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Abstract

The main objective of this paper is to give a rigorous treatment of Wigner’s
and Eisenbud’s R-matrix method for scattering matrices of scattering sys-
tems consisting of two selfadjoint extensions of the same symmetric oper-
ator with finite deficiency indices. In the framework of boundary triplets
and associated Weyl functions an abstract generalization of the R-matrix
method is developed and the results are applied to Schrödinger operators
on the real axis.

2000 Mathematical Subject Classification: 47A40, 34L25, 81U20

Keywords: scattering, scattering matrix, R-matrix, symmetric and selfadjoint
operators, extension theory, boundary triplet, Weyl function, ordinary differen-
tial operators

1



R-MATRIX 2

1 Introduction

The R-matrix approach to scattering was originally developed by Kapur and
Peierls [21] in connection with nuclear reactions. Their ideas were improved by
Wigner [40, 41] and Wigner and Eisenbud [42], where the notion of the R-matrix
firstly occurred. A comprehensive overview of the R-matrix theory in nuclear
physics can be found in [7, 24]. The key ideas of the R-matrix theory are rather
independent from the concrete physical situation. In fact, later the R-matrix
method has also found several applications in atomic and molecular physics (see
e.g. [6, 8]) and recently it was applied to transport problems in semiconductor
nano-structures [28, 29, 30, 31, 32, 33, 43, 44, 45]. In [26, 27] an attempt was
made to make the R-matrix method rigorous for elliptic differential operators,
see also [34, 35] for Schrödinger operators and [36, 37] for an extension to Dirac
operators.

The essential idea of the R-matrix theory is to divide the whole physical
system into two spatially divided subsystems which are called internal and ex-
ternal systems, see [40, 41, 42]. The internal system is usually related to a
bounded region, while the external system is given on its complement and is,
therefore, spatially infinite. The goal is to represent the scattering matrix of
a certain scattering system in terms of eigenvalues and eigenfunctions of an
operator corresponding to the internal system with suitable chosen selfadjoint
boundary conditions at the interface between the internal and external system.
This might seem a little strange at first sight since scattering is rather related
to the external system than to the internal one.

It is the main objective of the present paper to make a further step towards
a rigorous foundation of the R-matrix method in the framework of abstract
scattering theory [5], in particular, in the framework of scattering theory for
open quantum systems developed in [3, 4]. This abstract approach has the
advantage that any type of operators, in particular, Schrödinger or Dirac oper-
ators can be treated. We start with the direct orthogonal sum L := A ⊕ T of
two symmetric operators A and T with equal deficiency indices acting in the
Hilbert spaces H and K, respectively. From a physical point of view the systems
{A,H} and {T,K} can be regarded as incomplete internal and external systems,
respectively. The system {L,L}, L := H ⊕ K, is also an incomplete quantum
system which is completed or closed by choosing a selfadjoint extension of L.
The operator L admits several selfadjoint extensions in L. In particular, there
are selfadjoint extensions of the form L0 = A0 ⊕ T0, where A0 and T0 are self-
adjoint extensions of A and T in H and K, respectively. Of course, in this case
the quantum system {L0,L} decomposes into the closed internal and external
system {A0,H} and {T0,K}, respectively, which do not interact. There are other
selfadjoint extensions of L in L which are not of this structure and can be re-
garded as Hamiltonians of quantum systems which take into account a certain
interaction of the internal and external systems {A,H} and {T,K}. In the fol-
lowing we choose a special self-adjoint extension L̃ of L introduced in [9] and
used in [3], see also Theorem 5.1, which gives the right physical Hamiltonian in
applications.
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For example, let the internal system {A,H} and external system {T,K} be
given by the minimal second order differential operators A = − d2

dx2 + v and
T = − d2

dx2 + V in H = L2((xl, xr)) and K = L2(R\(xl, xr)), where (xl, xr) is
a finite interval and v, V are real potentials. The extension L0 can be chosen
to be the direct sum of the selfadjoint extensions of A and T corresponding to
Dirichlet boundary conditions at xl and xr. According to [3, 9] the selfadjoint
extension L̃ coincides in this case with the usual selfadjoint Schrödinger operator

L̃ = − d2

dx2
+ ṽ, ṽ(x) :=

{
v(x), x ∈ (xl, xr),
V (x), x ∈ R\(xl, xr),

in L = L2(R), cf. Section 6.1.
Let again A and T be symmetric operators with equal deficiency indices in

H and K, respectively. It will be assumed that the deficiency indices of A and
T are finite. Then the selfadjoint operator L̃ is a finite rank perturbation in
resolvent sense of L0 = A0 ⊕ T0 and therefore {L̃, L0} is a complete scattering
system, i.e., the wave operators

W±(L̃, L0) := s- lim
t→±∞

eiteLe−itL0P ac(L0)

exist and map onto the absolutely continuous subspace Hac(L̃) of L̃, where
P ac(L0) is the orthogonal projection onto Hac(L0), cf. [2]. The scattering
operator

S := W+(L̃, L0)∗W−(L̃, L0)

regarded as an unitary operator in the absolutely continuous subspace Hac(L0) is
unitarily equivalent to a multiplication operator induced by a family of unitary
matrices {S(λ)}λ∈R in a spectral representation of the absolutely continuous
part of L0. This multiplication operator {S(λ)}λ∈R is called the scattering
matrix of the scattering system {L̃, L0} and is one of the most important objects
in mathematical scattering theory. The case that the spectrum σ(A0) is discrete
is of particular importance in physical applications, e.g., modeling of quantum
transport in semiconductors. In this case the scattering matrix of {L̃, L0} is
given by

S(λ) = I − 2i
√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)),

where M(·) and τ(·) are certain ”abstract” Titchmarsh-Weyl functions corre-
sponding to the internal and external systems, respectively, see Corollary 5.2.

The R-matrix {R(λ)}λ∈R of {L̃, L0} is defined as the Cayley transform of
the scattering matrix {S(λ)}λ∈R, i.e.,

R(λ) = i(I − S(λ))(I + S(λ))−1,

and the problem in the R-matrix theory is to represent {R(λ)}λ∈R in terms
of eigenvalues and eigenfunctions of a suitable chosen closed internal system
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{Â,H}. By the inverse Cayley transform this immediately also yields a repre-
sentation of the scattering matrix by the same quantities.

For Schrödinger operators the problem is usually solved by choosing appro-
priate selfadjoint boundary conditions at the interface between the internal and
external system, in particular, Neumann boundary conditions. We show that in
the abstract approach to the R-matrix theory the problem can be solved within
the framework of abstract boundary triplets, which allow to characterize all
selfadjoint extensions of A by abstract boundary conditions, cf. [10, 11, 12, 19].
It is one of our main objectives to prove that there always exists a family of
closed internal systems {A(λ),H}λ∈R given by abstract boundary conditions
connected with the function τ(·), such that the R-matrix {R(λ)}λ∈R and the
scattering matrix {S(λ)}λ∈R of {L̃, L0} can be expressed with the help of the
eigenvalues and eigenfunctions of A(λ) for a.e. λ ∈ R, cf. Theorem 5.5. This
representation requires in addition that the internal Hamiltonians A(λ) satisfy
A(λ) ≤ A0, which is always true if A0 is the Friedrichs extension of A. More-
over, our general representation results also indicate that even for small energy
ranges it is rather unusual that the R-matrix and the scattering matrix can
be represented by the eigenvalues and eigenfunctions of a single λ-independent
internal Hamiltonian Â.

As an application again the second order differential operators A = − d2

dx2 +v
and T = − d2

dx2 + V from above are investigated and particular attention is paid
to the case where the potential V is a real constant. Then the family {A(λ)}λ∈R
reduces to a single selfadjoint operator, namely, to the Schrödinger operator in
L2((xl, xr)) with Neumann boundary conditions. In general, however, this is
not the case. Indeed, even in the simple case where V is constant on (−∞, xl)
and (xr,∞) but the constants are different, a λ-dependent family of internal
Hamiltonians is required for a certain energy interval to obtain a representation
of the R-matrix and the scattering matrix in terms of eigenfunctions, see Sec-
tion 6.2.1. The condition A(λ) ≤ A0 is always satisfied if A0 is chosen to be the
Schrödinger operator with Dirichlet boundary conditions. Finally, we note that
it is not possible to represent the R-matrix and the scattering matrix in terms of
eigenfunctions of an internal Hamiltonian with Dirichlet boundary conditions.

The paper is organized as follows. In Section 2 we briefly recall some basic
facts on boundary triplets and associated Weyl functions corresponding to sym-
metric operators in Hilbert spaces. It is the aim of the simple examples from
semiconductor modeling in Section 2.3 to make the reader more familiar with
this efficient tool in extension and spectral theory of symmetric and selfadjoint
operators. Section 3 deals with semibounded extensions and representations of
Weyl functions in terms of eigenfunctions of selfadjoint extensions of a given
symmetric operator. In Section 4 we prove general representation theorems for
the scattering matrix and the R-matrix of a scattering system which consists of
two selfadjoint extensions of the same symmetric operator. Section 5 is devoted
to scattering theory in open quantum systems, and with the preparations from
the previous sections we easily obtain the abovementioned representation of the
R-matrix and scattering matrix of {L̃, L0} in terms of the eigenfunctions of an
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energy dependent selfadjoint operator family. In the last section the general re-
sults are applied to scattering systems consisting of orthogonal sums of regular
and singular ordinary second order differential operators.

2 Boundary triplets and Weyl functions

2.1 Boundary triplets

Let H be a separable Hilbert space and let A be a densely defined closed sym-
metric operator with equal deficiency indices n±(A) = dim ker(A∗ ∓ i) ≤ ∞ in
H. We use the concept of boundary triplets for the description of the closed
extensions of A in H, see e.g. [10, 11, 12, 19].

Definition 2.1 Let A be a densely defined closed symmetric operator in H. A
triplet Π = {H,Γ0,Γ1} is called a boundary triplet for the adjoint operator A∗

if H is a Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear mappings such
that the abstract Green’s identity,

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g),

holds for all f, g ∈ dom (A∗) and the mapping Γ :=
(

Γ0
Γ1

)
: dom (A∗) → H⊕H

is surjective.

