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SCHRÖDINGER OPERATORS AND JACOBI

MATRICES WITH REGULAR GROUND STATES

RUPERT L. FRANK1, BARRY SIMON2, AND TIMO WEIDL3

Abstract. We prove general comparison theorems for eigenval-
ues of perturbed Schrödinger operators that allow proof of Lieb–
Thirring bounds for suitable non-free Schrödinger operators and
Jacobi matrices.

1. Introduction

Consider a Schrödinger operator,

H0 = −∆ + V0 (1.1)

on L2(Rν) which we suppose obeys

inf spec(−∆ + V0) = 0 (1.2)

(By subtracting a constant, we can always arrange this, and by assum-
ing this, the notation simplifies.) We are interested in controlling the
negative eigenvalues of

H = H0 + V (1.3)

We let

E1(V0;V ) ≤ E2(V0;V ) ≤ · · · ≤ En(V0;V ) ≤ · · · (1.4)

be either the negative eigenvalues or 0, that is,

Ej(V0;V ) = min(0; inf{λ, dimP(−∞,λ](H) ≥ j}) (1.5)
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We say that H0 has a regular ground state if and only if there exists
a function, u0, on R

ν obeying

(−∆ + V0)u0 = 0 (1.6)

0 < c1 ≤ u(x) ≤ c2 <∞ (1.7)

for some c1, c2. We take c1 = inf u, c2 = sup u, and let

β(V0) =

(
c2

c1

)2

(1.8)

Our main result is that any bound on the number or sums of eigen-
values for the operator −∆ + V can be carried (with a change in the
coupling constant) to the operator H0 + V. This is based on the fol-
lowing observation:

Theorem 1.1. For any V ≤ 0 and V0 obeying (1.2) with regular ground

state, we have for all j,

|Ej(0; β−1V )| ≤ |Ej(V0;V )| ≤ |Ej(0; βV )| (1.9)

This result is remarkable for its generality and also for the simplicity
of its proof. We will see in Section 2 that it can be used to compare not
only V0 and 0 but two arbitrary V0’s with relatively bounded ground
states.

Of course, (1.9) immediately implies bounds on moments of bound
states:

Sγ(V0;V ) =

∞∑

j=1

|Ej(V0;V )|γ (1.10)

where we look at this only for γ ≥ 0 and interpret 00 = 0 so S0 is the
number of strictly negative eigenvalues. Clearly, Theorem 1.1 implies:

Corollary 1.2. For any γ > 0 and β = β(V0) given by (1.8),

Sγ(0; β−1V ) ≤ Sγ(V0;V ) ≤ Sγ(0; βV ) (1.11)

The standard Lieb–Thirring inequalities (reviewed in [8, 14]) assert

Sγ(0; βV ) ≤ Lγ,ν

∫
|V (x)|γ+ ν

2 dνx (1.12)

for γ ≥ 1
2

in ν = 1, γ > 0 in ν = 2, and γ ≥ 0 in ν ≥ 3. In some

cases, the optimal constants are known, for example, L 1

2
,1 = 1

2
. (These

yield good constants in our perturbed estimates but we do not claim
optimal constants for our situation!) Clearly, (1.11) implies:
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Corollary 1.3.

Sγ(V0;V ) ≤ Lγ,νβ
γ+ ν

2

∫
|V (x)|γ+ ν

2 dνx (1.13)

and, in particular,
∞∑

j=1

|Ej(V0;V )|
1

2 ≤ 1
2
β

∫
|V (x)| dx (1.14)

in ν = 1 dimension.

One can also obtain logarithmic estimates as in [13] and Hardy–
Lieb–Thirring bounds as in [5]. Since it is known [20, 17, 14] that for
ν = 1 and V ≤ 0,

S 1

2

(0;V ) ≥ 1
4

∫
|V (x)| dx (1.15)

we conclude that

S 1

2

(V0;V ) ≥
1

4β

∫
|V (x)| dx (1.16)

These results are of interest because there are many cases which are
known to have regular ground states.

