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ABSTRACT. The singular billiard limit of smooth steep scattering potentials is utilized as
a skeleton for studying the properties of the scattering problem; It is shown that for one
class of chaotic scatterers, named here regular Sinai scatterers, the scattering properties
of the smooth system limit to those of the billiard. On the other hand, it is shown that
for other chaotic scatterers, that belong to the class of singular Sinai scatterers (scatterers
with singular bounded semi-orbits), the fractal dimension of the scattering function of
the smooth flow may be controlled, for arbitrary steep potentials, by changing the ratio
between the steepness parameter and a parameter which controls the billiards’ geometry.

1. INTRODUCTION

When a ray of inertial trajectories, parameterized by an input parameter, enters an inter-
action region in which the trajectories are modified by nonlinear forces, the ray is scattered
and leaves the region in different directions. The common characteristics observed upon
leaving the interaction region are theescape angleand theresidence time. These are called
scattering functionsof the input parameter. Scattering problems arise in a wide spectrum
of models in physics and chemistry (see [29] and [30]): celestial mechanics [17, 31, 5, 18],
charged particle trajectories in electric and magnetic field [8, 6], hydrodynamical processes
[28, 1, 37], models of chemical reactions [32, 27, 14, 24] and scattering in atomic and nu-
clear physics [46, 47]. Typically, most of the trajectories stay in the interaction region for a
finite time. However, in an open Hamiltonian system there may exist a Lebesgue-measure-
zero set of input parameters producing trajectories that are trapped in the interaction re-
gion for an arbitrary long time. This measure-zero set gives rise to strong oscillations in
the scattering functions, influencing the nearby trajectories. If this set of singularities of
the scattering function,I , has a positive fractal dimension1, then the scattering is called
chaotic, otherwise it is called regular.

First, it was noticed that when the invariant set associated with the scatterers has chaotic
components, the singularity setI of trapped trajectories, which includes all initial con-
ditions belonging to the stable manifold of the chaotic invariant set, is fractal [13, 19].
Subsequently, the structure ofI was examined in diverse scattering problems. Hard wall
scatterers were studied in several two-dimensional geometries (three hard discs scatterers
[13, 14], three hard discs and a uniform magnetic field [6], billiard traps with two openings
[2, 36] and a wedged billiard with gravity [16, 5]). Most of these two-dimensional billiard
models were constructed so that the invariant set in the interaction region may be fully
characterized using symbolic dynamics, and thus particle escape rates and other scattering
characteristics may be found using the thermodynamic formalism [14][12].

Scattering by finite range axis-symmetric potential hills and by smooth potential hills
were studied in [19, 3, 42, 4, 11, 29, 6, 15] whereas scattering by smooth attractive potential
wells were studied in [9, 10]. In many of these works it was noted that bifurcations leading

1usually one uses the box-counting or the uncertainty dimension [3, 4, 25].
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to structural changes in the invariant set change the fractal dimension of the scattering
functions. In [20] a unified framework for studying scattering in several smooth classical
and quantum systems is presented. In [21][22][23] scattering by sums ofn attractive orn
repelling Coulombic potentials were studied in the high energy limit, where it was proved
that for generic placement of the centers the (chaotic forn≥ 3) scattering is hyperbolic
and its properties are universal, depending only onn, and can thus be explicitly analyzed.
In the more general smooth case (or for low energy values in the Coulombic case), one
cannot predict what would be the dependence of the invariant set on various parameters -
the phase space structure of such two-degrees of freedom non-integrable systems is usually
too complex: it admits mixed dynamical regimes, and numerous types of local and global
bifurcations. Three such bifurcations were previously discussed in the context of chaotic
scattering by smooth potentials - the local saddle-center and period doubling bifurcations
[4, 11][25], and the global abrupt bifurcation [3]. It was noted that the appearance of
islands of stability via these local bifurcations leads to a scattering functions with fractal
dimension one [4, 11][25]. On the other hand, it was noted that the abrupt bifurcation,
by which lowering the energy below a critical energy valueEc leads to a sudden change
in the topology of the Hill’s region (the region of allowed motion in the configuration
space [26]), creates, for circularly symmetric hills [3, 4] and for non-circular (elliptic)
hills [4, 41], a hyperbolic invariant set which is structurally stable, namedfully developed
chaotic scattering[3]. At the critical value of the energy the energy surface contains a
saddle point and its separatrices, so the appearance of abrupt bifurcations may be related
to the study of the generic (or symmetric) homoclinic bifurcations associated with such
structures [45, 39].

Summarizing, from the above studies the following classification of scattering problems
emerges; when the invariant set is simple (consists of a countable number of unstable peri-
odic orbits)regular scattering is produced and the fractal dimension ofI vanishes. When
the invariant set is hyperbolic and has a positive fractal dimension,hyperbolic chaotic
scattering is created and the fractal dimension ofI is larger than zero and less than one.
Finally, when the invariant set, isnon-hyperbolicand contains KAM-tori (so it has positive
Lebesgue measure),non-hyperbolic chaoticscattering is observed and the fractal dimen-
sion of I appears to be close to1. While for many billiard problems and finite range
potentials the invariant set may be explicitly constructed by geometrical means, for the
smooth case its structure is complex and is usually found via numerical simulations.

Here, we present a class of smooth2 non-trivial scattering problems that can be rigor-
ously analyzed; We consider the scattering of a ray of particles by a family of smooth
scattering steep potentialW(q;ε), which, in the limitε→ 0, becomes the hard-wall billiard
scattererD = ∪N

i=1Di :

H =
‖p‖2

2
+W(q;ε).(1)

W(q;ε) →
ε→0

{
0 q∈ R2\D
Ei q∈ ∂Di .

(2)

HereDi are compact closed domains called obstacles (of ”height”Ei , whereEi > 0and may
be infinite),N is finite, andD is compact as well, namely the distance between the obstacles
is bounded. Following [43], the billiard-like potential familyW(q;ε) is assumed to satisfy
some natural conditions that are specified for completeness in the appendix. One may

2Hereafter, smooth meansCr+1 potentials withr sufficiently large for KAM theory to apply near stable orbits
(so, we taker > 3. In the examplesr = ∞).
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simply think ofW as the sum of potentialsVi(z) that decay sufficiently rapidly withz (e.g.
exponentials, Gaussians or power-law potentials) depending onz= Qi(q)/ε, whereQi(q)
denotes the signed smooth distance function (soQi(q)|q∈R2\Di

> 0 andQi(q)|q∈Di ≤ 0)
e.g.:

(3) W(q;ε) =
N

∑
i=1

Ei exp

(
−Qi(q)

ε

)
.

whereEi represents here the strength of theith obstacle which is of infinite height, or

(4) W(q;ε) =
N

∑
i=1

Ei exp

(
−Qi(q)2

ε

)
.

whereEi represents here the height of theith obstacle. Let

E = inf
i
{Ei ,Ei}.

Our analysis applies to intermediate energy levelsh:

0 < h < E .

For such energy levels, for sufficiently smallε values, the particle moves essentially freely
between the obstacles and bounces of their boundary when it encounters them. In the
terminology of [3] we are always concerned here with energies below the critical energy
of the abrupt bifurcation, namely we do not consider here effects that are associated with
topological changes in the Hill’s region. Intuitively, one would suspect that for such energy
levels and smallε values, the scattering by the billiard scatterers and by the smooth flow
will be very similar (see [3]). Using the recently developed analytical methods of [43, 38,
44, 34, 33, 35], in which similarities and differences betweenn-dimensional (n≥ 2) smooth
Hamiltonian flows with steep billiard like potentials and billiards flows were studied, we
show that the billiard limit is useful for analyzing the smooth behavior, yet their scattering
profiles may be substantially different.

Another issue which naturally arises from our analysis is the study of singularities in the
dynamics of the billiard scatterers and their influence on the scattering function. While tan-
gent singularities had appeared naturally in the dispersing scatterers context [13, 14][42],
the corner singularities, that arise when the scatterer boundary has corners, have been es-
sentially neglected (though see [16, 5]). We thus dedicated part of this paper to demonstrate
the influence of corners on the scattering function. The presented finding for this case are
preliminary and are of great interest: these results show how the smoothness properties of
a spec of dust may influences the scattering from a nearby large obstacle.

