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Abstract

We consider Gibbs measures relative to Brownian motion of Feynman-Kac type,
with single site potential V . We show that for a large class of V , including the Coulomb
potential, there exist infinitely many infinite volume Gibbs measures.

1 Introduction

Gibbs measures relative to Brownian motion have originally been introduced as a tool to
study certain models of rigorous quantum field theory [18, 24]. They have seen growing
interest in recent years, both in their relation to quantum theory [14, 3] and in their own
right, cf. [17, 5, 6, 13, 21] for a few examples.

In the present paper we are studying the simplest type of Gibbs measure relative to
Brownian motion, namely the ones arising from the Feynman-Kac formula. For finite
T > 0, and x, y ∈ Rd, we define

µx,yT (dω) =
1

Zx,yT
e−
R T
−T V (ω(s)) dsWx,y

[−T,T ](dω). (1)

Here, Wx,y
[−T,T ] is conditional Wiener measure [22] on C([−T, T ],Rd), starting in x at time

−T and ending in y at time T . V : Rd → R is called the single site potential, and Zx,yT
normalizes µT to a probability measure. When we compare (1) to a classical spin system,
the point evaluations ω(s) of Brownian motion take the role of the spins; there is no
∗Supported by an EPSRC fellowship EP/D07181X/1
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explicit interaction potential between them, but the Brownian motion measure provides
an infinitesimal harmonic nearest neighbour coupling. By definition, a Gibbs measure
associated to the potential V now is any measure µ on C(R,Rd) such that its regular
conditional expectations are of the form (1) when the path is fixed outside [−T, T ]; cf.
Definition 2.2.

As in the classical theory of Gibbs measures, the first two questions to answer are
existence and uniqueness. Existence is easy in this particular case; a sufficient and well-
explored criterion is the existence of a ground state ψ0 of the associated Schrödinger
operator

H = −1
2

∆ + V,

in which case there is a stationary Gibbs measure µstat; µstat is the measure of the sta-
tionary diffusion process with drift ∇ lnψ0 and unit diffusion matrix.

The question of uniqueness is more subtle. On the one hand, we are dealing with a one-
dimensional system, and so one might think that uniqueness automatically holds. This is
indeed true when we restrict our attention to the class of stationary measures [19]. It is
also true when the associated Schrödinger semigroup e−tH is intrinsically ultracontractive
[4]. This is known to be the case for potentials V growing faster than |x|a but more slowly
than |x|b at infinity, with 2 < a < b < 2a− 2 [10].

However, in general the fact that the spin space Rn is not compact gives rise to the
possibility of Gibbs measures µ for which Eµ(ωt) diverges as |t| → ∞. Such measures have
been found in a few special cases. The best known example is the harmonic oscillator
V (x) = |x|2, which has been studied independently by various authors [20, 9, 1]. Besides
this explicitly solvable case, the only other examples we are aware of are due to J. T.
Cox [9], who terms them nontrivial entrance laws. He uses the speed measure and scale
function method and his results are therefore strictly limited to one space dimension.

The main contribution of the present paper is a new, abstract criterion for the existence
of non-stationary Gibbs measures (or, nontrivial entrance laws) for a given potential V ,
which is not limited to any space dimension and easy to check in many important cases. In
essence, all we require is the existence of an eigenfunction ψ1(x) of H decaying more slowly
than the ground state ψ0(x) at infinity, cf. Definition 3.4. Although the actual proof of
non-uniqueness is very short, our criterion is quite powerful, and covers in particular a large
class of radial potentials V (x) that grow at most quadratically at infinity. Importantly,
this includes potentials that do not grow at all at infinity (i.e. for which the Schrödinger
operator has absolutely continuous spectrum), like the Coulomb potential V (x) = 1/|x|
in dimension d = 3. Thus we are able to improve on the results in [9] even in the one-
dimensional case, as in that work the potential was required to grow at infinity faster than
|x|2/3.

Let us finally remark that Gibbs measures relative to Brownian motion play a role in
the study of stochastic partial differential equations; formally, they are just the stationary
solutions of the SPDE

d
dt
X(t, u) = −1

2
(∇V )(X(t, u)) +

1
2

∆uX(t, u) +W(t, u), (2)

where W is space-time white noise. In case u ∈ R and under somewhat restrictive condi-
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tions on V , the connection of (2) with Gibbs measures has been shown by Iwata [15, 16].
In the case when these conditions hold, Iwata proves that the set of Gibbs measures is
exactly the set of stationary (in t) measures for (2), but unfortunately his conditions imply
that V grows at least quadratically at infinity and thus do not cover the cases that our
present results are about. It would be interesting to investigate whether the correspon-
dence between stationary solutions to (2) and Gibbs measures continues to hold when the
growth restrictions on the potential V are relaxed.

