CHAOTIC SCATTERING BY STEEP POTENTIALS

A.RAPOPORT AND V. ROM-KEDAR

ABSTRACT. The singular billiard limit of smooth steep scattering potentials is utilized as

a skeleton for studying the properties of the scattering problem; It is shown that for one
class of chaotic scatterers, named here regular Sinai scatterers, the scattering properties
of the smooth system limit to those of the billiard. On the other hand, it is shown that
for other chaotic scatterers, that belong to the class of singular Sinai scatterers (scatterers
with singular bounded semi-orbits), the fractal dimension of the scattering function of
the smooth flow may be controlled, for arbitrary steep potentials, by changing the ratio
between the steepness parameter and a parameter which controls the billiards’ geometry.

1. INTRODUCTION

When a ray of inertial trajectories, parameterized by an input parameter, enters an inter-
action region in which the trajectories are modified by nonlinear forces, the ray is scattered
and leaves the region in different directions. The common characteristics observed upon
leaving the interaction region are thscape angland theresidence timeThese are called
scattering function®f the input parameter. Scattering problems arise in a wide spectrum
of models in physics and chemistry (see [29] and [30]): celestial mechanics [17, 31, 5, 18],
charged particle trajectories in electric and magnetic field [8, 6], hydrodynamical processes
[28, 1, 37], models of chemical reactions [32, 27, 14, 24] and scattering in atomic and nu-
clear physics [46, 47]. Typically, most of the trajectories stay in the interaction region for a
finite time. However, in an open Hamiltonian system there may exist a Lebesgue-measure-
zero set of input parameters producing trajectories that are trapped in the interaction re-
gion for an arbitrary long time. This measure-zero set gives rise to strong oscillations in
the scattering functions, influencing the nearby trajectories. If this set of singularities of
the scattering functiorl,, has a positive fractal dimensibrthen the scattering is called
chaotic, otherwise it is called regular.

First, it was noticed that when the invariant set associated with the scatterers has chaotic
components, the singularity setof trapped trajectories, which includes all initial con-
ditions belonging to the stable manifold of the chaotic invariant set, is fractal [13, 19].
Subsequently, the structure lofvas examined in diverse scattering problems. Hard wall
scatterers were studied in several two-dimensional geometries (three hard discs scatterers
[13, 14], three hard discs and a uniform magnetic field [6], billiard traps with two openings
[2, 36] and a wedged billiard with gravity [16, 5]). Most of these two-dimensional billiard
models were constructed so that the invariant set in the interaction region may be fully
characterized using symbolic dynamics, and thus particle escape rates and other scattering
characteristics may be found using the thermodynamic formalism [14][12].

Scattering by finite range axis-symmetric potential hills and by smooth potential hills
were studied in[19, 3,42, 4, 11, 29, 6, 15] whereas scattering by smooth attractive potential
wells were studied in [9, 10]. In many of these works it was noted that bifurcations leading

lusually one uses the box-counting or the uncertainty dimension [3, 4, 25].
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to structural changes in the invariant set change the fractal dimension of the scattering
functions. In [20] a unified framework for studying scattering in several smooth classical
and quantum systems is presented. In [21][22][23] scattering by sumattfactive om
repelling Coulombic potentials were studied in the high energy limit, where it was proved
that for generic placement of the centers the (chaotimfor3) scattering is hyperbolic

and its properties are universal, depending onlyoand can thus be explicitly analyzed.

In the more general smooth case (or for low energy values in the Coulombic case), one
cannot predict what would be the dependence of the invariant set on various parameters -
the phase space structure of such two-degrees of freedom non-integrable systems is usually
too complex: it admits mixed dynamical regimes, and numerous types of local and global
bifurcations. Three such bifurcations were previously discussed in the context of chaotic
scattering by smooth potentials - the local saddle-center and period doubling bifurcations
[4, 11][25], and the global abrupt bifurcation [3]. It was noted that the appearance of
islands of stability via these local bifurcations leads to a scattering functions with fractal
dimension one [4, 11][25]. On the other hand, it was noted that the abrupt bifurcation,
by which lowering the energy below a critical energy validleads to a sudden change

in the topology of the Hill's region (the region of allowed motion in the configuration
space [26]), creates, for circularly symmetric hills [3, 4] and for non-circular (elliptic)
hills [4, 41], a hyperbolic invariant set which is structurally stable, nafaég developed
chaotic scatterind3]. At the critical value of the energy the energy surface contains a
saddle point and its separatrices, so the appearance of abrupt bifurcations may be related
to the study of the generic (or symmetric) homoclinic bifurcations associated with such
structures [45, 39].

Summarizing, from the above studies the following classification of scattering problems
emerges; when the invariant set is simple (consists of a countable number of unstable peri-
odic orbits)regular scattering is produced and the fractal dimensioh wdnishes. When
the invariant set is hyperbolic and has a positive fractal dimengigperbolic chaotic
scattering is created and the fractal dimensioh f larger than zero and less than one.
Finally, when the invariant set, on-hyperboli@and contains KAM-tori (so it has positive
Lebesgue measura)pn-hyperbolic chaotiscattering is observed and the fractal dimen-
sion of | appears to be close th While for many billiard problems and finite range
potentials the invariant set may be explicitly constructed by geometrical means, for the
smooth case its structure is complex and is usually found via numerical simulations.

