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Abstract

We discuss recent results on the inviscid limits for the randomly
forced 2D Navier-Stokes equation under periodic boundary conditions,
their relevance for the theory of stationary space periodic 2D turbu-
lence and some related conjectures.

0 Introduction

The stationary space-periodic 2D turbulence1 is described by the small-
viscosity 2D Navier-Stokes equation (NSE) under periodic boundary con-
ditions, perturbed by a stationary random force:

v′τ − ε∆v + (v · ∇)v +∇p̃ = εa η̃(τ, x), x ∈ T2 = R2/(2πZ2),

div v = 0, v = v(τ, x) ∈ R2, p̃ = p̃(τ, x);

∫
v dx ≡

∫
η̃ dx ≡ 0.

(0.1)

Here 0 < ε ¿ 1 and the scaling exponent a is a real number (e.g., a = 0). In
this work we assume that the force η̃ is a divergence-free Gaussian random
field, white in time and smooth in x. The case a ≥ 3

2
corresponds to non-

interesting equations with small solutions (see [Kuk06a], Section 10.3), so we
assume that a < 3

2
. Under the mild nondegeneracy assumption on the force

the Markov process which the equation defines in the function space H,

H = {u(x) ∈ L2(T2;R2) | div u = 0,

∫

T2

u dx = 0} ,

1or, at least, a natural and important type of such turbulence
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has a unique stationary measure µε which describes asymptotic in time statis-
tical properties of solutions for (0.1); see below. The limit ε → 0 corresponds
to the transition to turbulence (cf. (1.7) below), and the limiting properties
of the measure µε describe the 2D turbulence. The substitution

v = εbu , τ = ε−bt , ν = ε3/2−a ,

where b = a− 1/2, reduces eq. (0.1) to

u̇− ν∆u + (u · ∇)u +∇p =
√

ν η(t, x), div u = 0, (0.2)

where u = u(t, x), u̇ = u′t and η(t) = εb/2η̃(ε−bt) is a new random field,
distributed as η̃ (see [Kuk06a]).

Comparing to other equations (0.1), eq. (0.2) has the special advantage:
when ν → 0 along a subsequence {νj}, its stationary solution uνj

(t) converges
in distribution to a stationary process U(t) ∈ H, formed by solutions of the
Euler equation

u̇ + (u · ∇)u +∇p = 0 , div u = 0 . (0.3)

Accordingly, µνj
⇀ µ0, where µ0 = DU(0) is an invariant measure for (0.3)

(see below Theorem 1.1). The solutions U ,2 called the Eulerian limits, absorb
limiting properties of the stationary solutions for (0.2) and – after re-scaling
– limiting properties of stationary solutions of (0.1). So the Eulerian limits
U(t, x) and the limiting measures µ0 describe the space-periodic 2D turbu-
lence.

In this works we review recent results concerning properties of the Eule-
rian limits. Namely, in Section 2 we discuss disintegration of the measure µ0

with respect to the sets, obtained by fixing values of all integrals of motion
of the Euler equation (0.3), and the explicit algebraical relations, satisfied
by stationary solutions of (0.2) uniformly in ν > 0. In Section 3 we study
distribution of the energy 1

2

∫ |U(t, x)|2dx of the Eulerian limit and of vari-
ous functionals

∫
f(rot U(t, x)) dx (corresponding to integrals of motion for

eq. (0.3)). In Section 4 we consider the damped/driven KdV equation as a
possible model for the 2D NSE. The inviscid limit for that equation was stud-
ied in [KP06] and is now understood much better than the Eulerian limit.
We discuss the results of [KP06] and conjecture corresponding properties of
the 2D NSE and the Eulerian limit.

2we use here plural since we do not know if U and µ0 are unique, i.e. if they depend
or not on the sequence νj → 0.
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All results in this work use essentially the extra integrals of motion of the
2D Euler equation, so they certainly do not apply to the 3D NSE. Still the
results and the methods of this work apply to other PDE of the form

〈Hamiltonian equation〉+ ν〈dissipation〉 =
√

ν 〈random force〉 ,
provided that the corresponding Hamiltonian PDE has at least two ‘good’
integrals of motion. In particular, they apply to the randomly forced complex
Ginzburg-Landau equation (see [KS04] for some related results).

