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Abstract. We study a simple model of a bouncing ball that takes explicitely
into account the elastic deformability of the body and the energy dissipation
due to internal friction. We show that this model is not subject to the problem
of inelastic collapse, that is, it does not allow an infinite number of impacts in
a finite time. We compute asymptotic expressions for the time of flight and
for the impact velocity. We also prove that contacts with zero velocity of the
lower end of the ball are possible, but non-generic. Finally, we compare our
findings with other models and laboratory experiments.

1. Introduction

In this paper we study how a ball bouncing against an horizontal, rigid plane
comes to rest. We are motivated by the fact that bouncing objects are the basic
building blocks of granular fluids. Our view is that an acceptable mathematical
description of granular fluids is impossible without taking into account internal
vibrations of the bouncing objects. To explore the viability of this program we
formulate a simple, one-dimensional model that explicitly accounts for the defor-
mation of the ball, and we prove that, while encompassing the desirable properties
of current models, which neglect internal vibrations, it does not incur their patholo-
gies.

The simplest and most widely used model of a bouncing ball (or grains of a
granular fluid) assumes that the ball is a rigid body, and that an impact with
the floor is an instantaneous event, which reverses the vertical component of the
speed of the ball. In order to model energy dissipation caused by an impact, it
is customary to introduce a positive coefficient of restitution r < 1, so that the
vertical speed ua immediately after an impact is related to the vertical speed ub
immediately before the impact by the simple relationship

(1) ua = −rub.
This model performs well in cases where the ball does not experience too many
impacts in the unit of time. It has been used, for example, as an ingredient in
the description of sport balls [1], and to study the dynamics of a bead on a vi-
brating plate (for its deep mathematical facetes the latter has become a classical
problem, see [2] sec. 2.4). The assumptions behind this model (namely: neglect of
deformability, instantaneous impacts and energy losses described by a restitution
coefficient) are the basic building blocks of current theories of granular gases [3].

The most apparent drawback in this approach is that it cannot limit a priori
the number of impacts in the unit of time. In fact, granular systems described
by (1), for a large class of parameter choices and initial conditions, are subject to
the phenomenon of inelastic collapse, where clusters of particles are subject to an
infinite number of collisions in a finite time [4]. The simplest example of inelastic
collapse is given by a single ball, subject to a constant gravity force, bouncing
repeatedly off the floor. Neglecting the interaction with the air, the vertical speed
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of the ball immediately after the (n + 1)−th impact is linked to that at the n−th
impact by

(2) un+1 = run.

The duration of the n−th flight is τn = 2un/g, where g is the acceleration of gravity.
The sum of the times of flight is easily computed, and gives a geometric series that
converges to

t∞ =
2u0

g(1 − r)
.

For times larger than t∞ the model is meaningless.
This pathology is not caused by the one-dimensional nature of the model sketched

here. Even taking into account rotational degrees of freedom and exchanges of
angular momentum at the impacts due to surface friction, the inelastic collapse is
still a common outcome [5].

To avoid the problem it is customary to assume that the restitution coefficient
is an increasing function of the impact velocity, and that r(u) → 1 if u → 0. A
popular choice is

(3) r(u) =

(

1 −
( u

U

)1/5
)

+O

(

( u

U

)2/5
)

.

where U is a constant that depends on the material and geometry of the ball.
This expression has some theoretical support [6], and it appears to fit the data
for non-repeated impacts [7]. In the absence of gravity, inelastic collapse is ruled
out rigorously for systems of three balls [8], and there is numerical evidence that
the same result holds for an arbitrary number of particles (see [3] chap. 26 and
references therein). However, using (3) in (2), yields again a converging sum of
the times of flight for the bouncing ball problem. This is proved rigorously in the
appendix (Remark 9.2).

The common wisdom is that t∞ is the time when the bouncing ball comes to
rest and maintains permanent contact with the floor (see, for example [3] chap. 3).
This point of view faces serious difficulties if one desires to model, for example,
the settling-down of many beads poured into a box: it is not clear how a bead
at rest on the floor should behave when hit by a moving one, because there is no
obvious way to extend (1) to situations where three or more bodies are in contact
simultaneously.

More generally, the assumption (1) rests on hypoteses that become invalid as
the frequency of the impacts diverges: collisions with the floor are not truly in-
stantaneous, and treating the ball as indeformable is highly questionable when the
frequency of impacts is close to the resonant frequencies of the bouncing ball (e.g.
[9] sec. 2.2).

Of course, a model avoiding inelastic collapse must at the same time account for
the obvious observation that bouncing balls do come to rest after a finite time. A
first step in this direction is the time-of-contact model [10], which prescribes r < 1
if the time-of-flight of the ball is greater than a constant Tc, and r = 1 otherwise:
conservative impacts are interpreted as internal vibrations of the ball, which (from
a macroscopic point of view) maintains contact with the floor. A variation on this
theme leads to the notion of a stochastic restitution coefficient [11].

In this paper we study a one-dimensional model of a bouncing ball simple enough
to allow for rigorous mathematical analysis, but including all the elements that we
believe are important for further developments in the description of granular fluids.
We explicitly take into account the deformability of the body, and at the same time
we give up the notion of restitution coefficient, at least as a primitive concept. We
prove that our model is free from pathologies analogous to the inelastic collapse, and
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Figure 1. A bouncing ball of mass 2m and diameter L is idealized
as two points of massm connected by a massless, dissipative spring.

that it is well defined at all times. We still assume impacts to be instantaneous, but
only from a microscopic point of view: a persistent contact with the floor is seen as
a rapid sequence of instantaneous impacts. This property makes the dynamics only
piecewise-smooth. There is a growing literature on piecewise smooth dynamical
systems, with engineering and plasma physics applications (for a review see [12]).
However, the focus is generally on periodically forced systems, rather than on the
pathways chosen by an unforced system to reach the asymptotic equilibrium.

The rest of the paper is organized as follows: in section 2 we describe the model
and we state the main results: in particular the absence of inelastic collapse and
how the system approaches the rest state; the theorems are proved in sections 3
through 6; in section 7 we show that the notion of restitution coefficient is naturally
recovered, as a consequence of the dynamics, when the time-of-flight is large with
respect to the characteristic damping time of the internal vibrations; numerical
simulations are compared with the laboratory experiments of [13]; finally, section 8
contains a summary of the results and some forward-looking remarks.

2. Equations of Motion

An basic model of a deformable bouncing ball is shown in figure (1): two point
masses are connected by a massless dissipative spring. This idealized ball, when it
is not in contact with the floor, is ruled by the following equations of motion

(4)

{

mẍ = −gm+ k(y − x− L) + ν(ẏ − ẋ)
mÿ = −gm− k(y − x− L) − ν(ẏ − ẋ)

where m is the mass of the material points at x(t) and y(t), L is the length at rest
of the spring, k is its elastic constant, ν is a damping coefficient, and −g is the
acceleration of gravity. All constants are positive.

We indicate by tn the time when an impact occurs, i.e. x(tn) = 0. We define
the time of flight

(5) τn = tn+1 − tn

and we assume t0 = 0. Impacts are modeled as an instantaneous elastic interaction
obeying to the rule

(6) ẋ(t+n ) = −ẋ(t−n ).

where the notation f(a±) means limt→a± f(t). The boundary does not exert any
force directly on the mass in y, which is affected by boundary hits only through
the resulting deformation of the spring. In other words, at the impact times tn the
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upper point mass obeys the rule

(7) ẏ(t+n ) = ẏ(t−n ).

The special case ẋn(tn) = 0 may lead to a continuous contact of the lower point
mass with the floor. This is discussed in detail in the next section.

We re-write the equations (4) using L as the scale of lengths, and
√

m/(2k) as
the scale of times. The resulting dimensionless equations are

(8)

{

ẍ+ µẋ+ 1
2x = −γ − 1

2 + 1
2y + µẏ

ÿ + µẏ + 1
2y = −γ + 1

2 + 1
2x+ µẋ

where γ = gm/(2Lk) and µ = ν/
√

2km.
The positions x(t) and y(t) are defined for t ∈ [0, t∞), where t∞ is the time

of inelastic collapse, should it occur, or ∞ otherwise. For t ∈ ∪n(tn, tn+1), the
equations (8) guarantee the existence of the derivatives x(k) and y(k) for all k. For

brevity, it is convenient to define Yn = Y (tn), Ẋn = limt→t+n
ẋ(t), Ẏn = limt→t+n

ẏ(t),

and similarly for all higher derivatives. Of course it is Xn = x(tn) = 0 for all n.
With this notation, the collision rule (6) becomes

(9) Ẋn = − lim
t→t−n

ẋ(t).

