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Abstract. We use a Poincaré type formula and level set analysis to
detect one-dimensional symmetry of stable solutions of possibly degen-
erate or singular elliptic equation of the form

div
“

a(|∇u(x)|)∇u(x)
”

+ f(u(x)) = 0 .

Our setting is very general and, as particular cases, we obtain new
proofs of a conjecture of De Giorgi for phase transitions in R

2 and R
3 and

of the Bernstein problem on the flatness of minimal area graphs in R
3.

A one-dimensional symmetry result in the half-space is also obtained as
a byproduct of our analysis.

Our approach is also flexible to non-elliptic operators: as an appli-
cation, we prove one-dimensional symmetry for 1-Laplacian type oper-
ators.

1. Introduction

Of concern is a class of quasilinear (possibly singular or degenerate) el-
liptic equations in R

N with N = 2, 3. We prove one-dimensional symmetry
of the solutions, thus showing that the important results of [BCN97, GG98,
AC00, AAC01, DG02] hold in a more general setting. The results we present
are new even in the semilinear case, when the differential operator reduces
to the standard Laplacian, since the nonlinearity we deal with may be less
regular than what the previous literature requires.

The techniques used are novel and they are mainly based on a geometric
formula, inspired by the work of [SZ98a, SZ98b], which bounds tangential
gradients and curvatures of level sets of stable solutions in terms of suitable
energy, or area, integrals.

As a by-product, we obtain a new result on mean curvature type operators
which extends the Bernstein Theorem in [Ber27] to a more general setting
and to possibly non-homogeneous equations.
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In further detail, the topic of this paper is the following. We consider
weak solutions u ∈ C1(RN ) ∩C2({∇u 6= 0}) of equations of the form

(1.1) div
(
a(|∇u(x)|)∇u(x)

)
+ f(u(x)) = 0 .

We suppose that f is a locally Lipschitz function and that a ∈ C 1((0,+∞))
satisfies the following structural conditions:

(1.2) a(t) > 0 for any t ∈ (0,+∞),

(1.3) a(t) + a′(t)t > 0 for any t ∈ (0,+∞).

The general form of (1.1) encompasses, as particular cases, many elliptic
singular and degenerate operators such as the p-Laplacian, for a(t) = tp−2,

and the mean curvature, for a(t) = 1/
√

1 + t2.
We define A : R

N \ {0} → Mat(N ×N) by

(1.4) Ahk(ξ) :=
a′(|ξ|)
|ξ| ξhξk + a(|ξ|)δhk

for any 1 ≤ h, k ≤ N .
We now introduce1 the following notation:

(1.5) λ1(t) := a(t) + a′(t)t , λ2(t) = · · · = λN (t) := a(t) ,

for any t > 0.
It is also convenient to define

(1.6) Λi(t) :=

∫ t

0
λi(|τ |) τ dτ

for i = 1, 2 and t ∈ R and

F (t) :=

∫ t

0
f(τ) dτ .

It is easily seen that (1.1) is equivalent to critical points of the formal vari-
ational principle

(1.7)

∫
Λ2(|∇u|) − F (u) dx .

1In the literature, it is often assumed that ta(t) → 0+ as t → 0+ since in this case
equation (1.1) is well-defined and many regularity results follow. In our case, this condition
will be automatically fulfilled when condition (1.9), (B1) or (B2) are assumed. In such
cases, the map t 7→ ta(t) is implicitly assumed to be extended at t = 0 by continuity.

Analogously, when (B1) or (B2) are assumed, A(ξ)ξ → 0 as ξ → 0, hence the map ξ 7→
ξA(ξ) is assumed to be extended at ξ = 0 by continuity, even when A(0) is not defined.

Note that ta(t) > 0 for any t > 0, due to (1.2), and the map t 7→ ta(t) is increasing, due
to (1.3). As a consequence, ta(t) ∈ L∞

loc([0, +∞)) and so t2a(t) → 0+ as t → 0+, and Λ2

in (1.6) is well-defined.
On the other hand, in principle, Λ1 in (1.6) may diverge. In our setting, conditions (A2),

(B1) and (B2) will exclude this possibility. When condition (A1) is in force, we never
use Λ1.
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Theorem 1.1 below holds under very general assumptions on the differ-
ential operator. Namely, we will require in Theorem 1.1 that a satisfies
either (A1) or (A2), where:

(A1) {∇u = 0} = ∅ and

(1.8) t2λ1(t) ∈ L∞
loc([0,+∞)) .

(A2) We have that

(1.9) a ∈ C([0,+∞))

and

(1.10) the map t 7→ ta(t) belongs to C1([0,+∞)).

In this case, we define Ahk(0) := a(0)δhk.
As customary, (see, e.g., [MP78, FCS80, AAC01]), we say that a solution u

is stable if

(1.11)

∫

RN

(
A(∇u(x))∇φ(x)

)
· ∇φ(x) − f ′(u(x))φ2(x) dx ≥ 0

for any smooth, compactly supported function φ : R
N → R, as long as2 the

above integral is defined.
Of course, from the functional analysis point of view, the stability con-

dition in (1.11) translates into the fact that the second variation of the
functional in (1.7) is non-negative. Thence, in particular, such a condition
is fulfilled by the minima of the functional.

We remark that in case f is constant every solution is stable, since the
matrix A is positive definite (see Lemma 2.1 below).

Then, our symmetry result in R
2 is the following:

Theorem 1.1. Let N = 2. Let u ∈ C1(R2) ∩ C2({∇u 6= 0}), with ∇u ∈
L∞(R2) ∩W 1,2

loc (R2), a and f be as in (1.1), (1.2) and (1.3).
Assume that either (A1) or (A2) holds.
Suppose that u is stable.
Then, u has one-dimensional symmetry, in the sense that there exists ū :

R → R and ω ∈ S1 in such a way that u(x) = ū(ω · x), for any x ∈ R
2.

2We point out that, in general, the integral in (1.11) may be not well-defined for some
test functions in case the gradient of u vanishes, since A may diverge there. In our setting,
however, such integral will be always well-defined, due to (A1) and (A2).

We also note that, under condition (A2), A ∈ C(RN ), since, for any t > 0,

a(t) − 1

t

Z t

0

(τa(τ ))′ dτ = 0

and so

0 = a(0) − lim
t→0+

(ta(t))′ = lim
t→0+

ta
′(t) .

Conditions (A1) and (A2) are indeed quite different in spirit, as the example in Proposi-
tion 7.2 below will also show.
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We observe that, as paradigmatic examples satisfying the assumptions of
Theorem 1.1, one may take the p-Laplacian, with any p ∈ (1,+∞) if {∇u =
0} = ∅ and any p ∈ [2,+∞) if {∇u = 0} 6= ∅, or the mean curvature
operator.

We also remark that the assumption that ∇u ∈ W 1,2
loc (RN ) is always ver-

ified in the p-Laplacian case if either {∇u = 0} = ∅ or if 1 < p < 3 (see,
e.g., (2.2.2) in [Tol84] for the case 1 < p ≤ 2, and Theorem 1.1 and Propo-
sition 2.2 in [DS04] for the case 2 ≤ p < 3).

As well-known, the assumption that u ∈ C1(RN ) ∩ C2({∇u 6= 0}) is also
fulfilled in the p-Laplacian case (see, e.g., [Uhl77, DiB83, Tol84]).

The assumption that |∇u| is bounded cannot be removed, as we will show
by explicit counterexamples in Proposition 3.1.

In the following Theorem 1.2, some further structural assumptions on a
will be required. These assumptions, which will use the notation introduced
here above, are still quite general, and make it possible to use some results
of [CGS94, DG02].

Following [CGS94, DG02], we list these further assumptions by asking
that a satisfies either (B1) or (B2), where:

(B1) There exist p > 1, ε ≥ 0, and c? ∈ (0, 1) such that for every ξ,
ζ ∈ R

N \ {0}, one has:

c?(ε+ |ξ|)p−2|ζ|2 ≤ Ahk(ξ)ζhζk ≤ 1

c?
(ε+ |ξ|)p−2|ζ|2 .

(B2) There exist c? ∈ (0, 1) such that for every ξ, ζ ∈ R
N \ {0}, one has:

c?

(1 + |ξ|) ≤ a(|ξ|) ≤ 1

c? (1 + |ξ|) ,(1.12)

c?
|ζ|2 + (ζ · ξ)2

1 + |ξ| ≤ Ahk(ξ)ζhζk ≤ 1

c?
|ζ|2 + (ζ · ξ)2

1 + |ξ| .(1.13)

Conditions (B1) and (B2) are fulfilled, for instance, by p-Laplacian type
and mean curvature type3 operators (see, e.g., (1.4) and (1.5) of [CGS94]
or (2.12) and (2.13) of [DG02]).

In this framework, the following result holds:

Theorem 1.2. Let N = 3, u ∈ C1(R3)∩W 1,∞(R3), and a and f as in (1.1).
Assume that either (B1) or (B2) holds. Suppose also that

(1.14) a ∈ C1,1
loc (0,+∞) .

and that ∂x3u > 0.
Then, u has one-dimensional symmetry, in the sense that there exists ū :

R → R and ω ∈ S2 in such a way that u(x) = ū(ω · x), for any x ∈ R
3.

3 We kept the distinction between (B1) and (B2) mainly to be uniform with the existing
literature. In fact, in our setting, condition (B2) can be seen as a particular case of (B1)
with p = 2, because in Theorem 1.2 all the considered solutions have bounded gradient.
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We remark that we will prove a stronger version of Theorem 1.2. Namely,
we prove that Theorem 1.2 holds by replacing the assumption ∂x3u > 0 with
the following, a priori4 weaker, ones: ∂x3u ≥ 0, {∇u = 0} = ∅ and u stable.

Let us make some comments on the above assumptions. First of all, the
hypotheses of Theorem 1.2 are obviously stronger than the ones of The-
orem 1.1 and, in particular, (B1) or (B2) imply (1.2) and (1.3). More-
over, (B1) or (1.13) bound the eigenvalues of A(ξ) from above by (ε+ |ξ|)p−2

and 1 + |ξ|2, respectively. Since λ1 is an eigenvalue (see Lemma 2.1 below),
we also have that (B1) or (B2) imply (1.8).

Furthermore, the stability condition is implied by the assumption ∂xN
u >

0 (this is a standard fact for phase transitions and details fitting our setting
are given in Lemma 7.1 below).

We also note that (B1) or (B2) give a regularity theory for u, namely u ∈
C1,α

loc (R3) and so, since {∇u = 0} = ∅, we have that u ∈ C2(R3) (see
footnote 3 here and page 459 in [DG02] and references therein).

We remark again that paradigmatic examples satisfying the hypotheses
of Theorem 1.2 are the p-Laplacian operator, for any p ∈ (1,+∞), and the
mean curvature operator.

Theorems 1.1 and 1.2 reduce, in the particular case of a(t) = 1 and f(t) =
t−t3, to a famous problem posed by De Giorgi on page 175 of [DG79]. With
these respect, Theorems 1.1 and 1.2 are extensions of the celebrated results
in [BCN97, GG98] for N = 2 and [AC00, AAC01] for N = 3 to more
general, possibly degenerate, operators and to less regular nonlinearities –
to the best of our knowledge, for instance, f is needed to be at least C 1 in
the literature, and such condition is crucial in [AC00, AAC01] to pass to the
limit the linearized equation and the stability condition.

One-dimensional symmetry for solutions of non-uniformly elliptic opera-
tors has also been dealt with in [CGS94, DG02, Far03, VSS06]. Theorems 1.1
and 1.2 strengthen these results: for instance, the monotonicity assumption
in Theorem 7.1 of [DG02] is weakened in favor of the stability assumption
of Theorem 1.1 here, and no additional limit requirement is needed in our
Theorem 1.2, at difference with Theorem 8.1 of [DG02] and Theorem 1.4
of [VSS06] (on the other hand, the latter result holds for N ≤ 8).

We remark that Theorems 1.1 and 1.2 are somehow bias, in the sense
that the proof of Theorem 1.2 does not rely on Theorem 1.1 but directly
on the geometric level sets estimates, because some of the hypotheses of
Theorem 1.2, such as the strict monotonicity and the stability conditions,
would be lost in the limit.

As a consequence of Theorem 1.2, we obtain the following result about
symmetry in the half space.

4A posteriori, Theorem 1.2 under the weaker assumptions implies that the solution is
one-dimensional, thence, since {∇u = 0} = ∅, we have that u is strictly monotone in some
direction ω, which is not necessarily e3.
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Corollary 1.3. Let g be locally Lipschitz continuous in [0,+∞), with g(0) =
0. Let u ∈ C2(R2 × [0,+∞)) ∩ L∞(R2 × [0,+∞)) be such that

∆u(x) + g(u(x)) = 0

u(x) > 0 for any x ∈ R
2 × (0,+∞),

and u(x′, 0) = 0 for any x′ ∈ R
2.

Then, u has one-dimensional symmetry, in the sense that there exists ū :
R → R in such a way that u(x′, x3) = ū(x3), for any (x′, x3) ∈ R

2× [0,+∞).