Example 1.4. If V0 is periodic, then there is a positive periodic ground
state. If V0 is locally L

ν
2 (if ν ≥ 3, locally L1 if ν = 1, and locally Lp

with p > 1 if ν = 2), then it is known that eigenfunctions are continuous
(see [18]) and thus, H0 has a regular ground state. �

Example 1.5. We will discuss Jacobi matrices in Sections 3 and 4. It
is known (see [19, 15, 3]) that elements in the isospectral torus of finite
gap Jacobi matrices have regular ground states. �

Example 1.6. If u is any function obeying (1.7), then V0 = ∆u
u

has a
regular ground state. �

In Section 2, we will review the ground state representation and prove
a stronger theorem than Theorem 1.1. As hinted, it is the ground state
representation that is critical. In this regard, we should emphasize
that the variational argument we use in Section 2 has appeared ear-
lier in work of the Birman school—we would mention, in particular,
Lemma 6.1 of Birman, Laptev, and Suslina [2], although it may have
appeared earlier in their work. Our novelty here is the wide applica-
bility, the use in CLR and Lieb–Thirring bounds, and the applicability
to the discrete case and Szegő estimates.

As we will explain in Section 4, an initial motivation for this work
was critical Lieb–Thirring bounds for finite gap almost periodic Ja-
cobi matrices in connection with Szegő’s theorem for such situations.
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Ground state representations do not seem to be in the literature for Ja-
cobi matrices, so we do this first in Section 3, and then prove an analog
of Theorem 1.1 for Jacobi matrices in Section 4. Section 5 discusses
some other cases.

It is a pleasure to thank Fritz Gesztesy, Yehuda Pinchover, Robert
Seiringer, and Simone Warzel for useful comments, and Michael Aizen-
man for being a sensitive editor.

2. Comparison for Schrödinger Operators

Fundamental to our results is the ground state representation that
if (1.6) holds for u0, continuous and strictly positive on R

ν , then

〈gu0, H0gu0〉 =

∫
|∇g|2u2

0 d
νx (2.1)

Ground state representations go back to Jacobi [11]. For Schrödinger
operators, it appears at least as far back as Birman [1] and it was used
extensively in constructive quantum field theory (especially by Segal,
Nelson, Gross, and Glimm–Jaffe; see Glimm–Jaffe [7]). As a basis for
comparison theorems, it was used by Kirsch–Simon [12] and, as noted
above, in a similar context by Birman–Laptev–Suslina [2].

We will be cavalier about technical assumptions needed for (2.1).
From one point of view, we can use (2.1) as a definition of H0! Namely,
the right side of (2.1) defined for g’s with distributional derivative
making the right side finite is easily seen to be a closed quadratic form

on Hu0
≡ L2(Rν , u2

0d
νx) defining a positive selfadjoint operator H̃0 on

Hu0
. The unitary operator W : L2(Rν , dνx) → Hu0

by Wg = u−1
0 g lets

us define H0 = W−1H̃0W and our results hold for perturbations of
that.

It is not hard to prove that if V0 = V0,+ + V0,− with V0,+ ∈
L1

loc(R
ν , dνx) and V0,− ∈ Kν , the Kato class, then the selfadjoint oper-

ator H0 defined as the form closure of −∆ + V0 on C∞
0 obeys (2.1) if

u0 is a positive distributional solution of (1.6).
Notice that we do not need (1.2), but only inf spec(H0) ≥ 0 for

this to work, and Theorem 2.1 below holds in that case (although
inf spec(H0) = inf spec(H1)) under the hypothesis of the theorem. Here
is our main result:

Theorem 2.1. Let H0, H1 have the form (2.1) for positive continuous

functions u0, u1. Suppose

0 < inf

(
u0

u1

)
≤ sup

(
u0

u1

)
<∞ (2.2)
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and let

β ≡

[
sup(u0

u1

)

inf(u0

u1

)

]2

(2.3)

For any V ≤ 0, let Ej be given by (1.5). Then

|Ej(V0;V )| ≤ |Ej(V1; βV )| (2.4)

Remark. By interchanging V0 and V1 and replacing V by β−1V, we get
the complementary inequality

|Ej(V1; β
−1V )| ≤ |Ej(V0;V )| (2.5)

