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Abstract

The dynamics near a Hopf-saddle-node bifurcation of fixed points of diffeo-

morphisms is analysed by means of a case study: a two-parameter model map G

is constructed, such that at the central bifurcation the derivative has two complex

conjugate eigenvalues of modulus one and one real eigenvalue equal to 1. To inves-

tigate the effect of resonances, the complex eigenvalues are selected to have a 1:5

resonance. It is shown that, near the origin of the parameter space, the family G

has two secondary Hopf-saddle-node bifurcations of period five points. A cone-like

structure exists in the neighbourhood, formed by two surfaces of saddle-node and

a surface of Hopf bifurcations. Quasi-periodic bifurcations of an invariant circle,

forming a frayed boundary, are numerically shown to occur in model G. Along

such Cantor-like boundary, an intricate bifurcation structure is detected near a

1:5 resonance gap. Subordinate quasi-periodic bifurcations are found nearby, sug-

gesting the occurrence of a cascade of quasi-periodic bifurcations.
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1 Introduction

The goal of the present paper is to understand the typical bifurcation patterns organised
around a Hopf-saddle-node (HSN) bifurcation of fixed points, by means of a case study.
To this end, a suitable parameterised family G of 3D maps is examined: at the origin of
the parameter space, G has a fixed point such that the derivative of G at this fixed point
has two complex conjugate eigenvalues of modulus one and one real eigenvalue equal to
1. Specifically, the issue is investigated of the effect of the resonances of the complex
eigenvalues. Therefore, the complex eigenvalues at the fixed point are chosen as fifth
roots of unity, which is the strongest among the weak resonances. Correspondingly, the
model map G is constructed to be ‘as generic as possible’ in the class of diffeomorphisms
unfolding a HSN bifurcation in the neighbourhood of a 1:5 resonance.

It is shown that the family G has two secondary Hopf-saddle-node bifurcations of
period five points near the origin of the parameter space. The Hopf-saddle-node bi-
furcations organise a cone-like structure in parameter space, formed by two surfaces of
saddle-node and a surface of Hopf bifurcations. Several conjectural results are presented
on the basis of preliminary numerical results. Among the detected phenomena there is
an intricate bifurcation structure near a 1:5 resonance gap, which occurs along a frayed
boundary of quasi-periodic Hopf bifurcations of an invariant circle. Several bifurcations
of invariant circles and two-tori occur nearby, yielding a sort of cascade of quasi-periodic
bifurcations and various pictorial configurations in phase space.

We now introduce the definition of HSN bifurcation for maps. Let α ∈ Rp be a
multi-parameter, and denote by S1 = R/2π ⊂ C the unit circle. Let Fα : R3 → R3 be a
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C∞-family of diffeomorphisms. We say that Fα is an HSN-family of diffeomorphisms if

F0(0) = 0, and spec DF0(0) = {eiω0 , e−iω0 , 1} ⊂ S1, (1)

where the complex conjugate eigenvalues satisfy the non-resonance conditions

einω0 6= 1 for n = 1, 2, 3, 4. (2)

Remarks 1. 1. To have a HSN bifurcation, certain generic conditions on a finite jet
of the map F are required (namely, Eqs. (52) and (53) in Appendix A.2).

2. A HSN bifurcation of fixed points is one of the organising centres of the bifurcation
diagram of a diffeomorphism arising in the study of a climatological model, see [15]
and [60, Chap 2].

3. The values n = 1, 2, 3, 4 in (2) are the so-called strong resonances [3, 55, 44]. They
are excluded since we wish to keep the normal form free from resonant terms (that
is, axially symmetric) up to order 3 (see Lemma 7).

The parameterised model family G considered here is

G :

(
w
z

)
7→
(

ei(ω0+γδ)w[1 − γ(γµ + az + γz2)]

z + γ(1 − |w|2 − z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

0

)
. (3)

The family G depends on the three real parameters (γ, µ, δ), and is given in the coor-
dinates (w, z), where w = x + iy ∈ C and z ∈ R. The coefficients a = a1 + ia2 ∈ C,
εj ∈ R, j = 1, 2 are constants belonging to a fixed compact set, while ω0 is fixed at 2π/5
throughout the paper.

The present paper contains a summary of analytical and numerical results concern-
ing model map G, which is constructed to be ‘as generic as possible’ in the class of
diffeomorphisms having a HSN bifurcation in the vicinity of a 1:5 resonance. A detailed
dynamical analysis, based on numerical tools, is in preparation [17], also see [60, Chap
4]. An outline of the present paper follows. In Sec. 2 we sketch the construction of the
model map G, referring to [60, Sec. 4.1.2] for more details. Analytical results on the
bifurcation diagram of G are given in Sec. 3 (for readability, all proofs are postponed to
Appendices A and B). A brief summary of the many, intricate phenomena observed nu-
merically for map G is presented in Sec. 4, whereas on-going research and open problems
are discussed in the Conclusions (Sec. 5).

2 Model set-up and theoretical expectations

Given a family of diffeomorphisms Fα, α ∈ Rp, a standard approach for the study of
a bifurcation of fixed points of Fα consists in the analysis of the Takens normal form
vector field, see [55] and Appendix A.3. To briefly summarise this, let DF0(0) = S + N
be the decomposition in semisimple and nilpotent part of DF0(0). By Takens’s theorem
there exists a change of coordinates, defined in a neighbourhood of the origin of R3×Rp

and preserving the parameters, such that in the new coordinates the diffeomorphism Fα

takes the form
Fα = S ◦ X1

α + M,
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where the Taylor expansion of the remainder M near the origin is identically zero. Here
X1

α denotes the time-1 map of a family of vector fields Xα, defined on R3 and such that

X0(0) = 0 and specDX0(0) = {0}.

However, if F is an HSN-family of diffeomorphisms, the following version of Takens’s
theorem holds.

Theorem 1. Let Fα : R3 → R3 be a smooth HSN-family of diffeomorphisms, depending
on the parameter α ∈ R3. Suppose that Fα satisfies certain open and dense conditions
(specified in the proof of the Theorem, see Appendix B). Then there exist a smooth
parameter-dependent transformation and a reparameterisation β = (β1, β2, δ)(α) such
that, by denoting Fβ1,β2,δ the map Fα expressed in the new parameters and coordinates,
one has

Fβ1,β2,δ(w, z) = Z1
β1,β2,δ(w, z) + O(‖w, z‖4), (4)

with w ∈ C and z ∈ R. Here Z1
β1,β2,δ is the time-one map of the flow of the third degree

polynomial vector field

Zβ1,β2,δ(w, z) =

(
(β2 + i(ω0 + δ))w + awz + bwz2

β1 + sww + z2 + cz3

)
, (5)

where s = ±1 and a, b, c are functions of the parameters (β1, β2, δ) such that a, b ∈ C

and c ∈ R.

This theorem forms the basis of our construction of the ‘generic’ model map G (3). The
vector field Zβ1,β2,δ is a truncated normal form for the HSN bifurcation of equilibria of
vector fields. This normal form is obtained by only using near-identity transformations,
followed by a scaling of the phase variables and a change of parameters. In fact, by also
applying two scalings of time, it can be shown [44, Lemma 8.11] that a simpler vector
field Yβ1,β2,ω can be obtained:

Yβ1,β2,ω(w, z) =

(
(−β2 + iω)w − awz − wz2

−β1 − sww − z2

)
, (6)

with a = a(β1, β2, ω) ∈ C and s = ±1. In few words, the construction of model map
G (3) runs as follows: we start from the vector field Yβ1,β2,ω in (6), apply a parameter
transformation and a scaling of time and variables, compute an (approximate) time-1
map and add certain perturbative terms of order four to destroy the axial symmetry
of the vector field Yβ1,β2,ω (see the next section). By (4), this construction is likely
to be representative for a large class of HSN-diffeomorphisms. Since our construction
focuses on dynamical phenomena occurring in a specific region of the (β1, β2)-parameter
plane, the bifurcation diagram of the vector field Yβ1,β2,ω is briefly recalled in the next
subsection.

2.1 Dynamics of Hopf-saddle-node vector fields

The Hopf-saddle-node bifurcation of equilibria of vector fields has been investigated by
several authors [8, 18, 21, 25, 28, 34, 36, 41, 43, 44, 57]. Let Xα be a C∞-family of
vector fields on R3, where α ∈ Rp is a multi-parameter. We call Xα a HSN-family of
vector fields if

X0(0) = 0 and specDX0(0) = {±iν0, 0}, ν0 6= 0.
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To have a generic HSN bifurcation of equilibria, the 3-jet of Xα at the origin has to
satisfy appropriate open and dense conditions, e.g. those given in [44, Lemma 8.11]
(Eqs. (37), (38), and (40) in Appendix A.1). Under the latter conditions, there exist
a sequence of coordinate transformations, time scalings and a final reparameterisation
such that, by denoting Xβ the vector field Xα written in the new coordinates, time and
parameters, one has

Xβ(w, z) = Yβ1,β2,ω + O(‖w, z‖4), (7)

where Yβ1,β2,ω is the vector field in (6). We emphasise that in the vector field case,
since one usually works modulo orbital equivalence (time scalings are allowed), ω may
be assumed to be a nonzero constant. In other words, the “detuning” parameter δ
contained in Zβ1,β2,δ (5) is not needed: only two control parameters are used, therefore
one takes α ∈ Rp with p = 2. Correspondingly, only the parameters β1 and β2 are
considered in the bifurcation analysis.

The family Yβ1,β2,ω is axially symmetric: for all θ ∈ R, Yβ1,β2,ω commutes with the
rotation of angle θ ∈ R around the z-axis. By using cylindrical coordinates (r, φ, z),
where w = reiφ, and disregarding the φ-component (since the (r, z)-components are
independent on φ), one obtains the planar reduction

ṙ = r(−β2 − a1z − z2),

ż = −β1 − z2 − sr2,
(8)

where a1 is the real part of the coefficient a in (6). The vector field (8) is Z2-equivariant,
namely, it is symmetric under the transformation (r, z) 7→ (−r, z).

According to the signs of s and a1, the topological structure of the phase portrait of
the reduced system (8) belongs to one of four classes (if a time-reversal is allowed [44]).
The unfolding case of present interest is s = 1, a1 < 0, see Figure 1, for which both Hopf
and heteroclinic bifurcations occur. The bifurcation diagram of the planar system (8)
consists of the curves S, P , H and HET :

S = {(β1, β2) | β1 = 0}

P =

{
(β1, β2) | β1 = −β2

2

a2
1

+ o(β2
2)

}

H = {(β1, β2) | β1 < 0, β2 = 0}

HET =

{
(β1, β2) | β1 < 0, β2 =

a1

3a1 − 2
β1 + o(β1)

}
.

Compare Figure 1, where we also indicate the phase portraits of the planar system
system (8). Saddle-node, pitchfork, and (Andronov-)Hopf bifurcations of equilibria take
place for parameters on the curves S, P , and H respectively, while HET is a curve of
heteroclinic bifurcations of equilibria. Two equilibria O± = (±√−β1, 0) exist in regions
2 up to 6. In regions 3, 4, and 5 the equilibria O± are of saddle type and have a one-
dimensional heteroclinic connection along the z-axis. This connection is persistent in (8)
due to the Z2-symmetry. Furthermore, a third equilibrium C coexists with O± in regions
3, 4, 5. The equilibrium C is attracting in region 3 and repelling in regions 4 and 5.
Entering region 4 from region 3 across curve H, the equilibrium C loses stability through
a Hopf bifurcation, whereby an attracting limit cycle T is created. As (β1, β2) approach
the curve HET , the limit cycle T grows in size and in period. For (β1, β2) ∈ HET ,
the limit cycle T turns into a heteroclinic connection formed by the z-axis and by the
unstable manifold of O+, which has merged with the stable manifold of O−.
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Figure 1: Unfolding of the HSN bifurcation for vector fields: bifurcation diagram of the
planar system (8) in the case s = 1, a1 < 0, from [44, §8.5]. Phase portraits in the
(r, z)-plane are given on the right.

The dynamics of the three-dimensional polynomial family Yβ1,β2,ω is easily recon-
structed from the dynamics of (8). The equilibria O± of (8) correspond to equilibria of
Yβ1,β2,ω belonging to the z-axis. For simplicity, we keep the same names for the bifur-
cations and the invariant manifolds of Yβ1,β2,ω and of the planar reduction (8). On the
curve P the equilibrium O+ loses stability through a Hopf bifurcation, and a limit cycle
C is created. Across curve H, the limit cycle C loses stability through a Hopf (also
called Nĕımark-Sacker [44]) bifurcation, where an attracting torus T is created. Then
T merges into a heteroclinic sphere-like structure on the curve HET .

We now discuss the consequences of the analysis above for a generic HSN-family
which is in the form Xβ given by (7). Again, we recall that only the unfolding case
determined by Re a = a1 < 0, s = 1 is considered here. A large part of the bifurcation
diagram of Yβ1,β2,ω (Figure 1) persists in the family Xβ. In particular, Xβ has the same
local bifurcations as Yβ1,β2,ω: there are curves S, P , and H of saddle-node, Hopf, and
Nĕımark-Sacker bifurcations of Xβ, near the corresponding curves of Yβ1,β2,ω.