We refer to [11] and [12] for a detailed study of boundary triplets and recall
only some important facts. First of all a boundary triplet Π = {H,Γ0,Γ1} for
A∗ always exists since the deficiency indices n±(A) of A are assumed to be
equal. In this case n±(A) = dimH holds. We also note that a boundary triplet
for A∗ is not unique.

In order to describe the set of closed extensions Â ⊆ A∗ of A with the help of
a boundary triplet Π = {H,Γ0,Γ1} for A∗ we introduce the set C̃(H) of closed
linear relations in H, that is, the set of closed linear subspaces of H⊕H. If Θ
is a closed linear operator in H, then Θ will be identified with its graph G(Θ),

Θ =̃ G(Θ) =
{(

h
Θh

)
: h ∈ dom (Θ)

}
.

Therefore, the set of closed linear operators in H is a subset of C̃(H). Note
that Θ ∈ C̃(H) is the graph of an operator if and only if the multivalued part
mul (Θ) :=

{
h′ ∈ H :

(
0
h′
)
∈ Θ

}
is trivial. The resolvent set ρ(Θ) and the

point, continuous and residual spectrum σp(Θ), σc(Θ) and σr(Θ) of a closed
linear relation Θ are defined in a similar way as for closed linear operators, cf.
[13]. Recall that the adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ in H is
defined as

Θ∗ :=
{(

k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
(2.1)

and Θ is said to be symmetric (selfadjoint) if Θ ⊆ Θ∗ (resp. Θ = Θ∗). We note
that definition (2.1) extends the usual definition of the adjoint operator. Let
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now Θ be a selfadjoint relation in H and let Pop be the orthogonal projection
in H onto Hop := (mul (Θ))⊥ = dom (Θ). Then

Θop =
{(

x
Popx

′

)
:
(
x
x′

)
∈ Θ

}
is a selfadjoint (possibly unbounded) operator in the Hilbert space Hop and Θ
can be written as the direct orthogonal sum of Θop and a ”pure” relation Θ∞
in the Hilbert space H∞ := (1− Pop)H = mulΘ,

Θ = Θop ⊕Θ∞, Θ∞ :=
{(

0
x′

)
: x′ ∈ mul Θ

}
∈ C̃(H∞). (2.2)

With a boundary triplet Π = {H,Γ0,Γ1} for A∗ one associates two selfadjoint
extensions of A defined by

A0 := A∗ � ker(Γ0) and A1 := A∗ � ker(Γ1). (2.3)

A description of all proper (symmetric, selfadjoint) extensions of A is given in
the next proposition.

Proposition 2.2 Let A be a densely defined closed symmetric operator in H
with equal deficiency indices and let Π = {H,Γ0,Γ1} be a boundary triplet for
A∗. Then the mapping

Θ 7→ AΘ := A∗ � Γ(−1)Θ = A∗ �
{
f ∈ dom (A∗) : (Γ0f,Γ1f)> ∈ Θ

}
(2.4)

establishes a bijective correspondence between the set C̃(H) and the set of closed
extensions AΘ ⊆ A∗ of A. Furthermore

(AΘ)∗ = AΘ∗

holds for any Θ ∈ C̃(H). The extension AΘ in (2.4) is symmetric (selfadjoint,
dissipative, maximal dissipative) if and only if Θ is symmetric (selfadjoint, dis-
sipative, maximal dissipative).

It is worth to note that the selfadjoint operator A0 = A∗ � ker(Γ0) in (2.3)
corresponds to the ”pure” relation Θ∞ =

{(
0
h

)
: h ∈ H

}
. Moreover, if Θ is an

operator, then (2.4) can also be written in the form

AΘ = A∗ � ker
(
Γ1 −ΘΓ0

)
, (2.5)

so that, in particular A1 in (2.3) corresponds to Θ = 0 ∈ [H]. Here and in
the following [H] stands for the space of bounded everywhere defined linear
operators in H. We note that if the product ΘΓ0 in (2.5) is interpreted in the
sense of relations, then (2.5) is even true for parameters Θ with mul (Θ) 6= {0}.

Later we shall often be concerned with closed simple symmetric operators.
Recall that a closed symmetric operator A is said to be simple if there is no
nontrivial subspace which reduces A to a selfadjoint operator. By [23] this is
equivalent to

H = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}
,

where clospan{·} denotes the closed linear span of a set. Note that a simple
symmetric operator has no eigenvalues.
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2.2 Weyl functions and resolvents of extensions

Let again A be a densely defined closed symmetric operator in H with equal
deficiency indices. A point λ ∈ C is of regular type if ker(A− λ) = {0} and the
range ran (A − λ) is closed. We denote the defect subspace of A at the points
λ ∈ C of regular type by Nλ = ker(A∗ − λ). The space of bounded everywhere
defined linear operators mapping the Hilbert space H into H will be denoted by
[H,H]. The following definition was given in [10, 11].

Definition 2.3 Let A be a densely defined closed symmetric operator in H, let
Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and let A0 = A∗ � ker(Γ0). The
operator-valued functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H] defined
by

γ(λ) :=
(
Γ0 � Nλ

)−1 and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.6)

are called the γ-field and the Weyl function, respectively, corresponding to the
boundary triplet Π.

It follows from the identity dom (A∗) = ker(Γ0)+̇Nλ, λ ∈ ρ(A0), where as
above A0 = A∗ � ker(Γ0), that the γ-field γ(·) in (2.6) is well defined. It is easily
seen that both γ(·) and M(·) are holomorphic on ρ(A0), and the relations

γ(λ) =
(
1 + (λ− µ)(A0 − λ)−1

)
γ(µ), λ, µ ∈ ρ(A0),

and
M(λ)−M(µ)∗ = (λ− µ)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.7)

are valid (see [11]). The identity (2.7) yields that M(·) is a Nevanlinna function,
that is, M(·) is holomorphic on C\R, M(λ) = M(λ)∗ for all λ ∈ C\R and
=m (M(λ)) is a nonnegative operator for all λ in the upper half plane C+ =
{λ ∈ C : =m (λ) > 0}. Moreover, it follows from (2.7) that 0 ∈ ρ(=m (M(λ)))
holds for all λ ∈ C\R.

The following well-known theorem shows how the spectral properties of the
closed extensions AΘ of A can be described with the help of the Weyl function,
cf. [11, 12].

Theorem 2.4 Let A be a densely defined closed symmetric operator in H and
let {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ and Weyl function M .
Let A0 = A∗ � ker(Γ0) and let AΘ ⊆ A∗ be a closed extension corresponding to
some Θ ∈ C̃(H) via (2.4)-(2.5). Then a point λ ∈ ρ(A0) belongs to the resolvent
set ρ(AΘ) if and only if 0 ∈ ρ(Θ−M(λ)) and the formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ (2.8)

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ). Moreover, λ belongs to the point spectrum
σp(AΘ), to the continuous spectrum σc(AΘ) or to the residual spectrum σr(AΘ)
if and only if 0 ∈ σi(Θ−M(λ)), i = p, c, r, respectively.
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2.3 Regular and singular Sturm-Liouville operators

We are going to illustrate the notions of boundary triplets, Weyl functions and
γ-fields with some well-known simple examples.

2.3.1 Finite intervals

Let us first consider a Schrödinger operator on the bounded interval (xl, xr) ⊂ R.
The minimal operator A in H = L2((xl, xr)) is defined by

(Af)(x) := −1
2
d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

dom (A) :=

f ∈ H :
f, 1

mf
′ ∈W 1,2((xl, xr))

f(xl) = f(xr) = 0(
1
mf

′) (xl) =
(

1
mf

′) (xr) = 0

 ,

(2.9)

where it is assumed that the effective mass m satisfies m > 0 and m, 1
m ∈

L∞((xl, xr)), and that v ∈ L∞((xl, xr)) is a real function. It is well known that
A is a densely defined closed simple symmetric operator in H with deficiency
indices n+(A) = n−(A) = 2. The adjoint operator A∗ is given by

(A∗f)(x) = −1
2
d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

dom (A∗) =
{
f ∈ H : f, 1

mf
′ ∈W 1,2((xl, xr))

}
.

It is straightforward to verify that ΠA = {C2,Γ0,Γ1}, where

Γ0f :=
(

f(xl)
f(xr)

)
and Γ1f :=

1
2

( (
1
mf

′) (xl)
−
(

1
mf

′) (xr)

)
,

f ∈ dom (A∗), is a boundary triplet for A∗. Note, that the selfadjoint extension
A0 := A∗ � ker(Γ0) corresponds to Dirichlet boundary conditions, that is,

dom (A0) =
{
f ∈ H : f, 1

mf
′ ∈W 1,2((xl, xr)), f(xl) = f(xr) = 0

}
. (2.10)

The selfadjoint extension A1 corresponds to Neumann boundary conditions, i.e.,

dom (A1) =
{
f ∈ H :

f, 1
mf

′ ∈W 1,2((xl, xr)),
( 1

mf
′)(xl) = ( 1

mf
′)(xr) = 0

}
. (2.11)

Let ϕλ and ψλ, λ ∈ C, be the fundamental solutions of the homogeneous differ-
ential equation − 1

2
d
dx

1
m

d
dxu+ v u = λu satisfying the boundary conditions

ϕλ(xl) = 1, ( 1
2mϕ

′
λ)(xl) = 0 and ψλ(xl) = 0, ( 1

2mψ
′
λ)(xl) = 1.

Note that ϕλ and ψλ belong to L2((xl, xr)) since (xl, xr) is a finite interval. A
straightforward computation shows(

(A0 − λ)−1f
)
(x) = ϕλ(x)

∫ x

xl

ψλ(t)f(t) dt+ ψλ(x)
∫ xr

x

ϕλ(t)f(t) dt

− ϕλ(xr)
ψλ(xr)

ψλ(x)
∫ xr

xl

ψλ(t)f(t) dt
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for x ∈ (xl, xr), f ∈ L2((xl, xr)) and all λ ∈ ρ(A0). In order to calculate the
γ-field and Weyl function corresponding to ΠA = {C2,Γ0,Γ1} note that every
element fλ ∈ Nλ = ker(A∗ − λ) admits the representation

fλ(x) = ξ0ϕλ(x) + ξ1ψλ(x), x ∈ (xl, xr), λ ∈ C, ξ0, ξ1 ∈ C,

where the coefficients ξ0, ξ1 are uniquely determined. The relation

Γ0fλ =
(

1 0
ϕλ(xr) ψλ(xr)

)(
ξ0
ξ1

)
yields

1
ψλ(xr)

(
ψλ(xr) 0
−ϕλ(xr) 1

)
Γ0fλ =

(
ξ0
ξ1

)
for ψλ(xr) 6= 0 (that is λ 6∈ σ(A0)) and it follows that the γ-field is given by

γ(λ) : C2 → L2((xl, xr)),(
ξ0
ξ1

)
7→ 1

ψλ(xr)
(
(ϕλ(·)ψλ(xr)− ψλ(·)ϕλ(xr))ξ0 + ψλ(·)ξ1

)
.