The paper is ordered as follows: in Section 2 we present the set up for the billiard scat-
tering problem, define regular and singular Sinai scatterers, and explain how tangencies
and corners influence their invariant set and the scattering functions. To demonstrate these
effects we introduce two families of singular Sinai billiard scatterers. In section 3 a para-
digm for studying chaotic scattering by smooth steep billiard-like potentials is presented.
There, we conclude that for regular Sinai scatterers the steep smooth flow and the limiting
billiard scatterer have similar chaotic scattering functions. Then, in Section 4, the scat-
tering by steep smooth potentials is investigated when the limiting billiards are singular,
having either a corner polygon or a tangent periodic orbit. Based upon the obtained numer-
ical results and the findings in [43, 38, 44, 34, 33, 35], it is demonstrated that the fractal
dimension of the scattering function of the steep smooth potential can be controlled in such
cases. In the appendix we include precise statements regarding the classes of potentials we
consider and the rigorous statements that apply to these.
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2. BILLIARD SCATTERING

2.1. Formulation: Consider a scattering billiard inR2; Let SR⊂ R2 denote a circle, cen-
tered at the origin, of finite radiusR, parameterized bys∈ [0,2π) (with s= 0 corresponding
to the direction of the positivex axis). The scattererD, a collection of hard wall obstacles,
reside insideSR. The obstacles are assumed to have piecewise smooth,Cr+1 components
(r > 3). We call the scattererD aSinai scattererif its boundary is composed of a finite num-
bern of Cr+1−smoothscatteringcomponentsΓi that are either bounded away from each
other by some minimal distance or have pairwise intersections at angles that are bounded
away from zero (no cusps are allowed). We denote byΓ∗ the corner set at which the scat-
terer boundary is not smooth. Some of our results apply to a general scatterer geometry,
yet, we will mostly consider Sinai scatterers.

A typical trajectory entersSR at somesin with velocity (px, py) =
√

2h(cosϕin,sinϕin),
moves freely under the billiard flow, reflecting elastically from the obstacles insideSR,
until it exitsSR, at timetout, at some pointsout with velocity in the directionϕout. Thus, the
Rdependent scattering map:

(5) S(R) : (sin,ϕin)→ (sout,ϕout, tout)

may be naturally defined. Instead of using theR-dependent coordinatessin,sout it is tradi-
tional to define theR-independent impact parametersbin andbout:

(6) bin = Rsin(ϕin−sin) and bout = Rsin(ϕout−sout).

The scattering timetout dependence onR can then be explicitly defined as:

tout(bin,ϕin;R,h) =
L(bin,ϕin;R)√

2h
(7)

=
1√
2h

(√
R2−b2

in +
√

R2−b2
out +Lint(bin,ϕin)

)
(8)

=
Lint(bin,ϕin)√

2h
+

2R√
2h

+O

(
1

R
√

2h

)
(9)

whereL(bin,ϕin) denotes the length of the orbit inSR andLint(bin,ϕin), which is inde-
pendent ofR, roughly corresponds to the length of the trajectory in the interaction zone.
The non-trivial dependence oftout on the initial data is thus contained inLint(bin,ϕin). The
scattering map may be written in terms of the impact coordinates so that only the travel
time depends onR:

(10) S(R) : (bin,ϕin)→ (bout,ϕout, tout)

and (6) supplies the change of coordinates between theb′s and thes’s. Define the corre-
sponding scattering functions at(bin,ϕin) :

(11) (Φ(b),T(b)) = (ϕout(bin +b,ϕin), tout(bin +b,ϕin)), b∈ J(bin,ϕin)

whereJ is either empty or a closed interval containing the origin such that for allb ∈
J(bin,ϕin) the scattering is non-trivial: the initial condition(bin +b,ϕin) does hit the scat-
terer. We say that(bin,ϕin) is non-trivial if J(bin,ϕin) is non-empty. Let

J (bin,ϕin) = {(b,ϕ)|b = bin +b,b∈ J(bin,ϕin),ϕ = ϕin},
so thatΦ andT simply correspond to the first and third component ofS(R)|J (bin,ϕin).
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Let B denote the billiard map associated with the scatterers insideSR. Let χ parameter-
ize the scatterers boundaries3 andθ ∈ [−π

2 , π
2 ] the corresponding incidence angle, and let

B(χ,θ) = (χ′,θ′) whenever the image of(χ,θ) under the billiard flow does not reachSR.
Denote byΞcorner the values ofχ at which corners appear (parameterizingΓ∗). For any
regular non-trivial(bin,ϕin), we may write:

(bout,ϕout) = Sout ◦Bk ◦Bk−1◦ ...◦B1◦Sin(bin,ϕin;R)(12)

tout =
L(bin,ϕin;R)√

2h
,(13)

whereBi = B(χi ,θi) correspond to the interior billiard map whereasSin andSout correspond
to the transition mapping fromSR to the first/last reflection values(χ1,θ1) and (χk,θk)
respectively. More generally, for any non-trivial(bin,ϕin) an interior orbit may be defined:

(14) O(bin,ϕin) = {χi ,θi}k
i=1.

Whenk is finite and all thek reflections are regular (soχi /∈ Ξcorner andθi 6=±π
2), (bin,ϕin)

is a regular value. Then, the composition (12) results in a smoothCr mapping with a
smooth dependence of the scattering timetout on initial conditions. Since for Sinai scatter-
ers the set of initial conditions resulting in singular orbits is of measure zero, it follows that
for Sinai scatterers, for almost all initial conditions, the mapS is a smooth,Cr mapping. In
principle, there are exactly two sources for non-smooth behavior ofS: interior singularities
that are associated with singular reflections from the scatterers and trapping singularities
associated with the divergence of the number of interior reflectionsk (i.e. k→ ∞).

2.2. Interior billiard singularities. For Sinai scatterers, the only interior singularities
that may appear4 are related to tangencies and to corners. Such singularities lead to non-
smooth behavior and discontinuities in the scattering functions as explained next:

2.2.1. Tangencies.Assume the orbitO(bin,ϕin) is tangent to one of the scatterers at some
point (χt ,θt) (so θt ∈ {−π

2 , π
2}), and contains no other singularities. Thus,k is finite,

and for alli 6= t the reflections are regular. It follows that(bin,ϕin) belongs to a singular-
ity line Σtan of initial conditions(b,ϕ) that have a tangency at thet iterate near(χt ,θt).
A small neighborhood ofΣtan is thus divided byΣtan to two parts - on one side ofΣtan

trajectories reflect exactlyk times before escaping whereas on the other side trajectories
have onlyk− 1 reflections (see Fig. 1). Using the properties of the billiard map and
flow near tangencies [40], it follows that the scattering mapS is C0 (depends continuously
yet not differentially on(b,ϕ)) across such singularity lines (see Fig. 1). Such tangent
singularity lines may intersect - the transverse intersection point of two5 such lines corre-
sponds to orbits with two tangencies. Notice that for regular orbits of the Sinai scatterers
the universal Sinai cone property holds - the conesdq·dp> 0 are forward invariant, and
their orientation is preserved under even number of reflections and reversed under odd
number of reflections. This property implies that at regular values(bin,ϕin), the function

3If there areN disjoint scatterers,χ is a vector ofN circles and a counter which points to the current
component.

4For other scatterers, in addition to the possible appearance of non-hyperbolic invariant set, the transient
behavior near focussing components (having whispering orbits), cusps, and deflection points needs to be analyzed.

5The (non-generic) intersection ofp+2 such lines corresponds to orbits withp+2 tangencies and is expected
to appear withp > 0 only in non-generic cases: symmetric cases or higher co-dimension settings in whichp-
parameter families of scatterers are considered.
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FIGURE 1. Scattering map and the effect of tangencies on it. The image
of J(bin,ϕin) is not smooth and not monotone only at singular points,
like this tangency.

Φ(b;bin,ϕin) is monotone whereas tangent values lead, in addition to the non-smoothness,
to non-monotonicity (see Fig. 1).