The main differences between the vector fields Xβ and Yβ1,β2,ω occur in the param-
eter region close to the curve HET . The heteroclinic sphere of Yβ1,β2,ω is destroyed by
a generic ∞-flat perturbation [19]. For a generic vector field Xβ, the two-dimensional
manifolds of the saddle foci O± intersect transversally along an even number of hetero-
clinic orbits [8, 21, 41]. In the (β1, β2)-parameter plane, the region of existence of such
a heteroclinic structure is a narrow horn [11, 13]. Moreover, the heteroclinic connection
along the z-axis does not take place in the generic case, and this allows the occurrence
of Shil′nikov homoclinic bifurcations [8, 21, 34, 36, 44]. The possible occurrence of het-
eroclinic and Shil′nikov bifurcations implies that the germ of the vector field Yβ1,β2,ω (6)
is not topologically stable [18, 56]. The torus T of Xβ breaks down when approach-
ing the heteroclinic structure. This phenomenon is only partially understood from the
theoretical viewpoint [1, 4, 5, 14, 27, 50]. For parameters inside a resonance tongue,
homoclinic tangency bifurcations of periodic orbits lying inside T are often related to
the breakdown of the torus and to the creation of strange attractors [36, 41, 44].

2.2 Construction of the model map

We start from vector field Yβ1,β2,ω (6), in the unfolding case a1 < 0, s = 1. The area of
interest in the (β1, β2)-parameter plane is bounded by a dashed triangle in Figure 1 (left
panel): it is a sector containing region 4 and parts of regions 3 and 5. Only negative
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Figure 2: Left: magnification of Figure 1 near the sector of interest in the (β1, β2)-
parameter plane. Right: in the (γ, µ)-parameter plane, where (γ, µ) are given by the
scaling (9), the sector of interest (left picture) is blown up near the origin.

values of β1 are considered. New parameters (γ, µ) are introduced by

β1 = −γ2, β2 = γ2µ, (9)

where γ > 0 and µ ∈ R. The effect of this reparameterisation is sketched in Figure 2:
the dashed sector in Figure 1 (magnified in Figure 2 left) is blown up near the origin
and mapped onto a horizontal strip in the (γ, µ)-plane (Figure 2 right). Thereby, the
bifurcation curves H and HET both turn into horizontal lines in the (γ, µ)-parameter
plane.

Remark 1. Notice that, for the model map, ω must be taken as a parameter together
with (γ, µ). Indeed, for a HSN-family of vector fields, ω can be set to one by a time
scaling, but this is not possible for a map.

Beyond the reparameterisation (9), the variables and the time of (6) are rescaled as
follows:

w = γŵ, z = γẑ, t = t̂/γ. (10)

The effect of this scaling is to keep the sizes of the limit cycle C and of the torus T of
order O(1) as γ → 0. Denote by Yγ,µ,ω the vector field in (6) written in the variables
and parameters defined in (10) and (9). By dropping all hats, Yγ,µ,ω reads

Yγ,µ,ω = Y1 + Y2, with Y1 =

(−γµw − awz − γwz2

1 − z2 − |w|2
)

, Y2 =

(
iωw/γ

0

)
. (11)

The first step in the construction of the model map G (3) is to obtain an approximate
time-γ map of the vector field Yγ,µ,ω. Since Y1 commutes with Y2, the time-γ map of
Yγ,µ,ω is given by the composition of the time-γ maps Y γ

1 and Y γ
2 (this is a corollary

of the Baker-Campbell-Hausdorff formula [59]). So we first compute an approximate
time-γ map of Y1 by performing one step of length γ of the Euler integration formula:

(
w
z

)
7→
(

w
z

)
+ γ

(−γµw − awz − γwz2

1 − z2 − |w|2
)

. (12)

Then the map (12) is composed with the time-γ map Y γ
2 , yielding the axially symmetric

map S:

S :

(
w
z

)
7→
(

eiωw[1 − γ(γµ + az + γz2)]

z − γ(−1 + |w|2 + z2)

)
. (13)
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The second and last step in the construction of the model map G is to add ‘generic’,
non-axisymmetric resonant terms of order four (compare with Theorem 1) to map S.
The choice of such terms depends on the resonant frequency ω0 we wish to consider.
In this paper we focus on the resonant value ω0/(2π) = 1/5, which is the lowest-order
resonance compatible with the assumptions in (2). For this choice of ω0, the lowest-order
non-axisymmetric resonant terms in the ∂/∂w and in the ∂/∂z-direction are w4 and
Re w5, respectively. A further (non-resonant) term in z4 is added to the w-component
in order to break invariance of the z-axis. Moreover, a scaled detuning parameter δ is
introduced, by setting ω = ω0 + γδ. This yields the map

(
w
z

)
7→
(

ei(ω0+γδ)w[1 − γ(γµ + az + γz2)]

z − γ(−1 + |w|2 + z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

γ4ε3 Re w5

)
, (14)

where ε1 and ε2 are complex while ε3 is real. Notice that map G (3) is slightly simplified
with respect to (14): ε1 can be taken real, since a transformation of the form (w, z) =
Rθ(w

′, z′) = (exp(iθ)w′, z′) for suitable θ yields a system of coordinates where Im(ε1) =
0. Moreover, the parameter ε3 is fixed at zero in G: this is reasonable, since the term in
ε3 of (14) is of order γ4, while the ∂/∂z-component of G already contains a term in γz2.
We refer to [60, App. 4.E] for a more detailed discussion on the choice of the values for
the coefficients of G.

At this point it is worth to add a comment on the choice of Euler’s explicit method to
go from (12) to (13). Consider a planar conservative linear system like ẋ = ax+ by, ẏ =
cx−ay. The map induced by Euler’s method with step size γ is linear and its matrix has
determinant 1 − (a2 + bc)γ2. Therefore, the numerical method produces an expansive
(respectively, dissipative) map in the case that the origin is a centre (respectively, a
saddle). Other integration methods have different behaviour around these points or
the determinant differs from 1 by O(γk), k > 2. On the invariant torus of vector field
Yγ,µ,ω, existing in region 4 of Figure 2, the flow is close to conservative. When passing
to the map we can have values of the parameters for which the two frequencies of the
torus dynamics satisfy a double resonance condition. This gives rise to the existence
of periodic points on the invariant torus. Were the map exactly conservative in the
torus, generically half of the periodic points would be centres and the other half would
be saddles. Using Euler’s method the centres always become unstable foci: in this
way it is prevented that they become attractors. On the other hand the saddles become
dissipative. If homoclinic tangles exist, this allows the possibility that strange attractors
are created. For more details see [16].

2.3 Theoretical expectations

Having in mind the construction of the model map G (3), as well as the bifurcation
diagram in Figure 1, we can now describe which kind of dynamical phenomena we wish
to analyse (and expect to find) in studying this map. Consider first the HSN family of
diffeomorphisms Y 1

β1,β2,ω, obtained by taking the time-1 map of the three-dimensional
axially symmetric vector field (6). When β2 decreases through zero between regions 3
and 4, Y 1

β1,β2,ω has a circle attractor with parallel dynamics (rigid rotation) that loses
stability, whereby an invariant two-torus branches off. Moreover, on line HET there
exists an invariant sphere formed by the stable and unstable manifolds of the polar
saddle fixed points. This whole picture is very degenerate in the context of three-
dimensional diffeomorphisms, but provides the geometric skeleton of reference in our
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discussion, since by (4) the HSN families we consider are perturbations of Y 1
β1,β2,ω. In

particular, we here focus on three classes of dynamical phenomena that are expected to
occur in generic HSN families of diffeomorphisms:

1. Interaction of resonances and the Hopf-Nĕımark-Sacker bifurcation.

2. Two-torus dynamics.

3. Two-torus breakdown and strange attractors near the heteroclinic region.

Let us briefly recall what is the generic expectation regarding the Hopf-Nĕımark-Sacker
bifurcation. For a diffeomorphism (written as in (4)), this transition turns into a quasi-
periodic Hopf bifurcation, where a circle attractor loses stability and a two-torus attrac-
tor branches off. This scenario has been described extensively by Broer et al. [7, 9, 10, 26]
as a part of dissipative kam theory (also see [38] for a treatment specific of the HSN
case). In this setting, resonances play a very strong role, since they involve a Cantor set
of Diophantine conditions in the ω-direction. Summarising, in parameter space we get
a (Whitney) smooth foliation of positive measure, parameterised over the Diophantine
Cantor set, where the smooth circle attractors lose stability and smooth two-torus at-
tractors branch off. Both circles and two-tori are Diophantine, and hence form families
of quasi-periodic attractors. The corresponding nowhere dense parameter regions with
invariant circles and two-tori, by normal hyperbolicity can be extended to open subsets
of parameter space (though not uniformly). Using the fact that quasi-periodic circles
and two-tori are r-normally hyperbolic for any r > 0, this extension is considerable, just
leaving out resonance gaps, called ‘bubbles’ [22, 23, 24], around most resonance points
in the locus H of the Hopf bifurcations.

Inside the resonance ‘bubbles’ the rotation number of the circle, as far as it exists,
is rational. Generically the corresponding circle dynamics is ‘phase-locked’ or ‘Kupka-
Smale’, which means that the circle contains periodic points of saddle and of node type,
where the circle itself is the closure of the union of unstable manifolds of the saddle
points (see e.g. [3]). Closer to the locus H of Hopf bifurcations, the dynamics becomes
more involved and generically one expects intricate patterns of secondary bifurcations,
where the invariant circle does not always survive, but where transitions are possible
to chaotic dynamics. (For similar scenario’s for two-dimensional maps compare with,
e.g., [6, 20, 22, 23, 24, 45, 46, 58, 61, 62]). Since the 1:5 resonance has lowest order
amongst those compatible with (2), it is likely to have the strongest influence on the
bifurcation diagram near H. Therefore, the three-dimensional patterns of bifurcation
near a 1:5 resonance are a main topic of the present research.

A second topic of interest is the organisation of resonances for the dynamics inside the
two-torus attractor that branches off at the quasi-periodic Hopf bifurcations belonging
to H. The two frequencies of the two-torus are resonant along open sets that form
an intricate web in parameter space, particularly near resonance gap crossings, where
strange attractors and cascades of quasi-periodic bifurcations may show up. Since this
part of the investigation does not focus on the vicinity of a specific resonance along H,
wider domains in the ω-direction need to be examined.

A third and last point is the dynamics regarding the stable and unstable manifolds of
the polar saddles (O±, compare Sec. 2.1) and the corresponding heteroclinic phenomena,
which results in several types of strange attractors mostly involving the breakdown of
the two-tori. In the present real analytic case, these hetero- and homoclinic phenomena
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Figure 3: Sketch of the theoretical expectations concerning the bifurcation structure of
model map G (3) in the three-dimensional parameter space (γ, µ, ω). Left: bifurcation
set of the HSN-family of maps Y 1

γ,µ,ω given by the time-1 map of vector field (11) in

the parameter region of our interest. A
p/q is the set of all parameter values for which

the rotation number on the invariant circle C is p/q ∈ Q. See text for the meaning
of H and HET . Right: expected bifurcation set of the model map G (3), assuming
genericity. A

p/q is a resonance wedge of rotation number p/q, HET is an exponentially
narrow wedge where heteroclinic intersections and tangencies occur. Of the surface H,
only a Cantor-like foliation by curves survives.

are expected to occur in an exponentially narrow wedge in the parameter space [11, 12,
13, 54].

Turning to our model map G (3), the above discussion is summarised in Figure 3:
the left panel contains the bifurcation diagram of the diffeomorphism Y 1

γ,µ,ω, given by
the time-1 map of vector field family (11), inside the three-dimensional parameter space
(γ, µ, ω); in the right panel we sketch our expectations for model map G. A number of
theoretical results can be obtained for the vector field family Yγ,µ,ω (11) by invoking stan-
dard perturbation theory (normal hyperbolicity [33, 37]) and quasi-periodic bifurcation
theory [7, 9, 10, 26]. The surface HET of heteroclinic bifurcations of the diffeomorphism
Y 1

γ,µ,ω turns into a region characterised by heteroclinic intersections of the polar saddle-
like fixed points for the model map G [11, 12, 13, 54]. As for the size of this region,
we expect it to be exponentially narrow as γ ↓ 0 : here we use the real analyticity of
the system and a refined averaging technique, which goes back on [48]. We refer to this
part of the parameter space as the heteroclinic region HET . Of the Hopf bifurcation
surface H, only a (Whitney) smooth Cantor foliation of lines (interspersed of resonance
bubbles) survives for G: this is where there is a transition from the circle attractor to a
circle repellor and a branching of a two-torus attractor (all of which are Diophantine).
We refer to this frayed Cantor-like bifurcation set as the Hopf bifurcation boundary H.
H and HET roughly divide the parameter space into three regions, labelled by 3, 4 and
5. In region 3 (i.e., for µ > 0) there is a circle attractor C. In region 4 (e.g., for µ < 0
and in between H and HET ) the circle C is repelling and it coexists with a two-torus
attractor. The set A

p/q, consisting of all parameter values for which the rotation number
on the invariant circle C is p/q ∈ Q, is an Arnol′d resonance tongue. The intersection
of this three-dimensional tongue with a vertical plane γ = const. yields a 1:5 resonance
gap which extends further away from the 1:5 ‘bubble’: the latter is confined near the
Hopf bifurcation boundary H.
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We emphasise that Figure 3 only provides a rough geometrical skeleton for the dy-
namics of the maps. Many issues need to be analysed by specific means. For instance,
what is the fate of the invariant circle inside the 1:5 resonance ‘bubble’ near the Hopf
bifurcation boundary H? Which additional bifurcations of invariant circles and two-tori
show up? What is the structure of the 1:5 resonance gap, further away from H? Which
are the typical routes to the formation of strange attractors near region HET ? The
present paper contains a few analytical results concerning the bifurcation structure of
model map G near the 1:5 resonance ‘bubble’. This is a first analytical treatment of
point 1 in the enumeration at the beginning of this section. Moreover, a brief illustration
of the dynamical richness of G is given, by briefly discussing some numerical results. A
comprehensive dynamical study of points 1, 2, 3, carried out by numerical means, is in
preparation [17], also see [60, Chap 4].

We conclude by observing that the complexity of the present bifurcation can be easily
met in concrete studies, e.g., see [15] where this and related problems are encountered
in the dynamical modelling of the northern hemisphere climate.

