arguments, it is possible to show that the in-
variant manifold Λ is C` – even if the hypothesis of the definition only require it is
C1. In general, one cannot improve on these regularities. [Mos69] contains explicit
examples – even trigonometric polynomials – where the regularity claimed above is
sharp, and [HW99] shows that this regularity is indeed sharp for generic examples.
Hence, in general, one cannot expect that the normally hyperbolic invariant mani-
folds are C∞ even if f is a polynomial. One can however have uniform lower bounds
for all the Cr maps which are in a C1 neighborhood. The regularity of overflowing
(resp. inflowing) manifolds is even more problematic since the stable (resp. unsta-
ble) bundles are not uniquely defined, hence the hyperbolicity constants do not have
a unique value.

Given a normally hyperbolic invariant manifold Λ we define

W s
Λ = {y ∈M | d( f n(y),Λ)≤Cyλ

n, n≥ 0}

W u
Λ = {y ∈M | d( f n(y),Λ)≤Cyλ

|n|, n≤ 0}

Furthermore, for each x ∈Λ , we define

W s
x = {y ∈M | d( f n(x), f n(y))≤Cx,yλ

n, n≥ 0}

W u
x = {y ∈M | d( f n(x), f n(y))≤Cx,yλ

|n|, n≤ 0}

and we note that Es
x = TxW s

x and Eu
x = TxW u

x . It is a fact that

W s
Λ =

⋃
x∈Λ

W s
x

W u
Λ =

⋃
x∈Λ

W u
x

(30)

Moreover, x 6= x̃⇒W s
x ∩W s

x̃ = /0, W u
x ∩W u

x̃ = /0.
The decomposition (30) can expressed geometrically saying that {W s

x }x∈Λ , {W u
x }x∈Λ

are a foliation of W s
Λ

, W u
Λ

, respectively. We will refer to these foliations as Fs, Fu.
Dynamically, the above statement means that, when the orbit of a point is

approaching Λ , it approaches the orbit of a single point. This, as well as the
uniqueness can be established easily by noting that, for two points in Λ , we have
d( f n(x), f n(x)) ≥Cµ−n. Since λ µ < 1, we can see that if we fix y there can only
be one x such that d( f n(x), f n(y))≤Cλ n.

We recall that in these circumstances we have that

1. Λ is a C` manifold with ` given in (29).
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2. W s
Λ

, W u
Λ

are C`−1 manifolds
3. W s

x , W u
x are Cr manifolds

4. The maps x 7→W s
x , W u

x are C`−1− j, when W s
x , W u

x are given the C j topologies in
compact sets.

5. When x ∈Λ , we have

TxW
s,u

Λ
= Es,u

x TxW s,u
x = Es,u

x

6. As a consequence of the above, using the implicit function theorem, we have:
Denote by W s,δ

Λ
a δ -neighborhood of Λ in W s

Λ
and by W s,δ

x a δ neighborhood of
x in W s

x .
Then, for sufficiently small δ , there is a C`−1 diffeomorphism hs from W s,δ

Λ
to a

neighborhood of the zero section in Es. Furthermore, hs(W s
x )⊂ Es

x .

Note, that, even if W s
x are as smooth as the map, the dependence of the point on

the base point has only some finite regularity that depends on the regularity expo-
nents entering in (28).

The manifold W s
Λ

is invariant. That is f (W s
Λ
) = W s

Λ
. Analogously, of course, the

unstable manifolds.
On the other hand, the manifolds W s

x are not invariant. They, however satisfy a
covariance property

f (W s
x ) = W s

f (x) (31)

The local behavior in a neighborhood of a normally hyperbolic invariant man-
ifold is described very precisely by the following theorem in [HPS77, PS70], who
show who show that if Λ is a normally hyperbolic invariant manifold , then there
is a homeomorphism h from a neighborhood of the zero section in TΛ to a neigh-
borhood in Λ in such a way that if x ∈Λ , η ∈ TxM and |η | is sufficiently small, we
have

f ◦h(x,η) = h( f (x),D f (x)η) (32)

The homeomorphism h is, of course, highly non-unique. Note that, in the case
that Λ is just a point, the theorem reduces to the celebrated Hartman-Grobman theo-
rem. Indeed the proof of the references above, after some clever reductions, becomes
the Hartman-Grobman theorem in infinite dimensions.