Next we define the variables

(10)

{

ψ = (y + x− 1)/2
ξ = (y − x− 1)/2

The collision condition x(tn) = 0 in the new variables reads

(11) ψ(tn) = ξ(tn).

The collision rule (6) becomes

(12)

{

ψ̇(t+n ) = ξ̇(t−n )

ξ̇(t+n ) = ψ̇(t−n )
.

In terms of these variables the equations of motion read

(13)

{

ψ̈ = −γ
ξ̈ = −ξ − 2µξ̇

.

The total mechanical energy of the idealized ball is

(14) E =
ξ̇2

2
+
ξ2

2
+
ψ̇2

2
+ γψ.

which is dissipated at the rate

(15)
dE

dt
= −2µξ̇2.

The collision rule (12) implies that E is a continuous function of time, even at the
impact times. The energy is then a non-increasing function of time.

The mechanical system has only one static equilibrium, which is

(16) x = ẋ = ẏ = 0, y = 1 − 2γ.

This state has energy

(17) Em = −γ2/2

which is the minimal energy of the system.
To insure that the upper point mass at equilibrium is above the floor, we must

require that

(18) γ <
1

2
.
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The validity of the model may be questioned if the spring’s length shrinks to
zero, that is if, for some t̄, we find x(t̄) = y(t̄), or, equivalently, ξ(t̄) = −1/2. To
avoid this event we may choose initial conditions having mechanical energy less
than the minimum energy stored in a ball with zero length spring, that is

(19) E <
1 − 4γ

8
.

Imposing an upper bound to the mechanical energy translates the fact that a real
ball thrown on a rigid floor with excessive energy would break or undergo plastic
deformations, thus changing the physics of the problem. However, from a mathe-
matical standpoint, we may wish to study the case where the constraint represented
by the floor applies only to the lower point mass. That is, we require x(t) ≥ 0 for
any t, but we allow y(t) to be negative. In this paper we need not to enforce the
restriction (18) and (19), and the only constraint is x(t) ≥ 0.

The main result is the following theorem, which rules out the possibility of
inelastic collapse in our model.

Theorem 2.1. Starting from any initial condition, there are two possible outcomes
as t → ∞: either the lower point mass remains in contact with the floor, while
the upper one undergoes damped harmonic oscillations; or the lower point mass
experiences an unlimited number of instantaneous impacts with the floor, in which
case the times of flight (5) follow the asymptotic relation

τn ∼ 3

µ

1

n
.

Although in both cases our model is well defined for any positive time, the first
outcome is non-generic. In fact, we shall prove that

Theorem 2.2. The contacts of the lower point mass with the floor are always
instantaneous, that is x(tn) = 0 implies limt→t−n

ẋ(t) 6= 0, except for the solutions
generated by a set of initial conditions having zero Lebesgue measure. Furthermore,
this set is nowhere dense in the set of all possible initial conditions.

A by-product of the main theorem is the following

Theorem 2.3. Starting from any initial condition, the mechanical system described
in this section tends to the state of static equilibrium (16) as t→ ∞.

3. Anomalous Contacts

The design goal of the mechanical system described in section (2) was modelling
a prolonged contact between a ball and the floor with a sequence of instantaneous
impacts, where the lower point mass reaches the floor with a non-zero velocity.
However, there may be some anomalous contacts where this is not the case: their
properties need to be fully understood before proving the theorems stated in the
previous section, even if we will show that they arise only from a zero measure set
of initial conditions.

The first class of such contacts, that are often named grazings in the literature,
are instantaneous contacts where there is no exchange of momentum between the
lower point mass and the floor. A grazing event occurs when

(20) x(ts) = ẋ(ts) = 0, ẍ(ts) > 0

at some time ts. Applying the impact rule (6) we realize that the presence of the
floor is irrelevant during a grazing, because in an interval around ts the dynamics
would be the same with of without the floor. We note that a trajectory can not have
x(ts) = ẋ(ts) = 0, ẍ(ts) < 0, because that would violate the constraint x(t) ≥ 0 for
times close to ts.
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On the other hand, it is possible to have trajectories touching the floor with zero
velocity and acceleration, and this leads to the second class of anomalous contacts,
where the lower point mass maintains contact with the floor for a non-zero interval
of time. We will call this one a sticky event. The duration of a sticky event can
either be infinite, leading to the first of the two outcomes mentioned in Theorem
(2.1), or it may be finite, then the mechanical system resumes its ordinary dynamics
with instantaneous impacts.

A sticky event begins at a certain time ts if

(21) x(ts) = ẋ(ts) = ẍ(ts) = 0.

In such a case
...
x (ts) < 0. In fact,

...
x (ts) > 0 is inconsistent with the constraint

x(t) ≥ 0 for t approaching ts from below. Moreover, by differentiating twice the
first of (8) and using the second to eliminate y and its derivatives, one finds that
...
x (ts) = 0 implies x(4)(ts) = −γ, which also is inconsistent with the constraint.

In this situation the collision rule (6) does not change the state of the system
but, to avoid breaking the constraint x(t) ≥ 0, it is clear that a new element must
come into play, namely a non-instantaneous force exerted by the floor onto the
lower point mass.

Using the equations of motion (8) and their first derivatives, we find that condi-
tions (21) are equivalent to

(22) Xs = Ẋs = 0, Ys = 1 + 2γ − 2µẎs

where, for brevity, we define Xs = x(ts), Ys = y(ts), etc. Moreover,
...
x (ts) < 0

becomes Ẏs < 4γµ.
The sum of the (non-dimensional) forces exerted by the spring and by gravity

on the lower point mass is

(23) F =
1

2
y + µẏ − γ − 1

2
.

We observe that F (ts) = 0 and Ḟ (ts) =
...
x (ts) < 0. During a sticky event F is non-

positive and it is balanced by the reaction exerted by the floor. The lower point
mass maintains contact with the floor until the time td > ts where the following
conditions are satisfied

(24)

{

F (td) = 0

Ḟ (td) > 0
.

The second condition has to be a strict inequality because F (t) = Ḟ (t) = 0 easily

implies F̈ (t) = −γ, using (25) below, and this means that the force remains non-
positive around such a t. In the interval [ts, td] the motion of the upper point mass
obeys the equation

(25) ÿ + µẏ +
1

2
y = −γ +

1

2
.

The following lemma is pivotal in order to understand the properties of anoma-
lous contacts.

Lemma 3.1. Sticky and grazing events are impossible if the energy of the mechan-
ical system is less than

(26) Emin =
3 − 2µ2

2(1 + 2µ2)
γ2.

Proof. Using (14), (20) or (22), and defining z = Ys + 2γ − 1, we find that the
mechanical energy at the onset of a sticky event or a grazing is
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(27) E(ts) =
Ẏ 2
s

4
+
z2

8
− γ2

2
.

We further have the inequality

(28) z ≥ 4γ − 2µẎs

where the equality holds for sticky events and the strict inequality for grazings.
The energy (27) subject to the constraint (28) reaches its minimum for

(29) Ẏs =
4γµ

1 + 2µ2

and

z =
4γ

1 + 2µ2

where the energy assumes the value (26). For lower energies the conditions (20)
and (22) can not be satisfied, and this forbids the occurrence of an anomalous
contact. �

We observe that Emin > Em, the absolute minimum energy of the ball as defined
in (17), and the coincide only in the limit µ→ ∞. For all finite values of µ there is a
finite interval of energies corresponding to states that can not give rise to anomalous
contacts.

The next lemma bounds from below the duration of a sticky event.

Lemma 3.2. The duration td − ts of a sticky event can not be made arbitrarily
short.

Proof. Observe that F , defined by (23) in terms of the solution of (25), is a C∞

function in the interval [ts, td]. Let us say that, with a suitable choice of Ẏs, the
duration ζs = td− ts may be made arbitrarily small. Then ζs satisfies the equation

0 = F (td) = F (ts) + Ḟ (ts)ζs +
1

2
F̈ (ts)ζ

2
s +O(ζ3

s ).

Since F (ts) = 0 and ζs > 0, using (25) and its derivatives together with (22) in

order to express Ḟ (ts) and F̈ (ts) in terms of Ẏs, we get

2(Ẏs − 4γµ) = (2γ + Ẏsµ− 4γµ2)ζs +O(ζ2
s ).

Setting αs = 4γµ− Ẏs > 0 we write the above expression in the form

(30) 2αs + (2γ − µαs)ζs = O(ζ2
s ).