3 Analytical study of the model map

In this section we discuss a few results concerning the bifurcation diagram of the model
family G as in (3). First, by examining an axially symmetric truncation of the map,
analytical expressions are derived for the position of the Hopf bifurcation boundary and
for the region of heteroclinic intersections depending on the perturbation parameter γ.
Then, in Sec. 3.2, analogous expressions are given for the saddle-node, Hopf and Hopf-
saddle-node bifurcations of period five points of the map G. The latter are obtained
by studying a suitable Takens normal form vector field. All proofs are given in the
Appendix for better readability.

3.1 The axially symmetric truncation

The model map G (3) is a perturbation of the axially symmetric family S (13). In
cylindrical coordinates (r, φ, z), where w = r exp(iφ), S reads

S :




r
φ
z


 7→




r |1 − γ(γµ + az + γz2)|
φ + ω + arg(1 − γ(γµ + az + γz2))

z − γ(−1 + r2 + z2)


 . (15)

Since the dynamics in the (r, z)-components is independent on φ, we consider the reduced

planar map S̃

S̃ :

(
r
z

)
7→
(

r |1 − γ(γµ + az + γz2)|
z − γ(−1 + r2 + z2)

)
, (16)

which is tangent to the identity at the origin and only depends on the parameters (γ, µ).
Since S is an approximate time-γ map of the vector field Yγ,µ,ω (11), the locations of
the Hopf and heteroclinic bifurcations of S are shifted in the parameter space with
respect to the corresponding bifurcations of Yγ,µ,ω. These shifts are computed in the
next lemma up to order O(γ). We recall that γ is a perturbation parameter, varying in
a neighbourhood of 0, while a is a constant belonging to a fixed compact set.

11



Lemma 2. 1. For all values of µ and of the constant a ∈ C, and for γ sufficiently
small, the map S̃ (16) has a unique fixed point (r0, z0)(γ, µ), of the form

z0 = − µ

a1

γ + O(γ2), r0 = 1 + O(γ2). (17)

This fixed point undergoes a Hopf bifurcation at µH(γ) = a2
1 + O(γ), is attracting

for µ > µH(γ), and repelling for µ < µH(γ). The estimates in (17) on the order
of γ are uniform on compact sets in the constant a and in the parameters (µ, ω).

2. In a neighbourhood of the origin (r, z, γ) = (0, 0, 0), we have

S̃ = T γ
eS

+ O(γ3) (18)

where T γ
eS

is the time-γ map of the planar vector field TeS

TeS

(
r
z

)
=

(
−a1rz

1 − r2 − z2

)
+ γ

(
r
(
−µ + a1

2
− a1

2
r2 − (1 + Re(a2+a)

2
)z2
)

z − (1 + a1)r
2z − z3

)
. (19)

3. The vector field (19) has a Hopf bifurcation of equilibria for parameters on the
curve µH(γ) = a2

1 + O(γ), and it has a heteroclinic connection for

µHET =
a1

2
− b

3
− 2a1(1 − a1) − bc

3
− 1

c + 3
+ O(γ),

where b = 1 + Re(a2 + a)/2 and c = −2/a1.

4. The fixed point (r0, z0)(γ, µ) of S̃ in (17) corresponds to an invariant circle

C =
{
(r0, z0, φ) | φ ∈ S1

}

of the map S (15), having radius r0 and contained in a horizontal plane {z = z0},
where (r0, z0) do not depend on ω. The circle C has the same stability properties

as the fixed point (r0, z0) of S̃. The rotation number on C also depends on ω
but the dynamics on C is always a rigid rotation. Denote ω = ω0 + γδ, where
ω0/(2π) = 1/5. For parameter values (γ, µ, δ1:5(γ, µ)), where

δ1:5(γ, µ) = −a2µ

a1

γ + O(γ2), (20)

all points on C have period five for the map S.

5. For µ bounded away from µH(γ), and for γ sufficiently small, the circle C persists
as a normally hyperbolic invariant manifold for the map G (3). The bounds on µ
and γ are uniform on compact sets in all other parameters and coefficients of G.

A fundamental tool for the proof (see the Appendix) is the Takens normal form vector

field TeS (18) of the planar map S̃ (16).

Remarks 2. 1. As mentioned in item 1 of Lemma 2, all estimates on the order of γ
are uniform on compact sets in the constant a and in the parameters (µ, ω). More-
over, in the case of (18) the estimates hold in a sufficiently small neighbourhood
of the origin in the variables (w, z).
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2. The map S is degenerate, due to the fact that the dynamics on C is a rigid
rotation also for rational rotation numbers. However, description of S provides
the ‘skeleton’ dynamics of the models G and Q. Indeed, the position of the Hopf
boundary and of the heteroclinic strip in the two models agrees up to order O(γ)
with the values µH and µHET given in Lemma 2. In particular, for a1 = −1 and
γ = 0.01 we have µH = 1 and µHET = 0.35. Comparison with the numerical
results in Sec. 4 (see [17] and [60, Chap. 4] for more details) suggests that these
approximate values are accurate within the error bound, which is of order O(γ).

3. We will show later that the 1:5 resonance gap of G splits linearly in the param-
eter ε1 and quadratically in γ around the 1:5 resonant surface (γ, µ, δ1:5(γ, µ)),
where δ1:5(γ, µ) is given in (20). Moreover, the 1:5 bubble splits linearly in ε1 and
quadratically in γ around the curve

(µH(γ), δ1:5(γ, µH(γ))) =
(
a2

1 + O(γ),−a1a2γ + O(γ2)
)

in the parameter space (γ, µ, δ). For these parameter values, the circle C of S
consists of period five points and undergoes a Hopf bifurcation.

3.2 Analysis of a vector field approximation

In this section we perform a bifurcation analysis for a vector field approximation of the
model G (3). For convenience, the equation of G (3) is here recalled:

G :

(
w
z

)
7→
(

ei(ω0+γδ)w[1 − γ(γµ + az + γz2)]

z + γ(1 − |w|2 − z2)

)
+

(
γ3(ε1w

4 + ε2z
4)

0

)
.

Throughout the section we assume that ω0 is fixed at 2π/5. The role of perturbation
parameter is played by γ. The parameters (µ, δ) and the remaining coefficients of G are
assumed to vary in a fixed compact set. For γ = 0, the linear part DG at the origin
of R3 = {w, z} is the axial rotation Rω0

(w, z) = (eiω0w, z). Notice that G is not in
Poincaré normal form, due to the presence of the non-resonant term ε2z

4. By normal
form theory [25, 55], there is a transformation such that this term is removed in the new
coordinates. We write G in the new coordinates, and restrict to terms of order four in
(w, z). This amounts to setting ε2 = 0 in G, which will be assumed throughout the rest
of the section.

Notice that the fifth iterate G5 is tangent to the identity map at the origin of R3 ×
R = {w, z, γ}, while G self is not. This makes G5 suitable for application of Takens’s
theorem [55] (also see [60, App. 4.D]). In fact we apply Takens’s theorem to a sort of
‘fifth root’ H of G5, where H is defined by

H(w, z) =

(
eiγδw[1 − γ(γµ + az + γz2)] + γ3e−iω0ε1w

4,

z + γ(1 − |w|2 − z2).

)
(21)

The relation between G and H is made precise in the next lemma.

Lemma 3. For the maps G (3) and H (21) we have

G5 = H5 + O(γ4),

where the estimate on the order of γ is uniform on compact sets in the other coefficients
and parameters of G and H, and hold in a sufficiently small neighbourhood of the origin
in the variables (w, z).
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For the map H (21) we compute a vector field approximation TH such that the time-γ
map T γ

H approximates H up to order four in γ. As in Lemma 3, the estimates on the
order of γ given in the next theorem are uniform on compact sets in the remaining
coefficients and parameters of the map G and hold in a sufficiently small neighbourhood
of the origin in the variables (w, z).

Theorem 4 (Takens normal form vector field). Consider the vector field TH given by

TH = TH,0 + γTH,1 + γ2TH,2, (22)

where

TH,0 =

(
w(iδ − az)

1 − |w|2 − z2

)
, (23)

TH,1 =

(
w
(
−µ + a

2
− a

2
|w|2 − z2

(
1 + a2+a

2

))

z − (1 + a1) |w|2 z − z3

)
(24)

TH,2 =

(
ε1e

−iω0w4 + Uw

Uz

)
, (25)

and

Uw = w
{

(z + ia
δ

2
)(1 − |w|2 − z2) − az(µ + z2 +

δ2

2
+ iazδ) + i

δ3

3
+

+
1

12

[(
(iδ − az) − a(1 − |w|2 − z2)

)2
+ 2a

(
2(iδ − az − 2z)(z − (1 + a1) |w|2 z − z3)+

+ |w|2 Re
[
(iδ − az)2 − a(1 − |w|2 − z2)

])]}
, (26)

Uz = − |w|2 (µ+ z2 +
δ2

2
−a2zδ)+

1

3
z
{

(1− (1+a1) |w|2 −3z2)(1− (1+a1) |w|2 − z2)+

+ (1 + a1) |w|2 Re
[
(iδ − az)2 − a(1 − |w|2 − z2)

]}
. (27)

Then:

1. The time-γ map T γ
H approximates the map H (21) up to order four in γ, i.e.,

T γ
H = H + O(γ4).

2. The time-5γ map T 5γ
H approximates the fifth iterate G5 of (3) up to order four in

γ, i.e., T 5γ
H = G5 + O(γ4).

3. The vector field TH is Z5-equivariant, meaning that it commutes with the axial
rotation Rω0

, where ω0/(2π) = 1/5.

4. The vector field TH,0+γTH,1, given by the terms up to order O(γ2) of TH , is axially
symmetric, and its planar reduction coincides with the vector field TeS (19).

By the last part of Theorem 4 and by Lemma 2, for γ sufficiently small the vector
field TH,0 + γTH,1 has a limit cycle C contained in a horizontal plane z = z0. For
µ > µH(γ) = a2

1 + O(γ), C is an attractor, and it is a repellor for µ < µH(γ), where
µH(γ) is the position of the Hopf bifurcation boundary for TH , up to order O(γ2).

14



Moreover, for γ sufficiently small and for µ bounded away from µH(γ), C persists as
a normally hyperbolic invariant manifold for the vector field TH . We are especially
interested in the bifurcations taking place near the Hopf bifurcation boundary. The
location of the bifurcations of equilibria of TH near the Hopf boundary is computed in
the next theorem,

Theorem 5 (Tongue and cone). Consider the vector field TH (22).

1. For γ sufficiently small, TH has ten families P5
k,± of equilibria, k = 0, . . . , 4,

depending on the parameters (γ, µ, δ′′), where

δ = −a2µ

a1

γ + δ′′γ2, δ′′ ∈
(
− |a|
|a1|

ε1,
|a|
|a1|

ε1

)
.

Going back to the original map, the image of a point close to P5
k,+ will be close

to P5
k+1mod5,+ and similarly for P5

k,−. The cylindrical coordinates (r±, φk,±, z±) of
P5

k,± have the form

z± = − µ

a1

γ + z′′±γ2 + O(γ3), r± = 1 − µ2

2a2
1

γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

δ′′ − a2z
′′
±

a1z′′±

)
+ O(γ), k = 0, . . . , 4,

(28)

where φk+1,± − φk,± = ω0 and

z′′± =
a2δ

′′ ±
√

∆

|a|2
, ∆ = |a|2 ε2

1 − a2
1(δ

′′)2. (29)

2. By decreasing δ (while keeping γ and µ fixed), the ten equilibria are created at five
saddle-node bifurcations, occurring simultaneously for δ = δ1:5,+, and are destroyed
(also by five simultaneous saddle-node bifurcations) for δ = δ1:5,−, where

δ1:5,±(γ, µ) = −a2µ

a1

γ ± |a|
|a1|

ε1γ
2 + O(γ3). (30)

3. The five equilibria P5
k,+ simultaneously undergo Hopf bifurcations at the surface

H5
+ parameterised by (γ, µ′, δ′′), where

µ = a2
1 + µ′γ + O(γ2), δ = −a1a2γ + δ′′γ2 + O(γ3), (31)

and the parameters δ′′ and µ′ depend on each other by the relations

(
(2a1 − 5a2

2)µ
′ − 5a1a2δ

′′
)2

+
(
3a1a2µ

′ + (3a2
1 − 2a1)δ

′′
)2

= (2a1 + 2a2
1 − 5 |a|2)2ε2

1,
(32)

−δ′′a2(1 + a1) + (a1 − a2
2)µ

′ > 0. (33)

The five equilibria P5
k,− simultaneously undergo Hopf bifurcations at the curve H5

−,
defined by (32), where the inequality sign in (33) is reversed.
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4. The cylindrical coordinates of P5
k,+ at the Hopf bifurcations (32)- (33) are

z± = −a1γ + z′′±γ2 + O(γ3), r± = 1 − a2
1

2
γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

δ′′ − a2z
′′
±

µ′ + a1z′′±

)
+ O(γ), k = 0, . . . , 4,

where φk+1,± − φk,± = ω0 and

z′′± =
a2δ

′′ − a1µ
′ ±

√
∆′

|a|2
, ∆′ = |a|2 ε2

1 − (a1δ
′′ + a2µ

′)2. (34)

5. For parameters on the curves HSN 5
± given by (γ, µ±(γ), δ±(γ)), where

µ±(γ) = a2
1 ±

a2(1 + a1)

|a| ε1γ + O(γ2), δ±(γ) = −a1a2γ ± a1 − a2
2

|a| ε1γ
2 + O(γ3),

the equilibria P5
k,± simultaneously undergo five HSN bifurcations. The coordinates

of the bifurcating equilibria are

z± = −a1γ ± a2

|a|γ
2 + O(γ3), r± = 1 − a2

1

2
γ2 + O(γ3),

φk,± =
1

5

(
2πk − ω0 + arctan

a1

a2

)
+ O(γ), k = 0, . . . , 4,

i.e., eiφk,± are the fifth roots of ia
|a|

e−iω0.

