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Abstract

The success of an infectious disease to invade a population is strongly

controlled by the population’s specific connectivity structure. Here a net-

work model is presented as an aid in understanding the role of social be-

havior and heterogeneous connectivity in determining the spatio-temporal

patterns of disease dynamics . We explore the controversial origins of long-

term recurrent oscillations believed to be characteristic to diseases that

have a period of temporary immunity after infection. In particular, we

focus on sexually transmitted diseases such as syphilis where this contro-

versy is currently under review. Although temporary immunity plays a

key role, it is found that in realistic small-world networks, the social and

sexual behavior of individuals also has great influence in generating long-

term cycles. The model generates circular waves of infection with unusual

spatial dynamics that depend on focal areas that act as pacemakers in

the population. Eradication of the disease can be efficiently achieved by

eliminating the pacemakers with a targeted vaccination scheme. A simple

difference equation model is derived, that captures the infection dynam-

ics of the network model and gives insights into their origins and their

eradication through vaccination.

Developing strategies for controlling the dynamics of epidemics as they spread
through complex population networks is now an issue of great concern [1, 2, 3,
4, 5, 6, 7, 8, 9, 10]. Future progress depends on gaining a better theoretical
understanding of the spatial dynamics of disease spread, including the effects of
a population’s social contact structure and its network topology [2, 3, 4, 8, 11].
Here we show how these factors control epidemic spread and, in the process,
formulate a novel aggregated targeted vaccination scheme.

We are particularly interested in diseases that confer temporary immunity
to individuals after recovery from infection. This is typical for diseases such as
pertussis, influenza, hRSV and some sexually transmitted diseases (STD’s) as
syphilis. In terms of population dynamics, the temporary immunity is under-
stood to give rise to recurrent epidemic oscillations [12] that can have a period
of several years for pertussis [7] and certain strains of influenza [13], to decadal
oscillations in the case of syphilis [14, 15]. In simple terms, the epidemic cycles
arise due to a delayed ”SIRS” process in which Susceptible individuals become
Infected, Recover with temporary immunity, but then eventually return to the
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Susceptible pool after a time-delay when immunity wears off. The loss of im-
munity allows the susceptibles in the population to gradually build up until
sufficient in number to fuel the next disease outbreak.

Grassly et al. [14] suggested that the oscillations seen in long-term syphilis
data-sets from the US stem from the temporary immunity of this disease. Their
argument is buffered by the fact that gonorrhea, which lacks temporary im-
munity, fails to show the same strong cycles in long-term datasets. This view,
however, is controversial and the CDC [16] has countered that trends in US
syphilis epidemiology follow parallel changes in population-wide high-risk sexual
behavior (see also [15]). Most likely it is the combined presence of temporary im-
munity and social behavior that is responsible for the recurrent waves of syphilis
epidemics. The modeling approach described here allows us to investigate and
assess the impact of these different but important factors.

Complex networks (or graphs) provide an important means for investigating
the effects of social behavior in population models of disease spread. Individu-
als are represented as nodes of a graph and edges are placed between any two
individuals should there be an infection route between them [3, 4, 2]. A random
Erdos Renyi network is formed if there is an equal probability q of a connection
between any two individuals [17]. A regular and tightly clustered network struc-
ture is obtained if an individual is only able to infect his/her nearest neighbors.
The random and clustered-regular graphs might be considered as two endpoints
of a spectrum. Watts and Strogatz [18] developed a scheme that allows con-
struction of networks that interpolate anywhere between these two endpoints.
This is achieved by introducing a proportion of p random ”short-cuts” between
nodes in a regular graph. Only relatively few short cuts are required (p < 0.1)
to create ”small world” networks that have the often realistic qualities of both
a high degree of clustering, and at the same time relatively high overall network
connectivity introduced by long-range connections (i.e. via short-cuts).

When considering the population dynamics of STD’s it is important to take
into account that some individuals spread the disease to a much greater extent
than others. In this way, social behavior and sexual promiscuity governs the
heterogeneity of the contact structure in the population. This contrasts with
standard mean field differential equation models which are based on the as-
sumption of a ”randomly mixing” population and lack a heterogeneous contact
structure. However, there is no unanimous agreement on how the contact struc-
ture of the network should be fixed. Barabasi et al. [20, 21] have argued that
”scale free” networks, whose nodes have a power law connectivity distribution,
are the most appropriate for STD’s. Lloyd and May [11], on the other hand,
suggest that such a formulation is unnecessarily exaggerated. We follow Eames
and Keeling [3, 4] who use a small world model as a first approximation for
STD’s. Their model assumes that STD’s are generally transmitted locally but
long-range infection pathways exist and are important in spreading the disease
through the population network. Moreover, the small world approach creates
heterogeneity in the connectivity distribution with most individuals having sev-
eral connections, but some being more connected than others.