We remark that the adjoint operator admits the representation

γ(λ)∗f =
1

ψλ(xr)

(∫ xr

xl

(
ϕλ(y) ψλ(xr)− ψλ(y) ϕλ(xr)

)
f(y) dy∫ xr

xl
ψλ(y)f(y) dy

)
,

f ∈ L2((xl, xr)). The Weyl function M(λ) = Γ1γ(λ), λ ∈ ρ(A0), then becomes

M(λ) =
1

ψλ(xr)

(
−ϕλ(xr) 1

1 −( 1
2mψ

′
λ)(xr)

)
.

All selfadjoint extension of A can now be described with the help of selfadjoint
relations Θ = Θ∗ in C2 via (2.4)-(2.5) and their resolvents can be expressed in
terms of the resolvent of A0, the Weyl function M(·) and the γ-field γ(·), cf.
Theorem 2.4. We leave the general case to the reader and note only that if Θ
is a selfadjoint matrix of the form

Θ =
(
κl 0
0 κr

)
, κl, κr ∈ R,

then

dom (AΘ) =
{
f ∈ dom (A∗) :

( 1
2mf

′)(xl) = κlf(xl)
( 1
2mf

′)(xr) = −κrf(xr)

}
and(

Θ−M(λ)
)−1 =

1
ψλ(xr) det(Θ−M(λ))

(
κrψλ(xr) + ( 1

2mψ
′
λ)(xr) 1

1 κlψλ(xr) + ϕλ(xr)

)
.

Obviously the case κl = κr = 0 leads to the Neumann operator A1.
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2.3.2 Infinite intervals

Next we consider a singular problem on the infinite interval (−∞, xl) in the
Hilbert space Kl = L2((−∞, xl)). The minimal operator is defined by

(Tlgl)(x) := −1
2
d

dx

1
ml(x)

d

dx
gl(x) + vl(x)gl(x),

dom (Tl) :=
{
gl ∈ Kl :

gl,
1

ml
g′l ∈W 1,2((−∞, xl))

gl(xl) =
(

1
ml
g′l
)
(xl) = 0

}
,

where ml > 0, ml,
1

ml
∈ L∞((−∞, xl)) and vl ∈ L∞((−∞, xl)) is real. Then

Tl is a densely defined closed simple symmetric operator with deficiency indices
n−(Tl) = n+(Tl) = 1, see e.g. [39] and [18] for the fact that Tl is simple. The
adjoint operator T ∗ is given by

(T ∗l gl)(x) = −1
2
d

dx

1
ml(x)

d

dx
gl(x) + vl(x)gl(x),

dom (T ∗l ) =
{
gl ∈ Kl : gl,

1
ml
g′l ∈W 1,2((−∞, xl))

}
.

One easily verifies that ΠTl
= {C,Υl

0,Υ
l
1},

Υl
0gl := gl(xl) and Υl

1gl := −
(

1
2ml

g′l

)
(xl), gl ∈ dom (T ∗l ),

is a boundary triplet for T ∗l . Let ϕλ,l and ψλ,l be the fundamental solutions of
the equation − 1

2
d
dx

1
ml

d
dxu+ vlu = λu satisfying the boundary conditions

ϕλ,l(xl) = 1,
(

1
2ml

ϕ′λ,l

)
(xl) = 0 and ψλ,l(xl) = 0,

(
1

2ml
ψ′λ,l

)
(xl) = 1.

Then there exists a scalar function ml such that for each λ ∈ C \R the function

x 7→ gλ,l(x) := ϕλ,l(x)−ml(λ)ψλ,l(x)

belongs to L2((−∞, xl)), cf. [39]. The function ml is usually called the
Titchmarsh-Weyl function or Titchmarsh-Weyl coefficient and in our setting
ml coincides with the Weyl function of the boundary triplet ΠTl

= {C,Υl
0,Υ

l
1},

since

Υl
1gλ,l = ml(λ)Υl

0gλ,l, gλ,l ∈ Nλ,l := ker(T ∗l − λ), λ ∈ C \ R.

An analogous example is the Schrödinger operator on the infinite interval
(xr,∞) in Kr = L2((xr,∞)) defined by

(Trgr)(x) := −1
2
d

dx

1
mr(x)

d

dx
gr(x) + vr(x)gr(x),

dom (Tr) :=
{
gr ∈ Kr :

gr,
1

mr
g′r ∈W 1,2((xr,∞))

gr(xr) =
(

1
mr
g′r
)
(xr) = 0

}
,
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where mr > 0, mr,
1

mr
∈ L∞((xr,∞)) and vr ∈ L∞((xr,∞)) is real. The

adjoint operator T ∗r is

(T ∗r gr)(x) = −1
2
d

dx

1
mr(x)

d

dx
gr(x) + vr(x)gr(x),

dom (T ∗r ) =
{
gr ∈ Kr : gr,

1
mr
g′r ∈W 1,2((xr,∞))

}
and ΠTr = {C,Υr

0,Υ
r
1},

Υr
0gr := gr(xr) and Υr

1gr :=
(

1
2mr

g′r

)
(xr), gr ∈ dom (T ∗r ),

is a boundary triplet for T ∗r . Let ϕλ,r and ψλ,r be the fundamental solutions of
the equation − 1

2
d
dx

1
mr

d
dxu+ vru = λu satisfying the boundary conditions

ϕλ,r(xr) = 1,
(

1
2mr

ϕ′λ,r

)
(xr) = 0 and ψλ,r(xr) = 0,

(
1

2mr
ψ′λ,r

)
(xr) = 1.

Then there exists a scalar function mr such that for each λ ∈ C \R the function

x 7→ gλ,r(x) := ϕλ,r(x) + mr(λ)ψλ,r(x)

belongs to L2((xr,∞)). As above mr coincides with the Weyl function of the
boundary triplet ΠTr := {C,Υr

0,Υ
r
1}.

For our purposes it is useful to consider the direct sum of the two operators
Tl and Tr. To this end we introduce the Hilbert space

K := L2((−∞, xl) ∪ (xr,∞))=̃Kl ⊕ Kr.

An element g ∈ K will be written in the form g = gl⊕gr, where gl ∈ L2((−∞, xl))
and gr ∈ L2((xr,∞)). The operator T = Tl ⊕ Tr in K is defined by

(Tg)(x) =

(
− 1

2
d
dx

1
ml(x)

d
dxgl(x) + vlgl(x) 0

0 − 1
2

d
dx

1
mr(x)

d
dxgr(x) + vrgr(x)

)
,

dom (T ) = dom (Tl)⊕ dom (Tr),

and T is a densely defined closed simple symmetric operator in K with deficiency
indices n+(T ) = n−(T ) = 2. The adjoint operator T ∗ is given by

(T ∗g)(x) =

(
− 1

2
d
dx

1
ml(x)

d
dxgl(x) + vlgl(x) 0

0 − 1
2

d
dx

1
mr(x)

d
dxgr(x) + vrgr(x)

)
,

dom (T ∗) = dom (T ∗l )⊕ dom (T ∗r ).

One easily checks that ΠT = {C2,Υ0,Υ1}, Υ0 := (Υl
0,Υ

r
0)
>, Υ1 := (Υl

1,Υ
r
1)
>,

that is,

Υ0g =
(

gl(xl)
gr(xr)

)
and Υ1g =

1
2

(
−
(

1
ml
g′l
)
(xl)(

1
mr
g′r
)
(xr)

)
,
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g ∈ dom (T ∗), is a boundary triplet for T ∗. Note that T0 = T ∗ � ker(Υ0) is the
restriction of T ∗ to the domain

dom (T0) =
{
g ∈ dom (T ∗) : gl(xl) = gr(xr) = 0

}
,

that is, T0 corresponds to Dirichlet boundary conditions at xl and xr. The Weyl
function τ(·) corresponding to the boundary triplet ΠT = {C2,Υ0,Υ1} is given
by

λ 7→ τ(λ) =
(

ml(λ) 0
0 mr(λ)

)
, λ ∈ ρ(T0).

3 Semibounded extensions and expansions in
eigenfunctions

Let A be a densely defined closed symmetric operator in the separable Hilbert
space H and let {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ(·) and
Weyl function M(·). Fix some Θ = Θ∗ ∈ C̃(H) and let AΘ ⊆ A∗ be the
corresponding selfadjoint extension via (2.4).

In the next proposition it will be assumed that A0 = A∗ � ker(Γ0) and AΘ

(and hence also the symmetric operator A) are semi-bounded from below. Note
that if A has finite defect it is sufficient for this to assume that A is semibounded,
cf. Corollary 3.2.

Proposition 3.1 Let A be a densely defined closed symmetric operator in H and
let {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ(·) and Weyl function
M(·). Let AΘ be a selfadjoint extension of A corresponding to Θ = Θ∗ ∈ C̃(H)
and assume that A0 = A∗ � ker(Γ0) and AΘ are semibounded from below. Then
AΘ ≤ A0 holds if and only if

ran
(
γ(λ)

(
Θ−M(λ)

)−1) ⊆ dom
(√

AΘ − λ
)

(3.1)

is satisfied for all λ < min{inf σ(A0), inf σ(AΘ)} .

Proof. Let AΘ ≤ A0. From (2.8) we get

(AΘ − λ)−1 − (A0 − λ)−1 = γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ ≥ 0

for λ < min{inf σ(A0), inf σ(AΘ)} which yields(
Θ−M(λ)

)−1 ≥ 0.

By [16, Corollary 7-2] there is a contraction Y acting from H into H such that(
Θ−M(λ)

)−1/2
γ(λ)∗ = Y (AΘ − λ)−1/2.