Here, we present a class of smcotton-trivial scattering problems that can be rigor-
ously analyzed; We consider the scattering of a ray of particles by a family of smooth
scattering steep potenthl(q; €), which, in the limite — 0, becomes the hard-wall billiard
scattereD = UN | D; :

2
1) H= @ +W(q;€).
) 0 geR?D
@ Wige) ;’o{ E qedD;

HereD; are compact closed domains called obstacles (of "helghti/herek; > 0 and may

be infinite),N is finite, andD is compact as well, namely the distance between the obstacles
is bounded. Following [43], the billiard-like potential famNWY(q; €) is assumed to satisfy
some natural conditions that are specified for completeness in the appendix. One may

2Hereafter, smooth mea@$t! potentials withr sufficiently large for KAM theory to apply near stable orbits
(so, we take > 3. In the examples = ).
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simply think of W as the sum of potential(z) that decay sufficiently rapidly with (e.qg.
exponentials, Gaussians or power-law potentials) dependizg-0Q;(q) /€, whereQ;(q)
denotes the signed smooth distance function@ga))|qcp2\p, > 0 and Qi(d)|gen; < 0)

e.g.:
N

@) W(ge) =Y % exp<
2

whereZ; represents here the strength of itieobstacle which is of infinite height, or
N 2

R - ~Qi(9)
(4) W(q;€) = i; E; exp( . )

whereE; represents here the height of fitle obstacle. Let
E=inf{E,E}.
I

€

Qi(Q)).

Our analysis applies to intermediate energy letels
O<h<<E.

For such energy levels, for sufficiently smaNalues, the particle moves essentially freely
between the obstacles and bounces of their boundary when it encounters them. In the
terminology of [3] we are always concerned here with energies below the critical energy
of the abrupt bifurcation, namely we do not consider here effects that are associated with
topological changes in the Hill's region. Intuitively, one would suspect that for such energy
levels and smalt values, the scattering by the billiard scatterers and by the smooth flow
will be very similar (see [3]). Using the recently developed analytical methods of [43, 38,
44, 34, 33, 35], in which similarities and differences betwe@limensionalif > 2) smooth
Hamiltonian flows with steep billiard like potentials and billiards flows were studied, we
show that the billiard limit is useful for analyzing the smooth behavior, yet their scattering
profiles may be substantially different.

Another issue which naturally arises from our analysis is the study of singularities in the
dynamics of the billiard scatterers and their influence on the scattering function. While tan-
gent singularities had appeared naturally in the dispersing scatterers context [13, 14][42],
the corner singularities, that arise when the scatterer boundary has corners, have been es-
sentially neglected (though see [16, 5]). We thus dedicated part of this paper to demonstrate
the influence of corners on the scattering function. The presented finding for this case are
preliminary and are of great interest: these results show how the smoothness properties of
a spec of dust may influences the scattering from a nearby large obstacle.

The paper is ordered as follows: in Section 2 we present the set up for the billiard scat-
tering problem, define regular and singular Sinai scatterers, and explain how tangencies
and corners influence their invariant set and the scattering functions. To demonstrate these
effects we introduce two families of singular Sinai billiard scatterers. In section 3 a para-
digm for studying chaotic scattering by smooth steep billiard-like potentials is presented.
There, we conclude that for regular Sinai scatterers the steep smooth flow and the limiting
billiard scatterer have similar chaotic scattering functions. Then, in Section 4, the scat-
tering by steep smooth potentials is investigated when the limiting billiards are singular,
having either a corner polygon or a tangent periodic orbit. Based upon the obtained numer-
ical results and the findings in [43, 38, 44, 34, 33, 35], it is demonstrated that the fractal
dimension of the scattering function of the steep smooth potential can be controlled in such
cases. In the appendix we include precise statements regarding the classes of potentials we
consider and the rigorous statements that apply to these.
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2. BILLIARD SCATTERING

2.1. Formulation: Consider a scattering billiard iR?; Let Sg C R? denote a circle, cen-
tered at the origin, of finite radiu’ parameterized bye [0, 2m) (with s= 0 corresponding
to the direction of the positive axis). The scatterdd, a collection of hard wall obstacles,
reside insideéSz. The obstacles are assumed to have piecewise sm@dthcomponents
(r > 3). We call the scatterdd a Sinai scattereif its boundary is composed of a finite num-
bern of C'*1—smoothscatteringcomponents’; that are either bounded away from each
other by some minimal distance or have pairwise intersections at angles that are bounded
away from zero (no cusps are allowed). We denot€ bthe corner set at which the scat-
terer boundary is not smooth. Some of our results apply to a general scatterer geometry,
yet, we will mostly consider Sinai scatterers.

A typical trajectory enterSg at somesy, with velocity (px, py) = v/2h(cosin, Sindin),
moves freely under the billiard flow, reflecting elastically from the obstacles ir%ide
until it exits Sg, at timetgyt, at some poingyy: with velocity in the directiordoy. Thus, the
R dependent scattering map:

(5) S(R) : (3n7¢in) — (SOUI7¢0Ut,tOUt)

may be naturally defined. Instead of using Bkdependent coordinatss, Sout it is tradi-
tional to define thér-independent impact parametéxs andbgy::

The scattering timé&,; dependence oR can then be explicitly defined as:
L(bjn,din;R
(7 tout(bin, in; R, h) = (Iz/%l:)
1
(8) = 7 <\/R2—bﬁ]+\/Rz—bgut—FLim(bimd)in))

_ Lint(bin, $in) | 2R 1
=0 o)

where L(bin, $in) denotes the length of the orbit Bk and Lint (bin, §in), Which is inde-
pendent ofR, roughly corresponds to the length of the trajectory in the interaction zone.
The non-trivial dependence tf;; on the initial data is thus containedlify: (bin, §in). The
scattering map may be written in terms of the impact coordinates so that only the travel
time depends oR:

(10) S(R) - (bin,din) — (Bout, Pout, tout)

and (6) supplies the change of coordinates betweeb/thend thes's. Define the corre-
sponding scattering functions @, ¢in) :

(11) (P(b), T (b)) = (dout(bin + b, §in), tout(bin + b, $in)), b € I(bin, din)

whereJ is either empty or a closed interval containing the origin such that forba#
J(bin, $in) the scattering is non-trivial: the initial conditidibi, + b, $in) does hit the scat-
terer. We say thatbin, ¢in) is non-trivial if J(bin, $in) is non-empty. Let

](bin7¢in) = {(b,¢)|b = bin +676 € J(bin7¢in),¢ = ¢in}7
so that® andT simply correspond to the first and third componens oR)| b, ¢;.)-