6. Suppose that the coefficients of H are fixed at ε1 = ε2 = 1, a1 = −1 and a2 = 1/
√

2.
Then HSN 5

± belong to the same unfolding class of Hopf-saddle-node bifurcations.
To be precise, for k = 0, . . . , 4 denote by

Yβ,k,±(w, z) =

(
(−β2,k,± + iω5,±)w − a5,±wz − wz2

−β1,k,± − s5,± |w|2 − z2

)
(35)

the truncated normal form of TH as a HSN vector field (as in [44, Lemma 8.11]),
after translation of TH into the singularity P5

k,±. Then the coefficients Re(a5,±)
and s5,± in (35) are

Re(a5,±) = −1 + O(γ), s5,± = sign(γ),

and a reversal of time is introduced by the transformation bringing TH into (35).

In the parameter space (γ, µ, δ), the surfaces SN 5
± delimit a tongue whose width is

quadratic in γ, and shrinks to a line for γ → 0. The Hopf bifurcations H5
± form a cone-

like surface contained in the interior of the three-dimensional tongue, see the illustration
in Figure 4 (top left panel). The vertex of the cone is the point (γ, µ, δ) = (0, 1, 0), where
the derivative DTH at the equilibrium (w, z) = (1, 0) is equal to zero. This is a special
case of the three-dimensional nilpotent singularity studied in [29, 30]. Also see [28] for a
detailed study of the HSN for vector fields. Near the 1:5 bubble, the bifurcation diagram
of TH is organised by the two Hopf-saddle-node bifurcations of equilibria HSN 5

±, proved
to occur in Theorem 5. At such points, there are five degenerate equilibria on C which
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undergo a Hopf and a saddle-node bifurcation simultaneously. The intersection of the
bifurcation surfaces SN 5

± (30) and H5
± (31) with the plane γ = 0.01 is plotted in

Figure 4 (top right panel).
The dynamical analogies between the vector field TH (22) and the map G (3) are

a corollary of Theorem 5. Indeed, the fifth iterate G5 is a perturbation of the time-
5γ map T 5γ

H . Therefore, by application of perturbation theory the bifurcations SN 5
±,

H5
±, and HSN 5

± in Theorem 5 persist for the map G5. By perturbation theory we mean
the implicit function theorem, the theory of persistence of normally hyperbolic invariant
manifolds [33, 37], the theory of persistence of non-degenerate bifurcations [3, 36, 44, 49,
51, 52], including quasi-periodic bifurcations [9, 10, 22, 23], and KAM theory [2, 3, 9, 10].

Indeed, there is excellent agreement between the results obtained in Theorem 5 for
the vector field TH (22) (Figure 4, top row) and the numerical results obtained for model
map G (3) (Figure 4, bottom row). The latter results are discussed in some detail in
the next section.

4 A preliminary numerical investigation near the

1:5 resonance ‘bubble’

The analytical study in Sec. 3 is here complemented by a sketch of the numerical results
which we have obtained for model map G (3). Referring to Sec. 2.3, we recall that
our main interest is the interaction of the 1:5 resonance gap with the Hopf bifurcation
boundary See [6, 20, 22, 23, 24, 45, 46, 58, 61, 62] for similar studies inside resonance
bubbles. In the next subsection, we discuss a partial bifurcation diagram of periodic
points, invariant circles and two-tori. Then in Sec. 4.2 a few scenarios are discussed
concerning some of the configurations of attractors, repellors and saddles that have
been observed in phase space for the model map G. A full account of these numerical
results will be given in [17].

4.1 Lyapunov diagram and bifurcation diagram

A first impression of the richness of the bifurcation diagram near the 1:5 resonance bub-
ble on the Hopf boundary H is given by the ‘Lyapunov diagram’ [53, 60] in Figure 4,
bottom left panel. The diagram has been computed with the same values of the coeffi-
cients of G as in part 6 of Theorem 5 and with γ fixed at 0.1.. This Lyapunov diagram
is a plot of the (µ, δ)-parameter plane, where each colour corresponds to one type of
attractor, classified on the basis of the Lyapunov exponents

ℓ1 ≥ ℓ2 ≥ ℓ3,

according to the colour code in Table 1. The algorithm used to scan the parameter
plane runs as follows: in a first naive set-up we scan the (µ, δ)-parameter plane along
horizontal lines δ = const from right to left. Fixing δ, say at 0.1, we choose a value of µ,
say µ = 1.5. Then a fixed number of iterates of the map G is computed. Whenever the
orbit has converged to an attractor, i.e., when it has not left a prescribed neighbourhood
of the origin after a large number of iterates (say, 106), the three Lyapunov exponents
ℓ1, ℓ2 and ℓ3 are computed. Next we decrease µ by a small step and the procedure
is restarted, until µ reaches the value 0. Regarding the initial conditions we do the
following. Starting with an ‘arbitrary’ choice, in all following steps we take the final
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Figure 4: Top, left: the 1:5 resonance tongue bounded by the saddle-node bifurcation
surfaces SN 5

± contains the cone-like Hopf bifurcation set H5
± according to Theorem 5.

Only a part of the surfaces is displayed, and the graph has been deformed for better
visibility. Top, right: intersection of the bifurcation surfaces in the left picture with
the plane γ = 0.01 yields a resonance gap bounded by two curves SN 5

± of saddle-node
bifurcations, containing an ellipse of Hopf bifurcations of equilibria of the vector field
TH (22). Bottom, left: Lyapunov diagram of map G near the intersection of the 1:5
resonance gap with the Hopf boundary H. Right: numerical bifurcation diagram of
period five points of the map G near H. The notation is explained in the text. Same
parameter window as in the bottom-left and top-right panels. The coefficients of vector
field TH (22) and of model map G (3), used to plot each of the panels, have the same
values as in point 6 of Theorem 5.
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colour Lyapunov exponents attractor type

red ℓ1 > 0 = ℓ2 > ℓ3 strange attractor

yellow ℓ1 > 0 > ℓ2 > ℓ3 strange attractor

blue ℓ1 = 0 > ℓ2 = ℓ3 invariant circle of focus type

green ℓ1 = ℓ2 = 0 > ℓ3 invariant two-torus

black ℓ1 = 0 > ℓ2 > ℓ3 invariant circle of node type

grey 0 > ℓ1 > ℓ2 = ℓ3 periodic point of focus type

fuchsia 0 > ℓ1 = ℓ2 ≥ ℓ3 periodic point of focus type

pale blue 0 > ℓ1 > ℓ2 > ℓ3 periodic point of node type

white no attractor detected

Table 1: Legend of the colour coding for Figure 4 bottom left panel: the attractors are
classified by means of the Lyapunov exponents (ℓ1, ℓ2, ℓ3).

state of the previous number of iterates as initial condition. This whole procedure is
repeated for many values of δ.

Notice that in this set-up we fail to detect invariant manifolds which are of saddle-
type or repelling. Moreover, the method cannot detect coexistence of attractors, since
we continue one attractor until there is a qualitative change in the ℓj, j = 1, 2, 3, in which
case there may be a jump. This entails a form of hysteresis and a different Lyapunov
diagram is formed, e.g., when the (µ, δ/(2π))-plane is scanned in other directions. For
this reason we actually use a more sophisticated way to scan the (µ, δ/(2π))-plane,
using other scan directions as well. This allows to detect more families of attractors:
the curved peaks at the left hand side of the Lyapunov diagram are not detected by the
‘naive’ algorithm.

From the Lyapunov diagram, we conclude that the generic expectations discussed
in Sec. 2.3 are largely met by model G (3). For large positive values of µ there exists a
circle attractor C (blue domain at the right part of the Figure 4, bottom left panel), that
undergoes a quasi-periodic Hopf bifurcation approximately at the vertical line µ = 0.98.
The latter corresponds to the intersection H∩{γ = 0.1}, where H is the ‘Cantor-surface’
in Figure 3 right. Roughly speaking, as µ decreases, the circle C loses its stability and
turns into a repellor, whereby an attracting invariant two-torus T− branches off (green
region). The 1:5 resonance gap of the circle C is evidenced by the fuchsia strip at the
right of the Lyapunov diagram. In the blue regions outside this gap, the dynamics on
C is quasi-periodic and normal-internal resonances are also forbidden [7, 9, 10, 26].

A partial bifurcation diagram of periodic points and invariant circles is given in
Figure 4 right, which involves:

1. Two branches H5
± of Hopf bifurcations of period five points, that form a closed

curve. We refer to the union of H5
± as the ‘Hopf ellipse’.

2. Two lines SN 5
± of saddle-node bifurcations of period five points. These two lines

bound a strip in parameter plane which we refer to as the ‘1:5 gap’ (also see the
end of Sec. 2.3).

3. Two points HSN 5
± of Hopf-saddle-node bifurcations of period five points, that

split the Hopf ellipse into H5
+ and H5

−. The curve SN 5
+ and SN 5

− are tangent to
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the Hopf ellipse at HSN 5
+ and HSN 5

−, respectively.

4. Two degenerate Hopf bifurcations DH5
± of period five points, taking place along

H5
+.

5. Two ‘curves’ HC5
± of quasi-periodic Hopf bifurcations of a period five invariant

circle; HC5
+ is not visible in Figure 4 right, since it is too close to H5

±.

6. Two ‘curves’ SNC5
± of quasi-periodic saddle-node bifurcations of a period five

invariant circle.

7. Two ‘curves’ SNT ± of quasi-periodic saddle-node bifurcations of an invariant
two-torus (both are not displayed in Figure 4 right, since they are very close to
HC5

±);

8. Two ‘points’ BT C5
± where Bogdanov-Takens bifurcations of period five invariant

circles take place.

Existence of the curves H5
± and SN 5

±, as well as of the points HSN 5
±, has been proven

by analytical means in Theorem 5. The quasi-periodic bifurcations are computed by
numerical continuation of invariant circles, performed by Fourier analysis [31, 32], and
computation of the normal behaviour as in [40]. See [35, 47] for alternative Fourier
methods.

Remark 3. For quasi-periodic bifurcations, the word ‘curves’ is enclosed in quotes since
the corresponding parameter sets are not smooth submanifolds of the parameter plane:
they are frayed Cantor-like bifurcation boundaries interspersed of resonance bubbles. In
fact, the theoretical expectation for SNC5

± and HC5
± is exactly the same as for the Hopf

boundary H∩ {γ = 0.1} self, as discussed in Sec. 2.3: we expect most of the dynamical
complexity described there also to occur near all the secondary quasi-periodic bifurcation
‘curves’ in Figure 4 right, in a sort of cascade of subordinate quasi-periodic bifurcations.
Indeed, resonance gaps are often detected along the numerical continuation of the above
‘curves’. However, since most of the gaps are tiny, the continuation algorithm is able to
skip over them.

A description of the bifurcation diagram follows, focusing on the lower branches
of the ‘curves’, that is HC5

−, SNC5
−, and SNT −. A completely symmetric situation

seems to hold for the upper branches HC5
+ and SNT +. The quasi-periodic saddle-node

‘curve’ SNC5
− joins the points BT C5

− and DH5
−. The latter point is a degenerate Hopf

bifurcation belonging to the Hopf ellipse, where SNC5
− ‘meets tangentially’ the left

branch H5
+ and there it terminates (again, quotes are used since SNC5

− is a Cantor set).
This is the situation described by Chenciner [22, 23, 24]. The quasi-periodic Hopf ‘curve’
HC5

− joins the points HSN 5
− and BT C5

−. At the latter ‘point’ the ‘curve’ HC5
− ‘meets

tangentially’ SNC5
−. Here, both SNC5

− and HC5
− are frayed Cantor-like boundaries and

the definition of tangency requires the usage of Whitney derivatives [9]. The ubiquitous
occurrence of resonances makes it hard to decide whether the tangency point BT C5

−

between the two Cantor sets belongs to both of them or if it falls inside one of the
resonance bubbles. To the best knowledge of the authors, this codimension two point
has not yet been studied. Based on analogy with the Bogdanov-Takens bifurcation for
fixed points [12, 13, 44, 54], we guess that the bifurcation diagram near BT C5

− also
involves bifurcations of global (homoclinic) type, but we have not further pursued this
research.
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The ‘curve’ SNT 5
− of quasi-periodic saddle-node bifurcations of invariant tori begins

at the point HSN 5
− and terminates somewhere near the Bogdanov-Takens ‘point’ BT C5

−

Furthermore, there exists a narrow parameter region HET 5
−, located very near SNT −,

where both transversal heteroclinic intersections and heteroclinic tangencies of two pe-
riod five points of saddle-focus type occur. At the present stage of the investigation,
an approximation to the ‘curve’ SNT 5

− has been obtained by just looking at attractors
and repellors of model map G (3). Fourier methods [31, 32] might be used to compute
it more accurately. However, we observe that for a diffeomorphism at least a three-
dimensional parameter space is necessary to find a smooth submanifold parameterising
a Diophantine family of invariant two-dimensional tori: as prescribed by dissipative
kam theory [7, 9, 10, 26], parameter sets where the frequency vector of the invariant
two-torus is fixed to a constant value are discrete (zero-dimensional) in the (δ, µ)-plane.
So even if one of the two frequencies is fixed to a Diophantine value, resonances of
the other frequency (or of the whole frequency vector) are unavoidable as parameter
vary smoothly in the (δ, µ)-plane. This everywhere dense network of resonances is the
so-called Arnol′d web, further described in [16, 17] and [60, Chap 4]. The unavoidable
occurrence of resonances is likely to cause numerical problems in the continuation algo-
rithm for the two-torus: high order of the spectral discretisation is required to obtain
convergence, especially for the computation of the normal behaviour.