Lemma 2.2. Let V ≤ 0. Let τ > 0. If for some g,

〈gu0, (H0 + V )gu0〉 ≤ −τ〈gu0, gu0〉 (2.6)

then

〈gu1, (H1 + βV )gu1〉 ≤ −τ〈gu1, gu1〉 (2.7)

Proof. Let

β+ = sup

(
u0

u1

)2

=

[
inf

(
u1

u0

)]−2

(2.8)

β− = inf

(
u0

u1

)2

=

[
sup

(
u1

u0

)]−2

(2.9)

so

β+ = ββ− ⇒ ββ−1
+ = β−1

− (2.10)

Since −V g2 ≥ 0 and |∇g|2 ≥ 0, we have
∫

(∇g)2u2
1 dx ≤ β−1

−

∫
(∇g)2u2

0 dx (2.11)

−

∫
V g2u2

1 dx ≥ −β−1
+

∫
V g2u2

0 dx (2.12)

so, by (2.10) and (2.1),

〈gu1, (H1 + βV )gu1〉 ≤ β−1
− 〈gu0, (H0 + V )gu1〉

≤ −τβ−1
− 〈gu0, gu0〉 (2.13)

But

〈gu0, gu0〉 ≥ β−〈gu1, gu1〉 (2.14)

and τ > 0, so

RHS of (2.13) ≤ −τ〈gu1, gu1〉

proving (2.7). �
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Proof of Theorem 2.1. If Ej(V0;V ) = 0, there is nothing to prove. If
τ ≡ |Ej(V0;V )| > 0, there is a space, Hj , of dimension at least j so

〈ψ, (H0 + V )ψ〉 ≤ −τ〈ψ, ψ〉 (2.15)

for ψ ∈ Hj . By the lemma, if ϕ = u1

u0

ψ, we have

〈ϕ, (H1 + βV )ϕ〉 ≤ −τ〈ϕ, ϕ〉 (2.16)

Thus, there is a space of dimension at least j where (2.16) holds. By
the min-max principle (see [16]),

Ej(V1; βV ) ≤ −τ (2.17)

which is (2.4). �

3. Ground State Representation for Jacobi Matrices

While we are interested mainly in semi-infinite one dimension Jacobi
matrices, that is, tridiagonal semi-infinite matrices, we can consider the
higher-dimensional case as well, so we will. So far as we know, there
is no prior literature on the ground state representation for discrete
operators, so we start with that in this section.

In Z
ν , we let δj , j = 1, . . . , ν, be the ν component vectors with 1 in

the jth place and 0 elsewhere. So k±δj are the 2ν neighbors of k ∈ Z
ν .

A Jacobi operator is parametrized by a symmetric ajℓ > 0 for each j,
ℓ ∈ Zν with |j − ℓ| = 1 and a real number bk for each k ∈ Z

ν . We will
suppose

sup
k

|bk| + sup
ℓ

|akℓ| <∞

The Jacobi operator associated with these parameters is the operator
J on ℓ2(Zν) with

(Jϕ)ℓ =
∑

±,j=1,...,ν

aℓ ℓ±δj
ϕℓ±δj

+ bℓϕℓ (3.1)

We will use J({aℓm}, {bℓ}) if we want to make the dependence on a

and b explicit.

Lemma 3.1. Let f be a bounded real-valued function on Z
ν and Mf

the diagonal matrix on ℓ2(Zν) which is multiplication by f . Then

[Mf , J({aℓm}, {bℓ})] = J({aℓm(fℓ − fm), bℓ ≡ 0}) (3.2)

[Mf , [Mf , J({aℓm}, {bℓ})]] = J({aℓm(fℓ − fm)2, bℓ ≡ 0}) (3.3)

Proof. (3.2) is an elementary calculation and it implies (3.3). �
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Theorem 3.2. Let J be a Jacobi operator on ℓ2(Zν) with parameters

{aℓm}, {bℓ}. Suppose u is a positive “sequence” parametrized by Z
ν so

that ∑

|m−ℓ|=1

aℓmum + bℓuℓ = 0 (3.4)

for all ℓ ∈ Z
ν . Then for any f with fu ∈ ℓ2(Zν), we have

〈fu, (−J)fu〉 =
∑

m,ℓ
|m−ℓ|=1

aℓmuℓum(fℓ − fm)2 (3.5)

Remark. In particular, this shows −J ≥ 0.