Corollary 1.3 is an extension of Theorem 1.5 of [BCN97]. In fact, the
results of Corollary 1.3 here and of Theorem 1.5 in [BCN97] hold under
different hypotheses: Theorem 1.5 for N = 3 in [BCN97] is valid assuming
only that g(0) ≥ 0, but requiring g to be C1, while here we need g(0) = 0 but
we may allow less regularity (once more, the condition that g ′ is continuous
was not merely technical in [BCN97], since it was needed for taking limits:
see, in particular, Lemma 3.1 on page 84 of [BCN97]).

We now state a Bernstein type result:

Theorem 1.4. Let N = 2. Let u ∈ C2(R2), a and f be as in (1.1),
(1.2) and (1.3). Suppose also that f has a sign (meaning that either f ≥ 0
or f ≤ 0), that

(1.15) |a(t) t| ≤ C

for any t ≥ C, and that

(1.16) t2λ1(t) ≤ C a(t)

for any t ≥ C, for a suitable C ≥ 1.
Suppose that either (A1) or (A2) holds, and that u is stable.
Then, u possesses one-dimensional symmetry.

As a particular case, one may take f := 0 and a(t) := 1/
√

1 + t2 in
Theorem 1.4: in such a case, our result reduces to the very famous fact
that minimal surfaces which are graphs in R

3 are one-dimensional and, as a
consequence, affine (see [Ber27]): this classical result is therefore extended
here to more general types of equations, thanks to our different approach.

We recall also that, in the minimal surface case, where f := 0 and a(t) :=

1/
√

1 + t2, any solution of (1.1) is automatically stable, since f ′ vanishes
identically.

The main novelty with respect to the techniques already available in the
literature for dealing with one-dimensional symmetries is here the use of a
Poincaré type formula (given in Theorem 2.5), which extends a similar one
of [SZ98a, SZ98b]. Such a formula is geometric in spirit, since it involves
the curvature and the tangential gradients of level sets.

In some sense, this approach makes it possible to deal with the problems of
Bernstein and De Giorgi, which have a geometric flavor, in a more geometric
way. Such a geometric answer to problems that are of geometric nature has
also some technical advantages. For instance, it will give us the possibility
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of proving Theorems 1.1 and 1.2 without any assumption at infinity (which
are needed in [DG02, Sav03, VSS06]). It also allows us to deal with a
less regular f with respect to [AC00, AAC01] and, differently from [Sav03,
VSS06], no growth assumptions from the minima of F is needed here.

This generality is accomplished thanks to the geometry encoded in the
Poincaré type formula of Theorem 2.5: indeed, while it is not possible to
“push” the stability in (1.11) towards infinity (unless f ′ is continuous), the
information on the level sets will remain at infinity.

In this sense, Theorem 2.5 will allow us to obtain first some geometric
information and then to push it to infinity.

We also mention that, differently from [AC00, Sav03, VSS06], we do not
need here to assume the existence of a monotone one-dimensional profile.
The monotone one-dimensional profile was important in [AC00] for bounding
the energy and in [Sav03, VSS06] to build suitable barriers, which are not
needed in our construction. In fact, our limiting profile may have somewhat
wild behaviors (see Lemma 4.14 and the examples in Section 7.2).

For a survey of geometric problems related to the one considered here, in
connection with Liouville type results, see also [Far07].

We finish with an application to non-elliptic operators of 1-Laplacian type.
For this, we consider the following weakened version of (1.3):

(1.17) a(t) + a′(t)t ≥ 0 for any t ∈ (0,+∞).

We prove that

Theorem 1.5. Suppose that f is locally Lipschitz, that a ∈ C 1((0,+∞))
satisfies (1.2), (1.17) and that (A1) holds.

Let u ∈ C2(R2) be a stable solution of (1.1) in R
2, with |∇u| ∈ L∞(R2).

Then, u has one-dimensional symmetry.

The easiest case of operators fulfilling the assumptions of Theorem 1.5 is
given by a(t) = 1/t for all (or for some) t > 0, that are 1-Laplacian type
operators. We remark that the assumption that ∇u does not vanish, which
is contained in (A1), is needed to make sense of (1.1).

The organization of the paper is the following. In Section 2, we prove
Theorem 1.1. Section 3 contains examples showing the optimality of the
assumptions of Theorem 1.1. We then provide two proofs of Theorem 1.2.
Namely, Section 4 contains some general preliminaries, needed for both the
proofs of Theorem 1.2, Section 5 gives the details of the first proof, based
on a capacity argument, and Section 6 presents the second proof, which
exploits a Liouville type result (the end of the latter proof is closely related
to similar arguments in [AC00, AAC01, DG02]).

In the semilinear model, monotone solutions are known to be stable: mod-
ifications of standard arguments are given in Section 7 to show that the same
holds in our setting.

The proof of Corollary 1.3 and Theorem 1.4 are then given in Sections 8
and 9, respectively.
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Theorem 1.5 is proven in Section 10.

2. Proof of Theorem 1.1

We borrow a large number of ideas from [Far02] and exploit some tech-
niques of [SZ98a, SZ98b].

2.1. Algebraic manipulations. In the sequel, we implicitly assume N ≥
2.

Lemma 2.1. For any ξ ∈ R
N \ {0}, the matrix A(ξ) is symmetric and

positive definite and its eigenvalues are λ1(|ξ|), . . . , λN (|ξ|).
Moreover,

(2.1) A(ξ)ξ · ξ = |ξ|2 λ1(|ξ|) .
Proof. The formula in (2.1) is straightforward.

Fixed ξ ∈ R
N \ {0}, the matrix A(ξ) is obviously symmetric. What is

more, A(ξ)ξ = λ1(|ξ|)ξ and A(ξ)v = λ2(|ξ|)v for any v ∈ R
N such that v ·ξ =

0. This says that the eigenvalues of A(ξ) are as in (1.5). Such eigenvalues
are positive, due to (1.2) and (1.3), and so A(ξ) is positive definite. �

Consequences of Lemma 2.1 are that

Λi(−t) = Λi(t) > 0

for any t ∈ R \ {0}, and that

(2.2) 0 ≤ A(ξ) (V −W ) · (V −W ) = A(ξ)V · V +A(ξ)W ·W − 2AV ·W ,

for any V , W ∈ R
N and any ξ ∈ R

N \ {0}.

Lemma 2.2. Let u ∈ C1(RN ) ∩ C2({∇u 6= 0}), with ∇u ∈ W 1,2
loc (RN ) be a

weak solution of (1.1). Suppose that either (A2) holds or that {∇u = 0} = ∅.
Then, uj is a weak solution of

(2.3) div
(
A(∇u(x))∇uj(x)

)
+ f ′(u(x))uj(x) = 0 ,

for any j = 1, . . . , N .

Proof. First of all, we observe that

(2.4) the map x 7→W (x) := a(|∇u(x)|)∇u(x) belongs to W 1,1
loc (RN ,RN ).

Indeed, this is obvious if {∇u = 0} = ∅, while, if (A2) holds, we see that
the map

R
N 3 ξ 7→ Ψ(ξ) := a(|ξ|)ξ

belongs toW 1,∞
loc (RN ,RN ), and so (2.4) follows by writingW (x) = Ψ(∇u(x)).

From (2.4), we have that

−
∫

RN

∂j

(
a(|∇u|)∇u

)
· ψ dx =

∫

RN

a(|∇u|)∇u · ∂jψ dx ,

for any φ ∈ C∞
0 (RN ,RN ).
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Also, by (2.4) and Stampacchia’s Theorem (see, for instance, Theorem 6.19
of [LL97]), we get that ∂jW (x) = 0 for almost any x ∈ {W = 0}, that is

∂j

(
a(|∇u(x)|)∇u(x)

)
= 0

for almost any x ∈ {∇u = 0}.
Analogously, making use again of Stampacchia’s Theorem and (A2), we

see that ∇uj(x) = 0, and so A(∇u(x))∇uj(x) = 0, for almost any x ∈
{∇u = 0}.

A direct computation also shows that

∂j

(
a(|∇u|)∇u

)
= A(∇u)∇uj

on {∇u 6= 0}.
As a consequence,

∂j

(
a(|∇u|)∇u

)
= A(∇u)∇uj

almost everywhere.
Let now φ ∈ C∞

0 (RN ). We use the above observations to obtain that

−
∫

RN

A(∇u)∇uj · ∇φ+ f ′(u)ujφdx

= −
∫

RN

∂j

(
a(|∇u|)∇u

)
· ∇φ+ ∂j

(
f(u)

)
φdx

=

∫

RN

a(|∇u|)∇u · ∇φj + f(u)φj dx ,

which vanishes due to (1.1). �

The careful reader may easily convince herself or himself that the proof of
Lemma 2.2 holds, in fact, assuming ∇u ∈W 1,1

loc (RN ): since such a generality

is not needed here, we assumed, for simplicity, ∇u ∈ W 1,2
loc (RN ) in order to

use the above result in Lemma 2.4.
We will now consider the tangential gradient with respect to a regular

level set. That is given v ∈ C1(RN ), we define the level set of v at x as

(2.5) Lv,x := {y ∈ R
N s.t. v(y) = v(x)} .

If ∇v(x) 6= 0, Lv,x is a hypersurface near x and one can consider the pro-
jection of any vector onto the tangent plane: in particular, the tangential
gradient, which will be denoted as ∇Lv,x , is the projection of the gradient.

That is, given f ∈ C1(Bρ(x)), for ρ > 0, we set

(2.6) ∇Lv,xf(x) := ∇f(x) −
(
∇f(x) · ∇v(x)

|∇v(x)|

) ∇v(x)
|∇v(x)| .
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Lemma 2.3. Let U ⊆ R
N be an open set, v ∈ C2(U) and x ∈ U be such

that ∇v(x) 6= 0. Then,

a(|∇v(x)|)



∣∣∣∇|∇v|(x)

∣∣∣
2
−

N∑

j=1

|∇vj(x)|2



−a′(|∇v(x)|) |∇v(x)|
∣∣∣∇Lv,x |∇v|(x)

∣∣∣
2

=
(
A(∇v(x))

(
∇|∇v|(x)

))
·
(
∇|∇v|(x)

)

−
(
A(∇v(x))∇vj(x)

)
· ∇vj(x) .

Proof. We use ∇L, a and A as a short-hand notation for ∇Lv,x , a(|∇v(x)|)
and A(∇v(x)) respectively. We observe that, from (2.6),

|∇Lv,xf |2 = |∇f |2 −
(
∇f · ∇v

|∇v|

)2

for any smooth function f .
It is also straightforward that

(2.7) ∂j |∇f | =
∇f · ∇fj

|∇f | ,

at points where ∇f 6= 0.
We exploit these observations and (1.4) to make the following computa-

tion:

(A(∇|∇v|)) · (∇(|∇v|)) − (A∇vj) · ∇vj

−a|∇|∇v||2 + a|∇vj ||∇vj | + a′|∇v||∇L|∇v||2

=
a′

|∇v|vhvk∂h|∇v| ∂k|∇v|

− a′

|∇v|vhvkvjhvjk + a′|∇v|
[
|∇|∇v||2 −

(
∇|∇v| · ∇v

|∇v|

)2
]

=

= − a′

|∇v|(∇v · ∇vj)(∇v · ∇vj) + a′|∇v||∇|∇v||2

= 0 ,

where the index summation convention is understood. �

2.2. An elementary density argument. In Theorem 2.5 below, we will
need to use the stability condition (1.11) for a less regular test function. To
this extent, we need the following observation:

Lemma 2.4. Suppose that either (A2) holds or that {∇u = 0} = ∅. Let u ∈
C1(RN ) be a stable weak solution of (1.1). Then, (1.11) holds for any φ ∈
W 1,2

0 (B) and any ball B ⊂ R
N .
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Also, under the assumptions of Lemma 2.2,

(2.8)

∫

RN

A(∇u)∇uj · ∇φ− f ′(u)ujφdx = 0

for any j = 1, . . . , N , any φ ∈W 1,2
0 (B) and any ball B ⊂ R

N .

Proof. Given φ ∈ W 1,2
0 (B), let φk ∈ C∞

0 (B) approach φ in W 1,2
0 (B). Let

also m (respectively, M) be the minimum (respectively, the maximum)
of |∇u| on the closure of B and

K := sup
m≤|ξ|≤M

|A(ξ)| .

Since 0 ≤ m ≤M < +∞, we have that K < +∞, because m > 0 if {∇u =
0} = ∅ and A ∈ L∞

loc(R
N ) if (A2) holds.

Hence,
∣∣∣∣
∫

RN

(
A(∇u)∇φk

)
· ∇φk −

(
A(∇u)∇φ

)
· ∇φdx

∣∣∣∣

≤
∫

B
|A(∇u)| |∇(φk − φ)| |∇φk| + |A(∇u)| |∇φ| |∇(φk − φ)| dx

≤ K

(∫

B
|∇(φk − φ)|2

)1/2
[(∫

B
|∇φk|2

)1/2

+

(∫

B
|∇φ|2

)1/2
]
,

which yields the first claim.
Analogously, if the assumptions of Lemma 2.2 hold, we deduce from (2.3)

that

(2.9)

∫

RN

A(∇u)∇uj · ∇φk − f ′(u)ujφk dx = 0 .