Then αs → 0 if ζs → 0 and both terms in the left hand side of (30) are positive,
which leads to the contradiction ζs = O(ζs)

2. �

Let us stress that an upper bound on the duration of a sticky event does not exist.
A heuristic argument to support this statement is the following: if we take an initial
condition where only y and ẏ are just slightly removed from the static equilibrium
(2.3), we expect the force F to be always negative, which means that the system
evolves forever according to (25). On the other hand, if we evolved backward in
time this initial condition, an increasing amount of energy would accumulate in the
spring, until the ball had to bounce above the floor. This means that there is a
family of states, not in contact with the floor, that give rise to a sticky events that
last forever. With tedious, but easy calculations, it is possible to verify that the
state (x, ẋ, y, ẏ) = (0, 0, 1 + 2γ − 2µẏ, ẏ) with ẏ = 4µγ − ǫ, is the onset of such an
infinitely long sticky event, for sufficiently small positive ǫ.

We can now prove the following
7



Theorem 3.3. Any initial condition generates a solution which contains at most
a finite number of sticky events.

Proof. Assume, by contradiction, that infinitely many sticky events occur at time
intervals [sn, tn]. Clearly tn < sn+1 and Lemma (3.2) guarantees that there is a
positive t̄ smaller than any tn − sn.

The energy dissipated during the nth-sticky event is

−µ
∫ tn

sn

ẏ2(s) ds.

If |Ẏsn
| ≥ δ > 0 for infinitely many n, using the boundedness of ÿ, one sees that

there exists 0 < t̂ ≤ t̄, independent of n, such that |ẏ(s)| ≥ δ/2 in the time interval
[sn, sn + t̂]. This implies that the system dissipates infinitely many times a fixed

amount of energy and contradicts Lemma (3.1). Then Ẏsn
→ 0.

We expand ẏ2 near sn as

ẏ2(sn + t) = Ẏ 2
sn
t+ Ẏsn

Ÿsn
t2 +

1

3

(

Ÿ 2
sn

+ Ẏsn

...
Y sn

)

t3 +O
(

t4
)

and we observe that (25) and (22) yield Ÿsn
= −2γ. Setting ǫn = Ẏsn

it follows
that there exists 0 < t̂ ≤ t̄ and independent of n such that

ẏ2(sn + t) ≥ at3 − Cǫnt

in [sn, sn + t̂], for suitable a, C > 0 (any a < 16/3γ2 works). Then the system
dissipates at least bt̂4 − Dǫnt̂

2, b = a/4, D = C/2, during the nth sticky event.
Since ǫn → 0, if n is big enough this quantity is bounded from below and, as
before, we are in contradiction with Lemma (3.1). �

Theorem 3.4. Any initial condition generates a solution which contains at most
a finite number of grazings.

The proof of this theorem is trivial, once the truth of (2.1) and (2.3) has been
proven. For coherence with the topic of this section, we give it here, rather than
at the end of section 5. Of course, this theorem is not used in the following two
sections.

Proof. The absence of inelastic collapse (section 4) forbids an infinite sequence of
grazings taking place in a finite time. By Theorem (2.3) the asymptotic state is the
static equilibrium (16) to which corresponds an energy smaller than the minimal
energy (26) needed for a graze. Then an infinite sequence of grazings in an infinite
time is also forbidden. �

4. Absence of Inelastic Collapse

4.1. Preliminary Considerations. In this section we prove that the idealized
ball described in section 2 does not experience infinite contacts with the floor in a
finite time. The proof focuses on true impacts, that is contacts such that Ẋn 6= 0,
so we must briefly discuss the case Ẋn = 0.

As we have already seen, this leads to anomalous contacts, either grazings or
sticky events. In the latter case, if the duration of the event is infinite, the problem
of inelastic collapse is avoided, because equation (25) holds forever. Otherwise, the
discussion of this section may be thought as taking place after the last sticky event,
thanks to Theorem (3.3) which allows only a finite number of such events.

Grazings, too, may not happen after an arbitrarily high number of contacts, but
at this stage there isn’t a simple and quick way to prove this statement. Instead,
for each of the cases considered below we will take care to show that Ẋn > 0 for n
large enough.
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4.2. Asymptotic relationships at collapse. In order to show that there is no
inelastic collapse, we assume, by contradiction, that t∞ is a finite positive number.
This assumption leads to explicit approximate expressions for the function y and its
derivative for t close to t∞. In turn, these expressions allow to deduce asymptotic
laws for Ẋn, Ẍn,

...
Xn, and τn which lead to contradictions.

From (15) we have that the mechanical energy of the system is a non-increasing
function of time, and, taking into account that it can never decrease below the
energy (17) of the static equilibrium (16) we conclude that the mechanical energy
has a finite limit. The existence of such a limit implies that the dynamical variables
ψ, ψ̇, ξ, ξ̇, appearing in the expression (14) for E, are bounded, and so are their
linear combinations x, y, ẋ, ẏ.

The equations of motion (8) guarantee that ẍ and ÿ are also bounded. In general,
iterated differentiations of (8) show there exist positive constants ck such that

(31)
∣

∣

∣x(k)(t)
∣

∣

∣ ,
∣

∣

∣y(k)(t)
∣

∣

∣ < ck

for every t ∈ ∪n(tn, tn+1).
By construction, the positions x and y of the point masses are continuous func-

tions of time. The collision rule (6) makes ẋ discontinuous at the impact times tn,
while the rule (7) states that ẏ is continuous. Then x ∈ C0[0, t∞) and y ∈ C1[0, t∞).

Furthermore, the limits Y∞ = limt→t∞ y(t) and Ẏ∞ = limt→t∞ ẏ(t) exist and are
finite, because y ∈ C1[0, t∞) and ÿ is bounded.

Now we prove that position and velocity of the lower point mass go to zero as
t→ t∞. Integrating the first equation in (13) and using (12) we find

(32) γτn = Ψ̇n − Ξ̇n+1

which may be rewritten as

(33) 2γτn + Ẏn+1 − Ẏn = Ẋn + Ẋn+1.

Because the l.h.s. tends to zero as n→ ∞, and Ẋn ≥ 0, then we have limn→∞ Ẋn =

0. But, considering thatX
(k)
n are bounded quantities, for t ∈ [tn, tn+1) we may write

x(t) = Ẋn(t− tn) +O(τ2
n)

and

ẋ(t) = Ẋn +O(τn).

Therefore we have:

(34) lim
t→t∞

ẋ(t) = lim
t→t∞

x(t) = 0.

Furthermore, recalling that ÿ is bounded, we have that Ẏn+1 − Ẏn = O(τn). Ob-

serving that Ẋn is never negative, from (33) follows

(35) Ẋn = O(τn).

Having assumed that
∑

n τn converges, we must conclude that
∑

n Ẋn converges as
well.

The expressions for X
(k)
n and Y

(k)
n , found by differentiating repeatedly the equa-

tions of motion (8), may all be written as continuous functions of Ẋn, Yn, Ẏn, which

have a limit. Then there also exist limn→∞X
(k)
n = X

(k)
∞ and limn→∞ Y

(k)
n = Y

(k)
∞ .

Higher derivatives of x and y are generally discontinuous in tn, but their jumps
are all amenable to the jumps of ẋ. To prove this fact we observe that the collision
rule (6) may be written as

(36) [ẋ(tn)] = 2Ẋn
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where [ẋ(tn)] = ẋ(t+n )− ẋ(t−n ) is the jump of the function ẋ around tn. Then, from
the first of equations (8), recalling that x ∈ C0[0, t∞) and y ∈ C1[0, t∞), it follows
that

[ẍ(tn)] = −2µẊn

and from ẍ+ ÿ = −2γ we have

[ÿ(tn)] = 2µẊn.

Analogously, differentiating equations (8) with respect to time, and using
...
x+

...
y = 0

we may evaluate the jumps of the third derivatives:

[
...
x (tn)] = −[

...
y (tn)] = (4µ2 − 1)Ẋn.

Iterating the procedure we find that there exists a sequence of real numbers c̄k such
that

(37) [x(k)(tn)] = −[y(k)(tn)] = c̄kẊn.

Next we observe that

Y (k)
∞ − Y (k)

n =

∞
∑

h=n

(

Y
(k)
h+1 − Y

(k)
h

)

=

∫ t∞

tn

y(k+1)(t) dt+

∞
∑

h=n+1

[y(k)(th)].