The small-world formulation is used here to study the spatio-temporal SIRS
dynamics of recurrent diseases with temporal immunity. We first describe the
network model and its spatio-temporal dynamics. For representative parame-
ters the model exhibits expanding circular waves of infection, some of which are
generated by unusual ”pacemaker centers”. These we study in detail; the im-
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Figure 1: Spatial SIRS model simulation illustrating disease dynamics and ag-
gregated vaccination. Parameters (as in [19]): k = 3, τI = 4, τR = 9, p =
0.02, q = 0.2. (a) t = 10. Circular waves of infected individuals (red) spread
through a population of susceptible (white) and recovered/immune (green) in-
dividuals located in a 200× 200 lattice. (b) t = 40. Data-analysis has identified
two periodically reappearing pacemaker centers (red rings) of infected individ-
uals. (c) t = 90. Aggregated vaccination of all individuals (blue) located in
proximity to the pacemaker centers - comprising only 18% of the entire pop-
ulation. (d) t = 100. Disease rapidly brought to extinction (all red infectives
eliminated) in absence of other pacemaker centres.

portant role of such ”pacemakers” suggests a practical disease control strategy
based on targeted vaccination. We show that by vaccinating or quarantining the
regions around pacemaker centers, the disease can be eradicated. The vaccina-
tion scheme is tested on various more realistic modifications of the basic model.
We then formulate a very simple difference equation model that captures some
of the main features of the heterogeneous network.

1 The network SIRS model

The network model is based on a 2−dimensional lattice of individuals (/nodes)
whose connectivity p can be preassigned. Each node on the lattice is occu-
pied and is connected to k nearest neighbors oriented in each of four directions
(North, South, East, West, with diagonal connections excluded). That is, each
node is initially connected to K = 4k nearest neighbors, with k = 3 unless oth-
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erwise specified. The horizontal and the vertical edges of the lattice are “glued”
together creating a 2−torus. Then, with a probability p, each of the K nearest
neighbors of each of the edges in the lattice is randomly rewired to an arbitrary
node. These rewired connections, or “short-cuts” [18, 19], may extend to far
regions of the network.

The parameter p controls the population’s connectivity structure: p = 0
corresponds to nearest neighbor contacts only, and where clustering is at its
maximum; small p in the range 0 < p < 0.1 corresponds to a “small world”
network (each individual has a certain amount of nearest neighbor contacts + a
small proportion of distant contacts, “short-cuts”); large p > 0.4 is qualitatively
equivalent to a randomly mixing population with minimal clustering [19]. As
p is the probability of a short-cut, it may be viewed as an index of population
mobility. Alternatively, it may be interpreted as an index of social behavior
such as sexual promiscuity in the case of STD’s, given the manner in which it
controls overall network connectivity and clustering [18].

Disease dynamics follow the classical Susceptible-Infectious-Recovered-Susceptible
(SIRS) formulation [1, 22, 19, 3, 14] with Susceptible individuals (S) having a
probability q of becoming infected when linked to an Infected individual (I).
Infected individuals eventually recover from the disease after a fixed time pe-
riod, τI , and are conferred temporary immunity. After a time period of τR time
units, immunity wears off and Recovered individuals (R) return once again to
the Susceptible pool (S) closing the SIRS loop.

This is implemented on the network using a 2−dimensional cellular automata
(CA), SIRS spatial model. At time t, an individual at the (i, j)’th location of
the lattice has the state xi,j(t) which is either S, I or R. The model is based on
the following transition rules:

xi,j(t) ∈ S →

{

xi,j(t + 1) ∈ I with prob. 1 − (1 − q)kinf

xi,j(t + 1) ∈ S otherwise
(1)

xi,j(t) ∈ I −→ xi,j(t + 1) ∈ I → · · · −→ xi,j(t + τI) ∈ R

xi,j(t) ∈ R → xi,j(t + 1) ∈ R → · · · −→ xi,j(t + τR) ∈ S.

Infections are transmitted to susceptible individuals with a probability q, if
they are connected to an infective via a nearest neighbor or a short-cut. Thus
the probability that a susceptible becomes infected is 1− (1− q)kinf , where kinf

is the total number of infected neighbors of the individual, be they connected
via nearest neighbors or via short-cuts. The proportion of S(t), I(t) and R(t)
individuals are calculated over the lattice and their dynamics are followed as a
function of time.