2.2.2. Corners. Assume the orbitO(bin,ϕin) reaches a corner at its end point(χk,θk),
and contains no other singularities. Namely,k is finite, χk ∈ Ξcorner, and for all i < k
the reflections are regular. Using the properties of the billiard map near regular corners
(not cusps) [40], it follows that(bin,ϕin) belongs to a lineΣc of singular values of(b,ϕ)
all ending up at this corner point afterk reflections. Initial conditions starting arbitrarily
close to(bin,ϕin) on one side of this singularity line hit the upper boundary component
near the corner, reflecting with some outgoing angleθ+

k and initial condition on the other
side hit the lower boundary, reflecting with some outgoing angleθ−k . Assume that the
resulting two outgoing orbits are regular and escape to infinity. Then, in general, all the
components of the scattering mapS are discontinuous acrossΣc. Yet, S is well defined
and smooth on either side of this singularity curve (in particulartout has a finite value for
all initial conditions that do not belong toΣc). Other cases, for example, trapping of an
outgoing orbit by redirecting into a corner (creating a corner polygon) or trapping by some
components of the invariant set (creating a Corner- Hyperbolic Invariant Set - C-HIS -
connection), are expected to appear at meeting points ofΣc with additional components of
the singularity set. Listing all such generic constructions deserves a separate study.

We denote byΣbill = Σtan∪ Σc the collection of singularity lines of initial conditions
(bin,ϕin) that contain a billiard tangency or end up in a billiard corner.
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2.3. Trapping Singularities. The singularities associated with the divergence ofk (i.e.
when k → ∞) are caused by orbits that asymptote the billiard’s invariant set, its corner
polygons or its C-HIS and HIS-C connections (it appears that only the first possibility was
previously considered); Denote byΛ the generalized invariant set ofB, which includes, in
addition to the proper invariant set, all these singular semi-orbits. Denote byΣΛ the set of
initial conditions(bin,ϕin) that never escape, sok = ∞ for these orbits andS is not defined
for them. The setΣΛ contains all the initial conditions belonging to stable manifolds of the
hyperbolic component of the invariant set,Λh, and, ifΛ has non-hyperbolic components
or includes singular semi-orbits, it may contain other non-hyperbolic sticky orbits or orbits
that asymptote singularities.

2.4. Scattering functions and singularities for Sinai scatterers.Summarizing, letΣ de-
fine the set of all singular initial condition on(bin,ϕin) ∈ (−R,R)× [0,2π) :

Σ = Σbill ∪ΣΛ.

Then, for Sinai scatterers,S,Φ andT are smooth and monotone away from the singularity
lines composingΣ. Generically, these singularity lines cross the segmentJ (bin,ϕin) trans-
versely. In the simplest caseΣbill crossesJ (bin,ϕin) at isolated points6, that correspond
to simple tangent escaping orbits or to simple corner semi-orbits. The scattering func-
tionsS,Φ andT are finite, continuous yet not smooth and non-monotone (respectively, are
discontinuous, and, depending on the corner properties and onϕin, may be monotone or
non-monotone, see [44] and Fig. 3), across such isolated intersections ofJ (bin,ϕin) with
the singularity lineΣtan (respectively, withΣc). Finally, nearΣΛ we will always have an
accumulation of singularities. Near the intersection ofJ (bin,ϕin) with the singularity lines
corresponding to initial conditions belonging to the stable manifold of the hyperbolic com-
ponent ofΛ, ΣΛh, the scattering functions have self similar structure and a divergingT.
The behavior near other components ofΣΛ is yet to be studied.

2.5. Regular and Singular Sinai Scatterers.The Sinai scattererD will be calledregular
if it has no corners and its invariant setΛ is bounded away from the singularity set so it is
uniformly hyperbolic7. In such a case,Λ is structurally stable - a sufficiently small smooth
deformation ofD does not change the symbolic dynamic description of the dynamics on
Λ nor its hyperbolic structure. The Sinai scatterer issingular whenΛ contains any sin-
gular orbits (tangent orbits) or singular semi orbits (corner polygons or C-HIS and HIS-C
connections).

Most of the studies of chaotic scattering by billiards were performed for regular Sinai
scatterers [30]. Then, the hyperbolic structure ofΛ implies that for most(bin,ϕin) ∈ ΣΛ,
the image under sufficiently many reflections of a small neighborhood ofJ (bin,ϕin) aligns
along the unstable manifold ofΛ and thus inherits all it self-similar, fractal and hyperbolic
properties [14][42],[13],[29].

When the invariant setΛ undergoes a bifurcation, the Sinai scatterer is singular, and
the above description is no longer valid; For example, in the classical three disc scatterer

6In a family of segments, there may also appear some isolated(bin,ϕin) values at which two of the singularity
lines andJ (bin,ϕin) cross, namely a triple intersection appears.

7The classical example of three identical circular scatterers of radiusa centered on the vertices of an equilat-
eral triangle with edges of lengthR is a regular Sinai scatterer forR> 3a: then the invariant setΛh is bounded
away from any tangent trajectory, andΛh is fully described by symbolic dynamics on 3 symbols with a simple
transition matrix [14].
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problem, when the equi-distance between the discs,R, is decreased towards their radius
a, orbits inΛ undergo tangent bifurcations8, a more detailed partition is needed, and the
transition matrix becomes more complex, till, in the limit ofR= a (which is not a Sinai
scatterer since cusps are created), infinite partition is achieved and the invariant set has a
full measure [14].

In section 3 we show that the smooth flow scattering properties can be predicted by
studying the simpler billiard scattering problem. To this aim, we first prove that steep
smooth flows limiting to regular Sinai scatterers have similar scattering properties to the
billiards’. On the other hand, we show that near singular Sinai scatterers the smooth scat-
tering is inherently different, yet predictable. To demonstrate the latter effect we choose
two geometrical settings, inspired by [44, 33, 35]: the first corresponds to a billiard geom-
etry with a tangency and the second to one with corners (see Figure 2). The choice of
symmetric configurations helps to pinpoint the source for the altered behavior - the singu-
larity leads to the emergence of symmetric stable periodic orbits in the invariant set of the
smooth flow.

2.5.1. The symmetric four discs scatterer –scatterers with tangent invariant orbits.Con-

sider one large circleΓ0 of radiusR which is centered at(xc
0,y

c
0) =

(
L√
2
, L√

2

)
, one inter-

mediate circleΓ1 of radiusr which is centered at(xc
1,y

c
1) = (0,0), and2 small circlesΓ2,3

of radiusr/2 arranged with centers along the liney =−x+1 at a fixed distance2Kr apart.
Denote byµr the distance ofΓ2 from the diagonal, so that atµ= 0 the diagonal is tangent
to Γ2, and atµ= K the circlesΓ2,3 are placed symmetrically with respect to the liney = x
(see Figure 2C,D). The four9 disc geometry corresponds to a regular Sinai billiard when
the discs are placed sufficiently far from each other (K andL are sufficiently larger thanr),
and sufficiently away from co-linear configurations (a line passing through any two discs is
at a large distance from any other disc, namely,K

L = O(1)). Here, we examine the behavior
near a singular Sinai scatterer configuration, whereK

L ¿ 1, so the invariant set has close
to tangent trajectories (hereafter we fixR = 10r,L = 13r,K = 0.1r, r = 1). At µ = 0 the
invariant set has a tangent periodic orbit (Fig. 2D), whereas we expect that for most values
of µ > 0 the invariant set is non singular, thus hyperbolic, producing self-similar structure
with positive fractal dimension which is less than one as in [14],[42],[13],[29] (see also the
bottom plot of Fig. 12).

2.5.2. The pearly scatterer – Scatterers with corners:Consider a large circleΓ0 of radius

R which is centered at(xc
0,y

c
0) =

(
L√
2
, L√

2

)
and n small circlesΓ1, . . . ,Γn of radiusrn,

covering uniformly an interval of lengthr = 1, see10 Fig. 2A,B. The radiusrn(α) is chosen
so that the angleα between any two neighboring circles11 is independent ofn:

(15) α = π−arccos(1−2(1−µ2)), rn =
1

2(1+(n−1)
√

1−µ2)
, µ∈ [0,1].

8Probably, for some parameter intervals, on a dense set of parameter values; See [43] for a numerical evidence
to the appearance of tangent homoclinic orbits on a dense set of parameters in a Sinai billiard.

9For convenience we choose the four discs example and not the classical three discs example. Here, we can
examine the simple symmetric configuration atµ= K.