©)
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Let B denote the billiard map associated with the scatterers irgideet x parameter-
ize the scatterers boundariemnd® e (-7, 3] the corresponding incidence angle, and let
B(x,0) = (X’,0") whenever the image df(,8) under the billiard flow does not rea&.
Denote by=cormer the values ofg at which corners appear (parameterizirig. For any
regular non-trivialbin, ¢in ), we may write:

(12) (bout, q)out) = SutoBkoBk_10...0B10 Sin(bin, ¢in; R)
L(bin, $in;R
(13) tout = (\/;%),

whereB; = B(X;, 6;) correspond to the interior billiard map wher&sandS,: correspond
to the transition mapping frorg to the first/last reflection valugg, 01) and (X, 6k)
respectively. More generally, for any non-trivigd,, in) an interior orbit may be defined

(14) O(bin, din) = {Xi, 61 Heq-

Whenk s finite and all thek reflections are regular (9¢ ¢ Zcomer and®; # £3), (bin, ¢in)

is a regular value. Then, the composition (12) results in a smGbtmapping with a
smooth dependence of the scattering ttgagon initial conditions. Since for Sinai scatter-

ers the set of initial conditions resulting in singular orbits is of measure zero, it follows that
for Sinai scatterers, for almost all initial conditions, the nSip a smoothC" mapping. In
principle, there are exactly two sources for non-smooth behavi®r ofterior singularities

that are associated with singular reflections from the scatterers and trapping singularities
associated with the divergence of the number of interior refleckigns. k — ).

2.2. Interior billiard singularities. For Sinai scatterers, the only interior singularities
that may appeérare related to tangencies and to corners. Such singularities lead to non-
smooth behavior and discontinuities in the scattering functions as explained next:

2.2.1. Tangencies Assume the orbiO(bin, $in) is tangent to one of the scatterers at some
point (xt,6;) (so® € {—3,7}), and contains no other singularities. Thisis finite,

and for alli #t the reflections are regular. It follows th@d,, $in) belongs to a singular-

ity line Xiap Of initial conditions(b, ¢) that have a tangency at theterate near(xt, 6;).

A small neighborhood oEan is thus divided byzisn to two parts - on one side ob,,
trajectories reflect exactly times before escaping whereas on the other side trajectories
have onlyk — 1 reflections (see Fig. 1). Using the properties of the billiard map and
flow near tangencies [40], it follows that the scattering r8apC° (depends continuously

yet not differentially on(b,¢)) across such singularity lines (see Fig. 1). Such tangent
singularity lines may intersect - the transverse intersection point of sweh lines corre-
sponds to orbits with two tangencies. Notice that for regular orbits of the Sinai scatterers
the universal Sinai cone property holds - the cotigsd p > 0 are forward invariant, and
their orientation is preserved under even number of reflections and reversed under odd
number of reflections. This property implies that at regular valbgs¢in), the function

3if there areN disjoint scatterersy is a vector ofN circles and a counter which points to the current
component.

4For other scatterers, in addition to the possible appearance of non-hyperbolic invariant set, the transient
behavior near focussing components (having whispering orbits), cusps, and deflection points needs to be analyzed.

5The (non-generic) intersection pft 2 such lines corresponds to orbits with- 2 tangencies and is expected
to appear withp > 0 only in non-generic cases: symmetric cases or higher co-dimension settings ingwhich
parameter families of scatterers are considered.
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Sind)

FIGURE 1. Scattering map and the effect of tangencies on it. The image

of J(bin, ¢in) is not smooth and not monotone only at singular points,
like this tangency.

®(b; bin, din) is monotone whereas tangent values lead, in addition to the non-smoothness,
to non-monotonicity (see Fig. 1).

2.2.2. Corners. Assume the orbiO(bin, $in) reaches a corner at its end poixk, 6k),
and contains no other singularities. Namedyis finite, Xk € Zcormer, and for alli < k
the reflections are regular. Using the properties of the billiard map near regular corners
(not cusps) [40], it follows thathin, din) belongs to a line of singular values ofb,¢)
all ending up at this corner point aftereflections. Initial conditions starting arbitrarily
close to(bin, din) on one side of this singularity line hit the upper boundary component
near the corner, reflecting with some outgoing ar@ijleand initial condition on the other
side hit the lower boundary, reflecting with some outgoing agle Assume that the
resulting two outgoing orbits are regular and escape to infinity. Then, in general, all the
components of the scattering m&mare discontinuous acro%s. Yet, Sis well defined
and smooth on either side of this singularity curve (in partictgarhas a finite value for
all initial conditions that do not belong tB:). Other cases, for example, trapping of an
outgoing orbit by redirecting into a corner (creating a corner polygon) or trapping by some
components of the invariant set (creating a Corner- Hyperbolic Invariant Set - C-HIS -
connection), are expected to appear at meeting poirfs with additional components of
the singularity set. Listing all such generic constructions deserves a separate study.

We denote by = ZianU Z¢ the collection of singularity lines of initial conditions
(bin, $in) that contain a billiard tangency or end up in a billiard corner.
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2.3. Trapping Singularities. The singularities associated with the divergencé ¢ie.
whenk — o) are caused by orbits that asymptote the billiard’s invariant set, its corner
polygons or its C-HIS and HIS-C connections (it appears that only the first possibility was
previously considered); Denote Bythe generalized invariant set Bf which includes, in
addition to the proper invariant set, all these singular semi-orbits. Dendg bHye set of
initial conditions(byy, ¢in) that never escape, &o= « for these orbits an&is not defined

for them. The seX, contains all the initial conditions belonging to stable manifolds of the
hyperbolic component of the invariant sék, and, if A has non-hyperbolic components

or includes singular semi-orbits, it may contain other non-hyperbolic sticky orbits or orbits
that asymptote singularities.