Since λ ∈ R the adjoint has the form

γ(λ)
(
Θ−M(λ)

)−1/2 = (AΘ − λ)−1/2Y ∗,
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so that
ran

(
γ(λ)

(
Θ−M(λ)

)−1/2) ⊆ dom
(√

AΘ − λ
)
.

Therefore

ran
(
γ(λ)

(
Θ−M(λ)

)−1) ⊆
ran

(
γ(λ)

(
Θ−M(λ)

)−1/2) ⊆ dom
(√

AΘ − λ
)

and (3.1) is proved.
Conversely, let us assume that condition (3.1) is satisfied. Then for each

λ < min{inf σ(A0), inf σ(AΘ)} the operator

F ∗Θ(λ) :=
√
AΘ − λ γ(λ)

(
Θ−M(λ)

)−1 (3.2)

is well defined onH and closed, and hence bounded. Besides F ∗Θ(λ) we introduce
the densely defined operator

FΘ(λ) = Γ0(AΘ − λ)−1/2,

dom (FΘ(λ)) =
{
f ∈ H : (AΘ − λ)−1/2f ∈ dom (A∗)

} (3.3)

for λ < inf σ(AΘ).
It follows from (2.8), A0 = A∗ � ker(Γ0) and Γ0γ(λ) = IH that

Γ0(AΘ − λ)−1 =
(
Θ−M(λ)

)−1
γ(λ)∗ (3.4)

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ). Thus for λ < min{inf σ(A0), inf σ(AΘ)} (3.2)
becomes

F ∗Θ(λ) =
√
AΘ − λ

(
Γ0(AΘ − λ)−1

)∗
and together with (3.3) we conclude

FΘ(λ) = Γ0(AΘ − λ)−1/2 ⊆
(√

AΘ − λ
(
Γ0(AΘ − λ)−1

)∗)∗ =
(
F ∗Θ(λ)

)∗
.

This implies that FΘ(λ) admits a bounded everywhere defined extension FΘ(λ)
for λ < min{inf σ(A0), inf σ(AΘ)} such that FΘ(λ)∗ = FΘ(λ)∗ = F ∗Θ(λ). From
(3.4) and M(λ) = M(λ)∗ we find

Γ0

(
Γ0(AΘ − λ)−1

)∗ =
(
Θ−M(λ)

)−1
, λ ∈ ρ(A0) ∩ ρ(AΘ),

so that for λ < min{inf σ(A0), inf σ(AΘ)}(
Θ−M(λ)

)−1 = Γ0(AΘ − λ)−1/2
√
AΘ − λ

(
Γ0(AΘ − λ)−1

)∗
= FΘ(λ)FΘ(λ)∗ ≥ 0.

Using (2.8) we find
(AΘ − λ)−1 ≥ (A0 − λ)−1

for λ < min{inf σ(A0), inf σ(AΘ)} which yields AΘ ≤ A0. �
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Corollary 3.2 Let A be a densely defined closed symmetric operator in H and
let {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ(·) and Weyl func-
tion M(·). Assume that A has finite defect and that A0 = A∗ � ker(Γ0) is
the Friedrichs extension. Then every selfadjoint extension AΘ of A in H is
semibounded from below and

ran
(
γ(λ)

(
Θ−M(λ)

)−1) ⊆ dom (
√
AΘ − λ)

is satisfied for all λ < min{inf σ(A0), inf σ(AΘ)}.

In the next proposition we obtain a representation of the function λ 7→ (Θ−
M(λ))−1 in terms of eigenvalues and eigenfunctions of AΘ. This representation
will play an important role in Section 5.

Proposition 3.3 Let A be a densely defined closed symmetric operator in H
and let {H,Γ0,Γ1} be a boundary triplet for A∗ with Weyl function M(·). Let
AΘ be a selfadjoint extension of A corresponding to Θ = Θ∗ ∈ C̃(H) and assume
that A0 = A∗ � ker(Γ0) and AΘ are semibounded from below, AΘ ≤ A0, and that
the spectrum of AΘ is discrete. Then the [H]-valued function λ 7→ (Θ−M(λ))−1

admits the representation

(
Θ−M(λ)

)−1 =
∞∑

k=1

(λk − λ)−1(·,Γ0ψk)Γ0ψk, λ ∈ ρ(A0) ∩ ρ(AΘ), (3.5)

where {λk}, k = 1, 2, . . . , are the eigenvalues of AΘ in increasing order and {ψk}
are the corresponding eigenfunctions. The convergence in (3.5) is understood in
the strong sense.

Proof. Let λ0 < min{inf σ(A0), inf σ(AΘ)} and let Em, m ∈ N, be the orthog-
onal projection in H onto the subspace spanned by the eigenfunctions {ψk},
k = 1, . . . ,m < ∞, of AΘ. Considerations similar as in the proof of Proposi-
tion 3.1 show

Γ0Emγ(λ0)
(
Θ−M(λ0)

)−1

= Γ0(AΘ − λ0)−1/2Em

√
AΘ − λ0 γ(λ0)

(
Θ−M(λ0)

)−1

= FΘ(λ0)EmFΘ(λ0)∗,

where FΘ(λ0) is defined as in (3.3) and FΘ(λ0) ∈ [H,H] denotes the closure.
Hence we have

lim
m→∞

Γ0Emγ(λ0)
(
Θ−M(λ0)

)−1 = FΘ(λ0)FΘ(λ0)∗ =
(
Θ−M(λ0)

)−1

in the strong topology. For λ ∈ ρ(A0) ∩ ρ(AΘ) we conclude from the represen-
tations (

Θ−M(λ)
)−1 = Γ0

(
Γ0(AΘ − λ)−1

)∗
= FΘ(λ0)(AΘ − λ0)(AΘ − λ)−1FΘ(λ0)∗
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and

Γ0Emγ(λ)
(
Θ−M(λ)

)−1 = FΘ(λ0)(AΘ − λ0)(AΘ − λ)−1EmFΘ(λ0)∗

that
lim

m→∞
Γ0Emγ(λ)

(
Θ−M(λ)

)−1 =
(
Θ−M(λ)

)−1

in the strong sense for all λ ∈ ρ(A0) ∩ ρ(AΘ).
Further, since the resolvent of AΘ admits the representation

(AΘ − λ)−1 =
∞∑

k=1

(λk − λ)−1(·, ψk)ψk, λ ∈ ρ(AΘ),

where the convergence is in the strong sense, we find

Γ0(AΘ − λ)−1Em =
m∑

k=1

(λk − λ)−1(·, ψk)Γ0ψk.

For λ ∈ ρ(A0) ∩ ρ(AΘ) the adjoint operator is given by

Em

(
Γ0(AΘ − λ)−1

)∗ = Em

((
Θ−M(λ)

)−1
γ(λ)∗

)∗ = Emγ(λ)
(
Θ−M(λ)

)−1

=
m∑

k=1

(λk − λ)−1(·,Γ0ψk)ψk.

Here we have again used (2.8), A0 = A∗ � ker(Γ0) and Γ0γ(λ) = IH. Replacing
λ by λ and applying Γ0 we obtain from the above formula the representation

Γ0Emγ(λ)
(
Θ−M(λ)

)−1 =
m∑

k=1

(λk − λ)−1(·,Γ0ψk)Γ0ψk

for all λ ∈ ρ(A0)∩ ρ(AΘ). By the above arguments the left hand side converges
in the strong sense to (Θ−M(λ))−1. Therefore we obtain (3.5). �

The special case Θ = 0 ∈ [H] will be of particular interest in our further
investigations. In this situation Proposition 3.3 reads as follows.

Corollary 3.4 Let A be a densely defined closed symmetric operator in H and
let {H,Γ0,Γ1} be a boundary triplet for A∗ with Weyl function M(·). Assume
that A0 = A∗ � ker(Γ0) and A1 = A∗ � ker(Γ1) are semibounded from below,
A1 ≤ A0, and that σ(A1) is discrete. Then the [H]-valued function λ 7→M(λ)−1

admits the representation

M(λ)−1 =
∞∑

k=1

(λ− λk)−1(·,Γ0ψk)Γ0ψk, λ ∈ ρ(A0) ∩ ρ(A1), (3.6)

where {λk}, k = 1, 2, . . . , are the eigenvalues of A1 in increasing order, {ψk}
are the corresponding eigenfunctions, and the convergence in (3.6) is understood
in the strong sense.
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Proposition 3.3 and Corollary 3.4 might suggest that the Weyl function M
can be represented as a convergent series involving the eigenvalues and eigen-
functions of the selfadjoint operator A0. The following proposition shows that
this is not possible if A0 is chosen to be the Friedrichs extension.

Proposition 3.5 Let A be a densely defined closed symmetric operator in H
with finite or infinite deficiency indices and let {H,Γ0,Γ1} be a boundary triplet
for A∗. Assume that A0 = A∗ � ker(Γ0) and A1 = A∗ � ker(Γ1) are semi-
bounded, that A0 coincides with the Friedrichs extension of A and that σ(A0) is
discrete. Then the limit

lim
m→∞

m∑
k=1

(λ− µk)−1(·,Γ1φk)Γ1φk, λ ∈ ρ(A0),

where {µk}, k = 1, 2, . . . , are the eigenvalues of A0 in increasing order and {φk}
are the corresponding eigenfunctions, does not exist.

Proof. We set
Q(λ) := Γ1(A0 − λ)−1, λ ∈ ρ(A0), (3.7)

and
G(λ) := Γ1Q(λ)∗ = Γ1

(
Γ1(A0 − λ)−1

)∗
, λ ∈ ρ(A0).

Taking into account the relation

(A1 − λ)−1 = (A0 − λ)−1 − γ(λ)M(λ)−1γ(λ)∗, λ ∈ ρ(A0) ∩ ρ(A1),

and (2.6) we find

Q(λ) = γ(λ)∗ and G(λ) = M(λ) λ ∈ ρ(A0) ∩ ρ(A1).

Let m ∈ N, let Em be the projection onto the subspace spanned by the eigen-
functions {φk}, k = 1, . . . ,m, and define

Qm(λ) := Q(λ)Em and Gm(λ) := Γ1EmQ(λ)∗, λ ∈ ρ(A0).