To help fix ideas, we focus on two representative parameter settings: (a)
parameters used in a general theoretical model taken from [19]. The infectious
period is fixed at τI = 4 time units and a recovery period of τR = 9 time units
(see simulations in Fig. 1); (b) parameters associated with syphilis epidemics as
based closely on the study of Grassly et al. [14] (see simulations in Fig. 2). In
the latter case τI = 1 time unit, which is taken to correspond to half a year; the
recovery time varies randomly and uniformly in the range τR ∈ {8, 9, 10, ..., 16}
time units corresponding to a period of 4−8 years of immunity. To add realism,
several other features are also incorporated. A birth-death process is introduced
at rate µ, indicating the proportion of births/death per time step with appro-
priate network rewiring. In Fig. 2, µ = 0.01 per half-year time step, which is
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Figure 2: Model simulation of syphilis dynamics (1); white - susceptibles, red -
infected, green - recovered, k = 3, τI = 6 months, τR = 4 − 8 years, p = 0.065,
q = 0.36, ϕ = 0.2 p.y., µ = 0.02 p.y. (a) Three pacemakers are seen at time
t = 12.5 years. (b) Pacemaker areas are vaccinated with random spread of
86% of each pacemaker area on average, at t = 41 (20.5 years), resulting in
vaccinating 14.5% of the population. (c) Disease eradication at t = 58 (28y.).
(d) Time series of the proportion of infectives per 0.5y. The period of oscillation
is T ≈ 10y. The vaccination time is indicated by ’o’, after which the disease
undergoes another smaller peak, and reaches complete extinction within less
than one period of the disease (8.5 years).

equivalent to a rate of µ = 0.02 per year. Provision is made for the possibility
that a proportion ϕ of individuals fail to gain immunity after infection (similar
to [14]). Thus ϕ = 0 corresponds to all nodes passing through an SIRS loop
while ϕ = 1 corresponds to all nodes exhibiting SIS dynamics (no individual can
acquire immunity). In Fig. 2 a proportion of ϕ = 0.2 of the population (20%)
gaining no immunity per year.

1.1 Recurrent circular waves and pacemaker centers

We have found that in the small world regime, models of type (1) exhibit
concentric waves which give rise to unusual “pacemaker centers.” Indeed, for
0.001 < p < 0.15, the model (1) exhibits spatial oscillations with expanding cir-
cular waves of infection traveling through the lattice (see Fig. 1a). Some of these
waves are recurrent, both spatially and temporally. The latter are generated
by pacemakers (Figs. 1b and 2a) that form at connectivity centers - localized
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areas denser in short-cuts. The waves grow in size about the pacemakers as
the infection spreads radially. When infected individuals recover, the interior
of the growing wave boundary becomes a fresh pool of susceptible individuals.
At the end of the cycle, a distant infectee “short-cuts” through the network to
reinfect the wave’s focal pacemaker, enabling it to perpetuate. The cycle allows
recurrent spatial waves to propagate with a fixed period, T . For the syphilis
parameters (see Fig. 2 legend), T ≈ 10 years, as observed in US syphilis datasets
[14, 23]. Similar spatial wave patterns had been observed in a number of bio-
logical contexts including epidemiology [24], ecology [25], neural networks [26]
and theoretical studies of excitable systems [27].

These pacemakers follow a pattern formation mechanism. We observe that
there is a minimal necessary amount of short-cuts needed for the creation of a
pacemaker center. In addition, within the small-world range, a pacemaker wave
region has more short-cuts than a non-pacemaker wave region.

The initiation of a pacemaker also requires that the infection is able to spread
both in the horizontal and in the vertical directions. That is, the development of
the infection from an initial state should progress in the two directions spanning
a plane (i.e., in an X or an L shape). This condition follows the rule that
heterogeneities are needed for creation of spirals in excitable media (see [27]).
For these reasons, having an aggregation of short-cuts in a small region enhances
the likelihood of creating a pacemaker. On the other hand, having too large
an aggregation of short-cuts in a localized area of the lattice results in the
opposite effect - disease extinction will occur in this localized area due to a
synchronization effect (see [28] and below).

1.2 A Targeted Vaccination Scheme

The important role of “pacemaker centers” suggests a practical control strategy.
We have found that by vaccinating or quarantining the regions surrounding
pacemakers, the disease can be usually brought to a complete extinction within
one period of the disease (in some cases, depending on the refinement of the
vaccination algorithm and specific parameter values, two vaccination pulses are
required). Thus, rather than the conventional scheme of immunizing some 85%
of the population to achieve herd immunity [1], it is only necessary to vaccinate
groups enclosing the pacemakers. This requires vaccination of some 10%−30% of
the population (depending on the specific application and algorithm refinement;
∼ 20% in most cases). Fig. 1 and Fig. 2 show spatial snapshots of an infected
population upon application of the vaccination scheme. In the first frames
(subfigs. 1a,b and 2a) the characteristic circular waves of infection (red) are
seen. Vaccination around the pacemakers leads to complete eradication of the
disease. Pacemakers have such large impact on the spatial dynamics that they
are relatively easy to detect using a simple threshold algorithm that identifies
recurring aggregations of infected individuals. Once a pacemaker is identified, a
small region enclosing the pacemaker is marked out and vaccinated by effectively
removing these nodes from the simulation (the blue rectangles in figures 1c,d
and 2b,c).