Using (31) and (37) we have

(38)
∣

∣

∣Y (k)
∞ − Y (k)

n

∣

∣

∣ ≤ ck+1Tn + c̄kVn

where we have defined the time left to collapse

(39) Tn = t∞ − tn

and the residual sum

(40) Vn =

∞
∑

h=n+1

Ẋh.

Taking tn ≤ t ≤ tn+1, from (31) and (38) evaluated at n+ 1, it follows

(41)
∣

∣

∣Y (k)
∞ − y(k)(t)

∣

∣

∣ ≤ ck+1(t∞ − t) + c̄kVn.

Observing that

Y (k)
∞ − y(k)(t) =

∫ t∞

t

y(k+1)(s)ds +
∞
∑

i=n+1

[y(k)(ti)]

and using (41) for k + 1 we have

Y (k)
∞ −y(k)(t) =

∫ t∞

t

(

Y (k+1)
∞ +O(t∞ − s)

)

ds+O(Vn) = Y (k+1)
∞ (t∞−t)+O

(

(t∞ − t)2
)

+O(Vn)

hence

(42) y(k)(t) = Y (k)
∞ + Y (k+1)

∞ (t− t∞) +O((t − t∞)2) +O(Vn).

Choosing k = 2, by repeated integration of (42), exploiting the continuity of y and
ẏ up to t∞, we obtain

(43) ẏ(t) = Ẏ∞ + Ÿ∞(t− t∞) +
1

2

...
Y∞(t− t∞)2 +O((t − t∞)3) +O((t∞ − t)Vn)

and

(44) y(t) = Y∞ + Ẏ∞(t− t∞) +
1

2
Ÿ∞(t− t∞)2+

+
1

6

...
Y∞(t− t∞)3 +O((t − t∞)4) +O((t∞ − t)2Vn)
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Using (43) and (44) in the first of equations (8) we find that the motion of the
lower point mass, under the assumption of inelastic collapse, would be described
by the following equation

(45) ẍ+ µẋ+
1

2
x = P −Q(t∞ − t) +R(t∞ − t)2 +O((t∞ − t)3) +O((t∞ − t)Vn)

where

P = −γ − 1

2
+
Y∞
2

+ µẎ∞,

Q =
Ẏ∞
2

+ µŸ∞,(46)

R =
Ÿ∞
4

+ µ

...
Y ∞

2
.

Because P, Q, R are numbers, the motion of the lower point mass is now decoupled
from that of the upper point mass, and equation (45) is closed. Furthermore, we
may evaluate the equations of motion (8) and their first two time derivatives as
t → t+n . Using (43), (44) and (42) for k = 2, 3 in order to eliminate y and its

derivatives, observing that Ẋn = O(Tn) because of (35), we find the following
asymptotic relationships

(47)







Ẍn = P − µẊn −QTn +RT 2
n +O(T 3

n) +O(TnVn)
...
Xn = Q− µP + (µQ− 2R)Tn +O(T 2

n) +O(Vn)

X
(4)
n = (µ2 − 1

2 )P − µQ+ 2R+O(Tn) +O(Vn)

.

4.3. Absence of Inelastic Collapse. In the interval between two consecutive
impacts, the motion of the point masses is described by smooth functions. Thereby,
there exist two numbers ζn and ηn, with tn < ζn, ηn < tn+1, such that the following
expressions hold for tn ≤ t ≤ tn+1

(48) x(tn+1) = Ẋnτn + Ẍn
τ2
n

2
+

...
x (ζn)

τ3
n

6

and

(49) ẋ(tn+1) = Ẋn + Ẍnτn +
...
x (ηn)

τ2
n

2
.

Since x(tn+1) = 0, from (48) we find

(50) Ẍnτn = −2Ẋn − ...
x (ζn)

τ2
n

3
.

Inserting this expression in (49) and applying the collision rule (9), we obtain the
following map for the speed of the rebounds

(51) Ẋn+1 = Ẋn − ∆nτ
2
n

where

(52) ∆n = (
...
x (ηn)/2 − ...

x (ζn)/3) .

With the help of the map (51), we shall examine the dynamics generated by
equation (45) separately for the three cases P 6= 0; P = 0, Q 6= 0; and P = 0,

Q = 0; that is Ẍ∞ 6= 0; Ẍ∞ = 0,
...
X∞ 6= 0; and Ẍ∞ = 0,

...
X∞ = 0. They

are exhaustive of all possible asymptotic behaviors of the ball because, from the
definitions (46), P = 0, Q = 0 implies R = −γ/2. We shall see that they all are in
contradiction with the hypothesis of inelastic collapse.
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4.3.1. The case Ẍ∞ 6= 0. Recalling that
...
x is a bounded function, and that limn→∞ τn =

0, (50) yields

(53) τn = O(Ẋn)

and also

Ẍ∞ = lim
n→∞

(

−2
Ẋn

τn
+O(τ2

n)

)

< 0.

This implies Ẋn > 0, Ẍn < 0 and τn ≃ Ẋn for large n. Then (51) gives

Ẋn+1 = Ẋn +O(Ẋ2
n).

From Lemma (9.3) follows that
∑

n Ẋn = +∞, then
∑

n τn diverges as well. Thus
the inelastic collapse can not occur in this case.

4.3.2. The case Ẍ∞ = 0 and
...
X∞ 6= 0. Equations (48) through (52), are still

valid because they do not depend on the asymptotic behavior of Ẍn and
...
Xn. In

particular, in the limit n→ ∞, since
...
x (ζn),

...
x (ηn) =

...
Xn +O(τn) in the definition

(52), we have ∆n → ...
X∞/6. If we assume

...
X∞ < 0, the map (51) does not allow

Ẋn → 0, which is inconsistent with (50) and τn → 0. Then
...
X∞ 6= 0 implies

...
Xn > 0

for large n. Furthermore, ∆n > 0, together with τn > 0 implies Ẋn > 0. In fact,
if Ẋn = 0 for some n, the map (51) would give Ẋn+1 < 0 which is in contradiction
with the constraint x(t) ≥ 0 imposed by the presence of the floor.

Using
...
Xn, τn, Ẋn > 0, from equation (50), we find that

Ẍn < 0

for all n large enough. Furthermore, the hypothesis Ẍ∞ = 0 implies

(54) lim
n→∞

Ẋn

τn
= 0.

Observing that Tn =
∑∞

h=n τn we also have

(55) lim
n→∞

Ẋn

Tn
= 0.

Using (51) and (39) we can write the following map for the pair (Ẋn, Tn):

(56)

{

Ẋn+1 = Ẋn − ∆nτ
2
n

Tn+1 = Tn − τn
.

In order to have an inelastic collapse we need to find at least one sequence of pairs
(Ẋn, Tn) → (0, 0) as n→ 0 which satisfies this this map and (55).

Having proved that Ẋn,
...
Xn > 0 and Ẍn < 0 for n large enough, recalling that

x(tn+1) = 0, the time of flight computed from (48) is

(57) τn =
3

2

|Ẍn|
...
x (ζn)

(

1 −
√

1 − 8

3

...
x (ζn)Ẋn

Ẍ2
n

)

.

With (56) and (57) we compute

(58)
Tn

Ẋn

Ẋn − Ẋn+1

Tn − Tn+1
= 4

∆n
∣

∣

∣
Ẍn

∣

∣

∣

Tn
(

1 +

√

1 − 8
3

...
x n(ζn)Ẋn

Ẍ2
n

)

From (47) and (55), recalling that P = Ẍ∞ = 0, we have Ẍn ∼ −QTn and
...
Xn ∼ Q,

that is ∆n ∼ Q/6. Using these asymptotic expressions in (58) we find

(59) lim sup
n→∞

Tn

Ẋn

Ẋn − Ẋn+1

Tn − Tn+1
≤ 2

3
12



which, in turn, implies

(60)
Ẋn+1

Tn+1
>
Ẋn

Tn
.

This is in contradiction with (55) .
To conclude the study of this case we observe that the second non-zero root of

(48), namely

(61) τ̄n =
3

2

|Ẍn|
...
x (ζ̄n)

(

1 +

√

1 − 8

3

...
x (ζ̄n)Ẋn

Ẍ2
n

)

can not be the time of flight for large n, because Ẍn ∼ −QTn and
...
Xn ∼ Q would

lead to the absurd τ̄n > Tn.

4.3.3. The case Ẍ∞ = 0 and
...
X∞ = 0. In this case we have P = 0, Q = 0 in (47)

so that Ẍn = o(Tn). Looking at (50) now we find

(62) Ẋn = o(τnTn)

which implies that the residual sum (40) is

(63) Vn = o(T 2
n).