An important consequence of the linearization theorem is that if Λ is a normally
hyperbolic invariant manifold , then, for any sufficiently small open neighborhood
U of Λ we have

Λ =
⋃
n∈Z

f n(U)

Of course, if Λ ⊂V ⊂U , then Λ =
⋃

n∈Z f n(V ).
The homeomorphism h solving (32) is not unique and there are really terrible

choices.19 Nevertheless, there are choices which are continuous and indeed Hölder
in some of the variables. We also have that, W s,uloc

x = h(x,Es,u
x ∪Bδ ).

19 The lovers of pathologies can amuse themselves using the axiom of choice – Argh!! – to produce
h solving (32) which are not measurable.
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The linearization (32) is a generalization of Hartman-Grobman theorem. Under
appropriate non-resonance conditions on the possible rates of growth of the vec-
tors on TxM|x∈Λ it is possible to obtain more precise linearizations [Rob71, KP90,
BK94]. In contrast with the Sternberg Linearization theorem, the non-resonance
conditions can fail in C1 open sets of diffeomorphisms. When the conditions for the
linearization apply, then one can obtain very good estimates for the orbits that “fly
by” the invariant manifold. In particular, one can get very detailed information about
the separatrix map. Note that the time that one can spend in a “fly by” is unbounded,
so that linearization gives information over trajectories that go over a long time.

A.1 Persistence and dependence on parameters

One of the most important results of the theory of normally hyperbolic invariant
manifolds is that they persist under perturbations and that they depend smoothly
under parameters.

Persistence means, roughly, that if a map f has an invariant manifold Λ f and g is
sufficiently C1 close to f , then g also has an invariant manifold Λg.

In these cases, the results on dependence on parameters and can be obtained very
economically from the results on persistence by considering an extended system.

Let f (x,ε) : M×Σ →M is a family of maps (ε is the parameter). ¡– We will also
use fε = f (·,ε). We consider f̃ = f × Id and f̃0 = f0× Id.

We note that if Λ0 is a normally hyperbolic invariant manifold for f0, then Λ0×Σ

is a normally hyperbolic invariant manifold for f̃0. Furthermore, the hyperbolicity
for f̃0 admits the same constants in (28) than f0. Hence, if f̃ is C1 close to f̃0,
the persistence result implies that we can find a manifold Λ̃ that is invariant for f̃ .
Because f̃ is the identity in the ε variable, we have that Λ̃ has to have the form⋃

ε Λε ×{ε}, where Λε is invariant under fε .
Another important result in the theory of persistence of invariant manifolds is that

the change in the hyperbolicity constants can be controlled by the C1 distance of the
maps. This is important since the regularity of the foliations Fs,u can be bounded
uniformly in sets which are the intersection of C1 open sets and Cr. For example in
Section 3.2 it was convenient to assume that the foliations Fs,u are C1. The previous
remark implies that this assumption holds in some open sets, characterized by ratios
in the contractions exponents.

A very efficient way of describing the results of persistence and smooth depen-
dence on parameters is to use a parameterization method.

We write Λε as kε(Λ0) where k : Λ0 ×Σ → M The fact that Λε is invariant is
equivalent to

fε ◦ kε = kε ◦ rε (33)

where rε : Λ0 → Λ0 is a representation of dynamics of fε restricted to the invariant
manifold.
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The result that Λε is C`, means that kε can be chosen to be C` in Λ0×Σ . Hence,
∂ j

∂ε j kε(x) is C`− j. So that the map ε−Λε is C`− j when the manifolds are given the
C j topology.