10The casen = 2 was generalized in a different manner to multi-dimensional geometries in [33][35].
11The angle between the tangent lines at the point of the intersection of the circles
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FIGURE 2. The geometries of the two singular Sinai scatterers. A) The
pearly billiard with one corner. B) The pearly billiard withn− 1 cor-
ners: dashed (black)n = 1, bold (blue)n = 2, dotted bold (red)n = 3,
solid(green)n = 8. C) The symmetric four discs case (µ = K). D) The
non-symmetric tangent case:µ= 0.

The centers of the small circles lie on the liney =−x+ 1√
2

( √
1−µ2√

1−µ2+1

)
. Hereafter we fix

R= 10r,L = r ∗ (12+mu+sqrt(1−mu2)), r = 1 and varyn andµ.
This is a singular Sinai scatterer for any finiten andµ> 0. The geometrical deformation

of the scatterers depend smoothly onµ for all µ 6= 1. Following the same procedure as in
[14], for most values ofµ∈ (0,1) one may fully characterize the invariant set using sym-
bolic dynamics in which then+ 1 symbols{0,1, ..,n} encode the order of the collisions
with the circlesΓi , and, since the circles are dispersing, the sequenceΓiΓi is always for-
bidden. The detailed phase space partition and the corresponding transition matrix depend
on µ in a non-trivial fashion; Forµ values that are close to1 we expect that the symbolic
sequences in the invariant set will be simple and consist of pairs of collisions of the form
ΓiΓ0 with i 6= 0 (for suchµvalues collisions between neighboring small circles,ΓiΓi±1 with
i, i±1 6= 0, will be subsequently reflected to infinity and will not belong to the invariant
set). On the other hand, for smallµ′s, sequences of the formΓiΓi+1Γi ..Γi+1Γ0 with pream-

ble of varying length of up to
[

π
α(µ)

]
collisions between the neighboring scatterersΓi and

Γi+1 are expected to emerge (so that in the limits ofµ→ 0 an infinite partition is needed).
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The study of the topological changes of the invariant set asα(µ) crosses the rational angles
π/m is interesting and may be conducted using the standard geometrical methods.

Fig. 3 demonstrates some of these corner effects forµ = 0.9 and severaln values.
It clearly shows that each additional corner leads to an additional unresolved region, a
property that is kept under the self-similar magnification. It also demonstrates that the
scattering functions are indeeddiscontinuousacrossΣc. Fixing n = 3 and µ = 0.9 we
supply further details regarding the scattering of an incoming ray of initial conditions; as
common we divide this ray to resolved (trajectories escaping after one or two reflections)
and unresolved (trajectories remaining close to the stable manifold of the unstable periodic
orbits) intervals (see Figure 3 and the right part of Figure 3.R is taken sufficiently large to
enclose the scatterer, hereafterR= 10(R+L)):

Interval T Collisions Resolved/UnresolvedColor
I1 2 Γ0ΓnSR R green
I j
2 ≥ 2 Γ0Γ j . . .( j = 1, . . . ,n) U blue

I3 2 Γ0Γ1SR R green
I4 1 Γ0SR R red
I j
5 ≥ 2 ΓnΓ0Γ j . . .( j = 1, . . . ,n) U blue

I6 2 ΓnΓ0SR R green
I7 1 ΓnSR R red

On the resolved intervalsI1,3,4,6,7 the scattering function is smooth and monotone, as
expected. The left part of Fig. 4 shows the geometry of the corresponding trajectories.
The unresolved intervalsI j

2,5 may be further subdivided ton unresolved regions according
to their next collision with a small circleΓi , and this process can be further repeated in
a self-similar manner, namely, for thisµ value a fully chaotic scattering is developed for
n≥ 2.

Since all the trapped trajectories atµ = 0.9 consist of pairsΓ0Γ j (with j 6= 0), the
magnification factor depends linearly on the curvature of the small circles (15) (see the
right part of Figure 4, where, forn≤ 10 and a fixedµ = 0.9 we obtain: log(M(n);µ =
0.9)≈ 1.3+ log(1/rn)). Moreover, the growth factor in the number of unresolved intervals
at this value ofµ is observed to ben. Thus, the fractal (box-counting) dimension of the
singularity set is estimated by

(16) F(n;µ= 0.9) =
log(n)

log(M(n),0.9)
≈ log(n)

1.3+ log(1/rn)
,

wherern is defined by (15). The dependence of this expression onµ and largern values is
yet to be explored; From (15) we conjecture that this fractal dimension approaches1 asn
is increased at a fixedµ value (a somewhat expected result - the boundary of the scatterer
becomes non-smooth in this limit). Whenµ crosses a bifurcation value (e.g. whenα(µ) =
π/m) the partition is altered and one may expect the growth factor to change as well.

3. SCATTERING BY STEEP POTENTIALS

3.1. Formulation. Consider the smooth two-dimensional Hamiltonian flow (1) with the
steep, billiard-like potentialW(q;ε) [38], that limits, asε → 0, to the hard wall scatterer
problem inD = Sinterior

R \D. For a fixedR, in analogy to (5), the return map by the smooth
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FIGURE 3. Scattering function for then-pearls scatterer,Φn(s) and the
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blue) for different values ofn.

flow to the sectionq∈ SR defines the corresponding scattering map of the smooth flow12:

Sε(R) : (sin,ϕin)→ (sε
out,ϕ

ε
out, t

ε
out).

For a fixedR, conditions I-IV of [38, 34] onW(q;ε) in D, that are included in the appendix
for completeness, suffice to insure that regular reflections ofS(R) are inherited bySε(R);
Roughly, we requireW(q;ε) to asymptotically vanish away from the scatterer, we require
that the level sets ofW(q;ε) approach smoothly the scatterer boundary and that the normal
force on these level sets is repelling so that the time spent in the boundary layer around each
of these scatterer is small and depends smoothly on the initial conditions. In particular, if

12The relation to the Poincare scattering map, defined in analogy to the quantumS-matrix (see [20]), may be
found, provided the potential decays sufficiently rapidly away from the scatterers, by using the impact coordinates.
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the potential is of the form:

(17) W(q;ε) =
N

∑
i=1

EiV

(
−Qi(q)

ε

)
.

whereQi(q)|q∈∂Di
= 0, Qi(q)|q∈D > 0, Ei ≥ E > 0, N is finite, and there exists anα > 0

such that the smooth functionV satisfies13:

(18) V(0)≥ 1,V(z) > 0, V(z) = OCr+1(
1
zα ) for zÀ 1,

then these conditions are satisfied. For example, theV may be taken to be the exponential

functionV = exp(−Q
ε ), the Gaussian functionV = exp(−Q2

ε2 ) or a power-lawV =
(

ε
Q

)α

potential with someα > 0.
We also note that conditions I-IV listed in the appendix imply that for allh∈ (0,E) and

sufficiently smallε (non-uniformly inh), the Hill’s region inSR, has the same topology as
D. Equivalently, letWmax(ε),Wmin(ε), Wsad(ε) andWmax−R(ε) be the sets of the potential
values at its local maxima, minima and saddle points inD, and its maximal value onSR,
respectively. Notice that

{Wmax(ε),Wmin(ε),Wsad(ε),Wmax−R(ε)}→ {{V(0)Ei},0,0,0} as ε→ 0.

so, there existsεmax(h) such that for anyε∈ (0,εmax(h)), the local maxima values,{Wmax(ε)},
are all larger thanh and all the other extremal points are belowh:

max{Wmin(ε),Wsad(ε),Wmax−R(ε)}< h < min{Wmax(ε)}, for all ε ∈ (0,εmax(h)).

Thus,εmax(h) serves as an upper bound forε values for which the current approach may
be applicable14 - for ε > εmax(h) the topology of the Hill’s region of the smooth flow is
different than the topology ofD, see Fig. 5.