2 Basic facts and definitions

Let us first fix the notation. When I ⊂ R is a finite union of (bounded or unbounded)
intervals, we denote by C(I,Rd) the space of all continuous functions I → Rd. The σ-
field FI on C(I,Rd) is generated by the point evaluations. The same symbol FI denotes
the σ-field on Ω = C(R,Rd) generated by the point evaluations at time-points inside I.
We write F instead of FR, FT instead of F[−T,T ], and TT instead of F[−T,T ]c for T > 0,
where [−T, T ]c denotes the complement of [−T, T ]. For s, t ∈ R with s < t and x, y ∈ Rd

we denote by Wx,y
[s,t] the conditional Wiener measure (non-normalized Brownian bridge)

starting in x at time s and ending in y at time t. Wx,y
[s,t] is a measure on C([s, t],Rd). For

T > 0, we write Wx,y
T instead of Wx,y

[−T,T ]. For ω̄ ∈ Ω, let δω̄T be the Dirac measure on
C([−T, T ]c,Rd) concentrated in ω̄. Note that δω̄T does not depend on the part of ω̄ inside
[−T, T ]. Finally, we define

W ω̄
T :=W ω̄(T1),ω̄(T2)

T ⊗ δω̄T . (3)

We can (and will) regard W ω̄
T as a measure on C(R,Rd).

Let us now fix the model we are working with. We begin with the potential V .

Definition 2.1 A measurable function V : Rd → R is said to be in the Kato class [22]
K(Rd), if

sup
x∈R

∫
{|x−y|≤1}

|V (y)| dy <∞ in case d = 1,

and
lim
r→0

sup
x∈Rd

∫
{|x−y|≤r}

g(x− y)|V (y)| dy = 0 in case d ≥ 2.

Here,

g(x) =
{
− ln |x| if d = 2
|x|2−d if d ≥ 3.

V is locally in Kato class, i.e. in Kloc(Rd), if V 1K ∈ K(Rd) for each compact set K ⊂ Rd.
V is Kato decomposable [7] if

V = V + − V − with V − ∈ K(Rd), V + ∈ Kloc(Rd),

where V + is the positive part and V − is the negative part of V .
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Kato-decomposable potentials cover all physically interesting cases known so far. An
advantage of assuming Kato-decomposability for the potential V is that a lot is known
about the Schrödinger operator H = −1

2∆ + V and its semigroup e−tH [22]. Most im-
portant for our purposes is that for every t > 0, e−tH is an integral operator with con-
tinuous, bounded kernel Kt, i.e. the map (t, x, y) 7→ Kt(x, y) is jointly continuous on
(0,∞)×Rd×Rd, bounded if t is bounded away from zero, and the Feynman-Kac formula

Kt−s(x, y) =
∫
e−
R t
s V (ωr) dr dWx,y

[s,t](ω) ∀s < t ∈ R, ∀x, y ∈ Rd (4)

holds. Part of the content of (4) is that the exponential appearing there is actually
integrable with respect to the Brownian motion measure. Of course, Kt−s(x, y) from
equation (4) is just Zx,yT from equation (1) when T = |t − s|/2. This close relationship
between the measure µT and the associated Schrödinger operator H will be crucial for our
arguments.

For Kato-decomposable V and T > 0 we now define a probability kernel µT from
(Ω, TT ) to (Ω,F) by

µT (A, ω̄) :=
1

ZT (ω̄−T , ω̄T )

∫
1A(ω)e−

R T
−T V (ωs) ds dW ω̄

T (ω) (A ∈ F , ω̄ ∈ Ω). (5)

Definition 2.2 A probability measure µ over Ω is a Gibbs measure relative to Brow-
nian motion for the potential V if for each A ∈ F and T > 0,

µT (A, ·) = µ(A|TT ) µ-almost surely, (6)

where µ(A|TT ) denotes conditional expectation given TT .