Many bifurcation curves in Figure 4 (bottom right panel) have a counterpart in the
Lyapunov diagram (bottom left panel). For example, SNC5

+ and SNC5
− are the top and

bottom boundary, respectively, between the black and green regions at the left of the
Hopf boundary H ∩ {γ = 0.1} in the Lyapunov diagram. Moreover, the ‘curve’ SNT −

is the lower boundary between green and blue regions, at the left of the Hopf boundary.
However, we emphasise that the transition from black to blue in the Lyapunov diagram
is not a bifurcation: it is just a change of stability type of an invariant circle, from node
to focus). It turns out that quite a few invariant manifolds are involved:

1. two families of period five points P 5
±;

2. an invariant circle C ;

3. two families of period five invariant circles C 5
±;

4. an attracting and a repelling invariant two-torus (T− and T+, respectively);

5. a repelling period five invariant two-torus T 5
+ .

In the next section, we illustrate a few scenarios in phase space, involving some of the
invariant objects listed above.

4.2 Rich dynamics

In this section, we describe a few configurations in phase space of the invariant objects
(attractors, repellors, saddles) of model map G (3). A full, detailed description of the
dynamics for parameters belonging to the various regions identified in Figure 4 would
be out of the scope of the present paper: we refer the interested reader to [17].

In Figure 5, left panel, the circle C is plotted for parameter values inside the 1:5
resonance gap (that is, inside the fuchsia strip in Figure 4 bottom left panel): the circle
is phase-locked, that is C = W u(P 5

+) ∪ P 5
−, where P 5

− is an attracting period five orbit
of node-focus type and P 5

+ is a period five orbit of saddle-focus type. In other words,
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Figure 5: Left: the attracting invariant circle C of model map G (3) for (δ/(2π), µ) =
(0.0167, 1.4) is phase-locked: C = W u(P 5

+) ∪ P 5
−, where P 5

+ is a period five orbit of
saddle-focus type (displayed as blue crosses), W u(P 5

+) is plotted in green and P 5
− is

an attracting period five orbit of node-focus type (small circles, fuchsia). Middle: the
invariant circle C is an attractor and ‘looks’ quasi-periodic (densely filled by the orbit),
(δ/(2π), µ) = (0.0167, 1). Right: the circle C (red) coexists with the invariant two torus
T , both ‘look’ quasi-periodic, (δ/(2π), µ) = (0.0167, 0.94).

the dynamics on C is of Kupka-Smale type. However, a check of the eigenvalues at
P 5
− indicates that C is not normally hyperbolic: the eigenvalue in the ‘node’ direction

(tangential to C ) is real and the corresponding Lyapunov exponent is ℓ1 = −0.0273,
while the Lyapunov exponents corresponding to the complex conjugate eigenvalues (in
the ‘focus’ direction, normal to C ) are ℓ2 = ℓ3 = −0.0093. Therefore, normal contraction
is weaker than tangential contraction at the attracting node P 5

−. This indicates that
near the Hopf bifurcation boundary in certain regions the circle might persist despite
the loss of normal hyperbolicity. When decreasing the parameter µ, the circle exits the
1:5 gap: for example, for µ = 1 the orbits of G appears to densely fill C (Figure 5, centre
panel). As µ crosses the Hopf boundary outside the 1:5 bubble, a two-torus attractor
branches off and C turns into a repellor (Figure 5, right panel).

The bifurcation routes are more involved inside the 1:5 bubble. Let’s start again at
the parameter values of Figure 5, left panel: when decreasing µ and δ in such a way as
to cross the curve H5

− (see Figure 4, bottom right panel), the period five attractor P 5
−

undergoes a Hopf bifurcation, and a period five invariant circle C 5
− branches off. At this

moment, the period five circle attractor C 5
− coexists with two period five points, both of

saddle focus type: P 5
−, marked as a cross, which has a one-dimensional stable manifold;

and P 5
+, marked as a small solid circle, which has a one-dimensional unstable manifold.

Moreover, the phase-locked circle C no longer exists. The configuration in phase space
is illustrated in Figure 6, left panel.

By further decreasing µ and δ in such a way as to go ‘on the other side of the bubble’,
across the curve H5

+ (again, see Figure 4, bottom right panel), the period five saddle
point P 5

+ undergoes a Hopf bifurcation and turns into a repellor, while a period five
invariant circle C 5

+ branches off. In this configuration (Figure 6, right panel), two period
five invariant circles C 5

+ (of saddle type) and C 5
− (attractor) coexist with two period

five points, P 5
+ (repellor) and P 5

− (saddle-focus). Moreover, the circle C reappears and
is phase-locked: C = W u(P 5

−) ∪ P 5
+, but for these parameter values it is repelling (for

better visibility, W u(P 5
−) is not shown in the picture). Simultaneously, a phase-locked

two-torus attractor T exists: it is formed by the unstable manifold of the saddle-like
circle C 5

+ (not shown in the picture), that is, T = W u(C 5
+) ∪ C 5

−. For parameter values
belonging to the ‘curves’ SNC5

± (compare Figure 4 bottom right panel), the two period
five invariant circles C 5

+ and C 5
− collide with each other and disappear through a quasi-
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Figure 6: Left: the period five attracting invariant circle C 5
− (in green) of model map

G (3) for (µ, δ/(2π)) = (1, 0.0097) coexists with two period five points of saddle focus
type: P 5

+ (displayed as blue crosses), which has a one-dimensional unstable manifold,
and P 5

− (small circles, fuchsia), which has a one-dimensional stable manifold. Right: at
(µ, δ/(2π)) = (0.74675, 0.0097607) the period five attracting invariant circle C 5

− (green)
coexists with a period five invariant circle C 5

+ of saddle type (red) and with two period
five points: P 5

+ (blue crosses), which is a repelling node-focus, and P 5
− (small circles,

fuchsia), which is a saddle-focus with a one-dimensional stable manifold.

periodic saddle-node bifurcation. Depending on the parameter range, the two-torus
might reappear: this happens on the transition from black to green in the Lyapunov
diagram (Figure 4 bottom left panel). This also means that the quasi-periodic saddle-
node bifurcation takes place inside the surface of the two-torus.

The presence of additional bifurcations of invariant circles and two-tori leads to rather
pictorial configurations in phase space. A pair of two-tori is created through a quasi-
periodic saddle-node bifurcation taking place at ‘curve’ SNT ± in parameter plane (see
Figure 4, bottom right panel). As a consequence, for certain parameter values one has
a torus attractor coexisting with a torus repellor and the latter is contained inside the
volume bounded by the former. Also, the two-torus repellor bounds a volume containing
the period five invariant circle C 5

−, which is an attractor, and the two period five points
P 5
±, which are saddles with different stability indexes. This configuration is illustrated

in Figure 7, top row. For nearby parameter values, the two-torus repellor is destroyed
and a period five torus repellor appears in its place, surrounding the period five circle
C 5
−. See Figure 7 bottom row. The mechanism leading to the destruction of the two-

torus repellor most probably involves a heteroclinic bifurcation of P 5
± and leads to the

formation of a strange repellor; the latter scenario is still under investigation. Lastly, at
the ‘curve’ HC5

± (see Figure 4, bottom right panel)the period five torus repellor merges
with the period five circle C 5

− through a quasi-periodic Hopf bifurcation, whereby C 5
−

turns into a repellor.

5 Conclusions

As we have shown, the Hopf-saddle-node (HSN) bifurcation for fixed points of diffeomor-
phisms displays a large variety of dynamical phenomena. In this paper we have studied
the model map G given by (3). This is constructed by perturbing the time-1 map of the
flow of the axially symmetric vector field (6), which is a truncated normal form for the
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Figure 7: Top row: a two-torus attractor (left panel) coexists with a two-torus repellor
(middle), with a period five circle attractor C 5

− and with two period five points having
different stability index (right panel), P 5

+ (displayed as blue crosses) which has a one-
dimensional unstable manifold, and P 5

− (small circles, fuchsia) with a one-dimensional
stable manifold. Parameter values are fixed at (µ, δ/(2π)) = (0.72, 0.0072265). Bottom
row: for (µ, δ/(2π)) = (0.72, 0.00722673), the two-torus attractor, the period five circle
and the two period five points persist and are almost unchanged (this explains the
similarity between top and bottom panels at the right and at the left). The two-torus
repellor has been destroyed (probably, by a heteroclinic bifurcation) and a period five
two-torus repellor has shown up in its place (middle panel).

HSN bifurcation of vector fields. The model map G aims at describing the dynamics of
a large class of HSN diffeomorphisms in the vicinity of a 1:5 resonance ‘bubble’ for a
quasi-periodic Hopf bifurcation. The results in Sec. 3 provide estimates for the position
of:

1. a 1:5 resonance gap of an invariant circle C , bounded by two saddle-node bifurca-
tions SN 5

± (30) of period five points;

2. a cone-like surface H5
± (31) of Hopf bifurcations of period five points;

3. two HSN bifurcations of period five points.

We recall that many features of the structure of the 1:5 bubble analysed here are found
in resonance bubbles of different orders, found in model maps of the Hopf-flip and Hopf-
Hopf bifurcations of fixed points [45, 46].

The results in Sec. 4 indicate that many more bifurcations take place in the neigh-
bourhood of this 1:5 ‘bubble’. We plan to extend the analysis of the Takens normal
form vector field, initiated in Theorem 5, to prove the occurrence of such bifurcations.
In this respect, we conjecture that the bifurcations SN 5

± take place on the invariant
circle C . In the terminology of [44], and modulo the 1:5 symmetry, these are called
saddle-node homoclinic bifurcation. Near these bifurcations, the circle C is normally
hyperbolic and it is phase-locked: it is formed by the unstable manifolds of one of the
two families of equilibria P5

k,±. We also conjecture that the bifurcations HSN 5
± of

TH take place on the circle C , yielding a Hopf-saddle-node homoclinic bifurcation (in
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the terminology of [44]) or Hopf-saddle-node with global reinjection in the terminology
of [42]. A complete three-dimensional study of this bifurcation has not been carried
out yet, but a planar model vector field V is considered in the latter paper. There are
many analogies between the bifurcation diagrams of TH (Figure 4, top panels) and of V .
In fact, several bifurcations of V correspond to the bifurcations of invariant circles and
invariant tori of the model G (3) discussed in Sec. 4. The relation between the vector
fields TH (22) and V [42], as well as the completion of the bifurcation diagram of TH

in Figure 4 top panels, are still under investigation by the authors. Another point of
interest to us is whether there exists a relation between the cone-like structure found
for the HSN bifurcation and the nilpotent singularity analyzed in [29, 30].

Beyond the bifurcation structure of the 1:5 bubble, other points of interest, intro-
duced in Sec. 2.3, are

1. the Arnol′d web of resonances in parameter plane, induced by the two-torus dy-
namics;

2. the two-torus breakdown and the formation of strange attractors in the region
HET of heteroclinic intersections of the polar saddles.

More detailed investigations of these two issues are given in [16] and [17], respectively.
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A Normal form lemmas

In the first part of this section we sketch the normalisation steps which bring a generic
HSN-family of vector field to the form (7), reporting a result from [44]. An analogous
result for HSN-families of diffeomorphisms is then presented in Appendix A.2. In Ap-
pendix A.3, we prove a version of Takens’s theorem [55] which is then used in Appendix B
for the proof of Theorem 1.

A.1 Normal form for HSN-families of vector fields

Consider a C∞-smooth family of vector fields Xα on R3, where α ∈ Rk is a parameter.
We call Xα an HSN-family of vector fields if Xα(0) = 0 at α = 0 and

spec DX0(0) = {±iν0, 0}, ν0 > 0.

Remarks 4. 1. To have a nondegenerate Hopf-saddle-node bifurcation, generic con-
ditions (formulated later in this section) are required on the 3-jet of Xα around
the origin of R3.

2. The number k of parameters should be at least sufficient to have a miniversal
unfolding [2] of the linear part DX0(0). However, since we work here modulo
equivalence, time scalings are allowed and the parameter unfolding the imaginary
part of the eigenvalues of DX0(0) can be considered a constant. We stress that
the case of a diffeomorphism is quite different in this respect, compare Remark 1.
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In suitable coordinates (w, z) in R3, Xα reads

Xα(w, z) =

(
f000(α) + (η(α) + iν(α))w +

∑
j+k+h≥2 fjkh(α) wjwkzh

g000(α) + ζ(α)z +
∑

j+k+h≥2 gjkh(α) wjwkzh

)
, (36)

where f000(0) = g000(0) = η(0) = ζ(0) = 0, and ν(0) = ν0.

Lemma 6. [44] Let Xα be an HSN-family of vector fields like in (36). Suppose Xα

satisfies the generic conditions

g002(0) 6= 0, g110(0) 6= 0,
ˆ̂
f 102(0) 6= 0, (37)

where
ˆ̂
f 102(0) is given by

ˆ̂
f 102(0) = Re

[
f̂ 102 + f101

(
Re f̂ 210

g110

− 3ĝ003

2g002

+
ĝ111

2g110

)
− f̂ 210g002

g110

]
, α = 0, (38)

and the coefficients f̂ 102, f̂ 210, ĝ003, and ĝ111 at α = 0 are

f̂ 102 = f102 +
i

ν0

[
2f002(f200 − g101) −

1

2
|f011|2 − f110f 002

]
,

f̂ 210 = f210 +
i

ν0

[
f110f200 −

1

2
g200f011 − |f110|2 −

2

3
|f020|2

]
,

ĝ003 = g003 −
2

ν0

g101 Im f002,

ĝ111 = g111 −
2

ν0

[g101 Im f110 + g200 Im f011] .