For the theoretical values of [19] used in the simulations of Fig. 1, the ratio
τI/τR = 4/9 is relatively large, hence the pacemakers are large in size and few
in number (usually 1 − 3). In some cases, the scheme is able to remove all
pacemakers after one application with vaccinating less than 10% of the popula-
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tion. However, as the “pacemakers” compete with one another, there are cases
where only the main pacemaker(s) is removed and secondary pacemaker(s) may
appear in the next period. Eradication then requires a second application of
the vaccination in the area of the remaining pacemaker(s). As shown in figure
1c,d, in such cases it typically requires vaccinating a total of some 18% of all
individuals over both applications to bring the disease to total extinction.

For the same model with syphilis parameters, the ratio τI/τR varies in a
simulation within the range {1/8, ..., 1/16}. As this ratio is small and variable,
the pacemakers generated are more numerous (usually 2−5) and smaller in size.
The additional model realism (20% of the population not gaining any immunity,
birth/death process) makes the pacemakers “less circular” in shape (see Fig. 2a).
As a consequence, it is necessary to vaccinate more areas, although each area
is smaller in size. Nevertheless, the vaccination scheme generally eradicates the
disease in a single application, requiring vaccination of 14%−22% of individuals
(see Fig. 2). As in practice it is difficult to obtain full coverage when vaccinating
an entire population, or even a specific targeted group, to add realism (and lower
vaccination rates) we vaccinated in Fig. 2 only an average of 86% of each of the
identified areas, enclosing pacemakers. In more detail, the algorithm vaccinates
up to 98% in the core of the pacemaker, where the high clustering of repeatedly
infected individuals reside and as low as 60% (randomly chosen) in the outskirts
of the pacemaker.

It is of interest to examine the effects of simple random vaccination of the
population. For the theoretical parameter values (a) based on [19] and used
in Fig. 1, the random scheme is only successful in eradicating the disease after
vaccinating at least 80% of the population. For the syphilis parameter values,
however, the random vaccination threshold is 43% of the population (this is
somewhat similar to the results presented in [29] for an SIR model). Hence, a
further gain can be achieved by combining random vaccination with the targeted
scheme above. This advantageously reduces the vaccination threshold to some
10%−15% of the population for the syphilis parameters. Instead of vaccinating
the entire area surrounding the pacemaker it suffices to randomly vaccinate only
60% of the area normally targeted.

In reality, this control scheme may be implemented by vaccination, quaran-
tine or a targeted education plan, depending on the disease and on the means
available for it’s control (for information on efforts to eliminate syphilis in the
US see [15] and CDC reports [23]). The main advantage of the vaccination
methods proposed here is that they avoid the usual practice of vaccinating a
large proportion of the population. In addition vaccination is confined solely to
relatively small and specified areas (see figures 1c,d and 2b,c). In practice, it is
always preferable to vaccinate as small a group as possible, as vaccination al-
ways carries a risk. Hence, it is advantageous to target only the relevant groups,
already at risk. In the case of syphilis, a vaccine [30] is still under development,
but it is feared to be of relatively high risk - so if at all, vaccinating only carefully
targeted population already at risk (e.g., in proximity to core groups of highly
active individuals [31, 3]) will be desirable if and when such a vaccine is avail-
able. Note, however, that while other works refer to tracing infected individuals
or the most connected individuals for applying a targeted vaccination scheme
(e.g., [29, 32, 3]), in the scheme proposed here no contact tracing is required -
the pacemaker waves stem from the SIRS dynamics and the small world struc-
ture in a natural and intrinsic way. Hence, these areas are easily identified as
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Figure 3: A bifurcation diagram of the proportion of infectives I for typical
syphilis parameter values (as in Fig.2) as a function of shortcuts p. For small p
there is an endemic equilibrium. After a bifurcation point the dynamics exhibit
a limit cycle with radius varying with p. The diagram plots the maximum and
minimum values of I on the cycle. After a second bifurcation value of p the
disease goes to extinction (due to synchronization).

small areas where the infection appears repeatedly. See supplementary material
for movies illustrating the vaccination scheme in various scenarios.

1.3 Synchronization and disease extinction

Worthy of comment is the model’s behavior for larger values of p, typically p >
0.1, outside the “small world” regime, and corresponding to high levels of sexual
promiscuity in the case of STD’s. Counterintuitively, the epidemic consistently
dies out abruptly due to the appearance of large-scale synchronized epidemics
[19, 28, 25] – a well known cause of disease extinction. The synchronization
manifests with the formation of large spatial aggregations of infected individuals.
Upon recovery, these infectives gain temporary immunity for a lengthy time
period. Thus the areas that once contained aggregations of infectives, become
exhausted of susceptibles and there is no possibility for an epidemic to sustain
– it soon dies out.