Equation (6) is the continuum analog to the DLR equations in the lattice context.
Let us now assume that the bottom of the spectrum of H is an eigenvalue. Then

necessarily it is of multiplicity one by the Perron-Frobenius theorem, and the corresponding
eigenvector ψ0 can be chosen strictly positive. It is checked directly that if we define a
probability measure µ on (Ω,F) (i.e., a stochastic process) by putting

µ(A) =
∫
dxψ0(x)

∫
dy ψ0(y)

∫
1A(ω)e−

R T
−T V (ωs) ds dWx,y

T (ω) (7)

for A ∈ FT , we can extend it to a measure on F , which is a Gibbs measure for the potential
V . However, we are interested just in the Gibbs measures that are different from µ, and
so we need a method for constructing them. Fortunately, a well-known method from the
theory of lattice Gibbs measures [12] can be adapted directly to our context, cf. [2].

Definition 2.3 A family µT is locally uniformly dominated if for each S <∞ there exists
a probability measure ν on F[−S,S] such that

∀ε > 0 ∃δ > 0 ∀A ∈ F[−S,S] : νS(A) < δ ⇒ lim sup
T→∞

µT (A) < ε.
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Lemma 2.4 [12, 2] Let (Tn) be a monotone sequence with Tn → ∞ as n → ∞. If
(µTn)n>0 is uniformly locally dominated, then it has a cluster point as n→∞, in the local
strong topology (setwise convergence on sets A ∈ F[−S,S] for each S). This cluster point is
itself a probability measure, and an infinite volume Gibbs measure for the potential V .

In order to prove non-uniqueness, we will now look for a sequence of measures µT that
has a cluster point which is different from the stationary process.

3 A non-uniqueness criterion

We will work with the standing assumption that the bottom of the spectrum of H =
−1

2∆ + V is an eigenvalue. We add a constant to V such that this eigenvalue is 0, and
write ψ0 for the eigenvector, which we refer to as the ground state.

Usually when one looks for a sequence of finite volume measures converging to a Gibbs
measure, one fixes the boundary conditions, possibly dependent on the volume, and sends
the volume to infinity. In our case this would amount to studying the measures

µω̄T (dω) =
1
ZT

e−
R T
−T V (ωs) dsW ω̄

T (dω), (8)

for a fixed function ω̄ : R → Rd. If the family µω̄T has a cluster point as T → ∞, then by
the Markov property it is immediate that this cluster point satisfies the DLR equations
and is thus an infinite volume Gibbs measure. (8) is indeed the right expression to look
at if we are interested in showing uniqueness: in [4] it was shown that if for a set Ω∗ of
boundary functions ω̄ the measures µω̄T converge to the same measure µ, and if Ω∗ has full
µ measure, then µ is the only Gibbs measure supported on Ω∗.

We are however interested in non-uniqueness rather than uniqueness, and for this
purpose it is just as good to fix only the left hand side boundary condition, and leave the
other one free. This translates to considering

µ
x(−T ),ψ0

T (dω) =
1
ZT

e−
R T
−T V (ωs) dsψ0(ωT )Wx(−T )

−T (dω), (9)

where now Wx(−T )
−T denotes Brownian motion started in x(−T ) at time −T . Again, it is

immediate from the Markov property that any cluster point as T → ∞ will be a Gibbs
measure. The great advantage of the form (9) is that now the normalisation is explicit:
from Hψ0 = 0 we conclude

ZT =
∫

e−
R T
−T V (ωs) ds ψ0(ωT ) dWx(−T )

T (ω) = e−2THψ0(x(−T )) = ψ0(x(−T )).

For the same reason, the image measures of µx(−T ),ψ0

T under point evaluations are calcu-
lated easily:

µ
x(−T ),ψ0

T (ω0 ∈ A) =
1

ψ(x(−T ))

∫
e−
R 0
−T V (ωs) dsψ0(ω0)1A(ω0) dWx(−T )

−T (ω) =

=
1

ψ0(x−T )
e−TH(ψ01A)(x−T ). (10)
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We should note that µx(−T ),ψ0

T is just the solution of the SDE

dXt = ∇ ln(ψ0)(Xt) dt+ dBt. (11)

with starting point x(t) and starting time −T . Thus our subsequent study of the measures
µ
x(T ),ψ0

T corresponds exactly to the entrance laws studied by Cox [9].
We will now show that knowledge of the quantities appearing in (10) suffices to show

local uniform domination. We fix T 7→ x(T ) and write µT = µ
x(−T ),ψ
T for simplicity.

Proposition 3.1 Assume that for each S > 0, and for each ε > 0, there exists M > 0
such that

lim sup
T→∞

PµT (|ω−S | > M) < ε. (12)

Then (µT ) is locally uniformly dominated.