1 The Eulerian limit

Let us denote by ‖ · ‖ and by (·, ·) the L2-norm and scalar product in the
space H. Let (es, s ∈ Z2 \ {0}) be its standard trigonometric basis:

es(x) =
sin(s · x)√

2π|s|

[−s2

s1

]
or es(x) =

cos(s · x)√
2π|s|

[−s2

s1

]
,

depending whether s1 + s2δs1,0 > 0 or s1 + s2δs1,0 < 0. The force η in (0.2)
equals

η =
d

dt
ζ(t, x), ζ =

∑

s∈Z2\{0}
bsβs(t)es(x) ,

where {bs} is a set of real constants, satisfying

bs = b−s 6= 0 ∀ s,
∑

|s|2b2
s < ∞ ,

and {βs(t)} are standard independent Wiener processes. Using the Leray
projector Π : L2(T2;R2) → H we rewrite eq. (0.2) as the equation for
u(t) = u(t, ·) ∈ H:

u̇ + νA(u) + B(u) =
√

ν η(t),

or as the diffusion equation

du = −(νAu + B(u)) dt +
√

ν dζ(t). (1.1)

The equation (1.1) is known to have a unique stationary measure µν (e.g.,
see in [Kuk06a]).3 This is a probability Borel measure in H which attracts

3Due to results of the recent work [HM06], the stationary measure µν is unique if bs 6= 0
for |s| ≤ N , where N is a ν-independent constant. Theorems 1.1 and 2.1 below remain
true under this weaker assumption, but the proofs of results in Sections 3, 4 use essentially
that all coefficients bs are non-zero.
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distributions of all solutions for (1.1). Let uν(t, x), t ≥ 0, be a corresponding
stationary solution, i.e.

Duν(t) ≡ µν .

Apart from being stationary in t, this solution is known to be stationary
(=homogeneous) in x.

For any l ≥ 0 we denote by Hl, l ≥ 0, the Sobolev space H ∩H l(T2;R2),
given the norm

‖u‖l =
( ∫ (

(−∆)l/2u(x)
)2

dx
)1/2

(1.2)

(so ‖u‖0 = ‖u‖). A straightforward application of Ito’s formula to ‖uν(t)‖2
0

and ‖uν(t)‖2
1 implies that

E ‖uν(t)‖2
1 ≡

1

2
B0 , E‖uν(t)‖2

2 ≡
1

2
B1 , (1.3)

where for l ∈ R we denote Bl =
∑ |s|2lb2

s (note that B0, B1 < ∞ by assump-
tion); see in [Kuk06a].

The theorem below describes what happens to the stationary solutions
uν(t, x) as ν → 0. For the theorem’s proof see [Kuk04, Kuk06a].

Theorem 1.1. Any sequence ν̃j → 0 contains a subsequence νj → 0 such
that

Duνj
(·) ⇀ DU(·) in P(

C(0,∞;H1)
)
. (1.4)

The limiting process U(t) ∈ H1, U(t) = U(t, x), is stationary in t and in x.
Moreover,

1)a) every its trajectory U(t, x) is such that

U(·) ∈ L2 loc(0,∞;H2), U̇(·) ∈ L1 loc(0∞;H1) ,

b) it satisfies the free Euler equation

u̇ + B(u) = 0 , (1.5)

c) ‖U(t)‖0 and ‖U(t)‖1 are time-independent quantities. If g(·) is a
bounded continuous function, then

∫
T2 g(rot U(t, x)) dx also is a time-inde-

pendent quantity.
2) For each t ≥ 0 we have

E‖U(t)‖2
1 =

1

2
B0, E‖U(t)‖2

2 ≤
1

2
B1, E exp

(
σ‖U(t)‖2

1

) ≤ C (1.6)

for some σ > 0, C ≥ 1.
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Amplification. If B2 < ∞, then the convergence (1.4) holds in the space
P(C(0,∞;Hκ)), for any κ < 2.

See [Kuk06a], Remark 10.4.
Due to 1b), the measure µ0 = DU(0) is invariant for the Euler equation.

By 2) it is supported by the space H2 and is not a δ-measure at the origin.
The process U is called the Eulerian limit for the stationary solutions uν of
(1.1). Note that apriori the process U and the measure µ0 depend on the
sequence νj.