With the help of

(A0 − λ)−1 =
∞∑

k=1

(µk − λ)−1(·, φk)φk

and (3.7) we find the representation

Gm(λ) =
m∑

k=1

(µk − λ)−1 (·,Γ1φk) Γ1φk, λ ∈ ρ(A0) ∩ ρ(A1),

and on the other hand

Gm(λ) = Qm(λ)(A0 − λ)EmQ(λ)∗ = γ(λ)∗(A0 − λ)Emγ(λ)
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for λ ∈ ρ(A0) ∩ ρ(A1).
Let λ ∈ R, λ < min{inf σ(A0), inf σ(A1)}, and assume that there is an

element η ∈ H such that the limit

lim
m→∞

Gm(λ)η = lim
m→∞

m∑
k=1

(µk − λ)−1 (η,Γ1φk) Γ1φk (3.8)

exists. Since for h := γ(λ)η ∈ Nλ = ker(A∗ − λ)

(Gm(λ)η, η) =
(
(A0 − λ)Emγ(λ)η, γ(λ)η

)
=
∥∥∥√A0 − λEmh

∥∥∥2

we obtain from (3.8) that the limit limm→∞ ‖
√
A0 − λEmh‖ exists and is finite.

Therefore there is a subsequence {mn}, n ∈ N, such that

g := w- lim
n→∞

√
A0 − λEmnh and lim

n→∞
Emnh = h.

Hence we conclude h ∈ dom (
√
A0 − λ) and g =

√
A0 − λh. But according to

[1, Lemma 2.1] we have dom (
√
A0 − λ)∩Nλ = {0}, so that h = 0 and therefore

η = 0. �

4 Scattering theory and representation of S and
R-matrices

Let A be a densely defined closed simple symmetric operator in the separable
Hilbert space H and assume that the deficiency indices of A coincide and are
finite, n+(A) = n−(A) < ∞. Let {H,Γ0,Γ1} be a boundary triplet for A∗,
A0 = A∗ � ker(Γ0), and let AΘ be a selfadjoint extension of A which corresponds
to a selfadjoint relation Θ ∈ C̃(H). Note that dimH = n±(A) is finite. Let
Pop be the orthogonal projection in H onto the subspace Hop := dom (Θ) and
decompose Θ as in (2.2), Θ = Θop ⊕ Θ∞ with respect to Hop ⊕ H∞. The
Weyl function M(·) corresponding to {H,Γ0,Γ1} is a matrix-valued Nevanlinna
function and the same holds for

NΘ(λ) :=
(
Θ−M(λ)

)−1 =
(
Θop −Mop(λ)

)−1
Pop, λ ∈ C\R, (4.1)

where Mop(λ) = PopM(λ)Pop, cf. [25, page 137]. We will in general not distin-
guish between the orthogonal projection onto Hop and the canonical embedding
of Hop into H. By Fatous theorem (see [14, 17]) the limits

M(λ+ i0) := lim
ε→+0

M(λ+ iε)

and
NΘ(λ+ i0) := lim

ε→+0

(
Θ−M(λ+ iε)

)−1
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from the upper half-plane exist for a.e. λ ∈ R. We denote the set of real points
where the limits exist by ΣM and ΣNΘ , respectively, and we agree to use a
similar notation for arbitrary scalar and matrix-valued Nevanlinna functions. It
is not difficult to see that

NΘ(λ+ i0) =
(
Θ−M(λ+ i0)

)−1 =
(
Θop −Mop(λ+ i0)

)−1
Pop,

holds for all λ ∈ ΣM ∩ΣNΘ and that R\(ΣM ∩ΣNΘ) has Lebesgue measure zero,
cf. [3, §2.3].

Since dimH is finite by (2.8)

dim
(
ran

(
(AΘ − λ)−1 − (A0 − λ)−1

))
<∞, λ ∈ ρ(AΘ) ∩ ρ(A0),

and therefore the pair {AΘ, A0} performs a so-called complete scattering system,
that is, the wave operators

W±(AΘ, A0) := s- lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and their ranges coincide with the absolutely continuous subspace Hac(AΘ)
of AΘ, cf. [2, 22, 39, 46]. P ac(A0) denotes the orthogonal projection onto the
absolutely continuous subspace Hac(A0) of A0. The scattering operator SΘ of
the scattering system {AΘ, A0} is then defined by

SΘ := W+(AΘ, A0)∗W−(AΘ, A0).

If we regard the scattering operator as an operator in Hac(A0), then SΘ is
unitary, commutes with the absolutely continuous part

Aac
0 := A0 � dom (A0) ∩ Hac(A0)

of A0 and it follows that SΘ is unitarily equivalent to a multiplication operator
induced by a family {SΘ(λ)} of unitary operators in a spectral representation
of Aac

0 , see e.g. [2, Proposition 9.57]. This family is called the scattering matrix
of the scattering system {AΘ, A0}.

In [4] a representation theorem for the scattering matrix {SΘ(λ)} in terms
of the Weyl function M(·) was proved, which is of similar type as Theorem 4.1
below. We will make use of the notation

HM(λ) := ran
(
=m (M(λ))

)
, λ ∈ ΣM , (4.2)

and we will usually regard HM(λ) as a subspace of H. The orthogonal projec-
tion onto HM(λ) will be denoted by PM(λ). Note that for λ ∈ ρ(A0) ∩ R the
Hilbert space HM(λ) is trivial by (2.7). The family {PM(λ)}λ∈ΣM of orthogonal
projections in H onto HM(λ), λ ∈ ΣM , is measurable and defines an orthogonal
projection in the Hilbert space L2(R, dλ,H). The range of this projection is
denoted by L2(R, dλ,HM(λ)). Let Pop and Mop(λ) = PopM(λ)Pop, λ ∈ ΣM ,
be as above. For each λ ∈ ΣM the space HM(λ) will also be written as the
orthogonal sum of

HMop(λ) = ran
(
=m (Mop(λ))

)
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and
H⊥Mop(λ) := HM(λ) 	HMop(λ) = ker

(
=m (Mop(λ))

)
.

The following theorem is a variant of [4, Theorem 3.8]. The essential advan-
tage here is, that the particular form of the scattering matrix {SΘ(λ)} imme-
diately shows that the multivalued part of the selfadjoint parameter Θ has no
influence on the scattering matrix.

Theorem 4.1 Let A be a densely defined closed simple symmetric operator
with equal finite deficiency indices in the separable Hilbert space H and let Π =
{H,Γ0,Γ1} be a boundary triplet for A∗ with corresponding Weyl function M(·).
Furthermore, let A0 = A∗ � ker(Γ0) and let AΘ be a selfadjoint extension of A
which corresponds to Θ = Θop⊕Θ∞ ∈ C̃(H) via (2.4). Then the following holds.

(i) The absolutely continuous part Aac
0 of A0 is unitarily equivalent to the

multiplication operator with the free variable in L2(R, dλ,HM(λ)).

(ii) With respect to the decomposition HM(λ) = HMop(λ) ⊕ H⊥Mop(λ) the scat-
tering matrix {SΘ(λ)} of the complete scattering system {AΘ, A0} in
L2(R, dλ,HM(λ)) is given by

SΘ(λ) =

(
SΘop(λ) 0

0 IH⊥
Mop(λ)

)
∈
[
HMop(λ) ⊕H⊥Mop(λ)

]
,

where

SΘop(λ) = IHMop(λ) + 2i
√
=m (Mop(λ))

(
Θop −Mop(λ)

)−1
√
=m (Mop(λ))

and λ ∈ ΣM ∩ ΣNΘ , Mop(λ) := Mop(λ+ i0).

Proof. Assertion (i) was proved in [4, Theorem 3.8] and moreover it was shown
that the scattering matrix {S̃Θ(λ)} of the complete scattering system {AΘ, A0}
in L2(R, dλ,HM(λ)) has the form

S̃Θ(λ) = IHM(λ) + 2i
√
=m (M(λ))

(
Θ−M(λ)

)−1√=m (M(λ)) ∈ [HM(λ)]

for all λ ∈ ΣM ∩ ΣNΘ . With the help of (4.1) this becomes

S̃Θ(λ) = IHM(λ) + 2i
√
=m (M(λ))Pop

(
Θop −Mop(λ)

)−1
Pop

√
=m (M(λ)).

From the polar decomposition of
√
=m (M(λ))Pop, λ ∈ ΣM , we obtain a family

of isometric mappings V (λ), λ ∈ ΣM , from HMop(λ) onto ran (
√
=m (M(λ))Pop)

defined by

V (λ)
√
=m (Mop(λ))x :=

√
=m (M(λ))Popx
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and we extend V (λ) to a family Ṽ (λ) of unitary mappings in HM(λ). Note that
Ṽ (λ) maps ker(

√
=m (Mop(λ))) isometrically onto ker(Pop

√
=m (M(λ))). It is

not difficult to see that the scattering matrix

SΘ(λ) := Ṽ (λ)∗S̃Θ(λ)Ṽ (λ), λ ∈ ΣM ∩ ΣNΘ ,

with respect to the decomposition HM(λ) = HMop(λ) ⊕ H⊥Mop(λ) is of the form
as in assertion (ii). �

We point out that the scattering matrix {SΘ(λ)} of the complete scattering
system {AΘ, A0} is defined for a.e. λ ∈ R and that in Theorem 4.1(ii) a special
representative of the corresponding equivalence class was chosen. We also note
that the operator

√
=m (Mop(λ)) is regarded as an operator in HMop(λ).

Next we introduce the R-matrix {RΘ(λ)} of the scattering system {AΘ, A0}
in accordance with Blatt and Weiskopf [5],

RΘ(λ) := i
(
IHM(λ) − SΘ(λ)

)(
IHM(λ) + SΘ(λ)

)−1 (4.3)

for all λ ∈ ΣM ∩ΣNΘ satisfying −1 ∈ ρ(SΘ(λ)). Since SΘ(λ) is unitary it follows
that RΘ(λ) is a selfadjoint matrix. Note also that

SΘ(λ) =
(
iIHM(λ) −RΘ(λ)

)(
iIHM(λ) +RΘ(λ)

)−1 (4.4)

holds for all real λ where RΘ(λ) is defined.
The next theorem is of similar flavor as Theorem 4.1. We express the R-

matrix of the scattering system {AΘ, A0} in terms of the Weyl function M(·)
and the selfadjoint parameter Θ ∈ C̃(H). Again we make use of the special space
decomposition which shows that the “pure” relation part Θ∞ has no influence
on the R-matrix.