Proof: Pick ε > 0 and choose M according to (12). We claim that the measure

ν(dω) =
1

λ({|x|,M})
µT (dω|ω−S = x)1|x|<Mdx

dominates µT uniformly on F[−S,S]. ν is just the solution of (11) started with uniform
distribution inside {|x| < M}. On the other hand, the measure 1{|ω(−S)|<M}µT (dω) on
F[−S,S] is just the solution of the same SDE, but started with the distribution µT (ω−S ∈
dx) ∩ {|x| < M}. This distribution has a Lebesgue density given by the integral kernel
KT−S(x−T , y) of the Schrödinger semigroup, cf. (4). By the results of [22], this integral
kernel is uniformly bounded in x−T , y ∈ Rd and T − S > 1. Thus µT (ω−S ∈ dx) is
absolutely continuous with respect to Lebsegue measure, and the same is true for the
solutions of (11) with respective starting distributions. So for δ > 0 there exists A ∈ F[−S,S]

such that ν(A) < δ implies

lim sup
T→∞

µ
x−T ,ψ
T (A ∩ {|ω(−S) < M |}) < ε.

Thus lim supT→∞ µ
x−T ,ψ
T (A) < 2ε. �

In many cases, one can even get rid of the “for each S” in the last proposition, and
consider only S = 0. A sufficient condition is that the diffusion process does not bring
paths back from infinity in finite time (see condition (14) below).

Proposition 3.2 Suppose we can prove that for all ε > 0 there is R > 0 such that

lim sup
T→∞

µT (|ω0| ≥ R) < ε. (13)

Assume further that for all S > 0 we find α > 0 such that

∀R > 0 ∃M > 0 : µT
(
|ω0| ≤ R

∣∣ |ω−S | ≥M) ≤ 1− α. (14)

Then for every ε > 0 and every S > 0 we find R > 0 such that

lim sup
T→∞

µT (|ω−S | ≥ R) < ε. (15)
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Proof: Assume that there is δ > 0 such that for all M > 0 we have

lim sup
T→∞

µT (|ω−s| ≥M) > δ.

For each R > 0 and each M > 0, we have

µT (|ω0| ≥ R) ≥ µT
(
|ω−S | ≥M, |ω0| ≥ R

)
= µT

(
|ω0| ≥ R

∣∣ |ω−S | ≥M)µT (|ω−S | ≥M),

and so
lim sup
T→∞

µT (|ω0| ≥ R) ≥ δµT
(
|x0| ≥ R

∣∣ |x−s| ≥M).
Taking M so large that (14) holds, we find lim supT→∞ µT (|ω0| ≥ R) ≥ δα independently
of R > 0. Thus (13) cannot hold. �

Condition (14) is necessary, since there are potentials V that bring the path back from
infinity in finite time, e.g. those for which e−tH is intrinsically ultracontractive. We refer
to Remark 3.6 for a discussion. However, if the potential grows less than quadratically at
infinity, (14) holds:

Lemma 3.3 Assume that there exists a compact set K ⊂ Rd and α < 1 such that V (x) ≤
|x|2α on Rd \K. Then (14) holds.

Proof: Let S > 0 and R > 0. It will be enough to show that

µT
(
|ω0| ≤ R

∣∣ |ω−S | = y)→ 0

as |y| → ∞. Writing A = 1{|x|≤R}, we get

µT
(
|ω0| ≤ R

∣∣ |ω−S | = y
)2 =

(
1

ψ0(y)

∫
e−
R S
0 V (ωs) dsψ0(ωS)1A(ωS) dWy(ω)

)2

≤ 1
ψ0(y)

∫
e−2

R S
0 V (ωs) dsψ2

0(ωS) dWy(ω)Wy(ωS ∈ A)

by the Cauchy-Schwarz inequality. Since V is Kato-decomposable, we have

sup
y∈Rd

∫
e−2

R t
0 V (ωs) dsψ2

0(ωt) dWy(ω) <∞.