2.4. Scattering functions and singularities for Sinai scatterers.Summarizing, lek de-
fine the set of all singular initial condition divin, §in) € (—R,R) x [0,211) :

2 = 2pit UZA.
Then, for Sinai scattererS, ® andT are smooth and monotone away from the singularity
lines composing. Generically, these singularity lines cross the segriéint, ¢in) trans-
versely. In the simplest casgy crossesy(bin, ¢in) at isolated poin& that correspond
to simple tangent escaping orbits or to simple corner semi-orbits. The scattering func-
tionsS @ andT are finite, continuous yet not smooth and non-monotone (respectively, are
discontinuous, and, depending on the corner properties aighpmay be monotone or
non-monotone, see [44] and Fig. 3), across such isolated intersectigiilsiphi,) with
the singularity lineXy, (respectively, with>.). Finally, near>, we will always have an
accumulation of singularities. Near the intersectiorf @in, $in) with the singularity lines
corresponding to initial conditions belonging to the stable manifold of the hyperbolic com-
ponent ofA\, Zx,, the scattering functions have self similar structure and a diverging
The behavior near other component£gfis yet to be studied.

2.5. Regular and Singular Sinai Scatterers. The Sinai scatterdd will be calledregular
if it has no corners and its invariant sktis bounded away from the singularity set so it is
uniformly hyperbolié. In such a case) is structurally stable - a sufficiently small smooth
deformation ofD does not change the symbolic dynamic description of the dynamics on
A nor its hyperbolic structure. The Sinai scatteresiisgular when /A contains any sin-
gular orbits (tangent orbits) or singular semi orbits (corner polygons or C-HIS and HIS-C
connections).

Most of the studies of chaotic scattering by billiards were performed for regular Sinai
scatterers [30]. Then, the hyperbolic structure\amplies that for mostbi,, din) € Za,
the image under sufficiently many reflections of a small neighborhoddlmf, ¢in) aligns
along the unstable manifold éf and thus inherits all it self-similar, fractal and hyperbolic
properties [14][42],[13],[29].

When the invariant se\ undergoes a bifurcation, the Sinai scatterer is singular, and
the above description is no longer valid; For example, in the classical three disc scatterer

bina family of segments, there may also appear some isolbig®in) values at which two of the singularity
lines and? (bin, $in) cross, namely a triple intersection appears.

"The classical example of three identical circular scatterers of radiestered on the vertices of an equilat-
eral triangle with edges of lengRis a regular Sinai scatterer f& > 3a: then the invariant set, is bounded
away from any tangent trajectory, ang is fully described by symbolic dynamics on 3 symbols with a simple
transition matrix [14].
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problem, when the equi-distance between the diRc$s decreased towards their radius

a, orbits inA undergo tangent bifurcatiofsa more detailed partition is needed, and the
transition matrix becomes more complex, till, in the limitRE a (which is not a Sinai
scatterer since cusps are created), infinite partition is achieved and the invariant set has a
full measure [14].

In section 3 we show that the smooth flow scattering properties can be predicted by
studying the simpler billiard scattering problem. To this aim, we first prove that steep
smooth flows limiting to regular Sinai scatterers have similar scattering properties to the
billiards’. On the other hand, we show that near singular Sinai scatterers the smooth scat-
tering is inherently different, yet predictable. To demonstrate the latter effect we choose
two geometrical settings, inspired by [44, 33, 35]: the first corresponds to a billiard geom-
etry with a tangency and the second to one with corners (see Figure 2). The choice of
symmetric configurations helps to pinpoint the source for the altered behavior - the singu-
larity leads to the emergence of symmetric stable periodic orbits in the invariant set of the
smooth flow.

2.5.1. The symmetric four discs scatterer —scatterers with tangent invariant orGis-
sider one large circl€g of radiusR which is centered afxg, yg) = (ﬁ, ﬁ), one inter-

mediate circld 1 of radiusr which is centered &ix{,y5) = (0,0), and2 small circlesI 53

of radiusr /2 arranged with centers along the line- —x+ 1 at a fixed distanc2Kr apart.
Denote byur the distance of ; from the diagonal, so that at= 0 the diagonal is tangent

to I, and afu = K the circled > 3 are placed symmetrically with respect to the line x

(see Figure 2C,D). The folidisc geometry corresponds to a regular Sinai billiard when
the discs are placed sufficiently far from each ottkenfdL are sufficiently larger than),

and sufficiently away from co-linear configurations (a line passing through any two discs is
at a large distance from any other disc, namély; O(1)). Here, we examine the behavior
near a singular Sinai scatterer configuration, Wrﬁ«_%r« 1, so the invariant set has close

to tangent trajectories (hereafter we R 10r,L = 13r,K = 0.1r,r = 1). At u= 0 the
invariant set has a tangent periodic orbit (Fig. 2D), whereas we expect that for most values
of u> O the invariant set is non singular, thus hyperbolic, producing self-similar structure
with positive fractal dimension which is less than one as in [14],[42],[13],[29] (see also the
bottom plot of Fig. 12).

2.5.2. The pearly scatterer — Scatterers with corneBonsider a large circlEq of radius

R which is centered apd,y5) = (%,%) andn small circlesly,...,I, of radiusry,
covering uniformly an interval of length= 1, seéFig. 2A,B. The radius, (o) is chosen
so that the angla between any two neighboring circléss independent of:

(15) o =m—arccogl—2(1—2)), rh= ! uelo,1].

214 (n—1)y/1—2)’

8Probably, for some parameter intervals, on a dense set of parameter values; See [43] for a numerical evidence
to the appearance of tangent homoclinic orbits on a dense set of parameters in a Sinai billiard.

SFor convenience we choose the four discs example and not the classical three discs example. Here, we can
examine the simple symmetric configurationuat K.

10The casen = 2 was generalized in a different manner to multi-dimensional geometries in [33][35].

1lhe angle between the tangent lines at the point of the intersection of the circles
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FIGURE 2. The geometries of the two singular Sinai scatterers. A) The
pearly billiard with one corner. B) The pearly billiard with— 1 cor-
ners: dashed (black) = 1, bold (blue)n = 2, dotted bold (redh = 3,
solid(greenn = 8. C) The symmetric four discs case£ K). D) The
non-symmetric tangent cage= 0.