Also,
∣∣∣∣
∫

RN

A(∇u)∇uj · (∇φk −∇φ) dx

∣∣∣∣+
∣∣∣∣
∫

RN

f ′(u)uj(φk − φ) dx

∣∣∣∣

≤ K

(∫

B
|∇uj|2

)1/2 (∫

B
|∇(φk − φ)|2

)1/2

+

(∫

B
|f ′(u)uj |2

)1/2 (∫

B
|φk − φ|2

)1/2

,

which tends to zero as k tends to infinity, because of the assumptions on u.
The latter consideration and (2.9) give (2.8). �

2.3. Extension of a Poincaré type formula by Sternberg and Zum-

brun. Given y ∈ Lu,x ∩ {∇u 6= 0}, let κ1,u(y), . . . , κ(N−1),u(y) denote the
principal curvatures of Lu,x at y. In the sequel, we will often use κ` as a
short-hand notation for κ`,u, when no ambiguity is possible.
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Tangential gradients and curvatures may be conveniently related: indeed,
according to formula (2.1) of [SZ98a],

(2.10)
∑

j

|∇vj|2 − |∇L|∇v||2 − |∇|∇v||2 = |∇v|2
∑

`

κ2
`,v ,

on {∇v 6= 0}, for any v ∈ C2({∇v 6= 0}).
In the subsequent Theorem 2.5, we give an extension of a formula obtained

in [SZ98a, SZ98b]. Such formula relates the stability of the equation with the
principal curvatures of the corresponding level set and with the tangential
gradient of the solution. Since this formula bounds a weighted L2-norm of
any test function by a weighted L2-norm of its gradient, we may see this
formula as a weighted Poincaré type inequality.

The proof we present is a variation of the one given in [SZ98a, SZ98b]:
the main difference is that we exploit here the results of §2.1 in order to go
back to the usual notion of curvatures and tangents instead of the one in
the metric structure induced by A.

Theorem 2.5. Let u ∈ C1(RN )∩C2({∇u 6= 0}) with ∇u ∈W 1,2
loc (RN ) be a

stable weak solution of (1.1). Suppose that either (A2) holds or that {∇u =
0} = ∅.

For any x ∈ {∇u 6= 0} let Lu,x denote the level set of u at x, according
to (2.5).

Let also λ1(|ξ|) and λ2(|ξ|) be as in (1.5).
Then,

∫

{∇u6=0}

[
λ1(|∇u(x)|)

∣∣∣∇Lu,x|∇u|(x)
∣∣∣
2

+λ2(|∇u(x)|) |∇u(x)|2
N−1∑

`=1

κ2
` (x)

]
ϕ2(x) dx

≤
∫

RN

|∇u(x)|2
(
A(∇u(x))∇ϕ(x)

)
· ∇ϕ(x) dx

(2.11)

for any locally Lipschitz, compactly supported function ϕ : R
N → R.

Proof. We make use of λi, κi, ∇L, a and A as a short-hand notation
for λi(|∇u(x)|), κi(x), ∇Lu,x, a(|∇u(x)|) and A(∇u(x)) respectively.

Since the maps x 7→ uj(x) and x 7→ |∇u(x)| belong to W 1,2
loc (RN ), Stam-

pacchia’s Theorem (see, e.g., Theorem 6.19 in [LL97]) yields that

∇|∇u| = 0 almost everywhere on {|∇u| = 0}

and

∇uj = 0 almost everywhere on {|∇u| = 0} ⊆ {uj = 0},
for any j = 1, . . . , N .
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We take now φ := ujϕ
2 in (2.8) and we sum over j to see that

(2.12)

∫
(A∇uj) · ∇(ujϕ

2) − f ′(u)|∇u|2ϕ2 dx = 0 .

We now exploit (1.11) with φ := |∇u|ϕ. Note that this choice is possible,
thanks to Lemma 2.4. The use of (2.12) and Lemma 2.3 then imply

0 ≤
∫

|∇u|2(A∇ϕ) · ∇ϕ+ ϕ2(A∇|∇u|) · ∇|∇u|

+2ϕ|∇u|(A∇ϕ) · ∇|∇u| − f ′(u)|∇u|2ϕ2 dx

=

∫
|∇u|2(A∇ϕ) · ∇ϕdx

+

∫

{∇u6=0}
2ϕ|∇u|(A∇ϕ) · ∇|∇u| − (A∇uj) · ∇(ujϕ

2)

+ϕ2(A∇|∇u|) · ∇|∇u| dx

=

∫
|∇u|2(A∇ϕ) · ∇ϕdx+

∫

{∇u6=0}
aϕ2

(
|∇|∇u||2 −

∑

j

|∇uj|2
)

−a′ϕ2|∇u| |∇L|∇u||2 dx .
That is, using (1.5),

∫
|∇u|2(A∇ϕ) · ∇ϕdx

≥
∫

{∇u6=0}
ϕ2
[
λ1|∇L|∇u||2

+λ2

(∑

j

|∇uj |2 − |∇L|∇u||2 − |∇|∇u||2
)]
dx .

This and (2.10) imply the desired result. �

Corollary 2.6. Let N = 2 and u ∈ C1(R2) ∩ C2({∇u 6= 0}). Suppose that
∫

{∇u6=0}

[
λ1(|∇u(x)|)

∣∣∣∇Lu,x |∇u|(x)
∣∣∣
2

+λ2(|∇u(x)|) |∇u(x)|2 κ2
1(x)

]
ϕ2(x) dx

≤ K

∫

R2

|∇ϕ(x)|2 dx

(2.13)

for some K ≥ 0.
Then,

(2.14) κ1(x) = 0

and

(2.15) ∇Lu,x|∇u(x)| = 0

for any x ∈ {∇u 6= 0}.
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In particular, if u fulfills the assumptions of Theorem 1.1, then (2.14)
and (2.15) hold.

Proof. First, we show how (2.13) implies (2.14) and (2.15). This is indeed
a standard capacity argument, of which we give the details for the reader’s
facility.

We fix R > 0 and we take

ϕ := max

{
0 , min

{
1 ,

ln(R2/|x|)
lnR

}}
.

Then ϕ = 1 in BR and it vanishes outside BR2 . Exploiting (2.13), we
conclude that

∫

BR∩{∇u6=0}
λ1|∇L|∇u||2 + λ2|∇u|2κ2

1 dx

≤ constK

∫

BR2\BR

|∇ϕ|2 dx

≤ constK

(lnR)2

∫ R2

R

dr

r
≤ constK

(lnR)
.

Then, (2.14) and (2.15) follow by taking R→ +∞.
We now show that (2.14) and (2.15) holds under the assumptions of The-

orem 1.1. Indeed, since |∇u| is taken to be bounded in Theorem 1.1 and the
map

t 7→ t2λ1(t) + t2λ2(t)

belongs to L∞
loc([0,+∞)), thanks to either (A1) or (A2), we have that

|∇u|2
(
A(∇u)∇ϕ

)
· ∇ϕ ≤ K |∇ϕ|2

for any Lipschitz compactly supported ϕ, for a suitable K > 0.
This and Theorem 2.5 yield that (2.13) is satisfied, thence (2.14) and (2.15)

hold by what we have already proved. �

2.4. Level set analysis. In what follows, we will consider connected com-
ponents of the level sets (in the inherited topology).

Lemma 2.7. Let v ∈ C1(RN ) ∩C2({∇v 6= 0}). Fix x̄ ∈ R
N .

Suppose that for any x ∈ Lv,x̄∩{∇v 6= 0}, we have that ∇Lv,x |∇v(x)| = 0.
Then, |∇v| is constant on every connected components of Lv,x̄∩{∇v 6= 0}.

Proof. Since any connected component of Lv,x̄ ∩ {∇v 6= 0} is a regular
hypersurface, any two points in it may be joined by a C 1 path.

Let L := Lv,x̄ for short. We notice that, if t1 > t0 ∈ R and γ ∈
C1([t0, t1], L ∩ {∇v 6= 0}), then

d

dt
|∇v(γ(t))| = ∇|∇v(γ(t))| · γ̇(t) = ∇L|∇v(γ(t))| · γ̇(t) = 0 ,
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thanks to (2.6). As a consequence,

if γ ∈ C1([t0, t1], L ∩ {∇v 6= 0}), then

|∇v(γ(t))| is constant for t ∈ [t0, t1].
(2.16)

Now, we take a and b in L∩{∇v 6= 0} and γ ∈ C1([0, 1], L) such that γ(0) = a
and γ(1) = b. Then |∇v(a)| = |∇v(b)|, by (2.16). �

Corollary 2.8. Under the assumptions of Lemma 2.7, every connected com-
ponent of Lv,x ∩ {∇v 6= 0} is closed in R

N .

Proof. Let M be any connected component of Lv,x ∩ {∇v 6= 0}.
With no loss of generality, we suppose that M 6= ∅ and take z ∈M .
Let y ∈ ∂M . Then there is a sequence xn ∈M approaching y, thus

(2.17) v(y) = lim
n→+∞

v(xn) = v(z) .

Then, by Lemma 2.7, we have that |∇v(xn)| = |∇v(z)|. So, since z ∈M ,

(2.18) |∇v(y)| = lim
n→+∞

|∇v(xn)| = |∇v(z)| 6= 0 .

By (2.17) and (2.18), we have that y ∈M . �

Corollary 2.9. Let the assumptions of Lemma 2.7 hold. Let M be a con-
nected component of Lv,x ∩ {∇v 6= 0}. Suppose that M 6= ∅ and M is
contained in a hyperplane π. Then, M = π.

Proof. We show that

(2.19) M is open in the topology of π.

For this, let z ∈M . Then there exists an open set O1 of R
N such that z ∈

O1 ⊂ {∇v 6= 0}. Also, by the Implicit Function Theorem, there exists
an open set O2 in R

N for which z ∈ O2 and Lv,x ∩ O2 is a hypersurface.
Since M ⊆ π, we have that Lv,x ∩ O2 ⊆ π, hence Lv,x ∩ O2 is open in the
topology of π.

Then, z ∈ Lv,x ∩O1 ∩O2, which is an open set in π.
This proves (2.19).
Also, M is closed in R

N and so M = M ∩ π is closed in π.
Hence, M is open and closed in π. �

Lemma 2.10. Let v ∈ C1(RN )∩C2({∇v 6= 0}) be such that ∇Lv,x|∇v(x)| =
0 for every x ∈ {∇v 6= 0}.

Let x̄ ∈ R
N .

Suppose that a non-empty connected component L̄ of Lv,x̄ ∩{∇v 6= 0} has
zero principal curvatures at any point.

Then, L̄ is a flat hyperplane.

Proof. We use a standard differential geometry argument (see, for instance,
page 311 in [Ser94]). Since the principal curvatures vanish identically, the
normal of L̄ is constant, thence L̄ is contained in a hyperplane.

Then, the claim follows from Corollary 2.9. �
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Lemma 2.11. Let v ∈ C1(RN ) ∩ C2({∇v 6= 0}). Suppose that

any connected component of Lv,x ∩ {∇v 6= 0}
has zero principal curvatures at any point

(2.20)

and that

(2.21) ∇Lv,x |∇v(x)| = 0

for any x ∈ {∇v 6= 0}. Then, v possesses one-dimensional symmetry, in the
sense that there exists v̄ : R → R and ω ∈ SN−1 in such a way that v(x) =
v̄(ω · x), for any x ∈ R

N .

Proof. If ∇v(x) = 0 for any x ∈ R
N , the one-dimensional symmetry is

trivial.
If ∇v(x̄) 6= 0, then the connected component of Lv,x̄ ∩ {∇v 6= 0} passing

through x̄ is a hyperplane, due to Lemma 2.10.
We observe that all these hyperplanes are parallel, because connected

components cannot intersect.
Also, v is constant on these hyperplanes, since each of them lies on a level

set.
On the other hand, v is also constant on any other possible hyperplane

parallel to the ones of the above family, because the gradient vanishes iden-
tically there.

From this, the one-dimensional symmetry of v follows by noticing that v
only depends on the orthogonal direction with respect to the above family
of hyperplanes. �

2.5. Completion of the proof of Theorem 1.1. We observe that u satis-
fies (2.20) and (2.21), thanks to Corollary 2.6. Hence, the use of Lemma 2.11
ends the proof of Theorem 1.1. ♦

3. Optimality of the assumptions of Theorem 1.1

We note that the assumption that |∇u| ∈ L∞(RN ) cannot be removed
from Theorem 1.1, as next observation points out:

Proposition 3.1. Let κ > 0 and ψ ∈ C1((κ,+∞)) be such that

ψ′(t) > 0

for any t > κ, and

lim
t→+∞

ψ(t) = +∞ .

Then, there exists a ∈ C1(0,+∞) satisfying (1.2), (1.3) and (A2), and u ∈
C2(RN ) which is a stable solution of

(3.1) div
(
a(|∇u(x)|)∇u(x)

)
−N = 0

and which satisfies

(3.2) |∇u(x)| = ψ(|x|)
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for any |x| suitably large.
Also, u does not possess one-dimensional symmetry.

Proof. Let κ′′ ≥ κ be such that κ′ := ψ(κ′′) > 0 and let ψ−1 be the inverse
function of ψ.