13By OCr+1( 1
zα ) we mean that ther derivatives ofV decay at least as fast as the correspondingr +1 derivatives

of 1
zα .
14The auxiliary billiard, defined in [34] (see also the appendix), may be a useful concept for suchε values.
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3.2. Closeness theorems.For steep potentials satisfying conditions I-IV, the results of
[43, 38, 44, 34, 33, 35] regarding the relations between the billiard orbits inD and the
smooth flow in this domain are valid. In the appendix, we include several theoretical
results that follow directly from these works. In particular, we establish there that for such
potentials, if(sin(bin,ϕin;R),ϕin) is a non-trivial regular value (respectively,(sin,ϕin) ∈
Σtan has a finite number of collisions, one tangent and all the rest regular) of the billiard
scattering mapS, then there exists a nearby initial condition(sε

in,ϕ
ε
in), limiting to (sin,ϕin)

asε→ 0, such that the smooth scattering mapSε isCr close15 (respectively, isC0 close) to
S at (sin,ϕin). Furthermore, error estimates for the closeness of such smooth and billiard
trajectories are established. The most important corollary that follows from such results
is that for regular Sinai scatterers the smooth flow and the billiard scatterer have the same
scattering properties:

Corollary 1. Consider a Hamiltonian system with a potentialW(q,ε) satisfying Condition
I-IV in the domainD =Sinterior

R \D, whereD is a regular Sinai scattererso thatΛ is a non-
trivial uniformly hyperbolic invariant set ofB. Then, for sufficiently smallε, (1) has a
uniformly hyperbolic invariant setΛε belonging to the energy levelh ∈ (0,E) which is
topologically conjugate toΛ. Moreover, the local stable and unstable manifolds ofΛε are
Cr close to the local stable and unstable manifolds ofΛ.

Thus, we expect that under these conditions, the self-similar structure and the fractal
dimension of the scattering functions of the smooth flow will limit to the corresponding
structures of the billiard scatterers. These positive conclusions, that allow to approximate
smooth flows by billiards, are natural and are clearly observed in various simulations (e.g.
see appendix and Fig. 11 ). We do note though that without the machinery developed in
[43, 34] it is not obvious how to prove such results in the general case: the limit of the
smooth flow to the billiard flow is singular (e.g. the vector fields associated with these two
flows are not close even in theC1 topology).

For example, to study the problem of motion in then centers Coloumbic potentials, a
sophisticated and beautiful mathematical set up was developed to prove that in the high
energy limit the invariant set is hyperbolic provided the centers are not co-linear [22]. We
propose that by introducing another fictitious radius parameter as in [7], the above corollary
may be used to construct an additional proof of this result for the repelling case. Moreover,
the current tools may be employed to detect configurations and (high) energy levels at
which the invariant set in the repelling Coulombic case is non-hyperbolic.

4. BILLIARD SINGULARITIES AND STEEP POTENTIAL SCATTERING

The above persistence results are expected to fail for singular Sinai scatterers. Indeed,
in [43, 38, 44] it was established that tangent and corner singularities of the billiard lead
to stable orbits of the smooth flow. Thus, we expect that whenΛ has such singularities the
smooth flow and the billiard will have a substantial different scattering functions.

To demonstrate these effects we consider two families of Hamiltonian flows that limit
to the two geometrical settings introduced in sections 2.5.1 and 2.5.2. More precisely, we
consider two-parameter families of Hamiltonian flows (1):

(19) H =
p2

x

2
+

p2
y

2
+W(x,y;µ,ε),

15Namely, for small(s,ϕ), for sufficiently smallε, Sε(sε
in +s,ϕε

in +ϕ)−S(sin +s,ϕin +ϕ) and ther derivatives
of this map with respect to(s,ϕ) are small.
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whereε controls the steepness of the potential andµ controls the billiard geometry: in
the four-disc caseµ controls the distance of the diagonal orbit from tangency (see section
2.5.1), whereas for the pearly scatterersµ controls the angle between the neighboring small
discs. We choose the potentialW to be of the form (3):

(20) Wcorner(q;ε) = exp(−Q0(q)
ε

)+
1
n

n

∑
k=1

exp(−Qk(q)
ε

);

(21) Wtangent(q;ε) =
3

∑
k=0

exp(−Qk(q)
ε

),

whereQ j(q) (the pattern function of [34]) is the distance betweenq= (x,y)∈DHill (h,µ,ε)
and the circleΓ j , whereDHill (h,µ,ε) denotes the Hill’s region. The exponential potential
is chosen for convenience and may be replaced by any other steep billiard-like potential sat-
isfying assumption I-V. Theε values we consider are sufficiently small to insure that at the
energy levelh= 1/2 there are no abrupt bifurcations, namely the topology ofDHill (h,µ,ε),
is unchanged for theseε values, see Fig. 5.

According to [43, 38, 44], in each of these two geometries we expect to have wedges
in the (µ,ε) plane, emanating from isolated(µ∗,0) values, such that the smooth flow has
stable periodic orbit for all parameters in these wedges, see Fig. 6. In principle, the location
of the periodic orbit and the extent of the stability zone may be explicitly found using
the perturbation methods developed in these works. Utilizing the symmetric geometrical
construction simplifies the analysis and the computations as explained next.
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4.1. Stable symmetric periodic orbit. Let {γ(ψ) = 1√
2
(ψ,ψ)| ψ ∈ (ψc,L−R)} denote

the diagonal line for both geometries (see Fig. 2). The diagonalγ intersectsΓ0 in the
normal direction and has another point of intersectionγ(ψc) = 1√

2
(ψc,ψc). In the tangent

caseγ(ψc) is the point of the normal intersection ofγ with Γ1 (Fig. 2C), so, for allµ > 0,
γ corresponds to a regular hyperbolic orbit, whereas atµ = 0 it is tangent to the boundary.
In the one corner case (n = 2), γ(ψc) is the intersection point of the two small circles (Fig.
2A), thus, for allµandL > R+ψc, γ corresponds to a simple corner polygon of the billiard.

For the smooth Hamiltonian, in the symmetric case (i.e. for anyµ in the corner case
and forµ = K in the tangent case), the motion along the diagonal is invariant. It follows
that for sufficiently smallε, a periodic orbitγ(ψ,ε) is created. Its stability properties are
examined, using the numerical techniques16 developed in [33] and [35], by computing the
Monodromy matrix of the local Poincare map near this orbit. For the corner geometry, this
construction could be repeated for any even number of small circles, but here we study
only then = 2 case.

As predicted by [38][44], we indeed find that in both cases, for a fixed value ofµ there
exists an interval ofε values where the periodic orbitγ(ψ,µ,ε) is elliptic: the real part of
the two eigenvalues of the Poincaré map lie in the interval[−1,1], where1 corresponds to
the saddle-center bifurcation and(−1) to the period doubling bifurcation.

For the tangency case we takeK = 0.1 (i.e. the distance between the two small circles
is 0.2r) andµ = K = 0.1 so that the Hamiltonian is symmetric with respect to a reflection
about the diagonal. Fig. 7A shows that there are several intervals of stability appearing at
this µ value. In particular, the reference points atε = 0.5,0.258,0.03 present values that
are far from the stability wedges (so|Re(λ)| À 1), the valuesε = 0.44,0.152reside inside
the stability intervals, and the valuesε = 0.449,0.425 are close to the stability interval
boundaries. The phase portraits of the Poincare map nearγ(ψ,0.1,ε) are shown in Fig. 7B
- in these figures the stability islands are clearly observed.

For the corner case we takeµ = 0.9 (i.e. α ≈ 0.7π), where the invariant set does not
appear to have neighboring reflections (see section 2.5.2). Taking reference points above

16see also [35] for analytical results in a similar setting.
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the interval of stabilityε = 0.4698,0.1842, inside the intervalε = 0.1403, close to the
period doubling boundaryε = 0.1146and below the intervalε = 0.06654,0.01 we again
obtain numerically that in and near the stability wedges elliptic islands appear, whereas
away from the wedges, hyperbolic escape from the vicinity ofγ(ψ,µ,ε) is observed (see
Figure 8B).

4.2. Scattering by steep potentials near the billiard singularities.To demonstrate the
effects of the changes in the invariant set on the scattering functions, we compute these
for ε values below, inside, and above the stability wedges for both the corner and tan-
gent geometries. The results of these computations are shown in figures 9-11. Figure 9
shows the scattering function for the corner geometry withn = 2 andµ = 0.9 for the ε
values shown in Fig. 8. Detailed examination of the structure of these scattering functions
suggests the following scenario:

(1) The billiard scattering atµ = 0.9 is chaotic and its invariant set appears to be
uniformly hyperbolic: as shown on the right part of Fig. 11, the regions that
exhibit self-similar behavior are bounded away from the discontinuity point that
is associated with the corner. Thus, the billiard scattering function exhibits the
typical self-similar structure discussed in section 2.5.2.