The centers of the small circles lie on the lipe: —x+ -+ ( Ve ) Hereafter we fix
V2\ViPi1)

R=10r,L = r* (12+mu+sqrt(1—m?)),r = 1 and varyn andy.

This is a singular Sinai scatterer for any finitandu > 0. The geometrical deformation
of the scatterers depend smoothlyofor all p# 1. Following the same procedure as in
[14], for most values ofi € (0,1) one may fully characterize the invariant set using sym-
bolic dynamics in which the+ 1 symbols{0,1,..,n} encode the order of the collisions
with the circlesl’j, and, since the circles are dispersing, the sequErigeis always for-
bidden. The detailed phase space patrtition and the corresponding transition matrix depend
on pin a non-trivial fashion; Fop values that are close tbwe expect that the symbolic
sequences in the invariant set will be simple and consist of pairs of collisions of the form
I"il o with i # O (for suchp values collisions between neighboring small circlg§;..1 with
i,i =1 0, will be subsequently reflected to infinity and will not belong to the invariant
set). On the other hand, for smglk, sequences of the form i, 1.l 1Mo with pream-

ble of varying length of up t‘{WTL)] collisions between the neighboring scatterigrand

.1 are expected to emerge (so that in the limitgte® 0 an infinite partition is needed).
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The study of the topological changes of the invariant set(a$ crosses the rational angles
T/mis interesting and may be conducted using the standard geometrical methods.

Fig. 3 demonstrates some of these corner effectgifer0.9 and severah values.
It clearly shows that each additional corner leads to an additional unresolved region, a
property that is kept under the self-similar magnification. It also demonstrates that the
scattering functions are indeefiscontinuousacross>.. Fixing h= 3 andp = 0.9 we
supply further details regarding the scattering of an incoming ray of initial conditions; as
common we divide this ray to resolved (trajectories escaping after one or two reflections)
and unresolved (trajectories remaining close to the stable manifold of the unstable periodic
orbits) intervals (see Figure 3 and the right part of FigurB & taken sufficiently large to
enclose the scatterer, hereaffer 10(R+L)):

Interval| T Collisions Resolved/Unresolved Color
1 2 MNolMSg R green
13 | >2]| Folj...(j=1,...,n) U blue
I3 2 MolMiSg R green
|4 1 rosﬁ R red
12 >2 | Falolj...(j=1,...,n) U blue
lg 2 MlMoSg R green
I 1 MSg R red

On the resolved intervallg 3467 the scattering function is smooth and monotone, as
expected. The left part of Fig. 4 shows the geometry of the corresponding trajectories.
The unresolved intervalé‘5 may be further subdivided tounresolved regions according
to their next collision with a small circl€;, and this process can be further repeated in
a self-similar manner, namely, for thisvalue a fully chaotic scattering is developed for
n>2.

Since all the trapped trajectories jat= 0.9 consist of pairdol'j (with j # 0), the
magnification factor depends linearly on the curvature of the small circles (15) (see the
right part of Figure 4, where, fan < 10 and a fixedu = 0.9 we obtain:log(M(n); =
0.9) ~ 1.3+10og(1/rn)). Moreover, the growth factor in the number of unresolved intervals
at this value ofu is observed to be. Thus, the fractal (box-counting) dimension of the
singularity set is estimated by

e logn) log(n)
(16) P =0.9) = 1o M(m).09) ~ T3+ log(L/rn)’

wherer, is defined by (15). The dependence of this expressignamd largemn values is

yet to be explored; From (15) we conjecture that this fractal dimension approhelses

is increased at a fixgdvalue (a somewhat expected result - the boundary of the scatterer
becomes non-smooth in this limit). Whercrosses a bifurcation value (e.g. whefu) =

11/m) the partition is altered and one may expect the growth factor to change as well.

3. SCATTERING BY STEEP POTENTIALS

3.1. Formulation. Consider the smooth two-dimensional Hamiltonian flow (1) with the
steep, billiard-like potentialV(q; €) [38], that limits, ase — 0, to the hard wall scatterer
problem inD = te"°N\D. For a fixedR, in analogy to (5), the return map by the smooth
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blue) for different values of.

flow to the sectiory € S defines the corresponding scattering map of the smoottt4ow

Sg(R) : (Sn; §in) — (%uta ¢gutatgut)'

For afixedR, conditions I-IV of [38, 34] onW(q; €) in D, that are included in the appendix

for completeness, suffice to insure that regular reflectior¥Rf are inherited by&* (R);
Roughly, we requir&V/(q; €) to asymptotically vanish away from the scatterer, we require
that the level sets &l (q; €) approach smoothly the scatterer boundary and that the normal
force on these level sets is repelling so that the time spent in the boundary layer around each
of these scatterer is small and depends smoothly on the initial conditions. In particular, if

12The relation to the Poincare scattering map, defined in analogy to the qu&mhatrix (see [20]), may be
found, provided the potential decays sufficiently rapidly away from the scatterers, by using the impact coordinates.
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FIGURE 4. Left: The trajectories corresponding to the intervals of initial
conditionsl; (solid), I3 (dashed)|4 (bold), I (dotted),l7 (bold dashed).
Right: The magnification factor and the curvature of small circles as a
function ofnin log scale.

the potential is of the form:
N .
an wige) = 3 2v (-2 ).

whereQi(q)|qeon; = 0, Qi(Q)|gen > 0, i > E > 0, N is finite, and there exists an> 0
such that the smooth functidhsatisfied®:

(18) V(0)>1,V(2) >0, V(2) = oCHl(%) forz>> 1,

then these conditions are satisfied. For exampleytheay be taken to be the exponential

a
functionV = exp(—%), the Gaussian functiod = exp(—%) or a power-law/ = (%)
potential with somex > 0.