Let φ ∈ C1([0,+∞)) be such that φ(t) := κ′′t/κ′ if t ∈ [0, κ′/2], φ(t) :=
ψ−1(t) if t ∈ [κ′,+∞), and φ′(t) > 0 for any t > 0.

Let a(t) := φ(t)/t for any t > 0.
Then, a clearly satisfies (1.2). Also,

0 < φ′(t) = a(t) + a′(t)t ,

thence (1.3) holds.
The fact that a(t) = κ′′/κ′ for t ∈ (0, κ′/2) implies that (A2) is satisfied.
Let now

v(r) :=

∫ r

0
φ−1(s) ds

and u(x) := v(|x|).
Note that v ∈ C2(0,+∞), and, since φ−1(t) = κ′t/κ′′ for small t, we have

that v′(0+) = 0 and v′′(0+) = κ′/κ′′.
Accordingly, u ∈ C2(RN ), it satisfies (3.2) for |x| > κ′ and it solves (3.1)

by a straightforward calculation.
Since, in this case, f ′ vanishes, the stability condition (1.11) is also obvi-

ously satisfied.
Of course, u does not possess one-dimensional symmetry, because it is

radial and non-constant. �

4. Preliminaries for the proof of Theorem 1.2

We take the assumptions of Theorem 1.2 and follow some ideas of [Far02]:
namely, the proof of Theorem 1.2 will exploit a careful analysis at infinity,
which reduces one dimension. Some ideas of [AC00, AAC01] will also be
used for the energy estimates needed below.

Given a function v : R
N → R, we set vt(x) = vt(x′, xN ) := v(x′, xN + t),

for any x = (x′, xN ) ∈ R
N−1 × R and t ∈ R.

4.1. Energy estimates. Given v : R
N → R, with |∇v| ∈ L∞(RN ), andR >

0, we deal with the energy

ER(v) :=

∫

BR

Λ2(|∇v(x)|) − F (v(x)) dx .

Next result points out that the energy of a solution v is controlled by the
one of vt, up to a term of order RN−1 (in the course of the proof, we will see
that such additional term does not bother us, since N = 3 in our case, and
for large t the energy of vt will be computed on one-dimensional profiles).

Lemma 4.1. Let v ∈ C2(RN ) satisfy (1.1), with ∂xN
v ≥ 0 and |v|+ |∇v| ≤

M . There exists C > 0, depending only on N , M and a, in such a way that

ER(v) ≤ ER(vt) + CRN−1 .
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Proof. The computations on Section 2 of [AC00] may be easily adapted to
our case, via the argument below. First,

∂tER(vt) =

∫

BR

λ2(|∇vt|)∇vt · ∂t(∇vt) − f(vt)∂tv
t dx

=

∫

∂BR

a(|∇vt|)∂tv
t∇vt · ν dσ ,

where ν is the exterior normal of BR, thanks to (1.1). Hence,

∂tER(vt) ≥ −M ′
∫

∂BR

∂tv
t ,

where

(4.1) M ′ := sup
0≤t≤M

|ta(|t|)| ,

which is finite, thanks to (B1) or (B2). Therefore,

ER(vT ) −ER(v) =

∫ T

0
∂tER(vt) dt

≥ −M ′
∫ T

0

∫

∂BR

∂tv
t dσ dt

= −M ′
∫

∂BR

∫ T

0
∂tv

t dt dσ

= −M ′
∫

∂BR

(vT − v) dσ

≥ −2MM ′|∂BR| ,
as desired. �

4.2. Elementary linear algebra. Next is a straightforward consequence
of (B1) or (B2) and Lemma 2.1:

Lemma 4.2. The maps ξ 7→ |A(ξ)ξ| and ξ 7→ |a(|ξ|)ξ| belong to L∞
loc(R

N \
{0}) and they are continuously extended at the origin by attaining value zero.

If (B1) holds, there exists c ∈ (0, 1) such that

c(ε+ |ξ|)p−2 ≤ λ1(ξ), λ2(ξ) ≤
1

c
(ε+ |ξ|)p−2

for any ξ ∈ R
N \ {0}.

If (B2) holds, given any M > 0, there exists cM ∈ (0, 1) such that

cM ≤ λ1(ξ), λ2(ξ) ≤
1

cM

for any ξ ∈ R
N \ {0} with |ξ| ≤M .
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Corollary 4.3. We have that

(4.2) t2a(t) − Λ2(t) = Λ1(t)

for any t > 0. Also, for any M > 0, there exits CM > 0 such that

(4.3) t2 a(t) ≤ CMΛ2(t)

for any t ∈ [0,M ].

Proof. We observe that the function

t 7→ Λ1(t) + Λ2(t) − t2a(t)

is constant, due to (1.5) and (1.6), and

lim
t→0+

Λi(t) = lim
t→0+

t2a(t) = 0 ,

thanks to Lemma 4.2.
This proves (4.2).
By Lemma 4.2, we know that λ1 and λ2 are of the same order of magni-

tude, hence so are Λ1 and Λ2, by (1.6). This and (4.2) imply (4.3). �

4.3. An elementary integral estimate. For further reference, we point
out the following simple observation:

Lemma 4.4. Let α ∈ R and β ∈ R. Suppose that h ∈ C1([α, β]) be such
that 0 < |h′| ≤ M . Then, there exists C > 0, depending only on M and a,
in such a way that

∫ β

α
Λ2(h

′(t)) dt ≤ C |h(β) − h(α)| .

Proof. By Lemma 4.2, if 0 < |t| ≤M ,

Λ2(t)

|t| =
1

|t|

∫ |t|

0
a(τ) τ dτ ≤M ′ ,

for M ′ as in (4.1), and so
∫ β

α
Λ2(h

′(t)) dt ≤M ′
∫ β

α
|h′(t)| dt

from which the desired claim easily follows. �

4.4. An elementary continuity property. In our setting, a and A may
not be well-defined at the origin and this may, in principle, cause prob-
lems when passing to the limit. Next observation is needed to avoid such
complications:

Lemma 4.5. Suppose that vj ∈ C1(RN ) converges to some v in C1
loc(R

N ).
Then,

lim
j→+∞

∫

RN

a(|∇vj |)∇vj · ∇φ =

∫

RN

a(|∇v|)∇v · ∇φ

and lim
j→+∞

∫

RN

A(∇vj)∇vj · ∇φ =

∫

RN

A(∇v)∇v · ∇φ ,
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for any φ ∈ C∞
0 (RN ).

Proof. For short, we use here

αj to denote either a(|∇vj(x)|)∇vj(x) or A(∇vj(x))∇vj(x),

and α to denote either a(|∇v(x)|)∇v(x) or A(∇v(x))∇v(x),
respectively.

By Lemma 4.2,
lim

j→+∞
αj = 0 = α

if x ∈ {∇v = 0}.
Since a and A are continuous outside the origin, also

lim
j→+∞

αj = α

if x ∈ {∇v 6= 0}.
Then, the Bounded Convergence Theorem yields the desired result. �

4.5. ODE analysis. We let h ∈ C1(R) ∩W 1,∞(R) be a weak solution of

(4.4)
(
a(|h′(t)|)h′(t)

)′
+ f(h(t)) = 0

for any t ∈ R. First, we point out a regularity result. Namely, we estimate
the Hölder exponent of h′ (see Lemma 4.6), with the scope of proving that
the map t→ Λ1(h

′(t)) is differentiable (see Corollary 4.7) and obtain a first
integral of the motion (see Corollary 4.8).

Lemma 4.6. If (B1) holds with ε = 0, we have that h ∈ C
1,1/(p−1)
loc (R) ∩

C2({h′ 6= 0}) if p ≥ 2 and h ∈ C2(R) if p < 2.

If either (B1) holds with ε > 0 or (B2) holds, we have that h ∈ C 1,1
loc (R)∩

C2({h′ 6= 0}).
Proof. The most difficult case is when (B1) holds with ε = 0, which we
consider first.

To this extent, we set Φ(t) := ta(|t|) and γ(t) := h′(t) a(|h′(t)|), for t ∈ R.
Of course,

(4.5) Φ(h′(t)) = γ(t) .

We also observe that γ ∈ C(R) and, by (4.4), we have that γ ′(t) = −f(h(t)) ∈
C(R) in the distributional sense and, thence, as a function (see, e.g., Theo-
rem 6.10 in [LL97]). Accordingly,

(4.6) γ ∈ C1(R) .

Moreover, by Lemma 4.2,

(4.7) c?t |t|p−2 ≤ Φ(t) ≤ 1

c?
t |t|p−2

and, by Lemma 2.1,

(4.8) Φ′(t) = a(t) + ta′(t) = λ1(t) > 0
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for any t > 0.
Since Φ is odd, (4.8) says that it is strictly increasing, hence invertible.

Therefore, if Φ−1 is its inverse function, it is also odd, and we infer from (4.7)
that

c1t |t|(2−p)/(p−1) ≤ Φ−1(t) ≤ c2t |t|(2−p)/(p−1)

for any t > 0, where c2 > c1 > 0 are appropriate constants.
Since Φ ∈ C1(R \ {0}) by construction, thence Φ−1 ∈ C1(R \ {0}), we

deduce from the latter estimate that Φ−1 ∈ C1(R) if p < 2 and Φ−1 ∈
C0,1/(p−1)(R) ∩ C1(R \ {0}) if p ≥ 2. Thence, by (4.5) and (4.6), we have
that h′ = Φ−1 ◦γ. This gives the desired regularity if (B1) holds with ε = 0.

In view of the fact that h′ ∈ L∞(R) and recalling footnote 3, we see that
this also gives the desired claim when (B2) holds.

Case (B1) with ε > 0 reduces to the case p = 2.
This concludes the proof of Lemma 4.6. �

Corollary 4.7. Let L1(t) := Λ1(h
′(t)). Then, we have that L1 ∈ C(R) ∩

C1({h′ 6= 0}), that L1 is differentiable on R and that L′
1(t

?) = 0 if h′(t?) = 0.

Proof. We first consider the case in which (B1) holds with ε = 0. Then,
exploiting Lemmata 2.1 and 4.2, (1.5) and (1.6), we see that

|Λ1(t)| ≤
∫ |t|

0
|a(τ) + a′(τ)τ | τ dτ

≤ const

∫ |t|

0
τp−1 dτ

≤ const |t|p ,
for |t| ≤ 1.

Consequently, for small s, if t? ∈ {h′ = 0},
∣∣∣∣
L1(t

? + s) − L1(t
?)

s

∣∣∣∣ =

∣∣∣∣
Λ1(h

′(t? + s))

s

∣∣∣∣

≤ const |h′(t? + s)|p
|s|

=
const |h′(t? + s) − h′(t?)|p

|s| .

So, by Lemma 4.6,
∣∣∣∣
L1(t

? + s) − L1(t
?)

s

∣∣∣∣ ≤
const |s|p/(p−1)

|s| = const |s|1/(p−1) ,

if p ≥ 2, while
∣∣∣∣
L1(t

? + s) − L1(t
?)

s

∣∣∣∣ ≤
const |s|p

|s| = const |s|p−1 ,

if 1 < p < 2.
By sending s→ 0, we see that L′

1(t
?) = 0.
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We now deal with the case in which either (B1) holds with ε > 0 or (B2)
holds. In these circumstances, the eigenvalues of A are locally bounded, due
to Lemma 4.2, and therefore, by Lemma 2.1, (1.5) and (1.6), we conclude
that

|Λ1(t)| ≤
∫ |t|

0
|a(τ) + a′(τ)τ | τ dτ

≤ const

∫ |t|

0
τ dτ

≤ const |t|2 ,
for |t| ≤ 1 and so, for small s,

∣∣∣∣
L1(t

? + s) − L1(t
?)

s

∣∣∣∣ =

∣∣∣∣
Λ1(h

′(t? + s))

s

∣∣∣∣

≤ const |h′(t? + s)|2
|s|

=
const |h′(t? + s) − h′(t?)|2

|s|
≤ const |s| ,

due to Lemma 4.6. By sending s → 0, we see that L′
1(t

?) = 0 in this case
too. �

Corollary 4.8. For any t, s ∈ R,

Λ1(h
′(t)) + F (h(t)) = Λ1(h

′(s)) + F (h(s)) .

Proof. If h ∈ C2(t− b, t+ b), with h′ 6= 0 in (t− b, t+ b), for some b > 0, we
have that

d

dt

(
Λ1(h

′(t)) + F (h(t))
)

=
(
a(|h′(t)|)h′(t) + a′(|h′(t)|) |h′(t)|h′(t)

)
h′′(t) + f(h(t))h′(t)

=
[(
a(|h′(t)|) + a′(|h′(t)|)|h′(t)|

)
h′′(t) + f(h(t))

]
h′(t)

=
[(
a(|h′(t)|)h′(t)

)′
+ f(h(t))

]
h′(t) = 0 ,

due to (4.4).
On the other hand, if h′(t?) = 0, we deduce from Corollary 4.7 that

d

dt

(
Λ1(h

′(t)) + F (h(t))
)∣∣∣∣

t=t?