Under our assumption on V , Carmona’s lower bound on ψ0 [8] reads ψ0(y) ≥ D exp(−δ|y|α+1)
for some D, δ > 0; also, Wy(ωS ∈ A) ≤ C exp(−γ(dist(y,A))2) for some C, γ > 0 since ωt
is Gaussian distributed. Thus there is y0 ∈ Rn with

µT
(
|ω0| ≤ R

∣∣ |ωs| = y
)
≤ C exp(δ|y|α+1 − γ|y − y0|2)→ 0

as y →∞, as desired. �

We now state our criterion for non-uniqueness; we need the following
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Definition 3.4 Fix a function f : Rd → R such that f(x) > 0 if |x| > R for some R > 0.
We say that a function g dominates f at infinity if

lim inf
|x|→∞

g(x)
f(x)

= +∞.

We make the following assumption on the potential V :

(A) We assume that H = −1
2∆ + V has at least one eigenfunction ψ1 other than its

ground state ψ0, and that ψ1 dominates ψ0 at infinity.

Note that due to the continuity of ψ0 and ψ1 and the positivity of ψ0 it follows that
ψ1 can be chosen strictly positive outside of some compact set. We will comment more on
condition (A) after stating and proving our main theorem.

Theorem 3.5 Let H = −1
2∆+V be a Schrödinger operator with ground state ψ0. Assume

(14) and (A). Then for the potential V there exist infinitely many Gibbs measures relative
to Brownian motion.

Proof: Put f = ψ1/ψ0. Then by our assumptions f(y) > 0 for |y| > R and there exists
a sequence (yn) ⊂ Rd such that f(yn) → ∞ as n → ∞. We can choose (yn) such that
f(yn) is monotone. By (10),

µ
x(−T ),ψ0

T (f(ω0)) =
1

ψ0(x(−T ))
e−TH(fψ0)(x(−T )) =

e−TH(ψ1)(x(−T ))
ψ0(x(−T ))

=
e−T (E1−E0)ψ1(x(−T ))

ψ0(x(−T ))
= e−T (E1−E0)f(x(−T )).

Here, E1 > E0 is the eigenvalue corresponding to the eigenfunction ψ1. Now we insert our
sequence yn from above and define Tn = (ln(f(yn)) + α)/(E1 − E0) for some (arbitrary)
α ∈ R. Then we find

µyn,ψ0

Tn
(f(ω0)) = e−α > 0.

This shows two things. Firstly, the standard Chebyshev type argument gives

µyn,ψ0

Tn
(|ω0| > R) ≤

µyn,ψ0

Tn
(f(ω0)1|ω0|>R)

inf{f(x) : |x| > R}
≤

µyn,ψ0

Tn
(f(ω0))

inf{f(x) : |x| > R}
=

e−α

inf{f(x) : |x| > R}
.

Thus goes to zero as R → ∞, showing existence of a cluster point µα of the sequence
by Lemma 2.4. µα is a Gibbs measure, and µα(f(ω0)) = e−α by local convergence of
the µyn,ψ0

Tn
to µα. So obviously, µα 6= µβ for α 6= β. Moreover, for the stationary Gibbs

measure µ0 we have µ0(f) =
∫
ψ0(x)ψ1(x) dx = 0 by orthogonality of the eigenfunctions.

Thus µα 6= µ0. �

3.6 Remark: Together with the results in [4], a fairly complete picture of non-uniqueness
emerges: as shown there, potentials giving rise to intrinsically ultracontractive semigroups
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e−tH (henceforth called IUC potentials) imply a unique Gibbs measure. A sufficient con-
dition for a potential V to be IUC that its positive part V + is bounded from above and
below by certain functions growing faster than quadratically. More precisely, if there exist
constants C1, C3 > 0, C2, C4 ∈ R and a, b with 2 < a < b < 2a− 2 such that

C1|x|a + C2 ≤ V +(x) ≤ C3|x|b + C4, (16)

then V is an IUC potential [10]. On the other hand, we will show in the next section
that a large class of radial potentials that grow quadratically or more slowly at infinity in
a regular way give rise to non-uniqueness of the Gibbs measure. So as a rule of thumb,
up to quadratic growth at infinity implies non-uniqueness, while faster growth implies
uniqueness. In this generality this rule is probably not true and there should exist patho-
logical counter-examples, but to construct them one would need quite delicate methods of
proving uniqueness, which are unavailable to date. We add a few more comments about
IUC potentials and non-uniqueness in general.

a) By definition the semigroup e−tH is IUC if its kernel fulfils

Kt(x, y) ≤ Cψ0(x)ψ0(y)

for all x, y ∈ Rd. Condition (A) must rule out IUC potentials, and indeed this can
be shown: Theorem 4.2.4 of [23] says that IUC implies

|ψj(x)| ≤ cjψ0(x) (17)

for each eigenfunction ψj . It even provides an (abstract) value for cj . It would be
interesting to know whether (17) in turn implies intrinsic ultracontractivity; since
(17) is very closely related to condition (A) not being fulfilled, this would suggest
that IUC potentials are basically the only potentials with a unique Gibbs measure,
at least in the absence of absolutely continuous spectrum. Now