Although it might at first seem unusual, the model implies that for society
at large, grand sexual promiscuity has the potential to eliminate STD’s such as
syphilis altogether after about two decades of consistent behavior (see supple-
mentary movie 3). The same would be true for populations in which individuals
consistently have few proximate sexual partners. The most conducive conditions
for the persistence of such STD’s, appears to be the small world structure sim-
ilar to the varying manifestation of sexual promiscuity seen in western society
over the last centuries.
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1.4 The impact of short-cuts

The effect of the parameter p – the proportion of short-cuts, on the disease
dynamics, may be assessed from the bifurcation diagram in Fig. 3. The figure
plots the range in the number of infectives (maximum and minimum values)
for any given p, when the model is run using the standard syphilis parameters.
The following bifurcation scenario takes place: for p = 0 the disease goes to
extinction; for small p < 0.001 an endemic equilibrium is reached in which there
is a relatively small proportion of infectives 0 < I∗ ≪ 1; for 0.001 < p <
0.13 (approximately) there is a limit cycle of radius depending on p and hence
noticeable oscillations in the number of infectives; for p & 0.13 the disease goes
to extinction due to a synchronization effect. The “limit cycle region” is the
region where pacemaker centers develop and within it lies the region where the
targeted vaccination scheme works very effectively. This region is an open strip
of p values in the “small world” regime. Note that both for p = 0 and for large
p the disease rapidly goes to extinction. Thus, despite the period of temporary
immunity built into this model, oscillations in I vanish for either very small or
relatively large values of p (i.e., outside the small world regime).

2 Difference equation model

We formulate the following difference equation model to help gain insights into
the network model’s dynamics. Let St, It and Rt be the proportion of suscepti-
ble, infective and recovered individuals in a large population at time t. Again,
let τI be the time period an individual remains infectious and τR the period an
individual remains immune. If we assume that τI = 1, as the case for syphilis,
the proportion of recovered individuals can be described by the sum: Στ0−1

i=1 It−i,
and thus:

St = 1 − It − Στ0−1
i=1 It−i, (2)

where τ0 = τI + τR. The above model formulation is well known (see e.g.,
[33]), but is extended as follows. We suppose each individual has on average
K connections including those to nearest neighbors and short-cuts. For the
typical individual, denote by K inf K

t the number of nearest neighbors that are

infected at time t and denote by K inf p
t the number of short-cut links that point

to infected individuals. Then:

K inf K
t = It(1 − p)K, (3)

K inf p
t = ItpK. (4)

Set qp as the probability of being infected by a short-cut link and set qK as
the probability of being infected by a nearest neighbor. In practice qp > qK ,
because of the important role short-cuts play in spreading the epidemic through
the network. For example, simulations of the lattice model (Eqn. 1) under
syphilis parameters show that qp ∼ 4qK . For the model parameterized with
the theoretical values taken from [19], qp ∼ 10qK . Incorporating this important
observation in the difference equation leads to the following model of the SIRS
dynamics on a complex contact network:

It+1 = (1 − (1 − qK)Kinf K
t (1 − qp)

K
inf p
t )St, (5)
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Figure 4: Time series of the difference equation model (5) for different p values
close to bifurcation points; qK = 0.11, qp = 0.65, K = 12.

where qK < qp ≤ 1. Note that equation (5) captures both the time delay
dynamics resulting from the temporary immunity of the disease and the social
effects of the short-cuts.

The dynamics of the model (5) depend on p in a manner that is very similar
to the more complex contact network model (1). Fig. 4 shows results based
on setting qK = 0.11 and qp = 0.65. For p = 0, a small endemic equilibrium
is reached (see Fig. 4(a)), for p in the small world range sustained oscillations
arise (see Fig.4(b)) 4(b)), and for large p the disease is eradicated (see Fig. 4(c))
due to a synchronization effect. Comparing figures 2d and 4(b) 4(b) – one can
see exactly the same type of dynamics with similar period of about 10 years, as
observed in syphilis datasets [23, 14].

2.1 Stability analysis

The equilibrium solutions of model (5) are found by solving the following equa-
tion for I∗:

I∗ = (1 − (1 − qK)I∗(1−p)K(1 − qp)
I∗pK)(1 − τ0I

∗). (6)

It is easily seen that the infection-free equilibrium I∗ = 0 is always a solution. A
stability analysis (based on linearizion of Eqn. 5) reveals that the infection-free
equilibrium is stable when the following inequality holds:

R0 = −K[(1 − p) ln(1 − qK) + p ln(1 − qp)] ≤ 1. (7)

Hence, for the given model parameters and relevant K values (K = 8 or
12), the infection free equilibrium is stable either only for extremely small p
values (K = 8), or never (K = 12). This is visualized in Fig. 5(a) which
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Figure 5: Bifurcation diagrams of the difference equation [5]; τ0 = 11, qK = 0.11.
(a) qp = 0.65. Infection free equilibrium (I∗ = 0) is stable for parameters below
solid curve along which R0 = 1. Dashed curve is the approximation based on
estimating R0 (see text). (b) Hopf bifurcation curves. Endemic equilibrium is
stable for parameters below indicated curves and a stable limit cycle is born
when these curves are crossed (solid curve: K = 12, dashed curve: K = 8).

plots the bifurcation curve of the infection free equilibrium as a function of the
parameters K and p. The infection free equilibrium is stable for all values of
parameters below the (lower solid) curve where R0 < 1 and unstable otherwise
since R0 > 1. For K ≤ 4, the infection free equilibrium is stable in a wide strip
of the parameter plane, containing the small world regime (as visible in Fig.5a).