Theorem 4.2 Let A be a densely defined closed simple symmetric operator
with equal finite deficiency indices in the separable Hilbert space H and let Π =
{H,Γ0,Γ1} be a boundary triplet for A∗ with corresponding Weyl function M(·).
Furthermore, let A0 = A∗ � ker(Γ0) and let AΘ be a selfadjoint extension of A
corresponding to Θ ∈ C̃(H). Then for all λ ∈ ΣM ∩ ΣNΘ with

ker
(
Θop −<e (Mop(λ))

)
= {0}

the R-matrix of {AΘ, A0} is given by

RΘ(λ) =
(√

=m (Mop(λ))
(
Θop −<e (Mop(λ))

)−1√=m (Mop(λ)) 0
0 0

)
,

with respect to HM(λ) = HMop(λ) ⊕H⊥Mop(λ), where Mop(λ) = Mop(λ+ i0).

Proof. It follows immediately from the definition (4.3) and the representation
of the scattering matrix in Theorem 4.1 (ii), that the R-matrix of {AΘ, A0}



R-MATRIX 21

is a diagonal block matrix with respect to the space decomposition HM(λ) =
HMop(λ) ⊕ H⊥Mop(λ) and that the restriction of RΘ(λ) to H⊥Mop(λ) is identically
equal to zero.

Moreover, for every λ ∈ ΣM ∩ ΣNΘ it follows from the representation of the
scattering matrix that√

=m (Mop(λ))
(
IHMop(λ) + SΘop(λ)

)
= 2
{
IHMop(λ) + i=m (Mop(λ))

(
Θop −Mop(λ)

)−1}√=m (Mop(λ))

= 2
(
Θop −<e (Mop(λ))

)(
Θop −Mop(λ)

)−1
√
=m (Mop(λ))

holds. If λ ∈ ΣM ∩ ΣNΘ is such that Θop − <e (Mop(λ)) is invertible, then we
obtain√

=m (Mop(λ))
(
IHMop(λ) + SΘop(λ)

)−1

=
1
2
(
Θop −Mop(λ)

)(
Θop −<e (Mop(λ))

)−1
√
=m (Mop(λ)),

so that

2i
(
Θop −Mop(λ)

)−1
√
=m (Mop(λ))

(
IHMop(λ) + SΘop(λ)

)−1

= i
(
Θop −<e (Mop(λ))

)−1
√
=m (Mop(λ)).

Finally multiplication by −
√
=m (Mop(λ)) from the left gives(

IHMop(λ)−SΘop(λ)
)(
IHMop(λ) + SΘop(λ)

)−1

= −i
√
=m (Mop(λ))

(
Θop −<e (Mop(λ))

)−1
√
=m (Mop(λ))

so that assertion (i) follows immediately from the definition of the R-matrix in
(4.3). �

5 Scattering in coupled systems

Let H and K be separable Hilbert spaces and let A and T be densely defined
closed simple symmetric operators in H and K, respectively. We assume that
the deficiency indices of A and T coincide and are finite,

n := n+(A) = n−(A) = n+(T ) = n−(T ) <∞.

Then there exist boundary triplets {H,Γ0,Γ1} and {H,Υ0,Υ1} for the adjoint
operators A∗ and T ∗, respectively, with fixed selfadjoint extensions

A0 := A∗ � ker(Γ0) and T0 := T ∗ � ker(Υ0) (5.1)
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in H and K, respectively, and dimH = n. The Weyl functions of {H,Γ0,Γ1} and
{H,Υ0,Υ1} will be denoted by M(·) and τ(·), respectively. Besides the spaces
HM(λ), λ ∈ ΣM , (see (4.2)) we will make use of the finite dimensional spaces

Hτ(λ) = ran
(
=m (τ(λ+ i0))

)
, λ ∈ Στ ,

and

H(M+τ)(λ) = ran
(
=m

(
(M + τ)(λ+ i0)

))
, λ ∈ ΣM+τ ⊃

(
ΣM ∩ Στ

)
.

In the following theorem we calculate the S and R-matrix of a special scat-
tering system {L̃, L0} in H⊕ K in terms of the Weyl functions M and τ . The-
orem 5.1 is in principle a consequence of Theorem 4.1 and Theorem 4.2, cf.
[3, Theorem 4.5]. We note that the coupling procedure in the first part of the
theorem is similar to the one in [9].

Theorem 5.1 Let A, {H,Γ0,Γ1}, M(·) and T , {H,Υ0,Υ1}, τ(·) be as above.
Then the following holds.

(i) The pair {L̃, L0}, where L0 := A0 ⊕ T0 and

L̃ = A∗ ⊕ T ∗ �

{
f ⊕ g ∈ dom (A∗ ⊕ T ∗) :

Γ0f −Υ0g = 0
Γ1f + Υ1g = 0

}
, (5.2)

forms a complete scattering system in the Hilbert space H⊕ K and Lac
0 is

unitarily equivalent to the multiplication operator with the free variable in
L2(R, dλ,HM(λ) ⊕Hτ(λ)).

(ii) With respect to the decomposition

H(M+τ)(λ) ⊕H⊥(M+τ)(λ) (5.3)

of HM(λ) ⊕Hτ(λ) the scattering matrix {S̃(λ)} of {L̃, L0} is given by

S̃(λ) =

(
S(λ) 0

0 IH⊥
(M+τ)(λ)

)
∈
[
H(M+τ)(λ) ⊕H⊥(M+τ)(λ)

]
,

where

S(λ) = IH(M+τ)(λ)

− 2i
√
=m (M(λ) + τ(λ))

(
M(λ) + τ(λ)

)−1√=m (M(λ) + τ(λ))

and λ ∈ ΣM ∩ Στ ∩ Σ(M+τ)−1
, M(λ) := M(λ+ i0), τ(λ) = τ(λ+ i0).

(iii) For all λ ∈ ΣM ∩ Στ ∩ Σ(M+τ)−1
with ker(<e (M(λ) + τ(λ))) = {0} the

R-matrix of {L̃, L0} is given by

R(λ) =„
−

p
=m (M(λ) + τ(λ))

`
<e (M(λ) + τ(λ))

´−1p
=m (M(λ) + τ(λ)) 0

0 0

«
with respect to the decomposition (5.3).
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Proof. (i) Let L := A⊕T , so that L is a densely defined closed simple symmetric
operator in the Hilbert space H⊕ K. Clearly, L has deficiency indices n±(L) =
2n, and it is easy to see that {H̃, Γ̃0, Γ̃1}, where

Γ̃0(f ⊕ g) :=
(

Γ0f
Υ0g

)
, Γ̃1(f ⊕ g) :=

(
Γ1f
Υ1g

)
and H̃ := H⊕H,

f ∈ dom (A∗), g ∈ dom (T ∗), is a boundary triplet for the adjoint operator
L∗ = A∗⊕T ∗ in H⊕K. Together with the selfadjoint operators A0 and T0 from
(5.1) we obviously have

L0 := L∗ � ker(Γ̃0) = A0 ⊕ T0.

It is not difficult to verify that

Θ̃ :=
{(

(x, x)>

(y,−y)>
)

: x, y ∈ H
}
∈ C̃
(
H⊕H

)
(5.4)

is a selfadjoint relation in H̃ and that the corresponding selfadjoint extension
L∗ � Γ̃(−1)Θ̃ in H ⊕ K via (2.4) coincides with the operator L̃ in (5.2), cf.
[3]. Since L has finite deficiency indices, L̃ is finite rank perturbation of L0 in
resolvent sense (cf. Theorem 2.4 and Section 4), and hence {L̃, L0} is a complete
scattering system in H⊕K. Moreover, as the Weyl function M̃(·) of {H̃, Γ̃0, Γ̃1}
is given by

M̃(λ) =
(
M(λ) 0

0 τ(λ)

)
, λ ∈ ρ(L0), (5.5)

it follows from Theorem 4.1 (i) that the absolutely continuous part Lac
0 of L0

is unitarily equivalent to the multiplication operator with the free variable in
L2(R, dλ,HfM(λ)

) = L2(R, dλ,HM(λ) ⊕Hτ(λ)).

(ii)-(iii) Note that the operator part Θ̃op of the selfadjoint relation Θ̃ in (5.4) is
defined on

H̃op := dom (Θ̃) =
{
(x, x)> : x ∈ H

}
and that Θ̃op = 0 ∈ [H̃op], cf. (2.2). Next we will calculate the [H̃op]-valued
function M̃op(·), and in order to avoid possible confusion we will distinguish
between embeddings and projections here. The canonical embedding of H̃op

into H⊕H is given by

ιop : H̃op → H⊕H, y 7→ 1√
2

(
y
y

)
,

and the adjoint ι∗op ∈ [H⊕H, H̃op] is the orthogonal projection Pop from H⊕H
onto H̃op, Pop(u⊕ v) = 1√

2
(u+ v). Then we obtain

M̃op(λ) = PopM̃(λ)ιop =
1
2
(
M(λ) + τ(λ)

)
, λ ∈ ρ(L0),
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from (5.5). Now the assertions (ii) and (iii) follow easily from Theorem 4.1 (ii)
and Theorem 4.2, respectively. �

The case that the operator A0 has discrete spectrum is of particular im-
portance in several applications. In this situation Theorem 5.1 reduces to the
following corollary.

Corollary 5.2 Let the assumptions and {L̃, L0} be as in Theorem 5.1 and as-
sume, in addition, that σ(A0) is discrete. Then the following holds.

(i) Lac
0 is unitarily equivalent to the multiplication operator with the free vari-

able in L2(R, dλ,Hτ(λ))

(ii) The scattering matrix {S(λ)} of {L̃, L0} in L2(R, dλ,Hτ(λ)) is given by

S(λ) = IHτ(λ) − 2i
√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ))

for λ ∈ ΣM ∩Στ ∩Σ(M+τ)−1
, where M(λ) := M(λ+ i0), τ(λ) = τ(λ+ i0).