Kt(x, y) =
∞∑
j=0

e−t(Ej−E0)ψj(x)ψj(y),

where Ej are the eigenvalues to the eigenfunctions ψj , and therefore (17) implies
intrinsic ultracontractivity if the growth of the cj can be controlled. This is not
straigthforward, and we are not aware of any investigation of the matter.

b) Closely related to the above is a conjecture due to Martin Hairer, who suggested that
the Gibbs measure is unique if and only if the associated diffusion process brings the
path back from infinity in finite time, i.e. it (14) fails. This conjecture is natural and
intuitively appealing, but we were unable to prove either direction; the “if” direction
should be easier.

c) In the light of Lemma 3.3, Hairer’s conjecture would imply that non-uniqueness
holds for all potentials growing quadratically or slower at infinity, provided H has a
ground state. However, there is one example that might disprove this conjecture: It
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is well known that for a compactly supported square well potential, the strength of
the well can be adjusted such that H has exactly one eigenvalue below the bottom
of the absolutely continuous spectrum. At the very least this would mean that our
method of proving non-uniqueness breaks down there. Moreover, it might well be
that for this potential the only possible outcomes of an infinite volume limit are
convergence to the stationary process and divergence. We did not investigate this
further, but it would be an interesting example.

d) In Theorem 3.5 we showed existence of infinitely many Gibbs measures for certain
potentials. Given the general fact [12] that the set of all Gibbs measures for a
given potential forms a simplex, it is clear that already two different extremal Gibbs
measures will produce infinitely many Gibbs measures via convex combinations.
What would be much more interesting is whether there are infinitely many extremal
Gibbs measures. This would follow from the µα begin mutually singular for different
α. By the same calculation as in the proof of Theorem 3.5, we find that

Eµα(f(ω−t)) = e−αet(E1−E0),

which suggests that the the measures µα are supported on sets of paths with different
limiting behaviour as t → −∞. However, for a rigorous law of large numbers type
argument we do not have sufficient control over the fluctuations of the paths under
µα as t → −∞, and so we leave the question whether there are infinitely many
extremal Gibbs measures as an open problem.

4 Examples

Let us now consider some examples where we can apply Theorem 3.5. We begin with two
cases where infinitely many eigenfunctions of the corresponding Schrödinger operator are
known, and thus our information is fairly complete.
Example 1. (Harmonic Oscillator) As already mentioned in the introduction, the
harmonic oscillator has been dealt with before, and is the prime example for non-uniqeness
of Gibbs measures relative to Brownian motion. However, while existing proofs rely on
the full knowledge of the transition semigroup (Mehler’s formula), for our criterion we
only need information about the first few eigenfunctions. We restrict to dimension d = 1
for simplicity. The Hamiltonian is then given by

HV := −1
2

d2

dx2
+

1
2
x2 − 1

2
,

and its eigenfunctions are

ψn = hn(x)ψ0(x) with ψ0(x) = π−1/4 e−
x2

2 ,

and where hn(x) is the Hermite polynomial of degree n. The corresponding eigenvalues
are En = n, n = 0, 1, 2, . . .. Explicitly, we have

h0(x) = 1, h1(x) =
√

2x, h2(x) = 2x2 − 1.
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Thus obviously the ground state is dominated at infinity by ψ2, but a straightforward
application of Theorem 3.5 fails since the assumption of 3.3 is not fulfilled. However, in
this simple case we can proceed by direct calculations of second moments: we may write
x2 = 1/2h2(x) + 1/2h0(x), and thus choosing x−T = eT we get

µT (ω(−t)2) =
1

ψ0(x)
e−(T−t)H(ψ0(x)x2)

∣∣∣∣
xT=eT

=

= 1/2h0(xT ) + 1/2 e−2Th2(xT ) = 1/2 + 1 +O(e−2T ).

Hence, the sequence of measures is tight. On the other hand, x = h1(x)/
√

2 and

µT (x) =
1

ψ0(x)
e−TH(xψ0(x))

∣∣∣∣
xT=eT

=
1√
2
e−Th1(xT ) =

1√
2

;

but if the Gibbs measure would be the stationary measure ν, we would have ν(f) =
〈ψ0, ψ0 f〉 and hence ν(x) = 0.