We also note that conditions I-1V listed in the appendix imply that fohall(0, £) and
sufficiently smalle (non-uniformly inh), the Hill's region inSg, has the same topology as
D. Equivalently, leMinax(€) Wiin(€), Wsad €) andWinax—r(€) be the sets of the potential
values at its local maxima, minima and saddle point®jrand its maximal value 08g,
respectively. Notice that

{Whax(€), Whin(€), Wsad(€) , Winax—r(€) } — {{V(0)Z},0,0,0} as &—0.

so, there existsmax(h) such that for ang € (0, emax(h)), the local maxima value$Wmax(€) }.
are all larger tham and all the other extremal points are below

max{Whin(€), Wsad €), Whax—r(€) } <h < min{Whax(€)}, forall e e (0,emax(h)).

Thus,emax(h) serves as an upper bound fovalues for which the current approach may
be applicabl&* - for £ > emax(h) the topology of the Hill’s region of the smooth flow is
different than the topology ab, see Fig. 5.

13By Ocr+1( 2%) we mean that thederivatives oW decay at least as fast as the corresponding derivatives
of .
147he auxiliary billiard, defined in [34] (see also the appendix), may be a useful concept fa caicies.
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3.2. Closeness theoremsFor steep potentials satisfying conditions I-1V, the results of
[43, 38, 44, 34, 33, 35] regarding the relations between the billiard orbif8 and the
smooth flow in this domain are valid. In the appendix, we include several theoretical
results that follow directly from these works. In particular, we establish there that for such
potentials, if(sn(bin, ®in; R),din) is @ non-trivial regular value (respectivelign, din) €

>tan has a finite number of collisions, one tangent and all the rest regular) of the billiard
scattering may®, then there exists a nearby initial conditits},, ¢5,), limiting to (Sn, Pin)

ase — 0, such that the smooth scattering nfips C' closé® (respectively, i< close) to

Sat (sn,$in). Furthermore, error estimates for the closeness of such smooth and billiard
trajectories are established. The most important corollary that follows from such results
is that for regular Sinai scatterers the smooth flow and the billiard scatterer have the same
scattering properties:

Corollary 1. Consider a Hamiltonian system with a potentié(q, €) satisfying Condition
I-IV in the domain® =S5t€"°"\ D, whereD is aregular Sinai scattereso thatA is a non-
trivial uniformly hyperbolic invariant set oB. Then, for sufficiently smal, (1) has a
uniformly hyperbolic invariant sef\* belonging to the energy levele (0, Z) which is

topologically conjugate té\. Moreover, the local stable and unstable manifoldé\bfare

C' close to the local stable and unstable manifold#\of

Thus, we expect that under these conditions, the self-similar structure and the fractal
dimension of the scattering functions of the smooth flow will limit to the corresponding
structures of the billiard scatterers. These positive conclusions, that allow to approximate
smooth flows by billiards, are natural and are clearly observed in various simulations (e.g.
see appendix and Fig. 11 ). We do note though that without the machinery developed in
[43, 34] it is not obvious how to prove such results in the general case: the limit of the
smooth flow to the billiard flow is singular (e.g. the vector fields associated with these two
flows are not close even in tig# topology).

For example, to study the problem of motion in theenters Coloumbic potentials, a
sophisticated and beautiful mathematical set up was developed to prove that in the high
energy limit the invariant set is hyperbolic provided the centers are not co-linear [22]. We
propose that by introducing another fictitious radius parameter as in [7], the above corollary
may be used to construct an additional proof of this result for the repelling case. Moreover,
the current tools may be employed to detect configurations and (high) energy levels at
which the invariant set in the repelling Coulombic case is hon-hyperbolic.

4. BILLIARD SINGULARITIES AND STEEP POTENTIAL SCATTERING

The above persistence results are expected to fail for singular Sinai scatterers. Indeed,
in [43, 38, 44] it was established that tangent and corner singularities of the billiard lead
to stable orbits of the smooth flow. Thus, we expect that whéas such singularities the
smooth flow and the billiard will have a substantial different scattering functions.

To demonstrate these effects we consider two families of Hamiltonian flows that limit
to the two geometrical settings introduced in sections 2.5.1 and 2.5.2. More precisely, we
consider two-parameter families of Hamiltonian flows (1):

2

2
(19) H= %+%+W(x,y; HE),

15Namely, for smalls, ¢), for sufficiently smalk, S (S5, +S, ¢F, +¢) — S(Sn +S, 0in + ¢) and ther derivatives
of this map with respect t(s, ¢) are small.
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FIGURE 5. The level set of the exponential potentialhat % fore =

0.3 € (0, smax(%) = 0.6) (left) ande = 0.75 > gmax(right). The dotted
circles correspond to the billiard limit.

whereg controls the steepness of the potential ancbntrols the billiard geometry: in
the four-disc casg controls the distance of the diagonal orbit from tangency (see section
2.5.1), whereas for the pearly scattenecontrols the angle between the neighboring small
discs. We choose the potenti#lto be of the form (3):

: Qo(@), , 1 Qk(a),.

20 Wcorner 1) = - - - )

(20) (@) = e == =)+ 1 5 exf(—~ =)
3 Q«(a)
21 angentd €) = - y
(21) WengendGi€) = 3 exB(~~( )

whereQj(q) (the pattern function of [34]) is the distance betwees (x,y) € Dy (h, 1, €)

and the circld™j, whereDyj (h,p,€) denotes the Hill's region. The exponential potential

is chosen for convenience and may be replaced by any other steep billiard-like potential sat-
isfying assumption I-V. The values we consider are sufficiently small to insure that at the
energy leveh = 1/2 there are no abrupt bifurcations, namely the topolog®gf; (h, W, €),

is unchanged for thesevalues, see Fig. 5.