Since ‖u‖2
1 ≤ ‖u‖0‖u‖2, then E ‖u‖2

1 ≤ (E‖u‖2
0)

1/2(E‖u‖2
1)

1/2 and (1.3)
implies that 1

2
B2

0B
−1
1 ≤ E‖uν(t)‖2

0 ≤ 1
2
B1 for all ν. That is, the characteristic

size of the solution uν remains ∼ 1 when ν → 0. Since the characteristic
space-scale also is ∼ 1, then

the Reynolds number of uν grows as ν−1 when ν decays to zero. (1.7)

Hence, Theorem 1.1 describes a transition to turbulence for space-periodic 2D
flows. Since the force, proportional to the square root of the viscosity is the
only way to force the 2D NSE to get a limit or order one (see Introduction and
[Kuk06a], Section 10.3), then various Eulerian limits as in Theorem 1.1 with
different coefficients {bs} (corresponding to different spectra of the applied
random forces) describe all possible 2D space-periodic stationary turbulent
flows.

2 Vorticity of the Eulerian limit

2.1 Disintegration of the measure rot µ0

In this section and below we denote by H l = H l(Td) the Sobolev space of
functions with zero mean-value on the torus Td, d = 1 or 2. The norm in this
space is denoted ‖ · ‖l, i.e. as the norm in Hl, and is defined as in (1.2).

Let us write the Euler equation (1.5) in terms of the vorticity ξ(t, x) =
rot u(t, x) = ∂u2/∂x1 − ∂u1/∂x2:

ξ̇ + (u · ∇)ξ = 0 , u = ∇⊥(−∆)−1ξ . (2.1)

Here ∇⊥ = (∂/∂x2,−∂/∂x1)
t and ∆ is the Laplacian, operating on functions

on T2 with zero mean value. By Theorem 1.1,

V (t, x) = rot U(t, x)
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satisfies (2.1) for every value of the random parameter. Now we show that
V (t) belongs to a certain functions space K where (2.1), supplemented by
the initial condition ξ(0) = ξ0 ∈ K, has a unique solution, continuously
depending on ξ0. To define this space we first set

K = {u ∈ L2 loc(R;H2) | u̇ ∈ L1 loc(R;H1)} ,

and provide K with the usual structure of a Fréchet space. This is a Polish
space (i.e., a complete separable metric space). Next we define K̃ as the set
of solutions for (1.5), belonging to K. This is a closed subset of K, so also
a Polish space. The group of the flow-maps of the Euler equation acts on K̃
by time-shifts which are its continuous homeomorphisms. Now consider the
continuous map

π : K̃ → H0(T2) , u(t, x) 7→ rot u(0, x) .

Due to an uniqueness theorem of the Yudovich type (see [Kuk04], Lemma
3.5), π is an embedding. We set

K = π(K̃)

and provide K with the distance, induced from K̃. It makes K a Polish space
(we do not know if K is a linear space or not, i.e. if it is invariant with respect
to the usual linear operations). It is not hard to see that H2(T2) ⊂ K. So

H2(T2) ⊂ K ⊂ H0(T2) , (2.2)

where the embeddings are continuous.
Due to what was said above, the Euler equation defines a group of con-

tinuous homeomorphisms

St : K → K , t ∈ R . (2.3)

Theorem 1.1 shows that U(·) ∈ K̃ for each value of the random parameter.
Therefore the measure

θ = D(V (0)) = rot ◦µ0

is supported by K (i.e., θ(K) = 1). Since St ◦ θ = D(V (t)) and V (t) is a
stationary process, then θ is an invariant measure for the dynamical system
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(2.3). By the estimates in item 2) of Theorem 1.1, it is supported by the
space K ∩H1(T2) and

∫
exp

(
σ‖v‖2

0 θ(dv) < ∞.
Our next goal is to express the fact that trajectories of the process V

satisfy assertion 1c) of Theorem 1.1 in terms of the measure θ. Let us denote
by P(R) the set of probability Borel measures on R, furnished with the
Lipschitz-dual distance

dist(m′,m′′) = sup
|f |≤1, Lip f≤1

|〈m′, f〉 − 〈m′′, f〉| .