Our second example is the Coulomb potential in three dimensions, which has not been
known before to give rise to nontrivial Gibbs measures. Due to the presence of absolutely
continuous spectrum there is little hope of obtaining the full transition semigroup as was
possible in the case of the harmonic oscilator. But there are infinitely many explicitly
known eigenfunctions, and thus our method is applicable.

Example 2. (Coulomb Potential) The Coulomb potential in dimension n = 3 (with
normalized zero point energy) is given by the Hamiltonian

HV := −1
2

∆− 1
|x|

+
1
2
.

It has the ground state ψ0(x) = 1√
π
e−
|x|
2 and corresponding eigenvalue E0 = 0. As is

well known, the radially symmetric eigenfunctions (corresponding to angular momentum
l = m = 0) are given (with r = |x|) by

ψn−1(r) = cn e
−r/(n+1) L1

n(2r/n), (n ≥ 1),

with corresponding eigenvalues

En =
1
2

(
1− 1

(n+ 1)2

)
=

1
2
n(n+ 2)
(n+ 1)2

.

The functions L1
n(r) = lnr

n + O(rn−1) are the Legendre polynomials. We can notice
already here that ψ0 is dominated by ψ2 at infinity, and applying Theorem 3.5 proves
non-uniqueness of Gibbs measures. However, since we have such detailed information
about all the eigenfunctions, we can extract some more information.
We consider now the functions fn = ψn/ψ0, and put x(−T ) = γ(T ), where γ(T ) remains
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to be determined for now. Then

µT (fn(ω0)) =
1

ψ0(x)
e−TH(ψ0fn)

∣∣
xT=γ(T )

= e
−T

2
n(n+2)

(n+1)2 fn(γ(T ))

= cn
√
π e
−T

2
n(n+2)

(n+1)2 eγ(T )e−
γ(T )
n+1 L1

n(2γ(T )/n)

= cnln
√
π e

n
“
− T (n+2)

2(n+1)2
+
γ(T )
n+1

+ log(2γ(T )/n)
”
(1 +O((γ(T ))−1)).

Thus, we obtain a finite answer if we can show that there is a choice for γ(T ) with
γ(T )→∞ and at the same time

lim
T→∞

[
− T (n+ 2)

2(n+ 1)2
+
γ(T )
n+ 1

+ log(2γ(T )/n)
]

= 0

(or to some other constant). For that, we consider the equation

AX = BΓ + log(CΓ) = BΓ + log Γ + logC (18)

with given A,B,C > 0. The function F (Γ) = BΓ + log Γ + logC is strictly monotone,
continuous for Γ > 0 and increasing with limΓ→∞ F (Γ) =∞. Hence, we find for all X > 0
one and only one Γ(X) such that (18) holds. In particular, we can choose γ(T ) in a way
such that even

− T (n+ 2)
2(n+ 1)2

+
γ(T )
n+ 1

+ log(2γ(T )/n) = 0

for all T > 0 and at the same time limT→∞ γ(T ) =∞. Thus we have for this choice that

µT (fn) = cnln
√
π (1 +O((γ(T ))−1)) > 0.

On the other hand, if the Gibbs measure ν would be the stationary one, we would have

ν(fn) = 〈ψ0, ψ0 fn〉L2(R3,dx) = 〈ψ0, ψn〉L2(R3,dx) = 0.

Thus in order to keep fn(ω0) integrable in the limit, we need to take γn(T ) = n+2
2(n+1)T +

o(T ). In other words, the allowed speed of pulling depends on order of “moments” we
want to be finite in the limiting measure.

Note that the way how a higher eigenfunction dominates the ground state is different
in both cases. This is due to the sign of the exponent and we will now see this pattern
again in the general case.
For a general radial potential in R3, we may separate radial and angular variables for the
eigenfunctions ψE(r,Θ) = r uE(r)YE(Θ) and the corresponding radial equation is given
by

u′′E = 2
(
V (r)− E − l(l + 1)

r2

)
uE

where l = 0, 1, 2, ... denotes the angular momentum. It will turn out that we need only
consider only l = 0, i.e. radially symmetric eigenfunctions. Indeed, in the following exam-
ple we will restrict the discussion to the case Va(x) := sgn(a) |x|a where −2 < a ≤ 2 and

12



a 6= 0 in R3, but will later remark on how this can be generalized.