Proof. It suffices to prove (3.5) for f of finite support and take limits.
For the left side converges since −J is a bounded operator, and by
positivity, the right side converges (a priori perhaps to ∞, but by the
equality to a finite limit; it is only here that positivity of u is used).

For finite sequences, f , use (3.3), taking expectations in a vector ũ
which equals u on {ℓ | f(m) is non-zero for some m with |m− ℓ| ≤ 1}.
Then MfJũ = 0, so 〈ũ, [Mf , [MfJ ]]ũ〉 = −2〈fu, Jfu〉. �

4. Comparison for Jacobi Operators

In this section, we will prove an analog of Theorem 1.1 for Ja-
cobi operators. One difference that we have to expect is that of
sup spec(J) = 0; the same is true of λJ for any λ > 0, but the ground
states are the same. Thus, comparison of the two J ’s cannot involve
only the ground state ratio but also a setting of scales which will enter
as a ratio of a’s. In the Schrödinger case, the scale is set by the −∆
rather than −λ∆.

For notation, we let Ej({aℓm, bℓ}) be the max of zero and the jth
eigenvalue of J({aℓm, bℓ}) counting from the top. Here is our main
result:

Theorem 4.1. Let {a
(0)
ℓm, b

(0)
ℓ } and {a

(1)
ℓm, b

(1)
ℓ } be two sets of bounded

Jacobi parameters with positive sequences u(0), u(1) obeying (3.4) for

{a(0), b(0)}, {a(1), b(1)}, respectively. Let

β+ = sup
ℓ

(
u

(0)
ℓ

u
(1)
ℓ

)2

(4.1)

β− = inf
ℓ

(
u

(0)
ℓ

u
(1)
ℓ

)2

(4.2)



8 R. FRANK, B. SIMON, AND T. WEIDL

γ− = inf

(
a

(0)
jℓ u

(0)
j u

(0)
ℓ

a
(1)
jℓ u

(1)
j u

(1)
ℓ

)
(4.3)

Suppose β+ <∞ and β− > 0. Then for perturbations {δaℓm, δbℓ} with

a
(0)
ℓm + δaℓm > 0,

Ej({a
(0)
ℓm+δaℓm, b

(0)
ℓ +δbℓ}) ≤ Ej

({
ηa

(1)
ℓm, ηb

(1)
ℓ +β

[
|δbℓ|+

∑

|m−ℓ|=1

|δaℓm|

]})

(4.4)
where

η =
γ−

β−
β =

β+

β−
(4.5)

Remarks. 1. We only have a one-sided inequality as we would in the
Schrödinger case if we did not demand V ≤ 0. Since δa terms are never
of a definite sign, we cannot have them in a two-sided comparison. But
there is clearly a two-sided comparison if δa = 0 and δb > 0.

2. Note that rescaling u(0) or u(1) which changes β+, β−, γ− does not
change η or β. Similarly, η scales properly under changes of the scale
of a.

Following Hundertmark–Simon [9], we begin with a reduction to the
case δa = 0, δb ≥ 0:

Lemma 4.2. One has

Ej({a
(0)
ℓm + δaℓm, b

(0)
ℓ + δbℓ}) ≤ Ej

({
a

(0)
ℓm, b

(0)
ℓ + |δbℓ| +

∑

|m−ℓ|=1

|δaℓm|

})

(4.6)
Thus, it suffices to prove (4.4) when δaℓm = 0 and δbℓ ≥ 0.

As in [9], this follows from
(

0 a

a 0

)
≤

(
a 0
0 a

)

and b ≤ |b|.