(39)

Also assume that the derivative of the map

α 7→ (g000(α), η(α)) (40)

is surjective at α = 0. Then, by smooth transformations and by introducing new param-
eters (β1, β2) = β(α1, α2), system (36) can be brought to the form

(
ẇ
ż

)
= Yβ(w, z) + O(‖w, z‖4), (41)

where Yβ is the third degree polynomial vector field

Yβ(w, z) =

(
(−β2 + iω)w − awz − wz2

−β1 − sww − z2

)
. (42)

For β = 0, the coefficients a = a(β) ∈ C, s = ±1, and ω = ω(β) in (42) are

a =
f101

g002

, s = sign

(
g002

g110

)
, ω = −

ˆ̂
f 102

g2
002

ν (α = 0). (43)

Moreover, if the coefficient
ˆ̂
f 102(0) (38) is positive, then the transformation from (36)

to (41) includes a reversal of time.
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The proof of Lemma 6 consists of four transformations, which we briefly describe given
their relevance in the construction of our model maps. See [44] for details.

Step 1 Poincaré-Dulac normal form.
By a parameter-preserving change of coordinates, the vector field Xα in (36) is brought
into the form

X̂α(w, z) =

(
f̂ 100ŵ + f̂ 101ŵẑ + f̂ 210ŵ

2ŵ + f̂102ŵẑ2

ĝ000 + ĝ110ŵŵ + ĝ002ẑ
2 + ĝ111ŵŵẑ + ĝ003ẑ

3

)
+ O

(
‖ŵ, ẑ‖4). (44)

Up to order three the family in (44) is axially symmetric. This is achieved firstly for
α = 0, where the result follows by the general theory of normal forms of vector fields [2].
Then, for small α the result follows by an application of the implicit function theorem.
In this case, one has to use a change of coordinates containing a small affine part, in
order to counterbalance the appearance of undesired linear terms (notice that the term
in ĝ100 has been eliminated in (44)). To do this, the condition g002(0) 6= 0 is required on
the 3-jet of (36). At α = 0, the coefficients of (44) and of (36) are related to each other
by (39) and by

f̂ 100 = iν0, f̂ 101 = f101, ĝ000 = 0, ĝ110 = g110, ĝ002 = g002 (α = 0).

Step 2 Gavrilov normal form.
The Poincaré-Dulac normal form is further simplified by the simultaneous application
of a reparameterisation of time and a change of coordinates, which for α = 0 have the
form

dt = (1 + b1ẑ + b2ŵŵ) dτ, ŵ = ˆ̂w + b3
ˆ̂w ˆ̂z, ẑ = ˆ̂z + b4

ˆ̂z2,

where b1, b2, b4 ∈ R, while b3 ∈ C. Such transformation aims at eliminating some of
the cubic terms in (44). In particular, suitable bj’s exist such that in the new time and
coordinates Xα takes the form

ˆ̂
Xα(w, z) =

(
ˆ̂
f 100

ˆ̂w +
ˆ̂
f101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂g000 + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
, (45)

where Im(
ˆ̂
f102) = 0. For the existence of this transformation, one has to assume that

both g110(0) and g002(0) are nonzero in (36). Again, for α small one uses the implicit
function theorem to show that there exists a scaling of time and phase variables of the
form

dt = (1 + b1(α)ẑ + b2(α)ŵŵ) dτ (46)

and a coordinate transformation of the form

ŵ = ˆ̂w + b3(α) ˆ̂w ˆ̂z, ẑ = ˆ̂z + b5(α)ˆ̂z + b4(α)ˆ̂z2 (47)

which bring the vector field in the form (45). At α = 0, the coefficients of (45) are
related to those of the starting vector field Xα (36) by (38) and by

ˆ̂
f 100 = iν0,

ˆ̂
f 101 = f101 − iν0

ĝ003

g002

, ˆ̂g000 = 0, ˆ̂g110 = g110, ˆ̂g002 = g002 (α = 0),

where ĝ003 is given in (39).
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Remarks 5. 1. The time scaling (46) used in this step depends on both the phase
variables and the parameters.

2. An equivalent normal form, due to Guckenheimer, contains the cubic term w2w
instead of wz2, see [44]. This choice is not relevant since the resulting third degree
polynomial vector fields have the same bifurcation diagram. A similar property
holds for HSN-families of diffeomorphisms.

Step 3 Final scalings.
By applying a parameter-dependent scaling of time and of phase variables of the form

τ =
ˆ̂
f 102

ˆ̂g2
002

t, ˆ̂w =

√√√√s
ˆ̂g3
002

ˆ̂g110
ˆ̂
f 2

102

w, ˆ̂z =
ˆ̂g002

ˆ̂
f 102

z, (48)

where for simplicity we re-use the starting variable names, the real coefficients
ˆ̂
f 102, ˆ̂g110,

and ˆ̂g002 in (45) can be scaled to one, yielding

ˆ̂
X̂α(w, z) =

(
(β2(α) − iω(α))w + awz + wz2

β1(α) + sww + z2

)
+ O(‖w, z‖4), (49)

where (a, s) are as in (43) and

β1 =
ˆ̂
f 2

102

ˆ̂g3
002

ˆ̂g000, β2 =
ˆ̂
f 102

ˆ̂g2
002

Re(
ˆ̂
f 100), ω = −

ˆ̂
f 102

ˆ̂g2
002

Im(
ˆ̂
f 100).

For the scaling (48) to be possible, the coefficient
ˆ̂
f 102(0) in (38) must be nonzero.

Remark 2. If
ˆ̂
f 102(0) < 0, one is introducing a reversal of time, and another reversal of

time is applied in the next step. Both have to be taken into account when determining
the stability type of the invariant manifolds of the final system (42) with respect to the
starting system (36).

Step 4 Introduction of new parameters and reversal of time.
The regularity of the map (40) is equivalent to that of the map

α 7→ β = (β1(α), β2(α)). (50)

This implies that the reparameterisation β = β(α) is locally invertible, and, therefore, β
can be used as parameter instead of α. A reversal of time brings (49) to the form (42).

A.2 Normal form for HSN-families of maps

The purpose of this section is to present an analogue to Lemma 6 for a given HSN-family
of diffeomorphisms F , depending on the multi-parameter α = (α1, . . . , αk). Notice that
fewer simplifications are possible for a diffeomorphism than for vector fields, since we
cannot scale time. Moreover in this case three parameters are needed for the Linear
Centraliser Unfolding of DF (0, 0), hence we set k = 3. Assume the linear part of F is
in Jordan normal form:

Fα(w, z) =

(
f000 + λ(α)w +

∑
j+k+h≥2 fjkh(α) wjwkzh

g000 + ν(α)z +
∑

j+k+h≥2 gjkh(α) wjwkzh

)
, (51)

where ν(0) = 1 and λ(0) = λ0, while f000(0) = g000(0) = 0.
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Lemma 7. Let F be an HSN-family of diffeomorphisms as in (51), depending on the
multi-parameter α ∈ R3, with spec DF0(0) = {λ0, λ0, 1} ⊂ S1. Suppose F satisfies the
open and dense condition

g002(0) 6= 0, g110(0) 6= 0. (52)

Also assume that the derivative of the map

α 7→ (g000(α), λ(α)) (53)

is surjective at α = 0. Then there exist a smooth parameter-dependent transforma-
tion and a reparameterisation β = (β1, β2, β3)(α), with βj ∈ R, such that in the new
coordinates and parameters the diffeomorphism (51) reads

(
w
z

)
7→
(

(1 + β2)e
iβ3λ0w + awz + bwz2

β1 + z + sww + z2 + cz3

)
+ O(‖w, z‖4). (54)

Here the coefficients a(β) and b(β) are complex, while c(β) is real and s = ±1.

The proof is divided in two parts. First we consider the normalising procedure for
α = 0. This is achieved by two transformations performed independently. For small α
the conclusion follows from the implicit function theorem, but the two transformations
have to be performed simultaneously. Finally, a parameter-dependent scaling of the
variables is applied. We begin by setting α = 0.

Step 1 Poincaré normal form.
By general theory [25, 55], for α = 0 there exists a change of coordinates in R3 which is
tangent to the identity at the origin, and such that in the new coordinates only resonant
monomial appear in the expansion of F . For n ≥ 2 integer, a monomial P of the form

P (w, z) = wn1wn2zn3

is called resonant if it commutes with the semisimple part S of DF0(0). Because of (2),
in suitable coordinates (ŵ, ẑ) the 3-jet of any HSN-family at α = 0 is axially symmetric:

(
λ0ŵ + f̂ 101ŵẑ + f̂ 210ŵ

2ŵ + f̂ 102ŵẑ2

ẑ + ĝ110ŵŵ + ĝ002ẑ
2 + ĝ111ŵŵẑ + ĝ003ẑ

3

)
+ O

(
‖ŵ, ẑ‖4). (55)

Step 2 Second order Poincaré normalisation (hypernormalisation) [44].

Denote by F̂ the map in (55). By a transformation of the form

(ŵ, ẑ) = C( ˆ̂w, ˆ̂z) = ( ˆ̂w + b1
ˆ̂w ˆ̂z, ˆ̂z + b2

ˆ̂z2),

the cubic terms ŵ2ŵ and ŵŵẑ in (55) can be eliminated, yielding the map
̂̂
F :

̂̂
F ( ˆ̂w, ˆ̂z) =

(
λ0

ˆ̂w +
ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂z + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2 + ˆ̂g003
ˆ̂z3

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
,

where
ˆ̂
f 101 = f̂ 101, ˆ̂g110 = ĝ110, ˆ̂g002 = ĝ002, and ˆ̂g003 = ĝ003. Indeed, by imposing the

condition F̂ ◦C( ˆ̂w, ˆ̂z) = C ◦ ̂̂F ( ˆ̂w, ˆ̂z) up to terms of order three, we get the linear system

ĝ110λ0b1 = f̂ 210,

ĝ002λ0b1 − f̂ 101b2 +
ˆ̂
f 102 = f̂ 102,

ĝ110(b1 + b1) − 2ĝ110b2 = −ĝ111,

29



in the variables (b1, b2,
ˆ̂
f 102), which is solvable due to the assumption in (52). This

finishes the proof for α = 0.

Step 3 Application of the implicit function theorem.
For α sufficiently small, by the implicit function theorem there exists a parameter-
dependent transformation for which (51) takes the form

(
ˆ̂
λ ˆ̂w +

ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂g000 + ˆ̂z + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2 + ˆ̂g003
ˆ̂z3

)
+ O

(∥∥∥ ˆ̂w, ˆ̂z
∥∥∥

4)
, (56)

where
ˆ̂
λ(0) = λ0. To show that the implicit function theorem can be applied, the

computations are elementary, but long and tedious.

Step 4 Final scalings and reparameterisation.
A parameter-dependent scaling of the type

ˆ̂w =

√
s

ˆ̂g002
ˆ̂g110

w, ˆ̂z =
1

ˆ̂g002

z, (57)

where s is the sign of ˆ̂g002
ˆ̂g110, is applied to (56). For simplicity we re-use the names of

the starting variables. This yields

(
w
z

)
7→
(

(1 + β2(α))eiβ3(α)λ0w + a(α)wz + b(α)wz2

β1(α) + z + sww + z2 + c(α)z3

)
+ O(‖w, z‖4).

The regularity of (53) is equivalent to that of the map α 7→ β(α). This means that β
can be taken as new parameter.

A.3 The Takens normal form vector field for diffeomorphisms

In this section we present the two versions of the Takens theorem that are used in this
paper. The first is the ‘classical’ Takens theorem [55], also see [25]. We refer to [55] for
terminology.

Let F : Rm × Rp → Rm × Rp be a diffeomorphism such that F (0, 0) = (0, 0)
and πp ◦ F = πp, where πp : Rm × Rp → Rp is the projection on the p-dimensional
parameter space. Let S be the semisimple part of DF (0, 0). By Vn denote the space of
all homogeneous polynomial vector fields Vn of degree n on Rm ×Rp such that

1. S∗Vn = Vn, i.e., Vn commutes with S.

2. πp ◦ Vn = 0, i.e., Vn vanishes in the parameter direction.

Given a vector field V1 ∈ V1, denote by In
V1

the image of Vn under the adjoint operator
adV1

= [V1,−], where [−,−] are the Lie brackets. Let Gn
V1

be a subspace of Vn which is
complementary to In

V1
, i.e., Vn = In

V1
+ Gn

V1
.

Theorem 8. [55] Let F and S be as above. Then there exist a vector field TF on
Rm ×Rp and a diffeomorphism C : Rm ×Rp → Rm ×Rp such that

1. S∗TF = TF , πp ◦ TF = 0, and πp ◦ C = πp.
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2. In the new coordinates the infinite jet of F in (0, 0) has the form

j∞
(
C−1 ◦ F ◦ C

)
= S ◦ T 1

F , (58)

where T 1
F is the time-1 map of TF .1

3. The infinite jet of TF can be written as

j∞TF =
∞∑

n=1

Gn,

where G1 ∈ V1 has the same 1-jet as TF in the origin and Gn ∈ Gn
G1

for n ≥ 2.

Theorem 8 is used in Sec. 3.2 to construct a vector field approximation for the fifth
iterate of the model map G (3). In fact, the vector field is computed only up to order
two in γ, and not up to ∞-flat terms as in (58).

Notice that the vector field TF provided by Theorem 8 is such that all eigenvalues
are zero: spec DTF (0, 0) = {0}, since the semisimple part S is factored out in (58). On
the other hand, to construct the model map G (3) we find it more convenient to start
by a two-parameter HSN-family X of vector fields on R3 × R2, that is, a family X for
which spec DX(0, 0) = {±iω0, 0}, ω0 6= 0. Therefore, we resort to the following version
of the Takens theorem.

Theorem 9. Let F be a family of diffeomorphisms of R3 ×Rp, with πp ◦ F = πp such
that

F (0, 0) = 0 and spec DF (0, 0) = {eiω0 , e−iω0 , 1} ⊂ S1.