A similar result is obtained by estimating the reproductive number R0, ap-
proximating it as the average number of secondary infectives produced by a
typical infective individual in a sea of susceptibles. In the case here, where a
single node may infect only those nodes it is linked to, the number of secondary
infections may be approximated as:

R0 ≈ K(qK(1 − p) + qpp). (8)

The above estimate gives a good approximation of the exact condition (7) as
seen in in Fig. 5(a) (dashed curve).

For most parameter values, the difference equation (5) has a second endemic
equilibrium in which I∗ > 0. The bifurcation curves describing it’s stability in
the (p, qp) parameter plane are shown in Fig. 5(b), for K = 8 (upper curve) and
K = 12 (lower curve). This curve indicates a Hopf bifurcation in the (p, qp)
plane, where all other parameters are kept fixed. See Appendix1 for technical
details on its calculation. The endemic equilibrium exists for all parameter
values for which the Hopf bifurcation curve exists. Below the bifurcation curve
the endemic equilibrium is stable and is unstable above it, where a stable limit
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cycle exists. The stable limit cycle thus coexists with the two unstable equilibria
– infection free and endemic.

Hence, the bifurcation scenario, for syphilis parameter values, for K = 8, is
as follows. For 0 ≤ p ≤ 0.0091, the infection free equilibrium is stable and the
disease goes extinct; for 0.0091 < p . 0.079 the infection free equilibrium loses
it’s stability and an endemic equilibrium is born; for p & 0.079 the endemic
equilibrium loses it’s stability through a Hopf bifurcation and a stable limit
cycle is born. See the upper dashed Hopf bifurcation curve in Fig. 5(b). In the
case of K = 12, the infection free equilibrium is unstable for all values of p.
However, the endemic equilibrium is stable for 0 ≤ p . 0.011. When p & 0.011,
both equilibria are unstable and instead a stable limit cycle is observed. See the
lower solid Hopf bifurcation curve in Fig. 5(b).

As in the network model, the disease goes completely extinct for relatively
large p values (for K = 12, pc = 0.43 and for K = 8, pc = 0.87), despite the fact
that the infection free equilibrium is unstable (see Fig. 4(c)). The extinction
should be attributed to the synchronization effect that takes place for these
high p values. That is, the dynamics are such that a large proportion of the
population become infected together and proceed on to move to the recovered
class together. The synchronization requires the initiation of a strong epidemic,
implying that R0 must be greater than unity, which explains why the infection
free equilibrium is unstable in this regime. Nevertheless the disease becomes
extinct due to the synchronization effect.

2.2 Vaccination

A random vaccination scheme may be incorporated into the difference equa-
tion model by replacing St in Eqn. (5) with (1 − v)St. The parameter v is the
proportion of susceptibles vaccinated per time unit. Denote by ve the thresh-
old proportion of vaccinated needed for disease extinction. A simple algebraic
expression can be obtained for the extinction threshold by linearizing Eqn. (5)
about the infection free equilibrium. Then, by using equation (7), disease ex-
tinction is reached if:

v ≥ ve = 1 −
1

R0
. (9)

For the parameter values of Figs. 4 and 5, the vaccination threshold is ve =
0.5297. Numerical simulations corroborate the existence of this threshold.

As the difference equation does not give any information regarding spatial
patterns, it is impossible to apply the spatially oriented targeted vaccination
scheme described above. However, targeted vaccination schemes may neverthe-
less be explored by differentiating between vaccinating nearest neighbors and
short-cuts. This can be achieved by replacing the term It in equations (2) and
(5) with the term (1− vK)It for nearest neighbors and (1− vp)It for short-cuts.
The results reveal that the extinction threshold is very sensitive to and low-
ered dramatically by the term vp for vaccinating short-cuts, while the term for
vaccinating nearest neighbors, vK , has little influence. Although according to
the model the infection free equilibrium is never stable for the syphilis disease
in a small world type society, it appears that targeted vaccination effectively
reduces the number of the actual contacts of the key individuals, thereby re-
ducing R0 < 1 in the vaccinated population. A detailed study of the targeted
vaccination is left for future work.
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3 Conclusion and discussion

Two models for studying the dynamics of diseases with temporary immunity
in complex population networks have been proposed – a lattice model, which
incorporates spatial information, and a difference equation model, which allows
an analytic approach. The study focuses on the example of syphilis epidemics,
which is a representative STD targeted to be eliminated in the US with little suc-
cess so far. The network model reveals that diseases with temporary immunity
on a small world contact network exhibit periodicity and waves of epidemics,
some of which become pacemaker centers. It is shown that by eliminating pace-
makers through vaccination, the disease goes to extinction within 1−2 periods,
where only about 20% of the population requires vaccination. This is in con-
trast to standard vaccination programs that set out to achieve herd immunity
by vaccinating over 80% of the population. Moreover, by treating only those
individuals in high risk pacemaker areas, it minimizes the application of the vac-
cination with its possible risks to the larger population. The difference equation
model allows further investigation of the Hopf bifurcation lying at the heart
of the pacemaker phenomena. The models presented here were constructed in
accordance to the US syphilis datasets (see [23, 16] and [14]). The two models
complement each other, allowing a more profound view of the dynamics.