Proof of Theorem 4.1. The proof is identical to the proof in Section 2,
the sole change being that (2.11) needs to be replaced by

∑

ℓ,m
|ℓ−m|=1

a
(1)
ℓmu

(1)
ℓ u(1)

m |fℓ − fm|
2 ≤ γ−1

−

∑

ℓ,m
|ℓ−m|=1

a
(0)
ℓmu

(0)
ℓ u(0)

m |fℓ − fm|
2 (4.7)

So instead of a β
−

β
−

= 1, we get η = γ
−

β
−

. �
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Let W : ℓ2(Zν) → ℓ2(Zν) by

(Wf)n = (−1)|n|fn (4.8)

with |n| = |n1| + · · ·+ |nν |. Then

WJ({aℓm, bℓ})W
−1 = −J({aℓm,−bℓ}) (4.9)

This allows one to control eigenvalues below inf spec(J) in the same
way. We define E−

j to be the min of 0 and the jth eigenvalue of J
counting from the bottom. We call a sequence u on Z

ν alternating
positive if (−1)|m|um > 0 for all m. The result is:

Theorem 4.3. Let {a
(0)
ℓm, b

(0)
ℓ } and {a

(1)
ℓm, b

(1)
ℓ } be two sets of bounded

Jacobi parameters with alternating positive sequences u
(0)
m , u

(1)
m obeying

(3.4) for {a(0), b(0)}, {a(1), b(1)}, respectively. Define β+, β−, γ−, η, β as

in (4.1)–(4.3) and (4.5). Then (4.4) holds with Ej replaced by |E−
j |.

Corollary 4.4. Let {a
(0)
ℓm, b

(0)
ℓ } be a one dimension periodic set of Jacobi

parameters or the almost periodic parameters associated with a finite

gap spectrum (see [19]). Let J0 be the associated half-line Jacobi matrix.

Let J be the Jacobi matrix associated with {a
(0)
ℓm +δaℓm, b

(0)
ℓ +δbℓ} where

∑

|ℓ−m|=1
ℓ=1,2,3,...

|δaℓm| +

∞∑

ℓ=1

|δbℓ| <∞ (4.10)

Let E−
1 < E−

2 < · · · < inf spec(J0) < sup spec(J0) < · · · < E+
2 < E+

1 be

the eigenvalues of J outside the convex hull of spec(J0). Then
∑

k,±

dist(E±
k , σ(J0))

1

2 ≤ C
∑

(|δaℓm| + |δbℓ|) (4.11)

for a constant C depending only on J0.

Proof. We only need that J0 and WJ0W
−1 have regular ground states.

This follows from Floquet theory for the periodic case and from the
detailed analysis of Jost solutions for the almost periodic case; see
[19, 15, 3]. Then compare to the free J0 (aℓm = 1 if |ℓ−m| = 1, bℓ = 0)
and use the bound of [9]. �

For the periodic case, this is proven by Damanik, Killip, and Simon
[4], who also prove this where the sum in (4.11) is over all eigenvalues
including the ones in gaps.

It remains an interesting question relevant to the study of the Szegő
condition (see [10, 3]) to get the bound in the almost periodic case. In
[10], Hundertmark and Simon prove the weaker bounds where the 1

2
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power is replaced by any p > 1
2

or where p = 1
2

but there is an ℓε added
to the sum.

5. Some Final Remarks

All we needed for our arguments is some kind of ground state repre-
sentation. That means we can replace −∆ by

L0 = −
ν∑

j,k=1

∂jAjk(x) ∂k (5.1)

with {Ajk(x)}1≤j,k≤ν a strictly positive matrix. Hence, if (L0 +V )u0 =
0, then

〈fu0, (L0 + V )fu0〉 =

∫
〈∇f, A∇f〉|u0(x)|

2 dνx

and we can still compare to −∆ although sup ‖A‖ and inf ‖A‖ will
enter.

We can compare magnetic field operators where the magnetic field
is fixed but V0, V vary. For if H0u ≡ (−(∇ − ia)2 + V0)u0 = 0, then,
since [f ∗, [f,H0]] = |(∇− ia)f |2, we have that

〈fu0, H0fu0〉 =

∫
|(∇− ia)f |2|u0|

2 dνx

For the discrete case, the key was not tridiagonal matrices, but ones
with a ground state representation. For example, non-negative off-
diagonal will do.

Using the representation of Frank, Lieb, and Seiringer [6], one can
treat some perturbations of (−∆)α, 0 < α < 1.
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