(iii) For all λ ∈ ΣM ∩ Στ ∩ Σ(M+τ)−1
with ker(M(λ) + <e (τ(λ))) = {0} the

R-matrix of {L̃, L0} is given by

R(λ) = −
√
=m (τ(λ))

(
M(λ) + <e (τ(λ))

)−1√=m (τ(λ))

Proof. The assumption σ(A0) = σp(A0) implies =m (M(λ)) = {0} for all
λ ∈ ΣM . Therefore

H(M+τ)(λ) = Hτ(λ) and HM(λ) = {0}, λ ∈ ΣM ,

and the statements follow immediately from Theorem 5.1. �

From relation (4.4) we obtain the next corollary. We note that this statement
can be formulated also for the case when σ(A0) is not discrete. However in our
applications we will only make use of the more special variant below.

Corollary 5.3 Let the assumptions be as in Corollary 5.2. Then for all λ ∈
ΣM ∩ Στ ∩ Σ(M+τ)−1

with ker(M(λ) + <e (τ(λ))) = {0} the scattering matrix
{S(λ)} of {L̃, L0} admits the representation

S(λ) =
(
iIHτ(λ) +

√
=m (τ(λ))

(
M(λ) + <e (τ(λ))

)−1√=m (τ(λ))
)

(
iIHτ(λ) −

√
=m (τ(λ))

(
M(λ) + <e (τ(λ))

)−1√=m (τ(λ))
)−1

and, if, in particular, <e (τ(λ)) = 0, then

S(λ) =
(
iIHτ(λ)+

√
=m (τ(λ))M(λ)−1

√
=m (τ(λ))

)
(
iIHτ(λ) −

√
=m (τ(λ))M(λ)−1

√
=m (τ(λ))

)−1

.
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Our next objective is to express the scattering matrix of the scattering system
{L̃, L0} in terms of the eigenfunctions of a family of selfadjoint extensions of
A. For this let again τ(·) be the Weyl function of {H,Υ0,Υ1}, let µ ∈ Στ , and
let {H,Γ0,Γ1} be a boundary triplet for A∗ as in the beginning of this section.
Then <e (τ(µ)) is a selfadjoint matrix in H and therefore the operator

A−<e (τ(µ)) = A∗ � ker
(
Γ1 + <e (τ(µ))Γ0

)
(5.6)

is a selfadjoint extension of A in H, cf. Proposition 2.2. Note that by
Theorem 2.4 a point λ ∈ ρ(A0) belongs to ρ(A−<e (τ(µ))) if and only if
0 ∈ ρ(M(λ) + <e τ(µ)) holds. The following corollary is a reformulation of
Proposition 3.3 in our particular situation.

Corollary 5.4 Let A, {H,Γ0,Γ1}, M(·) and T , {H,Υ0,Υ1}, τ(·) be as above
and assume σ(A0) = σp(A0) and that A is semibounded from below. For each
µ ∈ Στ with A−<e (τ(µ)) ≤ A0 the function λ 7→ −(<e (τ(µ)) +M(λ))−1 admits
the representation

−
(
M(λ) + <e (τ(µ))

)−1 =
∞∑

k=1

(λk[µ]− λ)−1
(
·,Γ0ψk[µ]

)
Γ0ψk[µ],

where {λk[µ]}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint extension
A−<e (τ(µ)) in increasing order and ψk[µ] are the corresponding eigenfunctions.

Setting µ = λ in Corollary 5.4 and taking into account Corollary 5.2 and
Corollary 5.3 we obtain the following representations of the R-matrix and scat-
tering matrix of {L̃, L0}.

Theorem 5.5 Let the assumptions be as in Corollary 5.4. Then for all λ ∈
ΣM ∩ Στ ∩ Σ(M+τ)−1

with ker(M(λ) + <e (τ(λ))) = {0} and A−<e (τ(λ)) ≤ A0

the R-matrix and the scattering matrix of {L̃, L0} admit the representations

R(λ) =
∞∑

k=1

(λk[λ]− λ)−1
(√

=m (τ(λ))·,Γ0ψk[λ]
)√

=m (τ(λ))Γ0ψk[λ]

and

S(λ) =(
iIHτ(λ) −

∞∑
k=1

(λk[λ]− λ)−1
(√

=m (τ(λ))·,Γ0ψk[λ]
)√

=m (τ(λ))Γ0ψk[λ]
)
×

(
iIHτ(λ) +

∞∑
k=1

(λk[λ]− λ)−1
(√

=m (τ(λ))·,Γ0ψk[λ]
)√

=m (τ(λ))Γ0ψk[λ]
)−1

,

respectively, where {λk[λ]}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint
extension A−<e (τ(λ)) in increasing order and ψk[λ] are the corresponding eigen-
functions.
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If <e (τ(λ)) = 0 for some λ ∈ Στ , then the operator A−<e (τ(λ)) in (5.6)
coincides with the selfadjoint operator A1 = A∗ � ker(Γ1). This yields the next
corollary.

Corollary 5.6 Let the assumptions be as in Corollary 5.4. Then for all λ ∈
ΣM ∩ Στ ∩ Σ(M+τ)−1

with <e (τ(λ)) = 0, ker(M(λ)) = {0} and A1 ≤ A0 the
R-matrix and the scattering matrix of {L̃, L0} admit the representations

R(λ) =
∞∑

k=1

(λk − λ)−1
(√

=m (τ(λ))·,Γ0ψk

)√
=m (τ(λ))Γ0ψk

and

S(λ) =
(
iIHτ(λ) −

∞∑
k=1

(λk − λ)−1
(√

=m (τ(λ))·,Γ0ψk

)√
=m (τ(λ))Γ0ψk

)
(
iIHτ(λ) +

∞∑
k=1

(λk − λ)−1
(√

=m (τ(λ))·,Γ0ψk

)√
=m (τ(λ))Γ0ψk

)−1

,

respectively, where {λk}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint
extension A1 in increasing order and ψk are the corresponding eigenfunctions.

Remark 5.7 The assumption A1 ≤ A0 in Corollary 5.6 above is necessary.
Indeed, let us assume that A0 ≤ A1 and that A1 is the Friedrichs extension.
Let us show that in this case the sum

∞∑
k=1

(λk − λ)−1(·,Γ0ψk)Γ0ψk (5.7)

cannot converge, where {λk} and {ψk} are the eigenvalues and eigenfunctions of
A1. For this consider the boundary triplet {H,Γ′0,Γ′1}, Γ′0 = Γ1 and Γ′1 = −Γ0.
Obviously A′0 = A∗ � ker(Γ′0) = A1, A′1 = A∗ � ker(Γ′1) = A0 and A′0 is the
Friedrichs extension. By Proposition 3.5 we obtain that the sum

∞∑
k=1

(λ− λk)−1(·,Γ′1ψk)Γ′1ψk

diverges, where {λk} and {ψk} are the eigenvalues and eigenfunctions of A′0 =
A1. Using Γ′1 = −Γ0 one gets that the sum (5.7) diverges.

6 Scattering systems of differential operators

In this section we illustrate the general results from the previous sections for
scattering systems which consist of regular and singular second order differential
operators, see Section 2.3.
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6.1 Coupling of differential operators

Let the symmetric operators A = − 1
2

d
dx

1
m

d
dx + v and

T = Tl ⊕ Tr =
(
−1

2
d

dx

1
ml

d

dx
+ vl

)
⊕
(
−1

2
d

dx

1
mr

d

dx
+ vr

)
in H = L2((xl, xr)) and K = L2((−∞, xl)) ⊕ L2((xr,∞)) and the boundary
triplets ΠA = {C2,Γ0,Γ1} and ΠT = {C2,Υ0,Υ1} be as in Section 2.3.1 and
and Section 2.3.2, respectively. By Theorem 5.1(i) the operator

L̃ := A∗ ⊕ T ∗ �

{
f ⊕ g ∈ dom (A∗ ⊕ T ∗) :

Γ0f −Υ0g = 0
Γ1f + Υ1g = 0

}
(6.1)

is a selfadjoint extension of L = A⊕ T in H⊕ K. We can identify H⊕ K with

L2((xl, xr))⊕ L2((−∞, xl))⊕ L2((xr,∞)) ∼= L2(R).

The elements f⊕g in H⊕K, f ∈ H, g = gl⊕gr ∈ K, will be written as f⊕gl⊕gr.
Here the conditions Γ0f = Υ0g and Γ1f = −Υ1g, f ∈ dom (A∗), g ∈ dom (T ∗),
explicitely mean

gl(xl) = f(xl) and f(xr) = gr(xr),

and (
1
m
f ′
)

(xl) =
(

1
ml

g′l

)
(xl) and

(
1
m
f ′
)

(xr) =
(

1
mr

g′r

)
(xr).

Hence the selfadjoint operator (6.1) has the form

L̃(f ⊕ gl ⊕ gr) =−
1
2

d
dx

1
m(x)

d
dxf + vf 0 0

0 − 1
2

d
dx

1
ml

d
dxgl + vlgl 0

0 0 − 1
2

d
dx

1
mr

d
dxgr + vrgr


and coincides with the usual Schrödinger operator

−1
2
d

dx

1
m̃

d

dx
+ ṽ �

{
f ∈ L2(R) : f,

1
m̃
f ′ ∈W 1,2(R)

}
,

where

m̃(x) :=

 m(x), x ∈ (xl, xr)
ml(x), x ∈ (−∞, xl)
mr(x), x ∈ (xr,∞)

and

ṽ(x) :=

 v(x), x ∈ (xl, xr)
vl(x), x ∈ (−∞, xl)
vr(x), x ∈ (xr,∞).
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The selfadjoint operator L0 = A0 ⊕ T0, where A0 = A∗ � ker(Γ0) and
T0 = T ∗ � ker(Υ0), is defined on

dom (L0) ={
f ⊕ gl ⊕ gr ∈ dom (A∗)⊕ dom (T ∗l )⊕ dom (T ∗r ) :

f(xl) = f(xr) = 0
gl(xl) = gr(xr) = 0

}
and can be identified with the selfadjoint Schrödinger operator

−1
2
d

dx

1
m̃

d

dx
+ ṽ �

{
f ∈ L2(R) : f,

1
m̃
f ′ ∈W 1,2(R \ {xl, xr})

}
.