This work addresses the controversy as to whether syphilis epidemics recur
approximately every ten years due to the temporary immunity it endows to
infected individuals ([14]) or due to changing patterns in social behavior ([23,
16]). As shown here, both factors are crucial for recurrent syphilis epidemics.
Thus, for example, oscillations cannot occur outside the small world regime even
in the presence of strong temporary immunity. For zero or very small p values
(corresponding to none, or a very few, short-cut links), an epidemics cannot
develop. Moreover, the analysis performed on the difference equation model
reveals that if all individuals in a small world type population network have
only a small number of contacts, the infection free equilibrium is stable. In
addition, on the other side of the scale, it is pointed out that for large enough
p outside the small world region (corresponding to many short-cut links) a
synchronization effect takes place, eradicating the epidemics due to exhaustion
of susceptibles. In contrast, a society whose social behavior approximates a small
world network with moderate heterogeneous levels of promiscuity would sustain
the periodic recurrences of the syphilis epidemics approximately every ten years.

Finally, we conjecture that complete disease extinction is nevertheless achiev-
able by a targeted vaccination scheme similar to that presented here. The tar-
geting and vaccination of key individuals, effectively reduces R0 to less than
unity in the vaccinated population, thereby leading to disease extinction.

A Appendix1: Technical details for the differ-
ence equation model

Here we present the technical details of the stability analysis performed for the
difference equation model (5). Consider the Susceptible - Infectious - Recovered
- Susceptible (SIRS) dynamics. Assume τI is the amount of time units an
individual spends in the Infectious class and that τR represents the time units
an individual later spends in the Recovered class. As for syphilis τI = 1 (where
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a time unit represents 6 months), the proportion of recovered individuals can
be described by the sum: Στ0−1

i=1 It−i. Thus, denoting by St the proportion of
susceptibles in the population at time t, we obtain:

St = 1 − It − Στ0−1
i=1 It−i, (10)

where τ0 = τI + τR. Set It to be the proportion of infectives at time t, denote
by K the number of connections an individual has on average and let p be the
proportion of short-cut links an individual has among it’s K connections. Then,
denote by K inf K

t the number of infectious nearest neighbors an individual node

has at time t and by K inf p
t the number of infectious contacts via short-cut links

an individual node has among its K connections at time t. Then:

K inf K
t = It(1 − p)K, (11)

K inf p
t = ItpK. (12)

Set qp as the probability of being infected via a short-cut link and set qK as
the probability of being infected by a nearest neighbor, where qK < qp < 1.
Hence, the SIRS dynamics on a network with nearest neighbors and short-cut
connections can be described by:

It+1 = (1 − (1 − qK)Kinf K
t (1 − qp)

K
inf p
t )St, (13)

The dynamics of (13) are at equilibrium for the solutions, I∗, of the equation
(14):

I∗ = (1 − (1 − qK)I∗(1−p)K(1 − qp)
I∗pK)(1 − τ0I

∗). (14)

It is easily seen that the infection free equilibrium I∗ = 0 is always a solution and
that an endemic equilibrium I∗ > 0 is a solution for most parameters relevant
for syphilis.

Substituting Jt = It − I∗ and linearizing Eqn.(13) about I∗, we obtain:

Jt+1 = (1−qK)(1−p)KI∗

(1−qp)
pKI∗ (

R0(1 − τ0)Jt + Στ0−1
i=0 It−i

)

−Στ0−1
i=0 It−i+h.o.t.,

where,
R0 = −K((1 − p) ln(1 − qK) + p ln(1 − qp)).

Now substitute Jt = J0λ
t to obtain the characteristic polynomial,

λτ0 + αλτ0−1 + βλτ0−2 + · · · + βλ + β = 0, (15)

where:

α = (1 − qK)(1−p)KI∗

(1 − qp)
pKI∗

(R0(τ0I
∗ − 1) − 1) + 1, (16)

β = 1 − (1 − qK)(1−p)KI∗

(1 − qp)
pKI∗

.

The stability of the infection free equilibrium is derived from substituting I∗ =
0 and requiring that |λ| = R0 < 1. The stability analysis of the infection
free equilibrium is presented in the main text (and Fig.5(a)). Here we provide
details regarding the endemic equilibrium stability and the calculation of the
Hopf bifurcation curve(s), presented in Fig.5 in the main text. This calculation
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is inspired by a calculation of the Hopf bifurcation of a mean field difference
equation model in [33].