From (46), with the help of the equations of motion (8) and their derivatives, we
have R = −γ/2. Using these relations back in (47) we find

(64)







Ẍn = − 1
2γT

2
n + o(T 2

n)
...
Xn = γTn +O(T 2

n)

X
(4)
n = −γ +O(Tn)

.

The first of these equalities show that Ẍn < 0 for large n. Then Ẋn > 0 for equally
large n. In fact, Ẋn = 0 and Ẍn < 0 imply x(t) < 0 for t close to tn, which is
incompatible with the floor constraint x(t) ≥ 0.

Evaluating x(tn+1) with a power series expansion around tn, we have

(65) Ẋn = −
(

Ẍn

2
τn +

...
Xn

6
τ2
n +

X
(4)
n

24
τ3
n

)

+O(τ4
n).

In the same way, a power series for ẋ(tn+1) together with the collision rule (9) gives

(66) Ẋn+1 = −Ẋn − Ẍnτn − 1

2

...
Xnτ

2
n − 1

6
X(4)
n τ3

n +O(τ4
n).

We use (65) in (66) in order to eliminate Ẋn and Ẋn+1, we substitute the higher
derivatives with the expressions (64), and we write τn = αnTn for some αn ∈ (0, 1).
After some algebra, this yields the following implicit map

(67) (1 − αn)
3 (

6αn+1 − 4α2
n+1 + α3

n+1

)

= 6αn − 8α2
n + 3α3

n + o(1)

where the term o(1) goes to zero as n → ∞. We prove in Lemma (9.4) that if the
sequence {αn} stays in (0, 1), then it converges to zero, that is τn = o(Tn). Of
course, αn > 1 for some n would lead to τn > Tn, which is an absurd.

Having proved that, for large n, it is Ẋn > 0, Ẍn < 0,
...
Xn > 0, it follows that

expressions (55) through (58) still hold in this case. Using (64) in (65) we find

Ẋn ∼ γ
4T

2
nτn. Then, recalling that

...
x (ζn) =

...
Xn +O(τn), we find

...
x (ζn)Ẋn

Ẍ2
n

∼ τn
Tn
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and we conclude that the square root in (58) approaches one for large n. Using
∆n ∼ ...

Xn/6 and (64) in (58), in this case gives

lim
n→∞

Tn

Ẋn

Ẋn − Ẋn+1

Tn − Tn+1
=

2

3
.

Thus we have again

Ẋn+1

Tn+1
>
Ẋn

Tn

which contradicts (55). Finally, we observe that, also in this case, (61) gives τ̄n >
Tn.

5. Asymptotic State

We now carry on to prove Theorem (2.3). If the asymptotic dynamics is sticky,
then equation (25) holds for all times greater than the last attachment time ts. It is
straightforward to verify that as t→ +∞ the system reaches the equilibrium (16) .

If the asymptotic dynamics is not sticky, then a rigorous proof is not trivial. A
useful information, more or less implicit in the calculations of the previous section,
is that

(68) Ẋn = O(τn−1).

To see that this equality holds, we remark that there exists a number ηn−1 ∈
(tn−1, tn) such that

−Ẋn = Ẋn−1 + ẍ(ηn−1)τn−1

which implies (68), since Ẋn is not negative for any n.
We split the proof in two lemmas, and a final theorem. Both lemmas, ideally,

are nothing more than a Lyapunov fixed point theorem, but they have to deal with
technicalities arising from the presence of the impacts.

Lemma 5.1. If the asymptotic dynamics is not sticky, then limt→∞ ξ̇(t) = 0.

Proof. We assume by contradiction that

(69) lim sup
t→∞

∣

∣

∣ξ̇(t)
∣

∣

∣ > 0.

If (69) holds, having excluded the presence of inelastic collapse, it is possible to
find a monotonically growing sequence of times sk → ∞, with sk+1 − sk > 2 and

lim supk→∞

∣

∣

∣ξ̇(sk)
∣

∣

∣ > 0. Because ξ and all its derivatives are bounded functions,

recalling that Ė(t) = −2µξ̇2 (see eq. 10) we see that there exist positive δ and C
such that

(70) Ė(sk) ≤ −δ
and

(71)
∣

∣

∣Ë(t)
∣

∣

∣ ≤ C

for all k and for all t ∈ ∪∞
n=0(tn, tn+1). We claim that there is a t̂ such that

∣

∣t̂− sk
∣

∣ ≥ δ/(16C) and Ė(t) ≤ −δ/2 for any t that is not a time of impact in

the interval having t̂ and sk as extremes. Let tn, tn+1 be the times of consecutive
impacts that bracket sk: to prove the claim we have to consider two different cases:

1. If tn+1 − tn ≥ δ/(8C), then there exists t̂ ∈ [tn, tn+1] such that

(72)
∣

∣t̂− sk
∣

∣ =
δ

16C
.
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From (71), for any t between t̂ and sk we have

Ė(t) − Ė(sk)

t− sk
= Ë(ζ) ≤ C

for some ζ between t and sk. Observing that |t− sk| ≤ δ/(16C), from (70) we get

Ė(t) ≤ Ė(sk) +
δ

16
< − δ

2

2. If

(73) tn+1 − tn <
δ

8C

then let m be the integer such that

(74)

{

tn+m+1 − tn > δ/(4C)
tn+m − tn ≤ δ/(4C)

.

There exists t̂ ∈ [tn+m, tn+m+1] such that

(75) t̂− tn =
δ

4C
.

Recalling that tn ≤ sk ≤ tn+1 then

t̂− sk ≥ t̂− tn+1 = (t̂− tn) − (tn+1 − tn)

and from (73) and (74) we get

(76) t̂− sk >
δ

8C

From (10) we have ξ̇2 =
(

ẋ2 − 2ẋẏ + ẏ2
)

/4 and from (36) follows that the jump of

ξ̇2 across an impact is

(77) [ξ̇2(tn)] = −Ẋnẏ(tn).

Recalling that Ė(t) = −2µξ̇2 and that Ẋn = O(τn−1), we have can choose the
constant C in (71) in such a way that

(78) [Ė(tn)] ≤ Cτn−1

for all n. Moreover, for t ∈ [sk, t̂] such that tn+s < t < tn+s+1 for some s ≤ m,

(79) Ė(t) − Ė(sk) =
(

Ė(t) − Ė(t+n+s)
)

+
(

Ė(t−n+s) − Ė(t+n+s−1)
)

+ · · ·

· · · +
(

Ė(t−n+1) − Ė(sk)
)

+

s
∑

i=1

[Ė(tn+i)].

Using (71) and (78) we obtain

Ė(t) − Ė(sk) ≤ C (t− sk) + C (tn+m − tn) ≤ 2C
(

t̂− tn
)

=
δ

2

and, from (70)

Ė(t) < − δ
2
.

The claim is proved, and for any k there exists an interval not shorter than
δ/(16C) having sk as an extremum. During each of those intervals the power
dissipated is at least −δ/2, which gives an infinite dissipation of the mechanical
energy, in contradiction with the fact that E(t) has a lower bound. Then (69) is

false, and we must conclude that limt→∞ ξ̇(t) = 0. �

Lemma 5.2. If the asymptotic dynamics is not sticky, then limt→∞ ξ(t) = −γ.
15



Proof. The proof is identical to that of the previous lemma, except that, in place
of the mechanical energy, we use an ad hoc Lyapunov function L defined as

L(t) =
1

2
[(ξ̇ + 2µ(ξ + γ))2 + (ψ̇ + 2µ(ξ + γ))2 + ξ2] + γψ.

Because ψ, ξ and all their derivatives are bounded, L and all its derivatives are
bounded as well. We observe that L is a continuous function of time, even across
the times of impact. Furthermore we find

(80) L̇(t) = −2µ(ξ(t) + γ)2 +O(ξ̇).

We assume by contradiction that lim supt→∞ |ξ(t) + γ| > 0. Proceeding as in the

previous lemma, and exploiting the fact that limt→0 ξ̇(t) = 0 makes (80) negative if
|ξ(t) − γ| is bounded from below from zero, we conclude that limt→∞ L(t) = −∞,
which contradicts the boundedness of L. Therefore limt→∞ (ξ(t) + γ) = 0. �

5.1. Proof of Theorem (2.3). From the collision condition (11) and lemma (5.2)
it follows

lim
n→∞

ψ(tn) = −γ.
From the collision rule (12) and lemma (5.1) it follows

lim
n→∞

Ψ̇n = 0

and from (14) we deduce that limn→∞ E(t+n ) = −γ/2. Since the energy is a contin-
uous, decreasing function, then

lim
t→∞

E(t) = −γ
2
.