= L′
1(t

?) + f(h(t?))h′(t?) = 0 + 0 ,

as desired. �

Corollary 4.9. For any t ∈ R,

Λ1(h
′(t)) + F (h(t)) = F (inf h) = F (suph) .
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Proof. We only deal with inf h, since suph may be dealt with analogously.
Let us first consider the case in which inf h is attained at some point t̄ ∈ R.

Then, from Corollary 4.8,

Λ1(h
′(t)) + F (h(t)) = Λ1(0) + F (h(t̄)) = 0 + F (inf h) ,

as desired.
Suppose now that inf h is not attained and take a sequence tn → +∞ such

that h(tn) → inf h. Let us consider hn(t) := h(t + tn). Since ‖h′‖C1,α(R) is
finite (see, e.g., formulas (4.1) and (4.2) in [DG02]), we have that hn, up to

subsequence, converges to a suitable h̃ in C1
loc(R) and therefore h̃ is also a

weak solution of (4.4), due to Lemma 4.5. Since

h̃(0) = lim
n→+∞

h(tn) = inf h ≤ lim
n→+∞

h(t+ tn) = h̃(t) ,

we have that inf h̃ is attained and, in fact, it agrees with h̃(0) = inf h. So,
for what we have already proved and Corollary 4.8,

F (inf h) = F (inf h̃)

= Λ1(h̃
′(t)) + F (h̃(t))

= lim
n→+∞

Λ1(h
′(t+ tn)) + F (h(t+ tn))

= lim
n→+∞

Λ1(h
′(t)) + F (h(t))

= Λ1(h
′(t)) + F (h(t)) ,

as desired. �

We remark that, as a consequence of Corollary 4.9,

(4.9) F (inf h) = F (suph) = F (h(t?))

for any t? ∈ {h′ = 0}.
We now classify the solution of the ODE in (4.4):

Lemma 4.10. One of the following possibilities holds:

I. h is constant,
II. {h′ = 0} = ∅,

III. h′(t) 6= 0 for any t in a bounded interval of the form (β1, β2) with
h′(β1) = h′(β2) = 0 and

(4.10) F (h(β1)) = F (h(β2)) = F (inf h) = F (suph) .

IV. h′(t) 6= 0 for any t in a unbounded interval either of the form (β,+∞)
or (−∞, β), with β ∈ R, h′(β) = 0 and

(4.11) F (h(β)) = F (inf h) = F (suph) .

Proof. Suppose that I does not hold. Then there exists some t? in such a
way that h′(t?) 6= 0. Take an interval I around t?, as large as possible, in
such a way that h′(t) 6= 0 for t ∈ I. If I = R, we are in case II. If I is
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bounded, say with extrema β1 < β2, we have that h′(β1) = h′(β2) = 0 and
so we are in case III and (4.10) follows from (4.9).

The latter case is that I is unbounded in one direction, meaning that I
is either (β,+∞) or (−∞, β). Then, h′(β) = 0 and we are in case IV:
thus, (4.11) follows again from (4.9). �

4.6. A pointwise energy estimate. We now recall a pointwise energy
estimate for weak solutions of (1.1). The first estimate of this type was
given in [Mod85] for the standard phase transition model and extensions to
more general cases are in [CGS94] and [DG02]. In our setting, such a result
translates into:

Lemma 4.11. Suppose that u ∈ C1(RN ) ∩W 1,∞(RN ) is a weak solution
of (1.1). Let

cu := sup
t∈[inf u,supu]

F (t) .

Then,
Λ1(|∇u(x)|) ≤ cu − F (u(x))

for any x ∈ R
N .

Proof. We will make use5 of [CGS94]. The quantities called f , Φ(s) and F
in [CGS94] correspond here to −f , 2Λ2(

√
s) and cu − F , respectively. Ac-

cordingly, the quantity aij of [CGS94] agrees with the one denoted here
by Aij and the function

P (u;x) = 2Φ′(|∇u(x)|2) |∇u(x)|2 − Φ(|∇u(x)|2) − 2F (u(x))

introduced in (2.1) of [CGS94] becomes here

2a(|∇u(x)|) |∇u(x)|2 − 2Λ2(|∇u(x)|) + 2(F (u(x)) − cu)

= 2
(
Λ1(|∇u(x)|) + F (u(x)) − cu

)
.

thanks to (4.2).
Then, Theorem 1.6 of [CGS94] states that P (u;x) ≤ 0, thence the desired

claim.
But a caveat has to be taken into account in order to use Theorem 1.6

of [CGS94]. Namely, the functional in [CGS94] was assumed to be smooth,
namely F ∈ C2(R) and Φ ∈ C3((0,+∞)), in order to perform the compu-
tations of Theorem 2.2 there in the classical sense, while F and Φ are here
only in C1,1

loc (R) and C2,1
loc ((0,+∞)), by (1.14). This, however, is enough to

5It would also be possible to use here Corollary 4.9 of [DG02]. To compare notations,
what in [DG02] is called Φ(ξ, σ) reduces here to Λ2(|σ|) − F (ξ). Accordingly, the quan-
tity G(ξ, s) given in (1.5) of [DG02] is here 2Λ2(

√
s)−2F (ξ) for any s > 0, and so Gs(ξ, s)

agrees here with a(
√

s). Also, if Gu is the quantity introduced in Corollary 4.9 of [DG02],
we have that Gu = −2cu here. Then, our claim would follow from (4.41) in [DG02]
and (4.2).

We have preferred, however, to follow [CGS94] in detail, in order to impose a slightly
weaker regularity assumption on a, namely (1.14).
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repeat the computations of Theorem 2.2 of [CGS94] verbatim in the weak
distributional sense, and hence to get the desired result. �

4.7. Analysis at infinity. The solutions which are monotone in one direc-
tion, say in the Nth direction for definiteness, may exhibit a particularly
nice behavior when xN → ±∞.

The reason for this is that the functions, for xN → ±∞, depend on
one variable less and so, in some sense, the symmetry results (or, in our
technique, the level set estimates) obtained in R

N−1 may be of some use.
This idea goes back to [AC00] and variations of it have been used by

several authors.
The main result we need is the following, in which the solutions at infin-

ity are shown to satisfy the Poincaré type formula of Theorem 2.5, in one
dimension less:

Theorem 4.12. Let u ∈ C1(RN ) ∩ W 1,∞(RN ) be a stable weak solution
of (1.1) in R

N .
Suppose that

(4.12) {∇u = 0} = ∅
and

(4.13) ∂xN
u ≥ 0 .

Then, the limits

u(x′) := lim
t→−∞

u(x′, xN + t)

u(x′) := lim
t→+∞

u(x′, xN + t)
(4.14)

exist and are finite for any x′ ∈ R
N−1.

Also,

(4.15) the limits in (4.14) hold in C1
loc(R

N )

and

(4.16) u and u are weak solutions of (1.1) in R
N−1.

Finally,
∫

RN−1∩{∇u6=0}

[
λ1(|∇u|)|∇Lu,x′ |∇u||

2

+λ2(|∇u|)|∇u|2
N−2∑

`=1

κ2
`,u

]
φ2 dx′

≤
∫

RN−1

|∇u|2
(
Ã(∇u)∇φ

)
· ∇φdx′ ,

(4.17)

for any locally Lipschitz, compactly supported φ : R
N−1 → R (and an anal-

ogous claim holds for u).
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Here above, we have used Ã ∈ Mat((N − 1) × (N − 1)) defined by

Ãij = Aij for 1 ≤ i, j ≤ N − 1.

Proof. We recall that

(4.18) ‖u‖C1,β(BR) ≤ CR

and, given δ > 0, if Ω ⊂ {|∇u| ≥ δ} and diam (Ω) ≤ R,

(4.19) ‖u‖C2,β(Ω) ≤ Cδ,R ,

for some β ∈ (0, 1) by Schauder Estimates: for details, we refer to page 459
in [DG02] and to the bibliography quoted there.

Since u is bounded and monotone in the Nth direction, due to (4.13), the
limits in (4.14) exist and are finite.

Then, (4.15) follows from (4.18) and the Theorem of Ascoli.
We now fix δ > 0. Let B a ball contained in

Dδ := {(x′, xN ) ∈ R
N−1 × R s.t. |∇u(x′)| ≥ δ} .

It follows from (4.15) that |∇u(x′, xN + t)| ≥ δ/2 if (x′, xN ) and t ≥ tδ, as
long as tδ is suitably large.

So, by (4.19), the second limit in (4.14) holds in C 2(B).
That is,

(4.20) the second limit in (4.14) holds in C2
loc(Dδ),

and an analogous result holds for the first limit.

We also observe that (4.15) and (4.20) imply that u ∈ C 1,β
loc (RN−1) ∩

C2({∇u 6= 0}) for some β ∈ (0, 1), and that

(4.21) ∇Lu,x′ |∇u|(x′) = lim
t→+∞

∇Lu,(x′,xN+t)
|∇u|(x′, xN + t) ,

for any x′ ∈ {|∇u| ≥ δ}, due to (2.6) and (2.7).
What is more, if κ`(y

′) = κ`,u(y′) are the principal curvatures of Lu,x′

at y′ ∈ Lu,x′ ∩ {|∇u| ≥ δ}, for ` = 1, . . . , N − 2, a consequence of (2.10),
(4.15) and (4.20) is that

(4.22) |∇u(x′)|2
N−2∑

`=1

κ2
` (y

′) = lim
t→+∞

|∇u(x′, xN + t)|2
N−1∑

`=1

κ2
` (y

′, xN + t) .

Of course, statements analogous to (4.21) and (4.22) also hold for u.
Moreover,

(4.23)

∫

RN

a(|∇u|)∇u · ∇ϕ− f(u)ϕdx = 0 ,

for any ϕ ∈ C∞
0 (RN ), due to (1.1).

We take ϕ := ϕ1(x
′)ϕ2(xN ), with ϕ ∈ C∞

0 (RN−1) and ϕ2 ∈ C∞
0 (R), with

∫

R

ϕ2(xN )dxN = 1 .
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By passing (4.23) to the limit and recalling (4.15) and Lemma 4.5, we deduce
that

∫

RN−1

a(|∇u(x′)|)∇u(x′) · ∇ϕ1(x
′) − f(u(x′))ϕ1(x

′) dx′ = 0 ,

for any ϕ1 ∈ C∞
0 (RN−1), and the same for u, thus proving (4.16).

Furthermore, u satisfies (2.11), by Theorem 2.5, hence so does ut. We
then take ϕ := ϕ1(x

′)ϕ2(xN ), with ϕ1 : R
N−1 → R and ϕ2 : R → R

locally Lipschitz, compactly supported functions. We also take ϕ2 of the
form ϕ2(xN ) :=

√
µτ(µxN ), where µ > 0 is a small parameter, τ ∈ C∞

0 (R)
and

∫

R

τ2(xN )dxN = 1 .

We thus have that

(4.24)

∫

R

ϕ2
2(xN )dxN = 1 .

Now, we pass (2.11) to the limit. Namely, we set ut(x) := u(x′, xN + t) and
κt

`(x) := κ`,ut(x) = κ`,u(x′, xN + t), and we use (2.11), (4.12), (4.15), (4.21),
(4.22), (4.24) and Lemma 4.5 to obtain

∫

{|∇u|≥δ}

[
λ1(|∇u|)|∇Lu,x′ |∇u||

2 + λ2(|∇u|)|∇u|2
N−2∑

`=1

κ2
`

]
ϕ2

1 dx
′

=

∫

R

∫

{|∇u|≥δ}

[
λ1(|∇u|)|∇Lu,x′ |∇u||

2 + λ2(|∇u|)|∇u|2
N−2∑

`=1

κ2
`

]
ϕ2 dx′ dxN

= lim
t→+∞

∫

R

∫

{|∇u|≥δ}

[
λ1(|∇ut|)|∇Lut,x

|∇ut||2

+λ2(|∇ut|)|∇ut|2
N−1∑

`=1

(κt
`)

2

]
ϕ2 dx′ dxN

= lim
t→+∞

∫

Dδ

[
λ1(|∇ut|)|∇Lut,x

|∇ut||2

+λ2(|∇ut|)|∇ut|2
N−1∑

`=1

(κt
`)

2

]
ϕ2 dx

≤ lim
t→+∞

∫

RN

|∇ut|2(A(∇ut)∇ϕ) · ∇ϕdx

=

∫

RN

|∇u|2(A(∇u)∇ϕ) · ∇ϕdx .
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Thence, by taking δ arbitrarily small,

∫

{∇u6=0}

[
λ1(|∇u|)|∇Lu,x′ |∇u||

2 + λ2(|∇u|)|∇u|2
N−2∑

`=1

κ2
`

]
ϕ2

1 dx
′

≤
∫

RN

|∇u|2(A(∇u)∇ϕ) · ∇ϕdx .
(4.25)

We now observe that ∂xN
u = 0 and so

|∇u|2Aij(∇u) = |∇u|2a(|u|)δij if either i = N or j = N .

Therefore,

|∇u|2(A(∇u)∇ϕ) · ∇ϕ
= |∇u|2

(
Ã(∇u)(∂x1ϕ, . . . , ∂xN−1ϕ)

)
· (∂x1ϕ, . . . , ∂xN−1ϕ)

+|∇u|2a(|∇u|)|∂xN
ϕ|2 .