6.2 S and R-matrix representation

It is well known that all selfadjoint extensions of the differential operator A
in L2((xl, xr)) have discrete spectrum. Hence according to Theorem 5.1 and
Corollary 5.2 the selfadjoint Schrödinger operators L̃ and L0 form a complete
scattering system {L̃, L0} in L2(R) and the scattering matrix {S(λ)} is given
by

S(λ) = IHτ(λ) − 2i
√
=m (τ(λ))

(
M(λ) + τ(λ)

)−1√=m (τ(λ)) (6.2)

for λ ∈ ΣM ∩Στ ∩Σ(M+τ)−1
. Here M(·) is the Weyl function corresponding to

the boundary triplet ΠA = {C2,Γ0,Γ1} and

λ 7→ τ(λ) =
(

ml(λ) 0
0 mr(λ)

)
, λ ∈ ρ(T0),

is the Weyl function of ΠT = {C2,Υ0,Υ1}, cf. Section 2.3.2. It follows from
[20] that for λ ∈ Στ with =m (τ(λ)) 6= 0 the maximal dissipative differential
operator

A−τ(λ) = A∗ � ker
(
Γ1 + τ(λ)Γ0

)
,

that is,(
A−τ(λ)f

)
(x) = −1

2
d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

dom (A−τ(λ)) =

f ∈ L2((xl, xr)) :
f, 1

mf
′ ∈W 1,2((xl, xr))(

1
2mf

′) (xl) = −ml(λ)f(xl)(
1

2mf
′) (xr) = mr(λ)f(xr)

 ,

has no real eigenvalues, i.e. R ⊂ ρ(A−τ(λ)), so that each λ ∈ ΣM = ρ(A0) ∩ R
necessarily belongs to the set Σ(M+τ)−1

by Theorem 2.4. Therefore the repre-
sentation (6.2) is valid for all λ ∈ {t ∈ Στ : =m (τ(t)) 6= 0} ∩ ρ(A0). Moreover,
for λ ∈ Στ with =m (τ(λ)) = 0 we have S(λ) = {0}.

It is well known that the symmetric operator A given by (2.9) is semi-
bounded from below and that the extension A0 = A∗ � ker(Γ0), cf. (2.10),
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is the Friedrichs extension of A. In particular, this yields AΘ ≤ A0 for any
other selfadjoint extension AΘ of A.

The selfadjoint operator A−<e (τ(λ)), λ ∈ Στ = Σml ∩ Σmr , is given by

(
A−<e (τ(λ))f

)
(x) = −1

2
d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

dom (A−<e (τ(λ))) =

f ∈ L2((xl, xr)) :
f, 1

mf
′ ∈W 1,2((xl, xr))(

1
2mf

′) (xl) = −<e (ml(λ))f(xl)(
1

2mf
′) (xr) = <e (mr(λ))f(xr)


and clearly σ(A−<e (τ(λ))) is discrete and semi-bounded from below for all λ ∈
Στ .

Taking into account Theorem 5.5 it follows that the R-matrix of {L̃, L0} has
the form

R(λ) =
∞∑

k=1

(λk[λ]− λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk[λ](xl)
ψk[λ](xr)

))
·
(√

=m (ml(λ))ψk[λ](xl)√
=m (mr(λ))ψk[λ](xr)

)
for all λ ∈ Στ ∩ ΣM with the property ker(M(λ) + <e (τ(λ))) = {0} and
=m (τ(λ)) 6= 0. Here {λk[λ]}, k = 1, 2, . . . , denote the eigenvalues of the
selfadjoint operator A−<e (τ(λ)) in increasing order and ψk[λ] are the corre-
sponding eigenfunctions. Furthermore we have again used R ⊂ ρ(A−τ(λ)) if
=m (τ(λ)) 6= 0, and moreover, R(λ) = {0} if =m (τ(λ)) = 0.

The scattering matrix {S(λ)} of {L̃, L0} can be represented in the form

S(λ) =

{
iIHτ(λ) −

∞∑
k=1

(λk[λ]− λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk[λ](xl)
ψk[λ](xr)

))

·
(√

=m (ml(λ))ψk[λ](xl)√
=m (mr(λ))ψk[λ](xr)

)}

×

{
iIHτ(λ) +

∞∑
k=1

(λk[λ]− λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk[λ](xl)
ψk[λ](xr)

))

·
(√

=m (ml(λ))ψk[λ](xl)√
=m (mr(λ))ψk[λ](xr)

)}−1

for all λ ∈ Στ ∩ ΣM with ker(M(λ) + <e (τ(λ))) = {0} and =m (τ(λ)) 6= 0.

6.2.1 Constant potentials vl and vr

Let us assume that the potentials vl(·) and vr(·) as well as the mass functions
ml(·) and mr(·) are constant, that is, vl(x) = vl ∈ R, ml(x) = ml > 0 for
x ∈ (−∞, xl) and vr(x) = vr ∈ R, mr(x) = mr > 0 for x ∈ (vr,∞). The
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Titchmarsh-Weyl functions ml(·) and mr(·) can be calculated explicitly in this
simple case, see [3]. One gets

ml(λ) = i

√
λ− vl

2ml
and mr(λ) = i

√
λ− vr

2mr

for λ ∈ C+, where the square root is defined on C with a cut along [0,∞) and
fixed by =m (

√
λ) > 0 for λ 6∈ [0,∞) and by

√
λ ≥ 0 for λ ∈ [0,∞). It is clear

that
Στ = Σml ∩ Σmr = R

and it is not difficult to check{
λ ∈ Στ : =m (τ(λ)) 6= 0

}
=
(
min{vl, vr},∞

)
.

Furthermore

<e (ml(λ)) =

{
−
√

vl−λ
2ml

, λ ≤ vl,

0, λ > vl,

and

<e (mr(λ)) =

{
−
√

vr−λ
2mr

, λ ≤ vr,

0, λ > vr.

If λ ∈ (max{vl, vr},∞), then <e (τ(λ)) = 0 and it follows from Corollary 5.6
and the above considerations that the R-matrix of {L̃, L0} has the form

R(λ) =
∞∑

k=1

(λk − λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk(xl)
ψk(xr)

))
·
(√

=m (ml(λ))ψk(xl)√
=m (mr(λ))ψk(xr)

) (6.3)

for all λ ∈ ΣM with the property ker(M(λ)) = {0}. Here {λk}, k = 1, 2, . . . ,
denote the eigenvalues of the selfadjoint operator A1 in increasing order and ψk

are the corresponding eigenfunctions. Note that A1 is the usual Schrödinger
operator in L2((xl, xr)) which corresponds to Neumann boundary conditions,
cf. (2.11), and that λ ∈ ΣM has the property ker(M(λ)) = {0} if and only if
λ ∈ ρ(A0) ∩ ρ(A1), cf. Theorem 2.4.
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Analogously the scattering matrix {S(λ)} of {L̃, L0} has the form

S(λ) =

{
iIHτ(λ) −

∞∑
k=1

(λk − λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk(xl)
ψk(xr)

))

·
(√

=m (ml(λ))ψk(xl)√
=m (mr(λ))ψk(xr)

)}

×

{
iIHτ(λ) +

∞∑
k=1

(λk − λ)−1

((√
=m (ml(λ)) ·√
=m (mr(λ)) ·

)
,

(
ψk(xl)
ψk(xr)

))

·
(√

=m (ml(λ))ψk(xl)√
=m (mr(λ))ψk(xr)

)}−1

for all λ ∈ (max{vl, vr},∞) ∩ ρ(A0) ∩ ρ(A1).
The situation is slightly more complicated if λ ∈ (min{vl, vr},max{vl, vr}).

Assume e.g. vl > vr and let λ ∈ (vr, vl). In this case =m (τ(λ)) 6= 0, but the
condition <e (τ(λ)) = 0 is not satisfied since

<e (ml(λ)) = −
√
vl − λ

2ml
and <e (mr(λ)) = 0.

The operator A−<e (τ(λ)) is given by(
A−<e (τ(λ))f

)
(x) = −1

2
d

dx

1
m(x)

d

dx
f(x) + v(x)f(x),

dom (A−<e (τ(λ))) =

f ∈ L2((xl, xr)) :

f, 1
mf

′ ∈W 1,2((xl, xr))(
1

2mf
′) (xl) =

√
vl−λ
2ml

f(xl)(
1

2mf
′) (xr) = 0

 .

Since √
=m (τ(λ)) =

(
0 0

0
(

λ−vr

2mr

)1/4

)
, λ ∈ (vr, vl),

the representations of the R and S-matrix of {L̃, L0} from the previous subsec-
tions become

R(λ) =
∞∑

k=1

(λk[λ]− λ)−1
(√

=m (mr(λ)) ·, ψk[λ](xr)
)√

=m (mr(λ))ψk[λ](xr)

and

S(λ) =
i−

P∞
k=1(λk[λ]− λ)−1

`p
=m (mr(λ)) ·, ψk[λ](xr)

´p
=m (mr(λ))ψk[λ](xr)

i+
P∞

k=1(λk[λ]− λ)−1
`p

=m (mr(λ)) ·, ψk[λ](xr)
´p

=m (mr(λ))ψk[λ](xr)
,

respectively, for λ ∈ (vr, vl) ∩ ρ(A0) ∩ ρ(A−<e (τ(λ))), see Theorem 5.5. Here
{λk[λ]}, k = 1, 2, . . . , are the eigenvalues of the selfadjoint extension A−<e (τ(λ))

in increasing order and ψk[λ] are the corresponding eigenfunctions.
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Remark 6.1 One might guess that the sum

∞∑
k=1

(λk − λ)−1

(
·,
(
ψk(xl)
ψk(xr)

))(
ψk(xl)
ψk(xr)

)
in the representation of the scattering matrix in (6.3), where {λk} and {ψk} are
the eigenvalues and eigenfunctions of the Schrödinger operator with Neumann
boundary conditions, can be replaced by the sum

∞∑
k=1

(µk − λ)−1

(
·,
(

( 1
2mφ

′
k)(xl)

−( 1
2mφ

′
k)(xr)

))(
( 1
2mφ

′
k)(xl)

−( 1
2mφ

′
k)(xr)

)
,

where {µk} and {φk} are the eigenvalues and eigenfunctions of the Schrödinger
operator with Dirichlet boundary conditions. However, this is not possible since
by Proposition 3.5 the last sum does not converge. We note that this can easily
be verified by hand for the case v(x) = 0 and m(x) = constant.
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