The only state with this energy is the state of static equilibrium (16).

5.2. Proof of the Main Theorem (2.1).

Proof. Theorem (2.3), together with (32), yields

(81) lim
n→∞

τn = 0

By Theorem (2.3) we have also

lim
t→∞

y(t) = 1 − 2γ, lim
t→∞

x(t) = lim
t→∞

ẋ(t) = lim
t→∞

ẏ(t) = 0

From the equations of motion (6) and their derivatives we can easily compute

lim
n→∞

..

Xn= −2γ , lim
n→∞

...

Xn= 2µγ

We follow here the steps of section 4.3 in order to write a map for Ẋn. From (48)
we get τn as in (57) (the other non-zero root of (48) would contradict (81)). We

note that for ζn ∈ (tn, tn+1),
...
x (ζn) =

...

Xn +O(τn), so

(82) lim
n→∞

...
x (ζn) = 2µγ

Using (49) and (50) we can write

(83) Ẋn+1 = Ẋn − ∆nτ
2
n

with ∆n defined in (52). From (82) we have

(84) lim
n→∞

∆n =
µγ

3

Then, expanding the square-root in (57), from (83) we get the map

(85) Ẋn+1 = Ẋn − αn Ẋ
2
n +O(Ẋ3

n)
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with αn = 4 ∆n/
..

X2
n. Since limn→∞ αn = µ/(3γ) we can rewrite (85) as

(86) Ẋn+1 =

(

1 − µ

3 γ
Ẋn

)

Ẋn + o(Ẋ2
n)

Applying Lemma (9.1) to (86) we get

Ẋn ∼ 3γ

µ

1

n
.

Dividing both sides of (50) by τn we get

Ẋn

τn
= −

..

Xn

2
+

...
x (ζn)τn

then

lim
n→∞

Ẋn

τn
= γ

which proves the thesis. �

6. Non-Genericity of Zero-Velocity Contacts

In this section we give a proof of Theorem (2.2). The state of our idealized ball
is a vector u ∈ R

4. Without loss of generality, we may assume that the first two
components of u are the position and the velocity of the lower point mass. We
define the hyperplane C of contact configurations as

(87) C =
{

u ∈ R
4 |u · e1 = 0

}

and the plane S of contact configurations with zero velocity

(88) S = {u ∈ C |u · e2 = 0} .
We observe that the vector field χ that defines the equations of motion (8), on

the hyperplane C is

χ(0, ẋ, y, ẏ) =









ẋ
−µẋ− γ − 1

2 + 1
2y + µẏ

ẏ
−µẏ − 1

2y − γ + 1
2 + µẋ









.

It follows that χ(u) is transverse to C if and only if the second component of u is
non zero. That is, χ is transverse to C everywhere but in S.

To prove that the set of initial conditions generating orbits that reach S in a
finite time has zero measure, we need to define the backward return map of the
flow on C. This requires some care because the points of S are contiguous to points
that cannot be reached by the dynamics.

The time evolution of state vectors in the interval (tn, tn+1) is determined by
the flow ϕ : R×R

4 → R
4 of the equations of motion (8). We may define an inverse

time-of-flight function implicitly as the largest negative number τ−such that

(89) ϕ(τ−,u) · e1 = 0

for any u ∈ C−, where C− is the subset of vectors of C with ẋ ≤ 0. Some care is
needed in order to define τ− for the states belonging to S. We observe that if ẋ = 0
and ẍ > 0 we have a grazing event, and definition (89) is applicable. If ẍ = 0 then
we need to evaluate the force (23) exherted by the ball on the floor: if F (u) = 0

and Ḟ (u) < 0 then the state u is the beginning of a sticky event, and definition
(89) is again applicable; for all other states on S a sticky event has already begun,
and we define τ− = 0.

We observe that the backward-in-time evolution of a sticky state does not leave S
as long as τ− = 0. On the other hand, any state with τ− 6= 0 leaves C following the
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u −1 u0 0ϕ(τ  ,     )

u −1u −1 u −2

u −2 u −1

. .

S

xx=0

R

=

C
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= −1 R

Figure 2. In proximity of a non-sticky state u0 that evolves back-
ward in time into a state u−1 /∈ S, a subset of S (the thick segment)
is mapped into a subset of C of zero measure (the thick wiggly line).
Furthermore, if u−1 evolves backward into u−2 /∈ S then T − is a
diffeomorphism between a neighborhood of u−1 and a neighbor-
hood of u−2.

flow ϕ backward in time. Then, for these states we introduce the transformation
T − : C+ → C+ defined as

(90) T −(u) = ϕ(τ−, Ru)

where R is the reflection matrix that changes sign to the second component of u.
A sketch of this process is given in figure 2.

Let us assume that a given pair (τ−0 ,u0) satisfies (89) with τ−0 6= 0. If ϕ(τ−0 ,u0) /∈
S, then

0 6= ∂

∂τ−
(

ϕ(τ−,u) · e1

)

∣

∣

∣

∣

τ−

0
,u0

= χ
(

ϕ(τ−0 ,u0)
)

· e1

and the implicit function theorem yields a smooth mapping τ− in an open neigh-
borhood of (τ−0 ,u0). However this map need not coincide with our inverse time of
flight in the whole neighborhood, since it depends on the free flow ϕ which does
not take into account the presence of the floor. To overcome the problem, we ar-
gue as follows. If u0 ∈ S we may not apply the transformation (90) to an entire
open neighborhood of u0 in C, because that neighborhood would necessarily contain
points of C−, where (90) is not defined. Then, if u0 is a grazing, we consider a small
open neighborhood U ⊂ S of u0 in S containing only grazing states and satisfying
T −(U)∩S = ∅. Since Ru = u if u ∈ S, we deduce that the restriction of T − on U is
as smooth as ϕ. If u0 is the beginning of a sticky event, then we can not consider an
open neighborhood of u0 in S because it would contain states having τ− = 0, and
for those the transformation (90) is not defined. Then we consider open intervals

Ũ along the straight line defined by ẋ = 0, F = 0. If Ũ is small enough, then it
does not contain states for which Ḟ ≥ 0 and moreover T −(Ũ) ∩ S = ∅. Then the

restriction of T − on Ũ is as smooth as ϕ.
The union of all the above sets U , Ũ is

S̄ =
{

u ∈ S
∣

∣T −(u) is defined andT −(u) /∈ S
}

.

The set S̄ is contained in a two-dimensional plane and has zero measure in C+, which
is three-dimensional, and the previous discussion proves that T − is as smooth as ϕ
on S̄. Then the image of S̄ in C+ through T −, namely T −(S̄), is also a set of zero
measure in C+, see e.g. [14, Chapter 2, Proposition 1.6]. By analogy, for n ≥ 2, we
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define
S̄n =

{

u ∈ T −(S̄n−1)
∣

∣T −(u) /∈ S
}

and we set S̄1 = S̄, S̄0 = S. As before, T − is smooth on S̄n and then, by induction,
S̄n+1 ⊂ T −(S̄n) has zero measure in C+ for every n. By the sigma-additivity of
the Lebesgue measure, it follows that

Σ = ∪∞
n=0S̄n

has zero measure, too.
The bouncing ball starting from an initial condition u ∈ R

4, with u ·e1 > 0, will
experience a grazing or a sticky event if its first contact state ϕ(τ(u),u) satisfies

ϕ(τ(u),u) ∈ Σ.

So, the set A of anomalous initial conditions that reach S after a finite number of
contacts is contained in

∪t≤0ϕ(t,Σ) = ϕ ((−∞, 0] × Σ)

which has zero measure in R
4, by the smoothness of ϕ with respect to all its

variables.
We now prove that A is nowhere dense in R

4, i.e. we show that around each
non-anomalous point there is a neighborhood that does not intersect A.

Let us assume that u /∈ A . Let us call u(t) the state of the system at the
time t, starting from the initial condition u. From Theorem (2.3) it follows that
there exists N such that at the time tN of the Nth contact E(u(tN )) < Emin,
where Emin < Em is the minimal energy required to have an anomalous contact
(see Lemma (3.1)). Since the mechanical energy is a continous function of the
state of the system, there is a neighborhood V of u(tN ) such that V ∩ S = ∅ and
E(v) < Emin if v ∈ V . Furthermore, V may be taken small enough to ensure that
T −n(V)∩S = ∅ for n = 1, · · · , N . Finally, we observe that any neighborhood U of
u such that ϕ(τ(U),U) ⊂ T −N (V) does not intersect A.