This is a Polish space, and convergence in the introduced distance is equiv-
alent to the ∗-weak convergence of the measures, see [Dud02]. Due to (2.2)
the map

M : K → P(R) , ξ 7→ ξ ◦ (
(2π)−2dx

)
,

is continuous. Accordingly the map

Ψ : K → P(R)× R+ =: B , ξ(·) 7→ (M(ξ), ‖ξ‖−1) ,

also is continuous.
Repeating (say) the arguments in [Kuk06b, Kuk06a], proving assertion

1c) of Theorem (1.1), we get that each trajectory u(t, x) of (1.5), belonging
to the space K, satisfies Ψ(u(t)) = const. Recalling the definition of the
flow-maps St, we get that they commute with Ψ. That is,

St : Kb → Kb ∀ t ∈ R , (2.4)

for every b ∈ B, where we denoted

Kb = Ψ−1(b) ⊂ K , b ∈ B .

Clearly Kb is a closed subset of K. We provide it with the induced topology.
Let us denote λ = Ψ ◦ θ. This is a measure on the Polish space B. Ap-

plying to the map Ψ the Disintegration Theorem (see [Par77] and [Kuk07a]),
we get

Theorem 2.1. There exists a family {θb,b ∈ B} of measures on Borel
subsets of B such that

1) θb(Kb) = 1 for each b, for any Borel set A ⊂ K the function b 7→
θb(A) is Borel-measurable on B, and

θ(A ∩Ψ−1(D)) =

∫

D

θb(A) dλ(b) , (2.5)
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for any Borel set D ⊂ B.
2) For λ-a.a. b ∈ B the measure θb (interpreted as a measure on Borel

subsets of Kb) is invariant for the dynamical system (2.4).

2.2 The balance relations

Let g(r) be a continuous function which has at most a polynomial growth as
r →∞. Denoting by G its second integral (i.e. G′′ = g and G(0) = G′(0) =
0), applying Ito’s formula to the process

t 7→
∫

G(ξν(t, x)) dx , ξν = rot uν ,

and using that (rot es(x))2 + (rot e−s(x))2 ≡ |s|2/2π2 for each s, we proved
in [KP05] the following result:

Theorem 2.2. Let B3 < ∞. Then for any t and x we have

E
(
g(ξν(t, x))|∇ξν(t, x)|2) =

1

2
(2π)−2B1Eg(ξν(t, x)) . (2.6)

We call equalities (2.6) the balance relations.
Let us take the balance relation (2.6), where g is a bounded continuous

function such that 0 ≤ g ≤ 1. Integrating it in dx we get:

E

∫
g(ξ(x))|∇ξ(x)|2 dx =

1

2
(2π)−2B1E

∫
g(ξ(x)) dx. (2.7)

Here we abbreviate ξν(t, x) = ξ(x) (t ≥ 0 is fixed). Assume that B6 < ∞.
Then ξ(x) ∈ C3 a.s. (see in [Kuk06a]). Modifying the random field ξω(x) on
a null-set we achieve that ξω(x) ∈ C3 for all ω. Denote

Γ(τ, ω) = {x ∈ T2 | ξ(x) = τ} .

By the Sard lemma, for each ω the set Γ(τ, ω) is C3-smooth for a.e. τ ∈ R.
So we may perform in the two integrals in (2.7) the co-area change of variable

x 7→ (τ, γ), τ = ξω(x), γ ∈ Γ(τ, ω) .

Transforming formally the integrals in (2.6) we find that

E

∫

R
g(τ)

∫

Γ(τ,ω)

|∇ξ| dγ dτ =
1

2
(2π)−2B1 E

∫

R
g(τ)

∫

Γ(τ,ω)

|∇ξ|−1 dγ dτ ,
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where we adopted the natural convention
∫

Γ(τ,ω)
|∇ξ|−1 dγ = ∞ if τ is a

critical value of ξ. Since g is arbitrary continuous function, satisfying 0 ≤
g ≤ 1, then

E

∫

Γ(τ,ω)

|∇ξ| dγ dτ =
1

2
(2π)−2B1 E

∫

Γ(τ,ω)

|∇ξ|−1 dγ dτ .