This, Lemma 4.2, (4.24) and (4.25) imply that

∫

{∇u6=0}

[
λ1(|∇u|)|∇Lu,x′ |∇u||2 + λ2(|∇u|)|∇u|2

N−2∑

`=1

κ2
`

]
ϕ2

1 dx
′

≤
∫

RN

ϕ2
2(xN )|∇u|2

(
Ã(∇u)∇ϕ1

)
· ∇ϕ1 dx

+const

∫

RN

ϕ2
1(x

′)|ϕ′
2(xN )|2 dx

≤ µ

∫

RN

τ2(µxN )|∇u(x′)|2
(
Ã(∇u(x′))∇ϕ1(x

′)
)
· ∇ϕ1(x

′) dx′dxN

+constµ3

∫

RN

ϕ2
1(x

′)|τ ′(µxN )|2 dx′ dxN

≤
∫

RN−1

|∇u(x′)|2
(
Ã(∇u(x′))∇ϕ1(x

′)
)
· ∇ϕ1(x

′) dx′

+constµ2

∫

R

|τ ′(s)|2 ds ·
∫

RN−1

ϕ2
1(x

′) dx′ ,

where the above constants possibly depend on ‖u‖C1(RN ). We then conclude

that (4.17) holds by sending µ→ 0+. �

In the notation of (4.14), it is convenient to define

M := sup
RN

u , M := sup
RN−1

u , M := sup
RN−1

u ,

m := inf
RN

u , m := inf
RN−1

u , m := inf
RN−1

u

and to observe that, from (4.13),

(4.26) M = M ≥M and m ≥ m = m.
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Recalling the notation in Lemma 4.11, we write

(4.27) cu := sup
[m,M ]

F .

In our case, such quantity may be better determined:

Lemma 4.13. Let u ∈ C1(RN ) ∩W 1,∞(RN ) be a weak solution of (1.1)
with {∇u = 0} = ∅. Then, we have that cu > F (t) for any t ∈ (m,M). In
particular, cu = max{F (m), F (M)} and if F (t?) = cu then t? ∈ {m, M}.
Proof. The second and third claims are consequence of the first one, which
we now prove. Suppose, by contradiction, that cu = F (t) for some t ∈
(m,M). Then, there exists x? ∈ R

N in such a way that u(x?) = t. But
then, by Lemma 4.11,

Λ1(|∇u(x?)|) ≤ cu − F (u(x?)) = 0 ,

thence ∇u(x?) = 0, against the assumptions. �

From now on, in the light of Lemma 4.13, we will suppose that

(4.28) cu = F (m) ,

since the case in which cu = F (M) may be treated similarly (simply, the
rôles of u and u would switch in some arguments).

After the above analysis, we are now in the position of classifying the
behavior of the one-dimensional profiles at infinity:

Lemma 4.14. Let u ∈ C1(RN ) ∩ W 1,∞(RN ) be a stable weak solution
of (1.1) in R

N , satisfying (4.12) and (4.13). Let u be as in (4.14) and
suppose that it possesses one-dimensional symmetry, that is, there exist ω ∈
SN−2 and h : R → R in such a way that u(x′) = h(ω ·x′), for any x ∈ R

N−1.
Then, h satisfies one of the following:

A. h is constant,
B. {h′ = 0} = ∅,
C. There exist β ∈ R in such a way that h′(t) < 0 for t < β and h(t) =

m for t ≥ β.
D. There exist β ∈ R in such a way that h′(t) > 0 for t > β and h(t) =

m for t ≤ β.
E. There exist β1 ≤ β2 ∈ R in such a way that h′(t) < 0 for t < β1,

h′(t) > 0 for t > β2 and h(t) = m for t ∈ [β1, β2].

Proof. Note that h(t) = u(ωt), thence it satisfies (4.4), thanks to (4.16).
Also,

(4.29) h(t) < M

for any t ∈ R, because if otherwise h(t) = M for some t, then

M = h(t) = u(ωt) = lim
s→−∞

u(ωt, s) ≤ u(ωt, 0) ≤M ,
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due to (4.13), and so

M = max
RN

u = u(ωt, 0) ,

which implies ∇u(ωt, 0) = 0, in contradiction with (4.12).
We then use the classification in Lemma 4.10: if h satisfies I or II there,

then we are in cases A or B, and we are done.
We now show that case III of Lemma 4.10 is impossible in this circum-

stance. Indeed, if case III hold, by (4.10) and (4.26), we would have that h
is strictly monotone in (β1, β2) and

F (h(β1)) = F (h(β2) = F (inf h) = F (m) = F (m)

for any t ∈ (β1, β2). But then, by (4.28), we see that

F (h(β1)) = F (h(β2)) = cu

and so

h(β1) , h(β2)) ∈ {m, M} ,
thanks to Lemma 4.13.

Therefore, by (4.29), we get that h(β1) = h(β2) = m, but this is in
contradiction with the fact that h is strictly monotone in (β1, β2).

Thus, the only remaining possibility is that h satisfies IV of Lemma 4.10.
Up to changing t with −t, we may just consider the case in which the
interval in IV of Lemma 4.10 is of the form (−∞, β). Then, by (4.11),
(4.26) and (4.28),

F (h(β)) = F (m) = F (m) = cu .

Thus, by Lemma 4.13, h(β) ∈ {m,M}. Therefore, by (4.29), h(β) = m.
Now, if h(t) = m for t ≥ β, then we are in case C. Thus, we may suppose

that h(t?) > m for some t? > β.
But then there must be t′ > β in such a way that h′(t′) > 0. Hence, there

exists an interval (β2, β3), which we suppose as large as possible, with β2 >
β =: β1 and β3 ∈ (β2,+∞) ∪ {+∞} in such a way that h′(t) > 0 for
any t ∈ (β2, β3). If β3 6= +∞, we would have that h′(β2) = h′(β3) = 0 and,
from (4.9), we would reduce to case III of Lemma 4.10, that we have already
shown to be impossible. Therefore, β3 = +∞. Analogously, h(t) must be
equal to m in [β1, β2] because, if not there would be an interval (β ′

1, β
′
2) ⊂

[β1, β2] in such a way that h′(t) 6= 0 in (β ′
1, β

′
2) and h′(β′1) = h′(β′2) = 0,

reducing again to the impossible case III.
This shows that h′(t) 6= 0 for t < β1 and t > β2 and h(t) = m for t ∈

[β1, β2], yielding case E. �

We remark that the possible occurrence of cases C, D and E in Lemma 4.14
is due to the possible degeneracy of our operator (non-degenerate operators
do not admit non-constant solutions with plateaus, because of Comparison
Principles). See Section 7.2 for explicit examples.
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Corollary 4.15. The following global energy bound holds:

(4.30)

∫ +∞

−∞
Λ2(h

′(t)) − F (h′(t)) + cu dt < +∞ .

Proof. From (4.28), Lemma 4.2 and Corollary 4.9, we see that
∫ +∞

−∞
cu − F (h′(t)) dt =

∫ +∞

−∞
Λ1(h

′(t)) dt ≤ const

∫ +∞

−∞
Λ2(h

′(t)) dt ,

hence the claim is proven if we show that

(4.31)

∫ +∞

−∞
Λ2(h

′(t)) dt < +∞ .

To this extent, we consider the different cases in Lemma 4.14 and we make
use of Lemma 4.4.

Namely, in case A, the quantity in (4.31) vanishes and we are done.
In case B,

∫ +∞

−∞
Λ2(h

′(t)) dt = lim
α→−∞
β→+∞

∫ β

α
Λ2(h

′(t)) dt

≤ lim
α→−∞
β→+∞

const |h(β) − h(α)|

≤ 2 constM .

In case C,
∫ +∞

−∞
Λ2(h

′(t)) dt = lim
α→−∞

∫ β

α
Λ2(h

′(t)) dt

≤ lim
α→−∞

const |h(β) − h(α)|
≤ 2 constM ,

and case D is analogous.
Finally, in case E,
∫ +∞

−∞
Λ2(h

′(t)) dt = lim
α→−∞
β→+∞

∫ β1

α
Λ2(h

′(t)) dt+

∫ β

β2

Λ2(h
′(t)) dt

≤ lim
α→−∞
β→+∞

const (|h(β1) − h(α)| + |h(β) − h(β2)|)

≤ 4 constM ,

which completes the proof of the desired result. �

The above global energy estimates imply that u has “the good energy”
in balls:

Corollary 4.16. Let u ∈ C1(RN ) ∩W 1,∞(RN ) be a stable weak solution
of (1.1) in R

N , satisfying (4.12) and (4.13). Let u possess one-dimensional
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symmetry. Then,
∫

BR

Λ2(|∇u(x)|) − F (u(x)) + cu dx ≤ K RN−1 ,

for a suitable K ≥ 1.

Proof. By (4.30), we have that

∫

BR

Λ2(|∇u(x′)|) − F (u(x′)) + cu dx

=

∫

BR

Λ2(h
′(ω · x′)) − F (h(ω · x′)) + cu dx

=

∫

BR

Λ2(h
′(ω · x′)) − F (h(ω · x′)) + cu dx

′ dxN

=

∫

(y′′ ,t,xN )∈(RN−2×R×R)∩BR

Λ2(h
′(t)) − F (h(t)) + cu dy

′′ dt dxN

≤ constRN−1 .

(4.32)

Also, recalling Lemma 4.1 and (4.15),
∫

BR

Λ2(|∇u(x)|) − F (u(x)) + cu dx

= ER(u) + cu |BR|
≤ lim

t→+∞
ER(ut) + cu |BR| + constRN−1

=

∫

BR

Λ2(|∇u(x′)|) − F (u(x′)) + cu dx+ constRN−1 .

The latter estimate and (4.32) imply the desired claim. �

5. First proof of Theorem 1.2, via a capacity argument

We consider the graph of a function v ∈ C1(RN ) as a surface in R
N+1

and we set

Y = Y (x) := (x, v(x)) ∈ R
N × R .

We will derive suitable capacity estimates on the graph of v under the
assumption that

(5.1)

∫

|Y (x)|≤ρ
a(|∇v(x)|) |∇v(x)|2 dx ≤ C ρ2 ,

as long as ρ ≥ C, for a suitable C > 0.
The advantage of such estimates is that the capacity is evaluated on the

graph of v, not on the whole space, and this makes it possible to obtain
two-dimensional capacity estimates even in R

3, as we will see below.
The main technical estimate needed is the following:
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Lemma 5.1. Suppose that v ∈ C1(RN ) satisfies (5.1).
Then, there exists C ≥ 1 in such a way that

(5.2)

∫
√

ρ≤|Y |≤ρ

a(|∇v|) |∇v|2
|Y |2 dx ≤ C ln ρ ,

as long as ρ ≥ C.

Proof. This argument is a modification of the classical ones on page 24
of [Sim07] and page 403 of [GT01].

Since

2

∫ ρ

|Y |
τ−3 dτ = |Y |−2 − ρ−2 ,

we obtain, from Fubini’s Theorem, that
∫
√

ρ≤|Y |≤ρ
a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

= 2

∫

√
ρ≤|Y |≤ρ

(∫ ρ

|Y |
a(|∇v(x)|) |∇v(x)|2τ−3 dτ

)
dx

= 2

∫ ρ

√
ρ

(∫

√
ρ≤|Y |≤τ

a(|∇v(x)|) |∇v(x)|2τ−3 dx

)
dτ

= 2

∫ ρ

√
ρ
τ−3

(∫

√
ρ≤|Y |≤τ

a(|∇v(x)|) |∇v(x)|2 dx
)
dτ .

Accordingly, from (5.1),
∫

√
ρ≤|Y |≤ρ

a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

≤ const

∫ ρ

√
ρ
τ−1 dτ ≤ const ln ρ ,

if ρ is large enough.
Using this and (5.1) once more, we conclude that

∫
√

ρ≤|Y |≤ρ
a(|∇v|) |∇v|2|Y |−2 dx

= ρ−2

∫

√
ρ≤|Y |≤ρ

a(|∇v|) |∇v|2 dx

+

∫
√

ρ≤|Y |≤ρ
a(|∇v|) |∇v|2(|Y |−2 − ρ−2) dx

≤ const + const ln ρ ,

as desired. �

The hypotheses of next result need to be quite general, since we apply it
in the proofs of both Theorems 1.2 and 1.4.
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Lemma 5.2. Let (1.2), (1.3) hold.

Suppose that v ∈ C1(RN )∩C2({∇v 6= 0}) with ∇v ∈W 1,2
loc (RN ) is a stable

weak solution of (1.1) and that it satisfies (5.1).
Assume that

(5.3) |∇v(x)|2 λ1(|∇v(x)|) ≤ C a(|∇v(x)|) ,
for any x ∈ R

N as long as |∇v(x)| ≥ C ′, for suitable C, C ′ > 0.
Suppose that either (A1) or (A2) holds.
Assume also that either N = 2 or that

(5.4) λ1(t) ≤ C ′′a(t) ,

for any t ∈ (0, C ′], for a suitable C ′′ > 0.
Then, v possesses one-dimensional symmetry, in the sense that there ex-

ists v̄ : R → R and ω ∈ SN−1 in such a way that v(x) = v̄(ω · x), for
any x ∈ R

N .