Assume such a bifurcation exists and substitute λ = eiφ (as stability changes
at |λ| = 1) into Eqn.(15). Separating real and imaginary parts we obtain two
equations:

α = − cos(φ) − cot

(

φτ0

2

)

sin(φ), (17)

β =
2 csc

(

φτ0

2

)

sin
(

φ

2

)

sin(φ)

cos
(

φ(τ0−2)
2

)

− cos
(

φτ0

2

) .

Substituting Eqns.(16) into Eqns.(17) and adding Eqn.(14) results in a system
of three equations in the seven variables: qK , qp, p, K, I∗, τ0, φ. Some of these
parameters can be fixed to values relevant for syphilis: τ0 = 11, K = 8 or 12 and
qK = 0.11. φ can be viewed as the frequency of the periodic solution emerging
at the bifurcation, where the period of the limit cycle (when exists) is T ≈

2π
φ

.
As for the syphilis parameter values the period of oscillation is T ≈ 20 time
units, where 1 time unit = 0.5y = 6 months, we fix φ = 0.3. Now, with these
fixed parameter values, we use the Newton method to solve Eqns.(17) and (14),
using the syphilis parameter values as the initial guess, once for K = 8 (dashed
curve in Fig.5(b)) and once for K = 12 (solid curve in Fig.5(b)). The results
are plotted in the (p, qp) plane (see Fig.5(b) in the main text). In Fig.5(b), the
two bifurcation curves (one for K = 8 - dashed and one for K = 12 - solid) are
presented, where below each curve an endemic equilibrium I∗ > 0 is stable. At
the bifurcation curve the equilibrium loses its stability and a stable limit cycle
is born so that above the curve a stable limit cycle coexists with two repelling
(unstable) equilibria - the infection free and an endemic.

B Appendix2: Supplementary video captions (avi

movies can be obtained via e-mail: litvaka at
gmail dot com)

Attached are three AVI video movies (played at 3 fps). In all movies white
represent susceptible individuals, red infected/infectious, green recovered and
blue immuned/removed.

1. File-name: vac scheme.avi. Spatial SIRS model simulation illustrating
disease dynamics and our aggregated targeted vaccination scheme (corre-
sponding to case (a) in the main text - a theoretical example with param-
eter values based on [19]). At first circular waves of infected individuals
(red) are seen spreading through a population of susceptible (white) and
recovered/immune (green) individuals located in a 200×200 lattice with a
”small-world” population structure (p = 0.02). Then, after our algorithm
had identified a periodically reappearing pacemaker center of infected in-
dividuals, at time step t = 50, an aggregated targeted vaccination is ap-
plied. All individuals (blue) located in proximity to the pacemaker center
are vaccinated, eliminating the primary pacemaker center. Data-analysis

15



then identifies a secondary pacemaker forming and its area is vaccinated
at time step t = 77. After both vaccinations are applied (the amount of
vaccinated individuals (blue) comprising only 18% of the entire popula-
tion), the disease is rapidly brought to extinction (at time step t = 100
- all red infectives eliminated) in the absence of other pacemaker centers.
Parameters: q = 0.2, k = 3, τI = 4, τR = 9 (as in Fig.1 in the main text).

2. File-name: syphilis vac.avi. A simulation illustrating effectiveness of the
vaccination scheme with realistic to syphilis parameter values (and robust-
ness of pacemaker centers under realistic features). Population structure
corresponds to a ”small world” (p = 0.065), time steps are of half a year,
when infected are assumed to be infectious for τI = 1 time step (6 months)
and recovered for a period of τR = 8−16 time steps (4−8 years), the pro-
portion of individuals not gaining any immunity is set to ϕ = 0.2 (20%),
the death/birth rate is set to µ = 0.02 per year and the infection rate is
q = 0.36 (the parameter values are as in Fig.2 in the main text). The
data-analysis identifies the pacemaker centers and vaccinates the individ-
uals in their proximity: at time t = 41 = 20.5y three pacemakers are
identified and the vaccination scheme is applied to the area surrounding
them (vaccinated individuals are marked in blue and comprise altogether
only 14.5% of the population). In this movie, rather than vaccinating
100% of the pacemakers area, for additional realism and lowering vaccina-
tion rates, we vaccinate only an average of 86% of the targeted pacemakers
area: in the core of a pacemaker wave the algorithm vaccinates up to 98%
of individuals and in the outskirts of the pacemaker area the algorithm
vaccinates as low as 60% randomly chosen individuals. After just one
vaccination pulse, applied only to 14.5% of the population, the syphilis
epidemics goes extinct 8.5 years from the moment of vaccination (i.e., in
less than one period of the epidemics).

3. File-name: syph ext synch.avi. A simulation illustrating rapid elimination
of disease due to synchronization effect with realistic to syphilis parameter
values. All parameter values are as in (2), except p = 0.2 (a ”non-small-
world” regime). It is seen that the epidemic goes extinct after t = 19 time
steps, i.e., in less than 10 years (less than one period). This phenomenon
occurs for almost any set of parameter values already for p > 0.12.
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