In [Kuk06b] we made these calculations rigorous, thus proving

Theorem 2.3. If B6 < ∞, then for any ν > 0 and t ≥ 0 the equality above
holds for a.a. τ ∈ R.

The assertions of Theorems 2.2 and 2.3 indicate that in some sense ‘the
periodic 2D turbulence is integrable’. Unfortunately we cannot prove that
these results hold for the vorticity V of the Eulerian limit.

Choosing in (2.6) g(v) = v2m,m ∈ N, and using a new version of the
Poincaré inequality, we in [Kuk06b] derived from Theorems 2.2 estimates for
exponential moments of random variables ξν(t, x). Now we can go to the
limit as νj → 0:

Corollary 2.4. Let B6 < ∞. Then there exist σ > 0 and C ≥ 1 such that
for any t ≥ 0, x ∈ T2 and ν ∈ [0, 1] we have

Eeσ|ξν(t,x)| ≤ C, (2.8)

where we denoted ξ0 = V = rot U .

This estimate with ν = 0 is crucially used in the next section.

3 Distribution of energy and of functionals of

vorticity

The equality in (1.6) implies that the random field U(t, x) does not vanish
identically, but it does not exclude that it is rather degenerate. In particular,
it does not exclude that

• the vector field U(t, ·) ∈ H vanishes with a positive probability, or that

• its distribution D(U(t)) is supported by a finite-dimensional subset of
H.

9



In this section we discuss results on the distribution of U which, in particular
rule out the two possibilities above.

Let us denote by E(u) the energy of a 2D vector field u(x), E(u) =
1
2

∫ |u(x)|2dx = 1
2
‖u‖2. The first main difficulty in the study of distribution

of U(t) ∈ H is to show that E(U(t)) > 0 a.s. Let us re-write the NSE (1.1),
using the fast time τ = t/ν :

du(τ) = −(Au + ν−1B(u)) dτ + dζ̃(τ) , (3.1)

where ζ̃(τ) = ν1/2ζ(τ/ν) is a new Wiener process inH, distributed as ζ(τ). If
not for the term ν−1B(u) dτ , we could apply Krylov’s results (Theorem 2.3.3
from [Kry80]) to show that the process u(2)(τ) ∈ R2, formed by two first
components of u(τ), is small in norm with a small probability, uniformly
in ν > 0. This would imply that E(U(t)) > 0 a.s. Motivated by this
observation, we in [Kuk07b] managed to construct a new process ũ(τ) such
that

• Eũ(τ) ≡ Euν(t) |t=τ/ν ,

• ũ(τ) satisfies a ν-independent Ito equation,

• the process ũ(2)(τ) ∈ R2 has a non-degenerate diffusion.

Applying to ũ(2)(τ) the Krylov result and using that E|u(τ)| ≥ E|ũ(2)(τ)| we
prove the inequality

P{E(uν) < δ} ≤ Cδ1/4, ∀ δ > 0, (3.2)

for each ν > 0, where C is independent from ν.
Due to (3.1) and Ito’s formula, the process E(τ) = Euν(τ) satisfies the

Ito equation

dE = (−‖u‖2
1 +

1

2
B0) dτ +

∑
bsus dβs(τ) .

Since the coefficients bs are nonzero, then the relations (1.3) and (3.2) imply
that the diffusion in the equation for E is ‘non-degenerate in a qualified way’.
Accordingly, the measure DE(τ) is absolutely continuous with respect to the
Lebesgue measure, uniformly in ν.4 Now using (1.4) we get that the measure

4That is, for any Borel set Q ⊂ [−R, R] we have DE(τ)(Q) ≤ pR(|Q|), where pR is
ν-independent and pR(t) → 0 when t → 0.
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DE(U(τ)) is absolutely continuous with respect to the Lebesgue measure,
i.e.,

DE(U(τ)) = e(x) dx , e ∈ L1(R+) .

Due to (1.6) and (3.2), (1.4),
∫ ∞

K

e(x) dx ≤ Ce−σK2 ∀K ≥ 1;

∫ δ

0

e(x) dx ≤ Cδ1/4 ∀ δ > 0 .