According to [43, 38, 44], in each of these two geometries we expect to have wedges
in the (1, €) plane, emanating from isolatéd*,0) values, such that the smooth flow has
stable periodic orbit for all parameters in these wedges, see Fig. 6. In principle, the location
of the periodic orbit and the extent of the stability zone may be explicitly found using
the perturbation methods developed in these works. Utilizing the symmetric geometrical
construction simplifies the analysis and the computations as explained next.
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= = = period doubling
saddle—center

05

FIGURE 6. Wedges of stability for the smooth one-corner case: Q).
Dashed arrow shows the parameter values taken in figure 8. Solid ar-
row indicates a possible choice of a cufyge), €) along which stability
islands exist for arbitrary smadlvalues.

4.1. Stable symmetric periodic orbit. Let {y(y) = %(QJ,LIJ)\ Y € (Ye,L —R)} denote
the diagonal line for both geometries (see Fig. 2). The diagpmatersectd ¢ in the

normal direction and has another point of intersectigh.) = %(%, We). In the tangent

casey(.) is the point of the normal intersection pivith "1 (Fig. 2C), so, for allu> 0,
y corresponds to a regular hyperbolic orbit, wheregs-at0 it is tangent to the boundary.
In the one corner case & 2), y(Y.) is the intersection point of the two small circles (Fig.
2A), thus, for alluandL > R+ ¢, y corresponds to a simple corner polygon of the billiard.
For the smooth Hamiltonian, in the symmetric case (i.e. foraity the corner case
and forp = K in the tangent case), the motion along the diagonal is invariant. It follows
that for sufficiently smalk, a periodic orbity(, €) is created. Its stability properties are
examined, using the numerical technigtfeteveloped in [33] and [35], by computing the
Monodromy matrix of the local Poincare map near this orbit. For the corner geometry, this
construction could be repeated for any even number of small circles, but here we study
only then = 2 case.
As predicted by [38][44], we indeed find that in both cases, for a fixed valpealoére
exists an interval of values where the periodic orhyjty, y, €) is elliptic: the real part of
the two eigenvalues of the Poinéamap lie in the interval-1, 1], wherel corresponds to
the saddle-center bifurcation afd1) to the period doubling bifurcation.
For the tangency case we take= 0.1 (i.e. the distance between the two small circles
is 0.2r) andp = K = 0.1 so that the Hamiltonian is symmetric with respect to a reflection
about the diagonal. Fig. 7A shows that there are several intervals of stability appearing at
this p value. In particular, the reference pointscat 0.5,0.258 0.03 present values that
are far from the stability wedges (§8e(A)| > 1), the valueg = 0.44,0.152reside inside
the stability intervals, and the values= 0.449 0.425 are close to the stability interval
boundaries. The phase portraits of the Poincare mapy\¢ab.1, ) are shown in Fig. 7B
- in these figures the stability islands are clearly observed.
For the corner case we take= 0.9 (i.e. a ~ 0.7m), where the invariant set does not
appear to have neighboring reflections (see section 2.5.2). Taking reference points above

165ee also [35] for analytical results in a similar setting.
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FIGURE 7. A)The real part ofA for the tangent case= K = 0.1. B)
The phase spacgws. py for € values shown on A).

the interval of stabilitye = 0.46980.1842 inside the intervak = 0.1403 close to the
period doubling boundarg = 0.1146and below the interved = 0.066540.01 we again
obtain numerically that in and near the stability wedges elliptic islands appear, whereas
away from the wedges, hyperbolic escape from the vicinity(gf i, €) is observed (see
Figure 8B).

4.2. Scattering by steep potentials near the billiard singularities. To demonstrate the
effects of the changes in the invariant set on the scattering functions, we compute these
for € values below, inside, and above the stability wedges for both the corner and tan-
gent geometries. The results of these computations are shown in figures 9-11. Figure 9
shows the scattering function for the corner geometry with 2 andpu = 0.9 for the ¢

values shown in Fig. 8. Detailed examination of the structure of these scattering functions
suggests the following scenario:

(1) The billiard scattering aft = 0.9 is chaotic and its invariant set appears to be
uniformly hyperbolic: as shown on the right part of Fig. 11, the regions that
exhibit self-similar behavior are bounded away from the discontinuity point that
is associated with the corner. Thus, the billiard scattering function exhibits the
typical self-similar structure discussed in section 2.5.2.

(2) At € =0.01the scattering function resembles the chaotic billiard scattering func-
tion and possesses the same type of self-similarity (Fig. 11 left). We propose that
this observation is closely related to corollary 1: since the scattering near the in-
variant set is regular hyperbolic ands sufficiently small the invariant set persists,
and the self-similar structure of its local stable manifold persists as well. On the
other hand, in corollary 1 corners were not allowed. Indeed, since the diagonal
represents a possible mechanism for a recurrent motion near the corner (a valid
corner polygon, see [44]), the invariant set of the smooth flow hastidgional



Re(\)

CHAOTIC SCATTERING BY STEEP POTENTIALS

A)
20 T T T
O —
-40
_60 I
_80 .
Re(\)
*  €=0.4698
~100 K *  £=0.1842
€=0.1403
*  €=0.1146
*  €=0.06654
€=0.01
~120 ' ' '
0 0.2 0.4 0.6

17

B.)
£=0.4698
1
0
-1
15 2 25 3
£=0.1842
1
05
0
-0.5
15 2 25 3
£=0.1403
0.8
= os® 0
oy cco
0.7 TCESESSSS
0.6
1.4 15 6 17
£=0.1146
0.8
0.75 N
bl s-‘l‘ﬂ»‘.
0.7 --ﬁmga,,u
0.65 B
15 155 16 1.65
£=0.06654
1
,
0.5
0
1 15 25
£=0.01
1
05
0
-0.5
1 15 2 2.5

FIGURE 8. A) The real part ofA for the corner case = 2,u= 0.9. B)

The phase spacas/s. py for € values shown on A).