7. Numerical Results

7.1. On the Nature of the Restitution Coefficient. The dynamics of the
mechanical system described in section (2) may be easily simulated on a digital
computer, finding the instants of impact of the lower point mass with the floor
with an accuracy as high as the machine precision.

If the mechanical system is left free to fall with its internal degree of freedom
not excited (that is with initial conditions ξ(0) = ξ̇(0) = 0, ψ(0) > 0, and arbitrary

ψ̇(0)) the resulting dynamics may, initially, approximate that of the rigid ball model
with constant restitution coefficient (eq. (1)), provided that the spring is weakly
dissipative and sufficiently rigid, and that the energy of the initial condition is
sufficiently high. An example is illustrated in figure (3), where the mechanical
system is left free to fall from an height of six non-dimensional units.

This fact is explained by observing that, upon an impact, the vibrational and
translational velocities exchange with each other (eq. (12)), so the center of mass
of the ball has zero velocity just after the impact. In this situation we recognize
three characteristic times

(91) Tψ =

√

1

2γ
, Tξ =

π
√

1 − µ2
, Td =

1

µ
.

Tψ is the free-fall time of the center of mass, Tξ is half the proper period of the
spring, and Td is the e-folding time associated with energy dissipation from the
spring. If Tψ is much larger than Tξ then the center of mass does not have enough
time to gain any appreciable speed before the expanding spring causes a second
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Figure 3. Numerical simulation with initial conditions ξ(0) =

ξ̇(0) = ψ̇(0) = 0, ψ(0) = 6, and γ = µ = 0.01. The upper curve
is y(t), the lower curve is x(t). The solid dots show the instants
when there is an impact. The inset magnifies the region within the
dashed rectangle.

impact, which exchanges vibrational and translational velocities again. After this
second impact the mechanical system is again propelled upward, with a very small
vibrational energy left in the spring. At this point, if the kinetic energy of the
center of mass is high enough to cause a time of flight to be of the order of Td or
larger, then any residual vibrational energy will be dissipated to negligible levels
during the flight, and the mechanical system will present itself to a third impact
with the spring essential at rest, causing the double-impact dynamics described
here to repeat itself.

In the limit γ → 0 the residual vibrational energy tends to zero, and all dissi-
pation happens during the double impact. Then it is appropriate to introduce the
restitution coefficient

(92) r = Ψ̇n/Ψ̇n+2

where Ψ̇n and Ψ̇n+2 are, respectively, the velocity of the center of mass before and
after one of these double-impact events. It can be shown (see [15] for details) that
it is

(93) r = e−µTξ .

If we take our mechanical system as model of a bouncing ball, we are lead to
say that during a double-impact event the ball is in contact with the floor: it takes
this finite amount of time for the center of mass of the ball to exchange momentum
with the floor and revert upward its velocity. Only flights longer than Tξ are to be
taken as macroscopic flights. In the regime discussed here, our model may be seen
as a version of the rigid ball model of eq. (1) in which the contacts have a finite,
rather than infinitesimal, duration.
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When, after a number of double-impact events, the time of flight becomes shorter
than the characteristic dissipation time Td, subsequent impacts will be able to store
a significant amount of energy into the vibrational mode, subtracting it from the
energy of the center of mass. This can be seen clearly in figure (3) where there is
a sudden drop of the maximum height reached by the mechanical system between
the fourth and the sixth macroscopic flight, and, at the same time, the trajectories
of the two point masses become rather complicated and far from parabolic.

It is interesting a comparison between experiments in which a spherical bead
is free to bounce repeatedly upon a rigid surface until it comes to rest, and our
numerical simulations. Because the velocities of the center of mass of a bead are
difficult to measure, it is customary in this kind of experiment to measure the time
of flight, which is more accessible to the observer. In the experiments reported in
[13] the coefficient of restitution is expressed as

(94) rn =
fn+1

fn

where fn is the time of flight of the bead, (which does not include the time of
contact of the bead with the rigid surface). If the rigid ball model of eq. (1) is
valid, then (94) is equivalent to the standard definition of restitution coefficient as
ratio of velocities before and after the impact. If the bead is not rigid, then (94)
must be taken as an alternate definition of restitution coefficient. In our numerical
simulations, taking into account the interpretation of double-impacts as contact
time with the floor, it is natural to define

(95) fn = τ2n.

To simulate the very rigid tungsten carbide bead used in [13] we set γ = 10−5, while
µ = 0.01 leads, according to the approximation (93), to the restitution coefficient
r = 0.969 · · · , which is about the same as what is measured in [13] for relatively
high-velocity impacts. The simulated mechanical system, as the experimental bead,
is left free-falling from a height equal to one quarter of its length. The restitution
coefficient computed from the simulation, according to the definition (94), is shown
in figure (4). Initially the value of r is constant, and it is in excellent agreement with
(93). Then r declines, and finally it begins to fluctuate without a clear pattern. At
even later times (not pictured in figure) the double-impact dynamics is completely
disrupted, as in the case of figure (3), and the definition (95) ceases to be meaningful.
This kind of behavior is qualitatively the same as that of the bead observed in [13]
(see their figure (7)). In their case, after fluctuations in the value of r of the
same order of magnitude as those of figure (4), the bead is observed to vibrate
while maintaining contact with the floor. We stress that the behavior of figure
(4) remains qualitatively the same for any choice of parameters corresponding to
slightly damped, very rigid springs.

A different way to look at the same dynamics is pictured in figure (5) where we
show the sequence of states belonging to the set C of contact configurations (87)
for the same simulation that generated figure (4). Initially, the dynamics is clearly
dominated by double-impacts, whose signature is the alternation of negative and
positive values of ẏ, which gives a characteristic zig-zag look at the early part of the
sequence. At later times the sequence of states becomes very disordered, and lacks
any easily recognizable pattern, except a tendency to move towards the equilibrium
point. Figure (6) is a magnification of figure (5) close to the equilibrium point.
At these even later stages, the dynamics is well approximated by the map (85).
The length of the spring and the velocity of the upper point mass are both subject
to damped oscillations around the equilibrium position, and this gives a spiraling
appearance to the sequence of states.
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Figure 4. Restitution coefficient computed using the definition
(94) from a simulation with γ = 10−5, µ = 10−2, and initial con-

ditions ξ(0) = ξ̇(0) = ψ̇(0) = 0, ψ(0) = 0.25.

Figure 5. The dots represent the state of the system immediately
after a contact with the floor (that is, x = 0) for the simulation
of figure (4). The equilibrium position of the upper point mass
is yeq = 1 − 2γ. The thin lines have the sole purpose of making
evident the temporal sequence of states.
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Figure 6. Magnification of the figure (5), close to (0, 0, 0).

Figure 7. Same as figure (5), but with µ = 2.

The reader may have noticed that the asymptotics of Theorem (2.1) are indepen-
dent of the particular value of the damping parameter µ. In particular, the results
of the theorem apply equally to under-damped and over-damped oscillations. In
figures (7) and (8) we show a simulation that uses γ = 10−5, µ = 2 and the same ini-
tial conditions as the simulation of figure (5). The length of the overdamped spring
shrinks for the first few impacts, then slowly expands, approaching the equilibrium
value monotonically from below. The system enters immediately the asymptotic
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Figure 8. Magnification of figure (7), close to (0, 0, 0).

regime, and the is no disordered transient. From a macroscopic point of view, the
idealized ball may be taken as performing a single, totally inelastic impact with the
floor.

7.2. Sticky Solutions. We have performed several numerical simulations using
the following initial conditions

(96)















X0 = 0

Ẋ0 = ǫ

Y0 = 1 + 2γ − 2µẎ0

Ẏ0 = −0.1

.

For ǫ = 0 they obey the conditions (22), leading to a sticky event which lasts for
tc = 5.23 · · · non-dimensional time units. In figure (9) some sample trajectories
are shown. It appears that, as ǫ decreases, the solutions tend to the solution with
ǫ = 0. To quantify the convergence, we have computed the norm

(97) ‖yǫ − ys‖ =

√

1

tc

∫ tc

0

(yǫ(t) − ys(t))2dt

where yǫ and ys are, respectively, the position of the upper point mass with ǫ 6= 0,
and with ǫ = 0. The results are shown in figure (10). The root-mean-squared
difference (97) falls to zero faster than linearly with ǫ.

The numerical evidence supports the idea that the dynamics during a sticky event
may be approximated up to any degree of accuracy by a non-sticky dynamics.