The estimate (3.2) also allows to study distributions of functionals of the
vorticity ξν = rot uν(t, x) for ν ¿ 1. Let us fix m ∈ N and choose any
m analytic functions f1(ξ), . . . , fm(ξ), linear independent modulo constant
functions. We assume that the functions fj(ξ), . . . , f

′′′
j(ξ) have at most a

polynomial growth as |ξ| → ∞ and that f ′′j (ξ) ≥ −C for all j and ξ (for
example, each fj is a trigonometric polynomial, or a polynomial of an even
degree with a positive leading coefficient). Consider the map F ,

F (ξ) = (F1(ξ), . . . , Fm(ξ)) ∈ Rm, Fj =

∫

T2

fj(ξ(x)) dx ,

and the Ito equation, satisfied by the process F (ξν(τ)), τ = tν. Using (3.2)
and (2.8) we proved in [Kuk07b] that the measures DF (ξν(τ)) also are uni-
formly absolutely continuous with respect to the Lebesgue measure in Rm.
Evoking Amplification to Theorem 1.1 we get

Theorem 3.1. If B6 < ∞, then the vorticity V of the Eulerian limit U is
distributed in such a way that the law of F (V (0)) is absolutely continuous
with respect to the Lebesgue measure in Rm.

Since m is arbitrary, then this result implies that the measure µ0 = DU(0)
is genuinely infinite-dimensional in the sense that any compact set in H∩C1

of finite Hausdorff dimension has zero µ0-measure.

4 Model for 2D NSE (0.2) and conjectures for

the Euler limit

To study further properties of the measure µ0 = D(U(0)), describing the
space-periodic two dimensional turbulence, is a hard task. To develop corre-
sponding intuition, in [Kuk07a] we suggested as a model for (0.2) the equa-
tion, obtained by replacing in (0.2) the Euler equation by the KdV equation

u̇ + uxxx − 6uux = 0 ,
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I.e. by replacing one Hamiltonian system with infinitely many integrals of
motion by another:

v̇ − νvxx + vxxx − 6vvx =
√

ν η(t, x) ,

x ∈ T1 = R/2πZ ,

∫
v dx ≡

∫
η dx ≡ 0 .

(4.1)

Here η(t, x) is a white in time nondegenerate random force, similar to that in
(0.2). Equation (4.1) has a unique stationary measure mν . The measures mν

and corresponding stationary solutions vν(t, x) posses all the properties of the
stationary solutions uν and the measures µν , discussed above in Sections 1-3.
Namely,

i) along a subsequence νj → 0 the random fields vνj
(t, x) converge in

distribution to a limiting random field v(t, x), formed by solutions of the
KdV equation.

ii) If I = (I1, I2, . . . ), Ij ≥ 0, is the vector, formed by the integrals of
KdV as in [MT76, KP03] (also see in [KP06]), then the limiting measure
m0 = Dv(0) is invariant for the KdV equation and may be disintegrated
with respect to the map I. Now a.e. iso-integral set T∞ = {I =const} is
diffeomorphic to the infinite-dimensional torus T∞, and the disintegration of
m0 may be written as

m0 ∼ λ× dϕ, (4.2)

where dϕ is the Haar measure on T∞ and λ is a measure on R∞+ .
iii) For any n, the image of m0 under the mapping v(x) 7→ (I1(v), . . . ,

In(v)) is absolutely continuous with respect to the Lebesgue measure on Rn
+.

Note that the disintegration (4.2) is more precise than that in Theo-
rem 2.1, where the measures θb are unknown. This happened since the
iso-integral sets T∞ for the KdV equation are much simpler than those for
the 2D Euler equation, and the KdV-flow on the sets T∞ is well understood.
In particular,

iv) KdV flow on a.e. set T∞ is ergodic.
In [KP06] we studied eq. (4.1) further and proved that
v) λ is an invariant measure for the stochastic equation for I(τ) ∈ R∞+ ,

obtained from the Ito equation for I(τ) = I(v(t)), t = τ/ν, by means of the
stochastic averaging.