Even if in this presentations we have argued that the standard theory of normally
hyperbolic invariant manifolds implies the existence of solutions of (33), it is pos-
sible consider (33) as an equation for kε ,rε and show that there are solutions. This
is an alternative approach to the theory of existence of normally hyperbolic invari-
ant manifolds developed in [HdlL07]. This has several advantages from the point
of view of numerical computation. See [HdlL06c, HdlL06b, HdlL06a] for some
simpler cases.

Notice that (33) is a geometrically natural equation. We also note that – since all
geometrically natural equations are invariant under the choice of a system of coor-
dinates in Λ0 – if kε ,rε is a solution of (33) and hε : Λ0 → Λ0 is a diffeomorphism
we have that k̃ε = kε ◦ hε , r̃ε = h−1

ε ◦ rε ◦ hε is also a solution of (33). This lack of
uniqueness can be chosen to impose some supplementary conditions. For example,
in [DLS06a] it is shown that if fε preserve a symplectic form ω , there is one and
only one kε such that k∗ε ω = k∗0ω ≡ ω|Λ0 . (This choice also has other geometric
properties, we refer to the [DLS06a].

Remark 11. There is a large literature on formal perturbation theories based on “ex-
panding to first order” and solving the resulting equations. This, in general, is not a
correct procedure, but in the case that we know that there is a derivative, it is easy to
show that this derivative satisfies a functional equation (which is the equation con-
sidered by the formal expansion). If the solution of this equation is unique, then, the
solution of this equation will be the derivative.

A.2 The λ -lemma and the exchange lemma

The simplest version of the λ lemma states that if there is manifold Σ which inter-
sects transversally W s

x , then, for large n, f n(Σ) will have a patch which is exponen-
tially close – in a smooth topology – to W u(Un) where Un ⊂Λ is an open set around
f n(x).

The sizes of the Un may decrease exponentially – but the rate is bounded by µ−n

–

A.3 Normally hyperbolic laminations

This is a very interesting concept developed in [HPS77, Ch. 15]. See the results in
Section 8.

In the simplest formulation, a lamination is a closed set of manifolds which do
not intersect. {Λσ}σ∈Σ .
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A lamination is invariant if f (Λσ )⊂ΛΦ(σ). A lamination is normally hyperbolic
if, for x ∈ Λσ we can find decompositions TxM = TxΛσ ⊕Es

x ⊕Eu
x satisfying esti-

mates similar to those in (28).
The result of [HPS77, Ch. 15] is that this situation is stable under perturbations.

Some improvements were developed in [Lla02]. Namely, that we can find another
lamination Λ

g
σ and a map hσ : Λ

f
σ →Λ

g
σ in such a way that g◦hσ = hσ ◦ f .

A heuristic point of view which is useful is that one can consider the laminae as
points, so that the above result is just the structural stability. As shown in [HPS77],
there are also shadowing theorems and many other results analogue to the results
for hyperbolic sets.

In a way similar to the stability of normally hyperbolic invariant manifolds , it is
convenient to describe the stability of invariant manifolds using a parameterization
method.

If F0(Lσ ) = L f (sigma), satisfying the hypothesis of normal hyperbolicity, we can
try to find hε

σ : Lσ → M and rε
σ : Lσ → L f (σ) that Fε ◦ hε

σ = hε
σ ◦ rε

σ . Clearly Lε
σ =

hε(Lσ ) satisfy the invariance properties of laminations, Fε(Lε
σ ) = Lε

f (σ).
The hε

σ rε
σ are parameterizations of the new laminae in terms of the old and the

rε
σ are expressions of the dynamics.

It follows from the results in [HPS77] that, for fixed σ the hε
σ (x), rε

σ (x), are C`

on (ε,x), where ` depends on the exponents.
One small improvement from the results of [HPS77] that is found in [Lla04] is

the observation that, the mappings σ 7→ hε
σ ,rε

σ are Hölder when the h,r are given a
C` topology.