8. Discussion and Conclusions

Our simple model shows that taking into account explicitly the deformability
of a bouncing body avoids the pathology of the inelastic collapse. Of course this
comes at a price: our description of the bouncing ball, in spite of its simplicity, is
considerably more complicated than a restitution-coefficient based model. This is
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Figure 9. Simulations using the initial conditions (96) for three
different values of ǫ. Solid dots mark the times of impact. In the
panel ǫ = 0, in the interval between the first two solid dots, the
lower point mass is in contact with the floor.
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Figure 10. Number of impacts performed by the lower point mass
in the interval (0, tc) and root mean squared difference (97) as
function of ǫ.

affordable for one, or maybe a few, particles, but it is unbearable for systems with
a very large number of bodies, even resorting to numerical simulation.

One may be tempted to overcome this difficulty by returning to a description
based upon a restitution coefficient of the form

(98) r(u) =







exp

(

− µπ√
1−µ2

)

, u > uc

1 − µ
3γu, u ≤ uc

where uc = 3γµ−1
(

1 − exp(−µπ/
√

1 − µ2)
)

. This is obtained by stitching the

expression (93), which is valid for times of flight larger than the characteristic
damping time of internal vibrations, and the coefficient in expression (86), which is
the map that approximates the asymptotic vibrations of a ball close to equilibrium.

Although (98) is very accurate for large and for small values of u, a glance at the
figures of section 7 shows that (for underdamped springs) there is an intermediate
range of impact speeds where (98) simply fails. When the internal vibrational
mode is excited, but the times of flight are not yet infinitesimal, the dynamics is
too irregular to be parameterized with a velocity-dependent restitution coefficient.

We may hint that a satisfactory parameterization will need some form of book-
keeping of the energy stored in the internal vibrations, and some rule to determine
the exchanges between that and the energy of the center of mass. At this stage,
we are unable to suggest anything more specific than these vague considerations.
In particular, it is not at all clear if accounting for internal vibrations will help
the ongoing search for some sort of hydrodynamic limit for systems with a large
number of dissipative particles.

We remark that the behavior of the bouncing ball, close to equilibrium, does not
depend crucially on the linearity of the spring. A nonlinear variant of the model

26



described in section (2) is embodied by the equations

(99)

{

ψ̈ = −γ
ξ̈ = −ρξ |ξ|a − 2µξ̇ |ξ|b

with ρ, µ > 0, a, b ≥ 0. The impact times tn are determined by condition (11),
where the collision rule (12) must be applied. The constraint ψ(t) > ξ(t) holds
at all times. We recover the linear model for a = b = 0. It has been argued, on
the basis of Hertz’s contact law, that the correct choice for modeling homogeneous
spheres is a = b = 1/2, and that the restitution coefficient (3) may be justified, for
vanishing speeds of impact, by computing the energy dissipated by (99) in a single
compression-expansion cycle (see [3] chap. 3 and references therein). Although
some of the claims in the literature appear to be questionable in their generality,
because the vector field defining (99) is non-Lipschitz for ξ = 0 and 0 < b < 1, the
problem is well-posed close to the position of static equilibrium, which is

(100) ψ = ψ̇ = ξ̇ = 0, ξ = −
(

γ

ρ

)
1

a+1

.

That corresponds to the minimum of the energy

(101) E =
ψ̇2

2
+
ξ̇2

2
+

ρ

a+ 2
|ξ|a+2

+ γψ

which is a non-increasing function of time:

dE

dt
= −µξ̇2 |ξ|b .

If we take a contact configuration (0, Ẋ0, Y0, Ẏ0) close enough to the static equilib-
rium (100) the system remains close to the minimum of the energy at all later times.

As a consequence, we are guaranteed that Ẍn and
...
Xn are in a neighborhood of

−2γ and 2µγ(γ/ρ)b/(a+1), respectively. Then we follow the steps (48) through (51),
using (57) as the time of flight, and we find that the asymptotic dynamics follows
the map (85) with αn → µ(3γ)−1(γ/ρ)b/(a+1) for n→ ∞. Then we conclude that a
sequence of repeated impacts, because of the deformability of the body, follows the
same asymptotic law as the linear case. As a consequence, the restitution coefficient
(3) may be accurate only in the case of well-separated impacts, that is, when the
time of flight between consecutive impacts is large enough to allow for dissipation
of internal vibrations.

9. Appendix

Lemma 9.1. Given the map

xn+1 = xn − αnx
2
n + o(x2

n)

with 0 < x0 ≪ 1 and limn→∞ αn = α > 0, then

lim
n→∞

xn = 0 and lim
n→∞

nxn =
1

α
.

Proof. Since (αn − α)x2
n = o(x2

n), we may write

(102) xn+1 = xn − αx2
n + o(x2

n).

For small x0, the sequence generated by (102) is positive, decreasing and limn→∞ xn =
0. For a given ǫ, let us take N such that for any n > N

(103) 1 − (a+ ǫ)xn ≤ xn+1

xn
≤ 1 − (a− ǫ)xn
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We may assume xN < 1/(α − ǫ) , then xN+k < 1/(α − ǫ); we prove that xN+k ≤
1/k(α − ǫ) implies xN+k+1 ≤ 1/(k + 1)(α − ǫ) and apply induction. Multiplying
the right inequality in (103) by 1 + (a− ǫ)xn, we have

xn+1

xn
(1 + (a− ǫ)xn) ≤ 1

Then

xN+k+1 ≤ xN+k

1 + (a− ǫ)xN+k

where x/1 + (a− ǫ)x is an increasing function of x and xN+k ≤ 1/k(α− ǫ), then

xN+k+1 ≤
1

k(α−ǫ)

1 + (a− ǫ) 1
k(α−ǫ)

=
1

(k + 1)(α− ǫ)
.

By induction

xn ≤ 1

(n−N)(α − ǫ)
∀n > N

then

lim sup
n→∞

nxn ≤ 1

α− ǫ
∀ε > 0

i.e.

lim sup
n→∞

nxn ≤ 1

α
.

By a similar argument we get

lim inf
n→∞

nxn ≥ 1

α

which proves the proposition. �

Remark 9.2. It follows that for a map xn+1 = xn − αxβn + o(xβn) , with β > 1,

(104) lim
n→∞

xn = 0 and lim
n→∞

n
1

β−1xn > 0.

This can be seen by using the transformation zn = xβ−1
n . We have

zn+1

zn
=
(

1 − αxβ−1
n + o(xβ−1

n )
)β−1

= 1 − α(β − 1)xβ−1
n + o(xβ−1

n )

We then apply Lemma 9.1 to

zn+1 = zn − α(β − 1)z2
n + o(z2

n)

which gives (104).

Lemma 9.3. If xn > 0 and xn+1 = xn +O(x2
n) then

∑

n xn = +∞.

Proof. We have xn+1 ≥ xn − cx2
n for a suitable c > 0. Hence, if we define

{

zn+1 = zn − cz2
n

z0 = x0

we have xn ≥ zn for all n ≥ 0. Applying Lemma (9.1) to this map, the thesis
follows. �

Lemma 9.4. If there exists a sequence {αn}n∈N
with αn ∈ (0, 1) that satisfies (67),

then limn→∞ αn = 0.
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Proof. Let us define the functions f and g as

(105) f(x) = 6x− 4x2 + x3,

(106) g(x) =
6x− 8x2 + 3x3

(1 − x)
3 .

The map (67) is then written as

(107) f(αn+1) = g(αn) + bn,

with bn → 0. Since f is bounded in [0, 1] and g tends to ∞ as x → 1, it is easy to
see that there exists δ > 0 such that αn ≤ 1− δ. We observe, that f ′(x) > 0. With
some algebra, we also find, for x ∈ [0, 1),

(108) f(x) − g(x) ≤ − x2

(1 − x)3
.

In particular, the map (67) has no fixed point in (0, 1). Let us assume that {αn}
does not converge to zero. This means αn ≥ ǫ for infinitely many values of n and
some ǫ > 0. Inequality (108) implies that g(x) − f(x) ≤ −ǫ2 for x ≥ ǫ. Let us fix
m such that |bn| ≤ ǫ2/2 for n ≥ m and take any αn ≥ ǫ with n ≥ m. Then the
inequality αn+1 ≤ αn would give, since f is increasing,

bn = f(αn+1) − g(αn) ≤ f(αn) − g(αn) ≤ −ǫ2

which contradicts the choice of bn. Therefore αn+1 > αn ≥ ǫ and, iterating this
argument, the sequence α is eventually increasing and convergent to a number
0 < α < 1 satisfying f(α) = g(α). Since this contradicts (108), the proof is
complete. �
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