(2) At ε = 0.01 the scattering function resembles the chaotic billiard scattering func-
tion and possesses the same type of self-similarity (Fig. 11 left). We propose that
this observation is closely related to corollary 1: since the scattering near the in-
variant set is regular hyperbolic andε is sufficiently small the invariant set persists,
and the self-similar structure of its local stable manifold persists as well. On the
other hand, in corollary 1 corners were not allowed. Indeed, since the diagonal
represents a possible mechanism for a recurrent motion near the corner (a valid
corner polygon, see [44]), the invariant set of the smooth flow has thisadditional
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FIGURE 9. Scattering functionΦ2(s;ε) andT2(s;ε) for the pearly case
with n = 2.

new component- the diagonal orbit, which, for this value ofε, is hyperbolic. We
see that the scattering function of the smooth flow has an additional unresolved
region of non-monotonicity associated with this diagonal orbit, and thus, we ex-
pect that the smooth flow will develop some non-hyperbolic behavior near this
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region. Furthermore, interactions between the two components of the invariant set
are expected to appear, as described next.

(3) At ε = 0.06654the non-monotone behavior associated with the corner disconti-
nuity appears to merge with the invariant set so one unresolved region disappears
(Fig. 10 right). While self-similarity is still observed, its structure certainly ap-
pears to be different then the billiard scattering function. Here, we see that the
bifurcations associated with the corner influence the structure of the invariant set.

(4) For ε = 0.1403(elliptic island) andε = 0.1146(period doubling) the residence
time functionsT(s;ε) have significant peaks (see Fig. 9) that are associated with
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sticky orbits. The scattering functions for these values ofε appear to have a fractal
dimension close to1: at the center of Fig. 10 we show that zooming-in in the
unresolved regions produces singular curves with wide spread singularities. Both
findings are typical to the scattering functions that appear when the invariant set
has KAM-tori [25].

(5) At ε = 0.1842, above the wedge of stability, the scattering is regular and resembles
the case of scattering by two discs (i.e.n= 1, see Fig. 13). We propose that at this
value ofε the level set near the corner is so smooth that the invariant set consists
of one hyperbolic periodic orbit as in the two discs case.

(6) For ε = 0.4698the invariant set for the energy levelh = 1/2 is empty and the
scattering functionΦ(s;ε) is smooth.

A similar behavior is observed in the tangent geometry, as shown in Fig. 12; while in-
creasingε leads to the merger of unresolved intervals, the fractal dimension of the scatter-
ing function at the stability wedges appears to approach one. This behavior is not obvious
from figure 12 that shows the global structure of the scattering function. Yet, zooming on
the unresolved intervals produces similar behavior to the one described above, namely self
similar structure which thins out asε is increased and is away from the stability wedges,
and singular structure with fractal dimension approaching one inside and close to the sta-
bility wedges.

5. SUMMARY AND CONCLUSIONS

The fractal dimension of the scattering function of a family of two-dimensional smooth
potentials depends sensitively on the order parameters, and, in general, is impossible to
predict. Indeed, the structure of the invariant set, which is usually of mixed nature, under-
goes many bifurcations as the parameters are varied, and thus cannot be fully characterized
by finite grammar symbolic sequences that are stable under parameter variations. We show
that by utilizing the singular billiard limit, the structure of the scattering function of smooth
steep potentials may be controlled. More precisely, we first observed that the relation be-
tween the invariant set of the smooth flow and of the billiard flow is explained by [38][44]
and [34]. Thus, we showed that when the invariant set of the billiards is uniformly hyper-
bolic and bounded away from singularities (e.g. in the case of regular Sinai scatterers),
the scattering function of the steep smooth flow approaches that of the billiard. On the
other hand, we showed that tangent periodic orbits of dispersing billiards and some of their
corner polygons give rise to islands of stability in the smooth flow at wedges of parameter
values that emanate from theµ-axis. In particular, a substantial increase in the fractal di-
mension of the scattering function appears for arbitrary smallε values. In other words, the
fractal dimension of the scattering function of the smooth flow can be controlled by tuning
the ratio between the steepness parameter and the billiard geometrical parameters. The
location of the wedges may be found numerically, as demonstrated here, or analytically, as
in [38, 44].

To elucidate and demonstrate these findings we studied scattering by two families of sin-
gular Sinai billiards: one with four disjoint discs and one withn overlapping discs (creating
n−1 corners) and additional disjoint disc. Scattering by such billiards are relatively well
understood: usually17, using geometrical methods, the invariant set may be fully character-
ized by employing symbolic dynamics with finite number of symbols and finite grammar

17for almost all parameter values.
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FIGURE 12. Scattering functionΦ(s;ε) for the tangent case atµ= 0.1.
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(finite partition) [13, 14]. When the parameters are varied, the invariant set may undergo
bifurcations, and the grammar changes at the bifurcation points. Since the invariant set is
hyperbolic, a bifurcation point necessarily corresponds to the appearance of singular orbits
in the invariant set. Most previous works on billiard scattering examined smooth convex
(mainly circular) obstacles, so the only singularities of the invariant set that were studied
were associated with tangencies. We demonstrated here that another source for such bi-
furcations are corners. Moreover, we showed that corners lead to discontinuous scattering
functions whereas tangencies lead to continuous, non-differentiable scattering functions
that are non-monotone only at the singular tangent points. For a specific geometrical set
up, we found an explicit formula relating the fractal dimension of the scattering function
to the number of corners of the scatterer, yet we propose that a more detailed analysis is
needed. Such an analysis may result in finding the signatures of different types of corners
on the scattering functions.

Studying the scattering functions of smooth steep potentials that approach singular Sinai
scatterers, the following scenario emerges; Letµ∗ denote a bifurcation value for which the
billiard invariant set has a singularity, so that a stability wedge in the(µ,ε) plane emanates
from (µ∗,0) (i.e. the smooth flow has stable periodic orbit for all parameters in this wedge)
[38, 44]. For a fixedµ value intersecting this wedge, there exist an interval ofε values,
[ε−(µ),ε+(µ)], at which the periodic orbit is stable. At one edge of this interval the pe-
riodic orbit undergoes a saddle-center bifurcation and at the other end a period doubling
bifurcation. Fixing such a ”generic”µ value close toµ∗, where atµ the billiard invariant set
is hyperbolic and non-singular, andε±(µ) are small, the following sequence of bifurcations
occurs asε is increased from0+:

(1) For a sufficiently smallε the hyperbolicity is preserved so the scattering function
is self-similar, and its fractal dimension approaches that of the billiard scattering
function atµ. Isolated discontinuities in the billiard scattering function may lead
to additional singular components in the scattering function of the smooth flow.

(2) Increasingε towards and through the interval[ε−(µ),ε+(µ)] leads to a sequence
of Hamiltonian bifurcations of the hyperbolic periodic orbits that produces elliptic
orbits. These bifurcations appear in the scattering function as the merge between
several unresolved regions. Forε values inside the wedges of stability, the signa-
ture of non-hyperbolic chaotic scattering shows up – the density of singularities is
large and does not appear to converge to a discrete set as further magnifications
are employed. We notice that the stability interval[ε−(µ),ε+(µ)] indicates the sta-
bility property of a single periodic orbit. At least near the period-doubling end of
this interval there exist a cascade of other periodic orbits that are stable, hence, the
non-hyperbolic interval is certainly larger than[ε−(µ),ε+(µ)].

(3) Further small increase ofε beyond the stability interval may lead to the appear-
ance of additional interval of hyperbolic scattering or to the appearance of another
interval of stability that stems from another stability wedge emanating from some
otherµ∗∗. Depending on how far the stability wedges are located from each other,
the scattering may be either non-hyperbolic (with some KAM-tori) or hyperbolic
with a fractal dimension that is smaller than the one appearing for the billiard
limit.

(4) A larger increase inε is problem specific and may involve some topological changes
of the corresponding Hill’s region. In our examples, it finally leads to the reduc-
tion of the invariant set to one unstable periodic orbit and then to the destruction
of the invariant set.
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The above description suggests that by choosing a one parameter family of steep poten-
tials (µ,ε(µ))→ (µ∗,0) such thatε(µ) ∈ (ε−(µ),ε+(µ)) for all µ values (see Fig. 6), the
fractal dimension of the corresponding scattering function is1 for arbitrary smallε. While
the fractal dimension of the billiard scattering is expected to be discontinuous acrossµ∗,
there is no evidence that it approaches one at these singularµ values. Thus, we conjecture
that the fractal dimension of the scattering function is continuous inε at 0+ for regularµ
values and is discontinuous inε at0+ at singularµ values.