Based on similarity between the properties i)-iii) and the corresponding
features of the 2D NSE (0.2), we conjectured in [Kuk07a] that natural analo-
gies of properties iv), v) hold for the 2D NSE and the Eulerian limit:
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1. Every non-empty set Kb carries a measure mb, invariant for the Euler
flow (2.4), such that for a.a. u ∈ H with respect to any stationary measure
µν we have

lim
T→∞

T−1

∫ T

0

f(Stu) dt = 〈f, mb〉 , b = Ψ(u); ∀ f ∈ Cb(H). (4.3)

For λ-a.a. b the measure mb coincides with θb in (2.5).
Let u(t, x) be a solution of (1.1). Then the vector Ψ(u(t)) ∈ B satisfies

a SDE. To describe it we introduce the space C = Cb(R)× R and denote by
〈·, ·〉 its natural pairing with P(R)× R ⊃ B. For any f ∈ C we denote

uf = 〈Ψ(u), f〉 .
Applying Ito’s formula to uf and passing to the fast time τ = νt, we get

d uf (τ) = Ff (u(τ)) dτ +
∑

s

σfs(u(τ)) dβs(τ) .

Here Ff and {σfs, s ∈ Z2 \ 0} are smooth functions on H (depending on the
coefficients bs) and {βs(τ)} are new standard Wiener processes.

2. Let uν(t) be a stationary solution of (1.1). Then along a subsequence
νj → 0 the process Ψ(uν(τ)) converges in distribution to a limiting process
b(τ). This is a stationary Ito process in B such that for any f ∈ C the process
bf (τ) = 〈b(τ), f〉 has the drift

〈F 〉f (b) = 〈Ff (u),mb〉 =

∫

Kb

Ff (u) mb(du) , (4.4)

and for any f1, f2 ∈ C processes bf1 and bf2 have the covariation

〈a〉f1 f2(b) =
〈∑

s

σf1s(u)σf2s(u),mb

〉
. (4.5)

I.e., the processes bf1(τ)−∫ τ

0
〈F 〉f1(b(s)) ds and bf2(τ)−∫ τ

0
〈F 〉f2(b(s)) ds are

martingales and their bracket equals 〈a〉f1f2(b(τ)).
That is to say, the limiting process b(τ) is a martingale solution for a

stochastic differential equation in the space B with the drift 〈F 〉(b) and the
diffusion 〈a〉(b). This is the Whitham equation for the 2D NSE (1.1).

In difference with the KdV case, space B does not have a natural basis,
and we cannot naturally write this equation as a system of infinitely many
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SDE. Still we can find a countable system of vectors fj ∈ C such that their
linear combinations are dense in C, and use these vectors in (4.4), (4.5). In
this way we write the Whitham equation above as an over-determined system
of infinitely many SDE.

We can write down the Whitham equation, using in (4.4), (4.5) the mea-
sures θb instead of the measures mb, i.e. without invoking the Ergodic Hy-
pothesis 1. But if the hypothesis fails, then the measures θb may depend
on the sequence νj → 0 in Theorem 1.1. In this case the Whitham equation
seems to be a useless object.

3. Distribution of the limiting process b(τ) is independent from the sequence
{νj → 0}. Accordingly, the measure θ = Db(0) also is independent from the
sequence, and

Ψ ◦ µν ⇀ θ , µν ⇀ µ0 =

∫
mb θ(db)

as ν → 0.

Despite the measures mb are unknown, the averaged drift and covariance
(4.4) and (4.5) which characterise the limiting equation can be calculated
by replacing the ensemble-average by the time-average (see (4.3)). So valid-
ity of the suggested scenario 1-3 may be verified numerically by comparing
Ψ(uν(τ)) with solutions for the limiting equation.

Additional support for the conjectures above comes from the following
consideration. Since the works of Moreau (1959) and Arnold (1966) on the
Euler equations (see in [AK01]), it is believed that the Euler equation for
rotating solid body is similar to eq. (1.5). Accordingly, let us consider the
damped/driven version of the former:

Ṁ + [M,A−1M ] + νM =
√

ν η(t) , (4.6)

where the random force is η(t) = d
dt

∑3
j=1 bjβj(t)ej with non-zero bj’s, and

{e1, e2, e3} is the eigenbasis of the inertia operator A. It is shown in Appendix
to [Kuk07b] that the unique stationary measure for (4.6) satisfies natural
analogies of properties i)-iii). The methods and results of [FW98] and [KP06]
leave no doubts that analogies of the assertions 1-3 hold true for eq. (4.6).
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