Proof. We first notice that, if |∇v(x)| ≥ C ′, then

|∇v(x)|2 λ1(|∇v(x)|) ≤
C

(C ′)2
(C ′)2a(|∇v(x)|)

≤ C

(C ′)2
|∇v(x)|2 a(|∇v(x)|) ,

(5.5)

thanks to (5.3).
We now define

(5.6) Ξ :=

{
1 if N = 2,
0 if N ≥ 3.

We claim that

(5.7) |∇v(x)|2λ1(|∇v(x)|) ≤ const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)

for any x ∈ R
N .

To prove (5.7) we distinguish the cases N = 2 and N ≥ 3.
If N ≥ 3, we have that (5.4) is satisfied. We exploit this and (5.5) to

conclude that

(5.8) |∇v(x)|2λ1(|∇v(x)|) ≤ C ′′′|∇v(x)|2a(|∇v(x)|) for any x ∈ R
N ,

where

C ′′′ :=
C

(C ′)2
+ C ′′ .

This proves (5.7) when N = 3.
We now prove (5.7) when N = 2. To this extent, we observe that λ1 ∈

L∞
loc([0,+∞)), because of either (A1) or (A2), thence

t2λ1(t) ≤ const

if t ∈ [0, C ′].
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This and (5.5) imply that

(5.9) |∇v(x)|2λ1(|∇v(x)|) ≤ const
(
1 + |∇v(x)|2a(|∇v(x)|)

)

for any x ∈ R
N , hence (5.7) holds when N = 2 too.

This completes the proof of (5.7).
Now, we use (5.3) and (5.7) to conclude that

(5.10) |∇v(x)|4λ1(|∇v(x)|) ≤ const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)

for any x ∈ R
N .

Also, since, obviously, (5.7) holds with λ1 replaced by λ2, due to (1.5),
we deduce, recalling Lemma 2.1, that

(5.11) |∇v(x)|2 |A(∇v(x))| ≤ const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)

for any x ∈ R
N .

Also, by Lemma 5.1 and (5.6),

(5.12)

∫

BR\B√
R

Ξ + |∇v(x)|2a(|∇v|)
|Y |2 dx ≤ C lnR ,

as long as R is large enough.
Then, given R > 0 (to be taken appropriately large in what follows)

and x ∈ R
N , we now define

ϕR(x) :=





1 if |Y | ≤
√
R,

2 ln(R/|Y |)
ln R if

√
R < |Y | < R,

0 if |Y | ≥ R.

By construction, ϕR is a Lipschitz function and

∇ϕR(x) = −
const

(
x+ v(x)∇v(x)

)

|Y |2 lnR

for any x ∈ R
N such that

√
R < |Y | < R.

Consequently, from (2.2),

(
A(∇v(x))∇ϕR(x)

)
· ∇ϕR(x)

≤ const

|Y |4 ln2R

[(
A(∇v(x))x

)
· x+ v2(x)

(
A(∇v(x))∇v(x)

)
· ∇v(x)

]
.

(5.13)

Additionally, by (5.11),

|∇v(x)|2
(
A(∇v(x))x

)
· x ≤ const

(
Ξ + |∇v(x)|2a(|∇v(x)|)

)
|x|2

≤ const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)
|Y |2 ,

(5.14)
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and, by (2.1) and (5.10),

v2(x) |∇v(x)|2
(
A(∇v(x))∇v(x)

)
· ∇v(x)

= v2(x) |∇v(x)|4 λ1(|∇v(x)|)

≤ const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)
|Y |2 .

(5.15)

So (5.13), (5.14) and (5.15) imply

|∇v(x)|2
(
A(∇v(x))∇ϕR(x)

)
· ∇ϕR(x)

≤
const

(
Ξ + |∇v(x)|2a(|∇v(x)|)

)

|Y |2 ln2R
.

Thus, exploiting again Theorem 2.5,
∫

{∇v 6=0}∩B√
R

[
λ1(|∇v|)

∣∣∣∇Lv,x |∇v|
∣∣∣
2
+ λ2(|∇v|) |∇v|2 κ2

1

]
dx

≤
∫

R2

|∇v(x)|2
(
A(∇v(x))∇ϕR(x)

)
· ∇ϕR(x) dx

≤
∫

BR\B√
R

const
(
Ξ + |∇v(x)|2a(|∇v(x)|)

)

|Y |2 ln2R
dx .

Therefore, by (5.12), if R is conveniently large,
∫

{∇v 6=0}∩B√
R

[
λ1(|∇v|)

∣∣∣∇Lv,x|∇v|
∣∣∣
2
+ λ2(|∇v|) |∇v|2 κ2

1

]
dx

≤ const lnR

ln2R
.

By taking R arbitrarily large, we thus conclude that
∫

{∇v 6=0}

[
λ1(|∇v|)

∣∣∣∇Lv,x |∇v|
∣∣∣
2
+ λ2(|∇v|) |∇v|2 κ2

1

]
dx = 0

and so, by Lemma 2.1, that ∇Lv,x |∇v|(x) = 0 = κ1(x) at any x ∈ {∇v 6= 0}.
Consequently, by Lemma 2.11, v possesses one-dimensional symmetry. �

5.1. Completion of the first proof of Theorem 1.2. We observe that u
and u are, in this case, functions on R

2. Hence, by (4.17) and Corollary 2.6,
we have that

κ1,u = κ1,u = 0 and ∇Lu,x′ |∇u| = ∇Lu,x′ |∇u| .
Therefore, by Lemma 2.11, both u and u possess one-dimensional symmetry
and so, by (4.27) and Corollary 4.16,
(5.16)∫

BR

Λ2(|∇u(x)|) dx ≤
∫

BR

Λ2(|∇u(x)|) − F (u(x)) + cu dx ≤ const R2 .
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Also, if either (B1) or (B2) holds, we have that (1.2) and (1.3) are satisfied,
due to Lemma 2.1.

Moreover, recalling also Lemma 4.2, we see that (5.4) is fulfilled and (5.3)
is empty, because u has bounded gradient.

Thus, if u is as requested in Theorem 1.2, we exploit Corollaries 4.3
and 4.16 to get that

∫

|(x,u(x))|≤R
a(|∇u(x)|) |∇u(x)|2 dx

≤
∫

BR

a(|∇u(x)|) |∇u(x)|2 dx

≤ const

∫

BR

Λ2(|∇u(x)|) dx

≤ const

∫

BR

Λ2(|∇u(x)|) − F (u(x)) + cu dx

≤ constR2 ,

hence (5.1) is fulfilled by u.
The above observations give that the assumptions of Lemma 5.2 are ful-

filled, thence, by such a result, u possesses one-dimensional symmetry, thus
completing the first proof of Theorem 1.2. ♦

6. Second proof of Theorem 1.2, via a Liouville type argument

6.1. A Liouville type result. We now point out a Liouville type result,
which is a variation of the one in [BCN97, GG98] and it is closely related to
analogous estimates performed in [CGS94, DG02].

Lemma 6.1. Let B ∈ L∞(RN ,Mat(N×N)) be such that B(x) is symmetric
and positive definite for any x ∈ R

N . Let ω ∈ L∞(RN ), with ω(x) > 0 for
any x ∈ R

N . Suppose that ζ ∈ C1(RN ) is a weak solution of

(6.1) div
(
ω(x)B(x)∇ζ(x)

)
= 0 .

Assume also that there exist C > 0 in such a way that

(6.2)

∫

RN

ω(x)ζ2(x)
(
B(x)τ(x)

)
· τ(x) dx ≤ C ‖τ‖L∞(RN )R

2 ,

for any τ ∈ C∞
0 (RN ,RN ) supported in B2R.

Then, ζ is constant.

Proof. The proof is a Caccioppoli type argument modified from [BCN97].
We take α ∈ C∞

0 (B2) so that 0 ≤ α(x) ≤ 1 for any x ∈ R
N and α(x) = 1 for

any x ∈ B1. We also set αR(x) := α(x/R), τR(x) := ∇α(x/R) and φR(x) :=
(αR(x))2ζ(x).
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From (6.1),

∫

RN

α2
Rω(B∇ζ) · ∇ζ dx

=

∫

RN

ω(B∇ζ) · ∇φR dx− 2

∫

RN

αRζω(B∇ζ) · ∇αR dx

≤ 0 + 2

∫

R≤|x|≤2R
αR|ζ|ω |(B∇ζ) · ∇αR| dx .

We now fix an auxiliary parameter δ > 0, and we exploit (2.2) with V :=√
δωαR∇ζ and W :=

√
δ−1ω|ζ|∇αR, so we conclude that

2αR|ζ|ω |(B∇ζ) · ∇αR| ≤ δα2
Rω(B∇ζ) · ∇ζ + δ−1ωζ2(B∇αR) · ∇αR

and therefore
∫

RN

α2
Rω(B∇ζ) · ∇ζ dx

≤ δ

∫

R≤|x|≤2R
α2

Rω(B∇ζ) · ∇ζ dx

+ δ−1

∫

R≤|x|≤2R
ωζ2(B∇αR) · ∇αR dx .

(6.3)

Note also that, from (6.2),

∫

R≤|x|≤2R
ωζ2(B∇αR) · ∇αR dx = R−2

∫

RN

ωζ2(B∇τR) · ∇τR dx ≤ C ′ ,

for a suitable C ′ > 0.
Accordingly, if δ < 1, from (6.3),

(1 − δ)

∫

BR

ω(B∇ζ) · ∇ζ dx

≤ (1 − δ)

∫

RN

α2
Rω(B∇ζ) · ∇ζ dx

≤ C ′δ−1 .

By sending R→ +∞, we thus obtain that

∫

RN

ω(B∇ζ) · ∇ζ dx < +∞

and therefore

lim
R→+∞

∫

|x|≥R
ω(B∇ζ) · ∇ζ dx = 0 .
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Using this and sending R→ +∞ in (6.3), we conclude that
∫

RN

ω(B∇ζ) · ∇ζ dx

≤ δ lim
R→+∞

∫

R≤|x|≤2R
ω(B∇ζ) · ∇ζ dx

+δ−1 lim
R→+∞

∫

R≤|x|≤2R
ωζ2(B∇αR) · ∇αR dx

≤ 0 + C ′δ−1 .

By sending now δ → +∞, we conclude that
∫

RN

ω(B∇ζ) · ∇ζ dx = 0

and so that ∇ζ = 0. �

The relation between (6.1) and our problem is given by the following
standard observation (compare, e.g., with [BCN97, DG02]):

Lemma 6.2. Let u ∈ C2(RN ) be a solution of (1.1), such that |∇u| ∈
L∞(RN ) and ∂Nu(x) > 0 for any x ∈ R

N .
Fix j ∈ {1, . . . , N −1} and define ζ(x) := uj(x)/uN (x), ω(x) := (uN (x))2

and B(x) := A(∇u(x)).
Then, B ∈ L∞(RN ,Mat(N×N)), B(x) is symmetric and positive definite

for any x ∈ R
N , ω ∈ L∞(RN ), ζ ∈ C1(RN ) and it is a weak solution

of (6.1).

Proof. The regularity ofB, ω and ζ is obvious and Lemma 2.1 gives that B(x)
is positive definite.

Also,
ωζi = uNuij − ujuiN

and so, by Lemma 2.2,

div (ωB∇ζ) = div (uNB∇uj − ujB∇uN)

= uN div (B∇uj) + (B∇uj) · ∇uN − div (ujB∇uN )

= uN div (B∇uj) − uj div (B∇uN )

= −uN f ′(u)uj + uj f
′(u)uN = 0 ,

as claimed. �

The symmetry property in our case is thus a consequence of a “kinetic
energy” bound:

Corollary 6.3. Let u ∈ C2(RN ) be a solution of (1.1), such that |∇u| ∈
L∞(RN ) and ∂Nu(x) > 0 for any x ∈ R

N .
Suppose that

(6.4)

∫

BR

Λ2(|∇u(x)|) dx ≤ CR2 ,
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for any R > 0, for a suitable C > 0.
Then, u possesses one-dimensional symmetry.

Proof. If ξ, v ∈ R
N with |v| ≤ 1 and |ξ| ≤M , then

(6.5) |ξ|2(A(ξ)v) · v ≤ CM Λ2(|ξ|) ,
for a suitable CM > 0, because of Lemma 4.2 and Corollary 4.3.

We now take B, ω and ζ as in Lemma 6.2 and we make use of (6.4)
and (6.5) to deduce that

∫

RN

ω(x)ζ2(x)
(
B(x)τ(x)

)
· τ(x) dx

≤
∫

RN

|∇u(x)|2
(
A(∇u(x))τ(x)

)
· τ(x) dx

≤ const ‖τ‖L∞(RN )

∫

B2R

Λ2(|∇u(x)|) dx

≤ const ‖τ‖L∞(RN )R
2 ,

for any τ ∈ C∞
0 (RN ,RN ) supported in B2R.

This shows that (6.2) holds and so, from Lemma 6.1, we get that uj =
cjuN , for a suitable cj ∈ R, for any j = 1, . . . , N − 1.