Suppose that the eigenvalue λ0 = eiω0 satisfies the nonresonance conditions

λr
0 6= 1 r = 1, . . . , k (59)

for some integer k ≥ 3. Then there exists a degree k − 1 polynomial vector field TF on
R3 ×Rp, with p ◦ TF = 0, such that

F = T 1
F + M, (60)

where the remainder M is such that πp ◦ M = πp and jk−1M = 0.

By (60), T 1
F is an HSN-family of vector fields. In particular, if F is an HSN-family

of diffeomorphisms, i.e, if k ≥ 4 (compare (1)), then Theorem 9 implies that F can
be written as a perturbation of the time-1 map T 1

F of an HSN-family of vector fields.
Moreover, the 3-jet of the perturbing term M in (60) is zero, which means that the
Taylor expansion of M around (0, 0) only contains terms of order at least four. The rest
of this section is devoted to sketching the proof of Theorem 9.

Let Mn be the space of all homogeneous polynomial maps

P : R3 ×Rp → R3 ×Rp

of degree n, with πp ◦ P = 0. We assume that the coordinates x = (w, z, α1, . . . , αp) on
R3 ×Rp are such that the semisimple part S of DF (0, 0) is diagonal. A basis of Mn is
given by all monomial maps

h(x)
∂

∂w
, h(x)

∂

∂z
, h(x) = wn1wn2zn3αn4

1 . . . αnp+3

p , (61)

1The fact that the infinite jet of two maps coincide means that their Taylor series expansions at the

origin coincide citeT1.
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lexicographically ordered [25] and such that n1 + n2 + n3 + n4 + · · · + np+3 = n. Let X
be a vector field on R3 × Rp such that πp ◦ X = 0. Denote by φ(t, x) the flow of X at
time t, starting at point x. For r ≥ 2 write

X(x) = X1(x) + X2(x) + · · · + Xr(x) + O(‖x‖r+1),

φ(t, x) = φ1(t)x + φ2(t, x) + · · · + φr(t, x) + O(‖x‖r+1),

F (x) = F1x + F2(x) + · · · + Fr(x) + O(‖x‖r+1)

where Xn, φn(t,−), and Fn belong to Mn for all n = 1, . . . , r. The linear vector field
X1 is identified with its matrix representation in the given coordinates. The equation

jrF = jrφ(1,−), (62)

where the unknown is the vector field X, can be solved by induction on r. Indeed,
system (62) is rewritten as

eX1 = F1,∫ 1

0

e−sX1Xn(esX1x)ds = e−X1Fn(x) −
∫ 1

0

e−sX1Zn(s, x)ds, n = 2, . . . , r,
(63)

where Zn(s, x) =
∑n−1

i=2 Zi,n(s, x) and Zi,n(s, x) is given by

Xn(φ(t, x)) = Xn(φ1(t)x) +
n∑

i=n+1

Zn,i(t, x) + O(‖x‖r+1).

The key point is that system (63) is solvable. Indeed, let (S,N) be the semisimple-
nilpotent decomposition of DF (0, 0). Then in the given coordinates we have

S =

(
S1 0
0 Ip

)
, N =

(
0 N1

0 0

)
, (64)

where S1 = diag{λ0, 1, }, Ip is the identity matrix of order p, and N1 is the matrix of a
linear operator N1 : Rp → R3. Observe that we can write S + N = S(I + S−1N), and
that both S and I + S−1N have a logarithm:

log(S) = diag(iω0, 0, 0, . . . , 0), log(I + S−1N) = S−1N,

the second equality since N2 = 0. Therefore, the first equation of system (63) has the
solution X1 = B + S−1N , where B = log(S), since

F1 = DF (0, 0) = S + N = S(I + S−1N) = exp(B) exp(S−1N) = exp(B + S−1N).

To complete the sketch of proof for Theorem 9, it is enough to observe that by the next
lemma the higher-order equations in system (63) are solvable for n = 2, . . . , k− 1, given
the assumptions in (59). This is the content of the next lemma.

Lemma 10. Let X1 = B+S−1N , where S and N are defined in (64), while B = log(S).
Suppose that (59) holds. Then the linear operator

Ln : Mn → Mn, Ln(P )(x) =

∫ 1

0

e−sX1P (esX1x)ds

is invertible for all n = 1, . . . , k − 1.
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Proof. Let P be one of the monomials in the basis of Mn given in (61) and, to begin,
suppose that

P (x) = h(x)
∂

∂w
, where h(x) = wn1wn2zn3αn4

1 . . . αnp+3

p .

In this setting, an important property is that the nilpotent part N (64) has no nonzero
entries in the upper right block, which corresponds to phase-space variables (w, z).
Therefore, by denoting sS−1N(x) = (f, f , g, 0, . . . , 0), the coefficients f and g only
depend on the parameters α = (α1, . . . , αp), on ω0 and on s, but not on (w, z). Therefore
we have

esX1x = esB(I + sS−1N)x =
(
λs

0(w + f), λ
s

0(w + f), z + g, α
)

h(esX1x) = λ
s(n1−n2)
0 (w + f)n1(w + f)n2(z + g)n3αn4

1 . . . αnp+3

p .

The expression for h(esX1x) is a sum of terms in which the monomial h(x) self ap-
pears only once, since f and g do not depend on (w, z). In particular, this implies
that the matrix of the operator Ln with respect to the basis in (61) (which is ordered
lexicographically), is lower triangular. Therefore the eigenvalues of Ln have the form

νw =

∫ 1

0

eiω0(n1−n2−1)sds for P (x) = h(x)
∂

∂w
or

νz =

∫ 1

0

eiω0(n1−n2)sds for P (x) = h(x)
∂

∂z
.

To check that the operator Ln is invertible, we have to show that all eigenvalues are
nonzero. If n1 − n2 = 1 or n1 − n2 = 0, then νw = 1 or νz = 1, respectively. So there
may be a zero eigenvalue only for n1 − n2 6= 0, 1. In this case we have

νw =
λn1−n2−1

0 − 1

iω0(n1 − n2 − 1)
, νz =

n1 − n2

iω0(n1 − n2)
.

Therefore Ln has a zero eigenvalue if and only if

either λn1−n2−1 = 1, with n1 − n2 − 1 6= 0 (65)

or λn1−n2 = 1, with n1 − n2 6= 0. (66)

However, given the nonresonance condition in the hypotheses, (65) can only happen if
either n1−n2 ≥ k+2 or n1−n2 ≤ −k, while (66) may be satisfied only if |n1 − n2| ≥ k+1.
Since |n1 − n2| ≤ n, there are no zero eigenvalues for all n ≤ k − 1. This concludes the
proof of Lemma 10.

B Proofs

Proof of Theorem 1.
Given a diffeomorphism Fα : R3 → R3, α ∈ R3, as in the hypotheses, denote by
F : R3 ×R3 → R3 ×R3 the diffeomorphism given by F (x, α) = (Fα(x), α). By applying
Theorem 9, one obtains an HSN-family TF of parameter-preserving vector fields on R3×
R3 such that F = T 1

F + M , where j3M = 0. We now apply some of the transformations
described in the proof of Lemma 6. First, denote by J the (parameter-dependent)
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transformation bringing the linear part of TF to Jordan normal form: that is J∗TF =
(Xα, 0), where Xα has the form in (36). The open and dense conditions that the map
F has to satisfy are obtained, implicitly, by imposing conditions (37) on the vector field
Xα. Moreover, this time one has to unfold the whole linear part of Xα: therefore, writing
ν(α) = ν0 + ν1(α), with ν1(0) = 0, we assume that the derivative of the map

α 7→ (g000(α), η(α), ν1(α)) (67)

is surjective at α = 0. Denote by C the transformation in Step 1 of the proof of
Lemma 6; more precisely C is the transformation bringing Xα to the Poincaré-Dulac
normal form given in (44). The scaling of time in (46) cannot be used: it would generate
additional terms in the 3-jet of the time-one map of the vector field. Therefore, one can
use a near-identity transformation as in (47): it is easily seen that the terms ŵ2ŵ and
ŵŵẑ can be eliminated by a transformation of this form: denote D such a change of
coordinates. Then we have

D∗C∗J∗TF ( ˆ̂w, ˆ̂z) =

(
ˆ̂
f 100

ˆ̂w +
ˆ̂
f 101

ˆ̂w ˆ̂z +
ˆ̂
f 102

ˆ̂w ˆ̂z2

ˆ̂g000 + ˆ̂g110
ˆ̂w ˆ̂w + ˆ̂g002

ˆ̂z2 + ˆ̂g003
ˆ̂z3

)
+ O

(
‖w, z‖4

)
. (68)

A scaling as in (57), denoted as S, brings the previous system to the form

(
(β1(α) + i(ω0 + δ(α)))w + awz + bwz2

β2(α) + sww + z2 + cz3

)
+ O

(
‖w, z‖4

)
.

The assumption of regularity of the map in (67) implies that the change of parameters
given by α 7→ (β1(α), β2(α), δ(α)) is locally invertible: therefore, (β1, β2, δ) can be used
as new parameters, obtaining the vector field Z = (Zβ1,β2,δ, 0), where Zβ1,β2,δ is defined
in (5). Denote by H the diffeomorphism given by the composition of the previous
transformations: H = S ◦ D ◦ C ◦ J . Since Z = H∗TF , one has F = (H−1

∗ Z)1 + M =
H−1 ◦Z1 ◦H +M . From this, (4) follows immediately. To conclude, we observe that the
scaling (46) is used to eliminate the imaginary part of the coefficient of the term wz2

and the term z3 from the expression for Z, whereas the scaling of time in (48) is used to
normalise to unity the coefficient of wz2; the fact that we refrain from performing these
scalings of time explains the difference between (5) and (6).

Proof of Lemma 2.
Part 1. Denote for simplicity K(z) = γµ + az + γz2 in the equations of S̃ (16) and of

S (13). A fixed point of the planar map S̃ is given by a solution (r0, z0) of the equations

|1 − γK(z0)| = 1, r2
0 = 1 − z2

0 .

Define u = γz and

M(u, γ) = |1 − γK(u/γ)|2 − 1 = (1 − γ2µ − a1u − u2)2 + a2
2u

2 − 1.

By the implicit function theorem, there exists a unique function u(γ) defined for small
γ and such that M(u(γ), γ) = 0, with u(γ) = O(γ2). Indeed,

M(0, 0) = 0,
∂

∂u
M(0, 0) = −2a1 6= 0,

∂

∂γ
M(0, 0) = 0.
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An explicit computation yields u(γ) = −γ2µ/a1 + O(γ3). Putting z0 = u(γ)/γ and

r2
0 = 1 − z2

0 yields a fixed point (r0, z0) of S̃.

The determinant of the derivative DS̃ at (r0, z0), given by 1+2γ2(µ/a1−a1)+O(γ3),

is equal to 1 at µ = µH(γ) = a2
1 + O(γ), where the trace of DS̃ at the fixed point is

2 + 2a1γ
2 + O(γ3). There the derivative DS̃ has two complex conjugate eigenvalues

of modulus one. Moreover, detDS̃ is larger than 1 for µ < µH(γ) and smaller than 1
for µ > µH(γ). To check that the fixed point (r0, z0) undergoes a Hopf bifurcation at
µ = µH, the nondegeneracy conditions stated in e.g. [44] can be verified.

Part 2. The planar map S̃ (16) up to terms of order O(γ3) is

(
r
z

)
eS7→
(

r
z

)
+ γ

(
−a1rz

1 − r2 − z2

)
+ γ2

(
r
(
−µ + z2

(
−1 + |a|2

2
− a2

1

2

))

0

)
+ O(γ3). (69)

We look for a vector field TeS such that the time-γ map TeS satisfies

T γ
eS

= S̃ + O(γ3). (70)

The time-γ map of TeS is given by

T γ
eS

= id + γTeS +
γ2

2
ṪeS + O(γ3). (71)

Write TeS = V1 + γV2, where the vector fields Vj, j = 1, 2, are to be determined and may
depend on γ. By combining (71) and (70) we have

T γ
eS
− id = γV1 + γ2V2 +

γ2

2
V̇1 = S̃ − id + O(γ3),

which yields

V1 =
1

γ
(S̃ − id), V2 = −1

2
V̇1.

Then V1 is easily derived from (69), while

V̇1 =

(
−a1(ṙz + rż)
−2(rṙ + zż)

)
+ O(γ) =

(
−a1(−a1rz

2 + r(1 − r2 − z2))
−2(−a1r

2z + z(1 − r2 − z2))

)
+ O(γ).

By rearranging the terms of V1 + γV2 having the same order in γ and by disregarding
O(γ2), we obtain (19). This proves point 2.

Part 3. For γ = 0 the vector field TeS (19) has an equilibrium (r, z) = (1, 0). Since
the derivative DTeS is invertible at (r, z, γ) = (1, 0, 0), by the implicit function theorem
there exist an equilibrium (r, z)(γ) = (1, 0) + O(γ) of (19) for all γ sufficiently small.
Substitution of (r, z)(γ) in (19) yields (r, z)(γ) = (1,−γµ/a1) + O(γ2).

For the stability of this equilibrium, observe that the derivative DTeS at (r, z)(γ) is
such that

Tr(DTeS) = O(γ), det(DTeS) = −2a1 + O(γ).

So for γ small the eigenvalues of DTeS at (r, z)(γ) are complex conjugate, and their real
part is

1

2
Tr(DTeS) = −z − γa1 + O(γ2) = γ(µ/a1 − a1) + O(γ2).
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Therefore the equilibrium (r, z)(γ) undergoes a Hopf bifurcation at µH(γ) = a2
1 +O(γ).