Another interesting aspect of our results is the ability to numerically detect non-ergodic
behavior in steep potentials that limit to Sinai billiards on the torus, without the need of
phase space plots: embedding the torus in the plane, islands of stability are expected to
cause the fractal dimension of the scattering functions to approach one. Thus, the fractal
dimension of the scattering function may be used as a detection tool for locating (non
accelerating) islands of stability.

Finally, we note that [34] implies that scattering by multi-dimensional smooth steep po-
tentials may be similarly analyzed by studying scattering by the limiting multi-dimensional
billiards. Moreover, we have recently shown that in such situations, for arbitrary large
dimension, islands of stability may emerge [35]. The influence of such islands on the
multi-dimensional scattering functions are yet to be studied. More generally, in the multi-
dimensional case there are numerous types of singularities and bifurcations, and their ex-
pression in the scattering functions are yet to be found. The proposed methodology may
be useful in exploring these issues.
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APPENDIX A. CLOSENESS THEORY

Let us first recall the conditionsW(q;ε) needs to satisfy so that the regular trajectories
of the billiard will be shadowed by trajectories of the smooth flow [35] inD = Sinterior

R+∆ \D
(taking a fixed∆ > 0 insures that the sectionq∈SR consists of interior points of the billiard
flow in D):

Condition I. For any fixed (independent ofε) R and a compact regionK ⊂D the po-
tentialW(q;ε) diminishes along with all its derivatives asε→ 0:

(22) lim
ε→0

‖W(q;ε)|q∈K‖Cr+1 = 0.

The growth of the potential near the boundary for sufficiently smallε values is treated
as in [38]. We assume that the level sets ofW may be realized by somefinite function near
the boundary. Namely, letN(Γ∗) denote the fixed (independent ofε) neighborhood of the
corner set andN(Γi) denote the fixed neighborhood of the smooth boundary component
Γi ; defineÑi = N(Γi)\N(Γ∗) (we assume that̃Ni ∩ Ñj = /0 wheni 6= j). Assume that for all
smallε≥ 0 there existsa pattern function

Q(q;ε) :
[
i

Ñi → R1

which isCr+1 with respect toq in each of the neighborhoodsÑi and it depends continuously
on ε (in theCr+1-topology, so it has, along with all derivatives, a proper limit asε → 0).
Further assume that in each of the neighborhoodsÑi the following is fulfilled.
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Condition IIa. The billiard boundary is composed of level surfaces ofQ(q;0)18:

(23) Q(q;ε = 0)|q∈Γi∩Ñi
≡Qi = constant.

In the neighborhood̃Ni of the boundary componentΓi (soQ(q;ε) is close toQi), define
a barrier functionWi(Q;ε), which isCr+1 in Q, continuous inε and does not depend
explicitly onq, and assume that there existsε0 such that

Condition IIb. For all ε∈ (0,ε0] the potential level sets iñNi are identical to the pattern
function level sets and thus:

(24) W(q;ε)|q∈Ñi
≡Wi(Q(q;ε)−Qi ;ε),

and
Condition IIc. For all ε ∈ (0,ε0], ∇W does not vanish in the finite neighborhoods of

the boundary surfaces, Ñi , thus:

(25) ∇Q|q∈Ñi
6= 0

and for all Q(q;ε)|q∈Ñi

(26)
d

dQ
Wi(Q−Qi ;ε) 6= 0.

Now, the rapid growth of the potential across the boundary may be described in terms
of the barrier functions alone. Note that by (25), the pattern functionQ is monotone across
Γi∩Ñi , so eitherQ> Qi corresponds to the points nearΓi insideK andQ< Qi corresponds
to the outside, or vice versa. To fix the notation, we will adopt the first convention.

Condition III. There exists a constant (may be infinite)Ei > 0 such that asε→+0 the
barrier function increases from zero toEi across the boundaryΓi :

(27) lim
ε→+0

W (Q;ε) =
{

0, Q > Qi

Ei , Q < Qi
.

Let,

(28) E = min
i=1,..,n

Ei .

By (26), for smallε, Q could be considered as a function ofW andε near the boundary:
Q = Qi +Q i(W ;ε). Condition IV states that for smallε a finite change inW corresponds
to a small change inQ:

Condition IV. As ε → +0, for any fixedW 1 and W 2 such that0 < W1 < W2 < E ,
for each boundary componentΓi , the functionQ i(W ;ε) tends to zero uniformly on the
interval [W1,W2] along with all its(r +1) derivatives.

In [34] it was shown that not only can we establish that the regular hyperbolic orbits
of the billiard flow and the smooth flow are close, we can even find the order of the cor-
rection terms. To this aim, following [34], we define the bounds on the rate at which
W (Q) (respectivelyQ (W )) approach zero as the exterior part of the boundary layer (re-
spectively the interior part of the boundary layer) is approached. First we define the re-
gion Dε

int ; Choose someδ(ε)→ +0 such that for every boundary surfaceΓi , the surfaces

18This is theQ(x,y;0) defined in Section 2.1.
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Q(q;ε)|q∈Ñi
= Qi + δ(ε) together with∂N(Γ∗) bound a regionDε

int insideD in which the
potentialW tends to zero uniformly along with all its derivatives. Let

(29) m(r)(δ;ε) = sup
q∈Dε

int
1≤ l ≤ r +1

‖∂lV(q;ε)‖.

According to Conditions I and III,m(r) approaches zero asε → 0 for any fixedδ > 0,
therefore the same holds true for any choice of sufficiently slowly tending to zeroδ(ε).

We then define the auxiliary billiard domainDε: for eachi, take anyνi(ε)→ +0 such
that the function (inverse barrier)Q i(W ;ε) tends to zero along with all its derivatives,
uniformly for h≥W ≥ νi (recall thath < Ei for all i). We will use the notation

(30) M(r)
i (νi ;ε) = sup

νi ≤W ≤ h
0≤ l ≤ r +1

|Q (l)
i (W;ε)|.

Condition IV implies thatM(r) (the vector of allM(r)
i (νi ;ε)) approaches zero asε→ 0 for

any fixed vector ofν(ε) with νi > 0, hence the same holds true for any sufficiently slowly
tending to zeroν(ε), i.e. the requiredνi(ε) exist. Letηi(ε) = Q i(νi ;ε) and consider the
billiard in the domainDε which is bounded by the surfacesΓε

i : Q(q;ε)|q∈Ñi
= Qi +ηi(ε).

For sufficiently smallε, the surfaceΓε
i is a smooth surface which is close toΓi and is com-

pletely contained iñNi (its boundaries belong toN(Γ∗)). Indeed, recall that the boundaries
Γi of the original scattererD are given by the level setsQ(q;0) = Qi and thatηi(ε) is
small, so the new billiard is close to the original one. In particular, for regular reflections,
the billiard mapBε of the auxiliary billiard defined inDε tends to the original billiard map
B along with all its derivatives. It is easy to see that forε > 0, the domains thus obtained
obeyDε

int ⊂Dε ⊂DHill (h)⊂D, whereDHill denotes the Hill’s region, the region exterior
to the level setsW(q;ε) = h that surround the scatterers for sufficiently smallε.