Example 3. sgn(a) ra,−2 < a < 2,a 6= 0. The radial equation for l = 0 is given by

u′′E = 2 (sgn(a)ra − E)uE .

By imposing the additional boundary condition uE(0) = 0 we achieve that that the cor-
responding problem is self-adjoint on L2(R3). Self-adjointness then implies the existence
of infinitely many bound states with energies E > 0 if a > 0 and E < 0 if a < 0. We
investigate the asymptotic of the eigenfunctions using their WKB-approximations. By
[11], Ch. 2, 6.1 (4), p. 50, the eigenfunctions uE can be written

uE(r) = (2(Va(r)− E))−1/4 exp
(
−
∫ r

rE

√
2(Va(s)− E)ds

)
(1 + ε(r)) (19)

for all Va considered above (cf. [11], Ch. 2, 6.1.3, p. 52) where ε(x) tends to zero as r
tends to infinity.
That implies in the case a > 0: Let E1 > E0 be two eigenvalues with corresponding
eigenfunctions u1 and u0. Then

u1/u0 =
[
Va − E0

Va − E1

]1/4

exp
(
−
∫ r

rE

(
√

2(Va − E1)−
√

2(Va − E0))ds
)

(1 + ε(r))

= exp
(∫ r

rE

E1 − E0√
2Va

(1 +O(V −3/2
a ))ds

)
(1 + ε(x))

But
∫∞
rE

du
ra/2

=∞ if and only if a ≤ 2. Hence in this case, u1 dominates u0, and the same
is true for the corresponding eigenstates of the Schrödinger operator in R3. Note that the
bound a ≤ 2 fits neatly with the fact that for a > 2, the corresponding potentials give rise
to intrinisically ultracontractive semigroups, and thus the Gibbs measure is known to be
unique.
In the case a < 0, we have infinitely many negative eigenvalues and 0 > E1 > E0 implies
|E0| > |E1|. The WKB-approximation in this case reads

u1/u0 =
[
|E0| − ra

|E1| − ra

]1/4

exp
(∫ r

rE

(
√
|E0| −

√
|E1|)(1 +O(sa))ds

)
(1 + ε(r))

=
∣∣∣∣E0

E1

∣∣∣∣1/4 exp
(∫ r

rE

(
√
|E0| −

√
|E1|)(1 +O(sa))ds

)
(1 + ε(r)).

Thus, u1 dominates u0 also in this case.

Remark. A sufficient condition for the validity of the WKB-approximation formula (19)
in an interval I = [a,∞) is that V ∈ C2(I,R), Q(x) := V (x)− E > 0 for all x ∈ I and

1
8
Q′′

Q3/2
− 5

32
(Q′)2

Q5/2
∈ L1(I).
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Thus, the technique just described is not restricted to the potentials considered above.

Although our final example is technically not covered by any of the above examples, it
is by now rather straightforward. Its main interest lies in the differences it shows between
the “stochastic differential equation” and the Gibbs measures point of view on diffusion
processes, as discussed below.
Example 4. Square well. Let U(x) = −U0 1[−L,L](x), L,U0 > 0 be a finite square
potential well, centered at the origin. If U0 os sufficiently large, the Schrödinger operator
has finitely many eigenvalues E < 0, and the asymptotics of the associated eigenfunctions
is for x→ ±∞ also given by the WKB-approximation

ψE(x) = cE e
√

2(U0−E) |x|.

Hence, the higher eigenstates dominate the ground state as in the preceding examples, and
the speed to pull x(−T ) to infinity is linear as it was (to leading order) in the Coulomb
example. The remarkable point about the present example can be appreciated by looking
back to Section 3 where we argued that µx(−T ),ψ0

T is just given by the stationary solution
of the SDE (11). However, if we would just naively start the SDE (11) at x(−T ) = αT
for some α > 0, then the vast majority of paths would not even reach the support of
the potential U by the time t = 0 and just perform Brownian motion. In particular, any
numerical algorithm relying on purely local information would have to calculate a huge
number of paths before even noticing the existence of the potential. On the other hand,
the weighting of paths in (9) is a global condition, and so it is clear from the outset that
paths that spend long time near the origin will be favoured.

Acknowledgements: We would like to thank Brian Davies for useful remarks on in-
trinsic ultracontractivity, Vassili Gelfreich for valuable comments on the WKB asymptotics
of eigenfunctions, and Martin Hairer and Jochen Voss for stimulating discussions.
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