To find the heteroclinic connection, denote the terms of TeS (19) of order zero and
one in γ by TeS,0 and TeS,1 respectively, i.e., write TeS = TeS,0 + γTeS,1, where

TeS,0 =

(
−a1rz

1 − r2 − z2

)
, TeS,1 =

(
r(−µ + a1

2
− a1

2
r2 − bz2)

z − (1 + a1)r
2z − z3

)
,

with b = 1 + Re(a2 + a)/2. The vector field TeS,0 is integrable, with first integral

F (r, z) =
a1

2
rc

(
1 − r2

1 − a1

− z2

)
, c = − 2

a1

,

and with integrating factor rc−1. Moreover, TeS,0 has a heteroclinic connection given

by the zero level set F−1(0). Multiplying TeS,0 by the integrating factor rc−1 gives a
Hamiltonian vector field X0. So the vector field

rc−1TeS = rc−1TeS,0 + γrc−1TeS,1 = X0 + γX1

is a perturbation of the Hamiltonian vector field X0. The value of the parameter µ for
which the heteroclinic connection of X0 survives for rc−1TeS is given by the zeroes of the
integral ∫ ∫

int(F−1(0))

Tr(DX1)drdz. (72)

This integral is written as a linear combination of three integrals Ic−1, Ic+1, Ic+3, where

Iβ =

∫ π/2

0

sinβ θdθ.

By using the recurrence relation Iβ+1 = β
β+1

Iβ, the integrals can be reduced to Iβ−1,

which is factored out. Therefore, up to a multiplicative constant the integral (72) is
equal to

c

(
µ − a1

2
+

b

3

)
+

c(2a1(1 − a1) − bc
3
− 1)

c + 3
.

From this we arrive at point 3.

Part 4. The rotation number on the invariant circle C of S (15) is determined by the
dynamics in the φ-component, which only depends on all parameters and on z0. Also
notice that z0 does not depend on ω, since the map S̃ (16) does not. Moreover, the
dynamics on C is always a rigid rotation, since all coefficients in the φ-component of S
are constant along all orbits on C .

We now determine parameter values for which the rotation number on C is exactly
2π/5. Put ω = ω0 + γδ, where ω0/(2π) = 1/5. Since the map S commutes with the
axial rotation Rθ(w, z) = (exp(iθ)w, z) for all θ (and, in particular, for θ = ω0), a point
of period five on C is given by (r0, φ0, z0), where φ0 is a fixed point of

φ 7→ φ + γδ + arg(1 − γK(z0)) = φ + γδ + arctan
−γa2z0

Re(1 − γK(z0))
. (73)

By the implicit function theorem there exists a function δ1:5(γ, µ), with

δ1:5(γ, µ) = −a2µ

a1

γ + O(γ2),
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such that the map in (73) is the identity. Therefore, for parameter values (γ, µ, δ1:5(γ, µ))
all points of C have period five.

Part 5. This is a trivial consequence of the persistence of normally hyperbolic invariant
manifolds, see [33, 37].

Proof of Lemma 3. Define the auxiliary map G̃ = (G̃w, G̃z), where the two compo-

nents of G̃ are

G̃w(w, z) = w[1 − γ(γµ + az + γz2)] + γ3e−i(ω0+γδ)ε1w
4

G̃z(w, z) = z + γ(1 − |w|2 − z2).

Then we can write G = R(ω0+γδ) ◦ G̃ and H = Rγδ ◦ G̃. For any c ∈ C of modulus one
we have

G̃w(cw, z) − cG̃w(w, z) = γ3e−i(ω0+γδ)(c4 − c)ε1w
4 and G̃z(w, z) = G̃z(cw, z).

For either c = e−i(ω0+γδ) or c = e−iγδ the term c4 − c is of order O(γ). This implies

G(w, z) = R(ω0+γδ) ◦ G̃ = G̃ ◦ R(ω0+γδ) mod O(γ4),

H(w, z) = Rγδ ◦ G̃ = G̃ ◦ Rγδ mod O(γ4), and, therefore,

G5(w, z) = G̃5 ◦ R5
(ω0+γδ) = G̃5 ◦ R5

γδ = R5
γδ ◦ G̃5 = H5 mod O(γ4).

This concludes the proof of Lemma 3.

Proof of Theorem 4. The procedure is similar to the proof of Lemma 2, point 4. We
search for a vector field TH such that T γ

H = H + O(γ4). Write TH = V1 + γV2 + γ2V3,
where Vj, j = 1, 2, 3, may depend on γ. Then

T γ
H − id = γ(V1 + γV2 + γ2V3) +

γ2

2
(V̇1 + γV̇2) +

γ3

3!
V̈1 + O(γ4).

Therefore the condition T γ
H − id = H − id + O(γ4) yields

V1 = (H − id)/γ, V2 = −1

2
V̇1, V3 = −1

2
V̇2 −

1

6
V̈1 =

1

12
V̈1.

Denoting for simplicity K(z) = γµ + az + γz2 in the equation of H (21), we have

V1 =

(
w(ξ − eiγδK(z)) + γ2e−iω0ε1w

4

1 − |w|2 − z2

)
, ξ =

eiγδ − 1

γ

V2 = −1

2

(
w
[
(ξ − eiγδK(z))2 − eiγδ(a + 2γz)(1 − |w|2 − z2)

]

2
[
|w|2 Re(ξ − eiγδK(z)) + z(1 − |w|2 − z2)

]
)

,

V3 =
1

12

(
ẅ{[iδ − az]2 − aż} − 2aw{z̈[iδ − az] + Re(ẅw) + zz̈}

2{2 Re(ẅw)(−a1z) − |w|2 a1z̈ + z̈ż − 2z(Re(ẅw) + zz̈)}

)
,

where (ẇ, ż) and (ẅ, z̈) denote the components of V1 and V̇1, respectively. Notice that
terms of order O(γ) have already been discarded in V3, since they give a contribution
of order O(γ3) in the vector field TH and of order O(γ4) in the time-γ map T γ

H . By
regrouping terms of the same order in γ in TH = V1 + γV2 + γV3, and by disregarding
O(γ3), we obtain (23), (24), and (25). Part 1 of Theorem 4 is now proved. The proof
of the remaining parts is straightforward.
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Proof of Theorem 5.
Part 1. We search for equilibria of the vector field TH (22) having cylindrical coordi-
nates (r, φ, z) and occurring at parameter values (γ, µ, δ) such that

z = O(γ), r = 1 + O(γ2), δ = O(γ), (74)

compare with part two of Lemma 2. By (74), the terms Uw and Uz in (22) are of order
O(γ). By disregarding all terms of order O(γ3), the equilibrium condition TH = 0 reads

−iδ + γµ + az = γ2ε1e
−i(ω0+5φ) + O(γ3), r = 1 + O(γ2). (75)

An additional variable z′′ and a parameter δ′′ are introduced:

z = γz′ + z′′γ2, δ = δ′γ + δ′′γ2, (76)

where z′ and δ′ are coefficients to be determined, which depend on µ but not on γ. The
existence of the equilibria is proved by applying the implicit function theorem to an
equation of the form M(r, φ, z′′, γ, µ, δ′′) = 0, where the solutions (r, φ, z′′) are functions
of the parameters (γ, µ, δ′′). The first equation of (75) is split in two, one equation for
the terms in γ and another for terms of order O(γ2). The equation for the terms in γ is
divided in real and imaginary part, yielding

µ + a1z
′ = 0, −δ′ + a2z

′ = 0, (77)

which is directly solved for z′ and δ′. The terms of order O(γ2) give

−iδ′′ + az′′ = ε1e
−i(ω0+5φ) + O(γ).

This is split in an equation for the modulus and another for the argument, which,
together with the second of (75), yield the system

M(r, φ, z′′, δ′′, γ) =




(−δ′′ + a2z
′′)2 + (a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ − 2kπ + arctan −δ′′+a2z′′

a1z′′
+ O(γ)

r − 1 + O(γ2)


 = 0, (78)

where k = 0, . . . , 4. For γ = 0, this system has the solutions (r±, φk,±, z′′±) where r± = 1,
φk,± has the expression in (28), and z′′± is given in (29). For small γ the result holds since

the derivative DM with respect to (r, φ, z′′) is invertible, except when −a2δ
′′+|a|2 z′′ = 0.

This happens if and only if ∆ = 0 in (29), i.e., if the equilibria undergo saddle-node
bifurcations, see the next part.

Part 2. To look for saddle-node bifurcations, the equation det(DTH) = 0 has to be
added to the three deriving from the equilibrium condition TH = 0. Moreover, δ′′ has
to be included as unknown together with (r, φ, z′′). Up to and including terms of order
two in γ we have

DTH =

(
iδ − γµ − az − a

2
γ 4ε1e

−iω0γ2w3 − a
2
γw2 −w(a + 2γz + aγz)

−w(1 + γz) −w(1 + γz) −2z − a1γ

)
+ O(γ3),

where we used that Uw (26) and Uz (27) are such that DUw = DUz = O(γ) for z and δ
as in (76). Therefore, the saddle-node bifurcation condition reads

det(DTH) = 10(−a2δ + a1γµ + |a|2 z) + O(γ3) = 0, (79)
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which has to be solved together with (75). As in part 2, this system is first solved for
the terms of order one in γ. In particular, equation (75) at order γ gives (77), which
trivially satisfies (79) at order γ. The terms of order O(γ2) give the system

M(r, φ, z′′, δ′′, γ) =




−a2δ
′′ + |a|2 z′′ + O(γ)

(−δ′′ + a2z
′′)2 + (a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ + arctan −δ′′+a2z′′

a1z′′
− 2kπ + O(γ)

r − 1 + O(γ2)


 = 0,

where k = 0, . . . , 4. Notice that the first equation is the derivative of the second with
respect to z′′. This, of course, amounts to require that the second equation has a double
solution, i.e., ∆ = 0 in (29). For γ = 0 this yields

δ′′ = ± |a|
|a1|

ε1, z′′ = ± a2

|a| |a1|
ε1.

Moreover, the derivative of M with respect to (r, φ, z′′, δ′′) is invertible at γ = 0, which
allows application of the implicit function theorem. In particular (79) and the modulus
of the first of (75) yield

a2γµ + a1δ = ± |a| ε1,

which are the two lines SN 5
± (30).

Part 3 and 4. As in part 2, an equation has to be added to (78). Denote by (ν1, ν2, ν3)
the eigenvalues of DTH . Then the characteristic polynomial of DTH is

−ν3 + Tr(DTH)ν2 − Sim(DTH)ν + det(DTH),

where Sim(DTH) = ν1ν2 + ν1ν3 + ν2ν3. The condition for a Hopf bifurcation is

Sim(DTH) Tr(DTH) = det(DTH) 6= 0. (80)

In particular, we have (79) for det(DTH) and

Tr(DTH) = −2(γµ + a1z + z + a1γ) + O(γ3), Sim(DTH) = −2a1 + O(γ2).

Thereby, (80) reads

−3a1µγ + z(2a2
1 + 2a1 − 5 |a|2) + a2

1γ + 5a2δ = 0. (81)

To determine the coordinates of the bifurcating equilibria, it is convenient to introduce
the variable z′′ and the parameters (µ′, δ′′) by

z = γz′ + z′′γ2, δ = δ′γ + δ′′γ2, µ = µ0 + γµ′,

where (z′, µ0, δ′) are constants to be determined, compare with (76). The system given
by the equilibrium condition TH = 0 together with (81) is split in two equations, one
for the terms in γ and another for the terms of order O(γ2). The terms in γ yield the
system

µ0 + a1z
′ = 0, δ′ + a2z

′ = 0, −3a1µ
0 + z′(2a2

1 + 2a1 − 5 |a|2) + a2
1 + 5a2δ

′ = 0,

which has the solution

z′ = −a1, µ0 = a2
1, δ′ = −a1a2.

39



The terms of order O(γ2) yield

M

(
r, φ, z′′

γ, µ′, δ′′

)
=




−3a1µ
′ + z′′(2a2

1 + 2a1 − 5 |a|2) + 5a2δ
′′ + O(γ)

(−δ′′ + a2z
′′)2 + (µ′ + a1z

′′)2 − ε2
1 + O(γ)

ω0 + 5φ + arctan −δ′′+a2z′′

µ′+a1z′′
− 2kπ + O(γ)

r − 1 + O(γ2)


 = 0,

where k = 0, . . . , 4. For γ = 0, the first equation yields

z′′ =
1

c
(3a1µ

′ − 5a2δ
′′), c = 2a1 + 2a2

1 − 5 |a|2 . (82)

Substitution of (82) into the second component of M gives (32). Conversely, from the
second component of M we have (34). Substitution of (34) into (82) gives

±c
√

∆′ = −2a1a2(1 + a1)δ
′′ + 2a1(a1 − a2

2)µ
′. (83)

Since c < 0, this implies that the equilibrium with P5
k,+, corresponding to the “+” sign

in the left hand side of (83), only can have a Hopf bifurcation when the right hand side
of (83) is negative. This gives inequality (33).

Part 5. The location of the HSN 5
± points is obtained as the solution of the system

given by the equilibrium condition TH = 0 (75), together with the saddle-node equa-
tion (79) and the Hopf condition (80). According to what has been said in part 3, (79) is
equivalent to require ∆′ = 0 in (83). Therefore the solutions are obtained by setting (33)
equal to zero and substituting in (32) and (31).

Part 6. The proof is carried out by means of an algebraic manipulator, i.e., a computer
program that calculates the transformations in [44, Lemma 8.11] up to a finite order
in the variables and parameters. The algebraic manipulator used in this proof is based
on [39].
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[53] C. Simó: On the use of Lyapunov exponents to detect global properties of the dy-
namics, in Equadiff 2003, Proceedings International Conference on Differential Equa-
tions, Hasselt 2003, (F. Dumortier, H.W. Broer, J. Mahwin and S.M. Verduyn-Lunel
eds.), World Scientific, Singapore (2005), ISBN 981 256 169 2, 714–719.

43
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