In [34] it was established that the auxiliary billiard map,Bε, defined by the regionDε,
provides an excellent approximation to the smooth flow as long as singularities (tangen-
cies and corners) are avoided: away from a small boundary layer which can be precisely
estimated, it is close, together with itsr derivatives to the smooth flow and it may be used
to find the next order correction terms. Moreover, it was established that a global Poincare
mapΦε of the smooth flow may be defined on the cross-section

(31) Sε = {ρ = (q, p) : q∈ ∂Dε,〈p,n(q)〉> 0}
for regular orbits - orbits that intersect∂Dε at an angle bounded away from zero, and that
this map isCr -close to the auxiliary billiard mapBε. As the billiard mapBε is close to the
original billiard mapB, we obtain the closeness of the Poincaré mapΦε to B as well19. The
following theorem, follows directly from [34]:

Theorem 2. Consider a Hamiltonian system with a potentialW(q,ε) satisfying Condition
I-IV in the domainD =Sinterior

R \D, whereD is a Sinai scatterer. Chooseν(ε),δ(ε) such
that ν(ε),δ(ε),m(1)(ε),M(1)(ε)→ 0 asε→ 0. LetPb(t) denote a regular hyperbolic orbit
for the billiard flow in D. Then, for anyh ∈ (0,E), for sufficiently smallε, the smooth
Hamiltonian flow has a uniquely defined hyperbolic orbitPε(t) which staysO(ν +m(1) +
M(1))-close toPb(t) for all t outside of the collision intervals (finitely many of them in

19In [34], the mapBε (rather thanB) is used as the zeroth order approximation for an explicit asymptotic
expansions forΦε.
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any finite interval of time) of lengthO(|δ|+ M(1)). Away from the collision intervals,
the local Poincaŕe map nearPε is OCr (ν + m(r) + M(r))-close to the local Poincaré map
near Pb(t). In particular, the stable and unstable manifolds ofPε approximateOCr (ν +
m(r) +M(r))-closely the stable and unstable manifolds ofPb(t) on any compact, forward-
invariant or, respectively, backward-invariant piece bounded away from the singularity set
in the billiard’s phase space.

Proof. See theorem 5 of [34] where this theorem is proved for periodic orbits. Here we
simply use the note of [34] that the same results and proof apply to any regular hyperbolic
orbit, with the same error estimates as for the hyperbolic periodic orbit case. By regular
hyperbolic orbit, we mean that this orbit is bounded away from the singularity set.¤

Table 3.3.1 in [34] supplies the optimized error estimates and the boundary layer scal-
ings for typical potentials (power-laws, exponentials and Gaussian). For example, for the
exponential potential which is used here we find that by choosing a boundary layer width
of orderO(ε| lnε|) the auxiliary billiard regular trajectories areOCr ( r+2

√
ε) close to the cor-

responding smooth flow trajectories. Using the existence of a Poincare mapΦε that is
close to the billiard map away from tangent reflections, it is easy to establish that regular
hyperbolic sets appear also for the smooth flow as stated in corollary 1. Indeed, consider
the billiard partition which is used to constructΛ. By assumption on the regularity ofD,
each component is mapped to its image by a regular reflection (namely, there are no tangent
reflections). It follows that for sufficiently smallε, the image of the partition components
under the Poincare mapΦε, which is well defined for all orbits in these components since
they all have non-tangent reflections, is close, in theCr topology, to the image of the com-
ponents under the auxiliary billiard map (i.e. both the topology of the invariant set and
the hyperbolicty properties that are governed by the first derivatives of the billiard map are
inherited by the Poincare map of the smooth flow). It follows that the invariant sets ofΛ
andΛε are conjugated by the same symbolic dynamics and that their Lyapunov exponents
and cone structure areCr close as well.

Let us now examine how these results translate to the properties of the scattering map:

Corollary 2. Under the same conditions of theorem 2, if(sin(bin,ϕin;R),ϕin) is a non-
trivial regular value (respectively,(sin,ϕin) ∈ Σtan has a finite number of collisions, one
tangent and all the rest regular) of the billiard scattering mapS, then there exists a nearby
initial condition (sε

in,ϕ
ε
in), limiting to (sin,ϕin) as ε → 0, such that the smooth scattering

mapSε isCr close (respectively, isC0 close) toSat (sin,ϕin) . Furthermore, for the regular
case, away from the short collision intervals of lengthO(|δ|+M(1)), the orbit of(sε

in,ϕ
ε
in)

is O(ν+m(1) +M(1))-close to the corresponding orbit of the billiard flow.

Proof. Recall that the scatterers are assumed to be dispersing so if(sin,φin) is a regular
orbit it is necessarily hyperbolic. ¤

Fig. 13, in which only two circular obstacles are considered (as in [11]), demonstrates
these closeness results. In this case the invariant set has only one periodic orbit which is
hyperbolic for allε values, so the scattering is regular, and the smooth scattering function
Φ1(s;ε) limits to Φ1(s;ε = 0) smoothly on its smooth parts and continuously at its singular-
ity points. Figs. 12 and 3 demonstrate these results for sufficiently smallε (non-uniformly
in the distance from the singular Sinai scatterers).

Finally, we note that we did not analyze the far field behavior of the scattering functions,
behavior which depends on the rate of decay of the potential. In principle, to obtain similar
results uniformly inR, so that impact coordinates may be used in the smooth case, one
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FIGURE 13. Scattering function for a simple invariant set - one hyper-
bolic orbit (Φ1(s;ε) for the case of two disks, i.e.n = 1).

needs to impose sufficiently rapid decay rate of the potential at largeq values. We propose
that imposing the following condition should suffice:

Condition V. There exists anR, such that for all|q| ≥ R, there existsα > 0 (R andα
are independent ofε) and a functionA(ε) which limits to0 as ε → 0, such that for all
ε ∈ (0,εmax)

(32) |W(q;ε)| ≤ A(ε)
|q|α ,

in theCr+1 topology.
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Indeed, using this condition, it is easy to show by successive approximation method of
the integral form of the Hamiltonian flow (1) that the asymptotic velocities(pε

x(±∞), pε
y(±∞))

and thus the corresponding asymptotic directionsϕε
in,out may be defined onSR (see, e.g.

[44]). While (32) is not sufficient to guarantee that an asymptotic directionsin exists, it is
still possible to define asymptotic impact parameterηin as in [44]. Then the mapping from
S(R∞) whereR∞ ÀR to S(R) is smooth and the properties of the smooth scattering map at
S(R) are inherited by the smooth scattering map atS(R∞).

REFERENCES

[1] H. Aref, Stirring by chaotic advection, J. Fluid Mech.192(1984), 115–173.
[2] S. Bleher, C. Grebogi, E. Ott, and R. Brown,Fractal boundaries for exit in hamiltonian dynamics, Phys.

Rev. A38 (1988), 930–938.
[3] S. Bleher, E. Ott, and C. Grebogi,Routes to chaotic scattering, Phys. Rev. Lett.63 (1989), no. 9, 919–922.
[4] Siegfried Bleher, Celso Grebogi, and Edward Ott,Bifurcation to chaotic scattering, Phys. D46 (1990),

no. 1, 87–121.
[5] P. T. Boyd and S. L. W. McMillan,Chaotic scattering in the gravitational three-body problem, Chaos: An

Interdisciplinary Journal of Nonlinear Science3 (1993), no. 4, 507–523.
[6] W. Breymann, Z. Kov́acs, and T. T́el, Chaotic scattering in the presence of an external magnetic field, Phys.

Rev. E50 (1994), 1994–2006.
[7] Y-C. Chen,Anti-integrability in scattering billiards, Dyn. Syst.19 (2004), no. 2, 145–159.
[8] A. A. Chernikov and G. Schmidt,Chaotic scattering and acceleration of particles by waves, Chaos: An

Interdisciplinary Journal of Nonlinear Science3 (1993), no. 4, 525–528.
[9] Vincent Daniels, Michel Vallieres, and Jian-Min Yuan,Chaotic scattering on a double well: Periodic orbits,

symbolic dynamics, and scaling, Chaos: An Interdisciplinary Journal of Nonlinear Science3 (1993), no. 4,
475–485.

[10] , Chaotic scattering on a billiard, Phys. Rev. E57 (1997), no. 2, 1519–1531.
[11] M. Ding, C. Grebogi, E. Ott, and J. A. Yorke,Transition to chaotic scattering, Phys.Rev.A42 (1990),

7025–7040.
[12] J. R. Dorfman and P. Gaspard,Chaotic scattering theory of transport and reaction-rate coefficients, Phys.

Rev. E51 (1995), no. 1, 28–35.
[13] B. Eckhardt,Fractal properties of scattering singularities, Journal of Physics A: Mathematical and General

20 (1987), no. 17, 5971–5979.
[14] P. Gaspard and S.A. Rice,Scattering from a classically chaotic repellor, J. Chem. Phys.90 (1989), no. 4,

2225–2241.
[15] Kai T. Hansen and Achim Kohler,Chaotic scattering through potentials with rainbow singularities, Phys.

Rev. E54 (1996), no. 6, 6214–6225.
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