Hence, if $ := (c1, . . . , cN−1, 1), we have that ∂vu is identically zero for
any v orthogonal to $, which yields the desired result. �

6.2. Completion of the second proof of Theorem 1.2. The second
proof of Theorem 1.2 is ended thanks to (5.16) and Corollary 6.3. ♦

7. Stability criteria

7.1. Monotonicity and stability. It is a standard fact of Allen-Cahn type
equations that solutions that are strictly monotone in one variable are stable.
We provide a generalization of this fact in our setting:

Lemma 7.1. Let u ∈ C1(RN ) ∩ C2({∇u 6= 0}), with ∇u ∈ W 1,2
loc (RN ) be a

weak solution of (1.1). Suppose that either (A2) holds or that {∇u = 0} = ∅.
Assume that ∂xN

u ≥ 0.
Then,

(7.1)

∫

RN

(
A(∇u)∇φ

)
· ∇φdx−

∫

{∂xN
u>0}

f ′(u)φ2 dx ≥ 0

for any smooth and compactly supported function φ.
In particular, if u ∈ C2(RN ) is a solution of (1.1) in R

N with ∂xN
u > 0,

then it is stable.

Proof. Let uN := ∂xN
u and fix ε > 0 (in fact, if ∂xN

u > 0, one can simply
take ε = 0 in what follows and the argument slightly simplifies).
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Let φ be a smooth, compactly supported function and ψ := φ2/(uN +
ε). We write A := A(∇u) and we use (2.2) with V := (φ∇uN )/(uN + ε)
and W := ∇φ to obtain that

2φ

uN + ε
A∇uN · ∇φ− φ2

(uN + ε)2
A∇uN · ∇uN ≤ A∇φ · ∇φ .

From this and Lemma 2.4,

0 =

∫
A∇uN · ∇ψ − f ′(u)uNψ dx

=

∫
2φ

uN + ε
A∇uN · ∇φ− φ2

(uN + ε)2
A∇uN · ∇uN − f ′(u)φ2 uN

uN + ε
dx

≤
∫
A∇φ · ∇φ− f ′(u)φ2 uN

uN + ε
dx .

By taking ε arbitrarily small, we obtain (7.1). �

7.2. Degenerate examples. Our scope is now to show by examples that
interesting degenerate cases are covered by our setting. This part is not
used in the proofs of the main results, and it may thus be skipped by the
uninterested reader.

Proposition 7.2. Let p > 2. Then, there exist w ∈ C 2(RN ) and f ∈ C1(R)
in such a way that

• w is a stable solution of ∆pw + f(w) = 0 having one-dimensional
symmetry,

• 0 ≤ w(x) ≤ 1 and ∂xN
w(x) ≥ 0 for any x ∈ R

N ,
• w(x) = 0 if xN ≤ 0 and w(x) = 1 if xN ≥ 1.

Proof. Given p > 2, we fix α such that

(7.2) 0 < α < min

{
1

2
,
p− 2

p

}
.

We define

W (t) :=





0 if t ≤ 0,

1 − (1 − t1/α)1/α if 0 < t < 1,
1 if t ≥ 1.

and w(x) = w(x1, . . . , xN ) := W (xN ). Since 1/α > 2, we have that w ∈
C2(RN ), and clearly ∂xN

w ≥ 0.
A straightforward calculation shows that

∆pw + f(w) = 0 ,

where

f(r) :=
κ+ α

α2p
·
(
(1 − r)

(
1 − (1 − r)α

))κ
·
(
1 − (α+ 1)(1 − r)α

)
χ(0,1)(r)

and
κ := p− αp− 1 .

Note that κ > 1, thence f ∈ C1(R).
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Moreover,
{∂xN

w = 0} = {w = 0} ∪ {w = 1}
and so f ′(w(x)) = 0 for any x ∈ {∂xN

w = 0}. Consequently,
∫

∂xN
w>0

f ′(w)φ2 dx =

∫

RN

f ′(w)φ2 dx

for any smooth and compactly supported φ.
Accordingly, w is stable, due to (7.1). �

The example given in Proposition 7.2 shows that conditions (A1) and (A2)
do not coincide in general: indeed, of course, the p-Laplacian for 1 < p < 2
satisfies (A1) but not (A2), and the example given in Proposition 7.2 shows
that there are cases on which Theorem 1.1 applies that are covered by (A2)
and not by (A1), due to plateaus.

Case III in Lemma 4.10 is also embodied by the example of Proposi-
tion 7.2.

Proposition 7.3. Let p > 2. Then, there exist w ∈ C 2(RN ) and f ∈ C1(R)
in such a way that

• w is a stable solution of ∆pw + f(w) = 0 having one-dimensional
symmetry,

• 0 ≤ w(x) ≤ 1 and ∂xN
w(x) ≥ 0 for any x ∈ R

N ,
• w(x) = 0 if xN ≤ 0, w(x) > 0 if xN > 0 and

lim
xN→+∞

w(x) = 1 .

Proof. Given p > 2, we fix α as in (7.2) and we define

W (t) :=

{
0 if t ≤ 0,

1 − (1 + t1/α)−1 if t > 0.

We then set w(x) = w(x1, . . . , xN ) := W (xN ). Since 1/α > 2, we have
that w ∈ C2(RN ), and clearly ∂xN

w ≥ 0.
A straightforward calculation shows that

∆pw + f(w) = 0 ,

where

f(r) :=
p− 1

αp
(1 − r)p−1+αprp−1−αp(2r − 1 + α)χ(0,1)(r) .

Note that p− 1 − αp > 1, thence f ∈ C1(R).
Moreover,

{∂xN
w = 0} = {w = 0}

and so f ′(w(x)) = 0 for any x ∈ {∂xN
w = 0}. Consequently,

∫

∂xN
w>0

f ′(w)φ2 dx =

∫

RN

f ′(w)φ2 dx

for any smooth and compactly supported φ.
Accordingly, w is stable, due to (7.1). �
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The example in Proposition 7.3 shows that case IV in Lemma 4.10 and
case D (and, analogously, case C) in Lemma 4.14 may happen.

8. Proof of Corollary 1.3

The proof of Corollary 1.3 relies on an elementary odd reflection, a mono-
tonicity result of [BCN97] and Theorem 1.2. We provide it in full detail for
the facility of the reader.

For any (x′, x3) ∈ R
2 × R and r ∈ R, we define

U(x′, x3) :=

{
u(x′, x3) if x3 ≥ 0,

−u(x′,−x3) if x3 < 0

and

f(r) :=

{
g(r) if r ≥ 0,

−g(−r) if r < 0.

Note that U is Lipschitz, since u(x′, 0) = 0. Then, given φ ∈ C∞
0 (R3),

and ε > 0, let η ∈ C∞(R) be such that η(r) = η(−r), η(r) = 0 if |r| ≤ 1,
η(r) = 1 if |r| ≥ 2, and ηε(r) = η(r/ε).

Set also φε(x
′, x3) := ηε(x3)φ(x′, x3), φ

+
ε (x′, x3) :=φε(x)χ(0,+∞)(x

′, x3),

ψ−
ε (x′, x3) :=φε(x

′, x3)χ(0,+∞)(x3) and φ−ε (x′, x3) :=ψ−
ε (x′,−x3).

Then, φ±ε ∈ C∞
0 (R2 × (0,+∞)) and so

∫

R3

∇u · ∇φ±ε − g(u)φ±ε dx = 0 .

As a consequence,

∫

R3

∇U · ∇φε − f(U)φε dx

=

∫

R2×(0,+∞)

∇u(x′, x3) · ∇φε(x
′, x3) − g(u(x′, x3))φε(x

′, x3) dx +

∫

R2×(−∞,0)

∂x3u(x
′,−x3)∂x3φε(x

′, x3) − ∂x′u(x′,−x3) · ∂x′φε(x
′, x3)

+g(u(x′,−x3))φε(x
′, x3) dx

=

∫

R3

∇u(x′, x3) · ∇φ+
ε (x′, x3) − g(u(x′, x3))φ

+
ε (x′, x3) dx

−
∫

R3

∇u(x′, x3) · ∇φ−ε (x′, x3) − g(u(x′, x3))φ
−
ε (x′, x3) dx

= 0 .
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On the other hand,

lim
ε→0+

∫

R3

φ∂3U η
′
ε dx

= lim
ε→0+

∫

R2×(0,+∞)
φ(x′, x3)∂3u(x

′, x3)η
′
ε(x3) dx

+

∫

R2×(−∞,0)
φ(x′, x3)∂3u(x

′,−x3)η
′
ε(x3) dx

= lim
ε→0+

∫

R2×(0,+∞)
φ(x′, x3)∂3u(x

′, x3)η
′
ε(x3) dx

+

∫

R2×(0,+∞)
φ(x′,−x3)∂3u(x

′, x3)η
′
ε(−x3) dx

= lim
ε→0+

∫

R2×(0,+∞)

(
φ(x′, εx3) − φ(x′,−εx3)

)
∂3u(x

′, εx3)η
′(x3) dx

=

∫

R2×(0,+∞)

(
φ(x′, 0) − φ(x′, 0)

)
∂3u(x

′, 0+)η′(x3) dx

= 0 .

Accordingly,

lim
ε→0+

∫

R3

∇U · ∇φε − f(U)φε dx =

∫

R3

∇U · ∇φ− f(U)φdx .

Due to the above observations,
∫

R3

∇U · ∇φ− f(U)φdx = 0

for any φ ∈ C∞
0 (R3), thence

(8.1) ∆U(x) + f(U(x)) = 0

for any x ∈ R
3.

Also, by Theorem 1.1 of [BCN97], we have that ∂3u > 0, and so

(8.2) ∂3U > 0 .

Moreover, f is Lipschitz, since g(0) = 0. This, (8.1), (8.2) and Theo-
rem 1.2 yield the claim of Corollary 1.3. ♦

9. Proof of Theorem 1.4

We take the assumptions of Theorem 1.4.
First, we observe that, without loss of generality, by possibly changing

sign to u, we may replace the sign assumption on f by

(9.1) f ≤ 0 .
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9.1. Area type estimates. We consider the graph of u as a surface in R
3,

namely, we set Y = Y (x) := (x, u(x)) ∈ R
2 × R, that is, we think Y as a

function of x ∈ R
2 in such a way Y ∈ R

3 belongs to the graph of u.
Area estimates are a classical topic in minimal surface theory. Next is a

variation of such results in our framework:

Lemma 9.1. There exists a constant C ≥ 1 in such a way that∫

|Y |≤ρ
a(|∇u|)|∇u|2 dx ≤ Cρ2 ,

as long as ρ ≥ C.

Proof. This proof is inspired by analogous arguments on page 24 of [Sim07]
and page 403 of [GT01].

To begin, we point out that ta(t) > 0 for any t > 0, due to (1.2), and the
map t 7→ ta(t) is increasing, due to (1.3). As a consequence, from (1.15),

(9.2) |a(t) t| ≤ C

for any t > 0.
Then, we take ζ ∈ C∞

0 (B2ρ, [0, 1]) such that ζ(x) = 1 if x ∈ Bρ, 0 ≤ ζ ≤ 1
and |∇ζ| ≤ const /ρ.

For any t ∈ R, we also define

γ(t) :=





1 if t ≥ ρ,
t+ρ
2ρ if |t| < ρ,

0 if t ≤ −ρ,
and ϕ(x) := γ(u(x))ζ(x).

Moreover, by (9.2),
∣∣∣∣
∫

R2

a(|∇u(x)|) γ(u(x))∇u(x) · ∇ζ(x) dx
∣∣∣∣ ≤ const ρ .

Therefore, using ϕ as a test function in (1.1) and recalling (9.1),

const

ρ

∫

|x|≤ρ

|u|≤ρ

a(|∇u(x)|)|∇u|2 dx

≤
∫

R2

a(|∇u(x)|) γ ′(u(x)) ζ(x) |∇u(x)|2 dx

=

∫

R2

f(u(x))ϕ(x) − a(|∇u(x)|) γ(u(x))∇u(x) · ∇ζ(x) dx

≤ const ρ ,

which yields the desired result. �

9.2. Completion of the proof of Theorem 1.4. We show that the as-
sumptions of Lemma 5.2 are fulfilled. Indeed, here N = 2, thus (5.4) is
not needed; also, (5.3) is implied by (1.16), while (5.1) is warranted by
Lemma 9.1.

Then, the use of Lemma 5.2 finishes the proof of Theorem 1.4. ♦
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10. Proof of Theorem 1.5

We note that Theorem 2.5 holds under the assumptions of Theorem 1.5
(though in this case λ1 is only non-negative). Accordingly,

∫

R2

λ2(|∇u(x)|) |∇u(x)|2 κ2(x)ϕ2(x) dx

≤
∫

R2

|∇u(x)|2
(
A(∇u(x))∇ϕ(x)

)
· ∇ϕ(x) dx

for any locally Lipschitz, compactly supported function ϕ, where κ(x) is the
curvature of the level set passing through x.

Then, by (A1),
∫

R2

λ2(|∇u(x)|) |∇u(x)|2 κ2(x)ϕ2(x) dx ≤ K

∫

R2

|∇ϕ(x)|2 dx .

As a consequence, arguing as in Corollary 2.6, since ∇u never vanishes,
we conclude that the level sets are regular curves with vanishing curvatures,
thence straight lines. ♦
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