18

A.RAPOPORT AND V. ROM-KEDAR

D (sie) T(s;¢)

2 800
[ee]
3 \/
(Lo}
1 600
o
LI)

0 400

-1 -0.5 0 05 -1 -05 0 05

2 800

0.1842

11 600

j
(

0 400
-1 -0.5 0 05 -1 -05 0 05
2 800
)
3
A m/
21 600
T a’ !
0 400
-1 -0.5 0 05 -1 -05 0 05

Zk A/ 800

0.1146

|

€=0.06654
g Fr4]

0 400
-1 -0.5 0 0 -1 -05 0 05
2 800
o lﬁ: iﬁi j/
S t H
? 1 600
SIINEIN T
0 400
-1 -0.5 0 05 -1 -05 0 05
2
° .
s b K %
Q0
T *.’l\.‘? Voo

0
-1 -0.5 0 0.5

FIGURE 9. Scattering functionP,(s;€) andTx(s;€) for the pearly case
withn=2.

new componentthe diagonal orbit, which, for this value ef is hyperbolic. We

see that the scattering function of the smooth flow has an additional unresolved
region of non-monotonicity associated with this diagonal orbit, and thus, we ex-

pect that the smooth flow will develop some non-hyperbolic behavior near this



CHAOTIC SCATTERING BY STEEP POTENTIALS 19

£=0.1403 . £=0.06654
€=0.1842 zooml £=0.1146 zoom 1

1 W1 iV U ‘3\/

ag,

<

3
i
° 803 0.04 0.05 006 0.07 | 9 1
-0.17 —(}46 -0.15 —o\.g& 03 0.04 005 9 | 0.1 015 02 |
|
/ zoom 2 \ oom 2 \ oom 2
/ 2 T 2
e il _

b \ :
1 *; o \
\/\/ PIEY Y i \
\ o T 0
O ofsa o183 0152 -15 -10 /-5 0o |5 0.066 0.068 0.07 0,072 0.074 0.188 0.19 0.10: 1940.1,95
\ x197 |
zoom 3 A\ zoom3 om 3 | om 3 \
\ 2 \
2 \ 2 . 2
5 o 3 A
1
\

0 . \
/ - \ 3 o P :;~/‘\: : A/
I\ ANES . Loy :
1 7 | 3 i
Ve EWTe W
o /- \ 0 ‘ 0 L 0 g
-0.1536/-0.1535 0.1534 —0.1533 -2 1 o |1 0.0725 0.073 0.0735| 0194 0.1942 03944 0.1946
/ \ | \
/ zoom 4 \\ | 206m 4 \
2 2 2 2 T
/ . \ » Py oap " A M2 2y
e L 44N\ E ‘A & 2 M '
VR \VANSS TS - JoMew B W HU
1 : “ .
LRV T RIVE Tl
NV VS \/E i i SR
0 0 0 0
-0.15350.15350.15350.15350.1535 -4 -2 0 2 4 6 0.0735 0.0736 0.0736 01945 0.1945 0.1945 0.1945
s -5
x 10

FIGURE 10. Close-up of the unresolved region®j(s; €) near the right
unresolved region fag = 0.18420.14030.1146 0.06654

£=0.01
1
2 T T T Zo?m T T T £=0 (billiard)
zoom 1
2 T T T T T T T
ir 3

ol . . . . . . . .
03528 0.353 0.3532 0.3534 0.3536-0.3538 0.354 0.3542, 0.3544
Gom 2
2 . . - . . . -

0 L L L L L . L L
0.3539 0.3539 0.3539 0.3539 0.354 0.354 0354 0.354

0 L L L L L
0.327 0.3275 0.328 0.3285 0.329 0.3295 0.33
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region. Furthermore, interactions between the two components of the invariant set
are expected to appeatr, as described next.

(3) At € = 0.06654the non-monotone behavior associated with the corner disconti-
nuity appears to merge with the invariant set so one unresolved region disappears
(Fig. 10 right). While self-similarity is still observed, its structure certainly ap-
pears to be different then the billiard scattering function. Here, we see that the
bifurcations associated with the corner influence the structure of the invariant set.

(4) Fore = 0.1403 (elliptic island) ande = 0.1146 (period doubling) the residence
time functionsT (s;€) have significant peaks (see Fig. 9) that are associated with
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sticky orbits. The scattering functions for these valuesayfpear to have a fractal
dimension close td.: at the center of Fig. 10 we show that zooming-in in the
unresolved regions produces singular curves with wide spread singularities. Both
findings are typical to the scattering functions that appear when the invariant set
has KAM-tori [25].

(5) At e=0.1842 above the wedge of stability, the scattering is regular and resembles
the case of scattering by two discs (ire= 1, see Fig. 13). We propose that at this
value ofe the level set near the corner is so smooth that the invariant set consists
of one hyperbolic periodic orbit as in the two discs case.

(6) For e = 0.4698the invariant set for the energy leviel= 1/2 is empty and the
scattering functiorp(s; €) is smooth.

A similar behavior is observed in the tangent geometry, as shown in Fig. 12; while in-
creasing leads to the merger of unresolved intervals, the fractal dimension of the scatter-
ing function at the stability wedges appears to approach one. This behavior is not obvious
from figure 12 that shows the global structure of the scattering function. Yet, zooming on
the unresolved intervals produces similar behavior to the one described above, namely self
similar structure which thins out a&sis increased and is away from the stability wedges,
and singular structure with fractal dimension approaching one inside and close to the sta-
bility wedges.

5. SUMMARY AND CONCLUSIONS

The fractal dimension of the scattering function of a family of two-dimensional smooth
potentials depends sensitively on the order parameters, and, in general, is impossible to
predict. Indeed, the structure of the invariant set, which is usually of mixed nature, under-
goes many bifurcations as the parameters are varied, and thus cannot be fully characterized
by finite grammar symbolic sequences that are stable under parameter variations. We show
that by utilizing the singular billiard limit, the structure of the scattering function of smooth
steep potentials may be controlled. More precisely, we first observed that the relation be-
tween the invariant set of the smooth flow and of the billiard flow is explained by [38][44]
and [34]. Thus, we showed that when the invariant set of the billiards is uniformly hyper-
bolic and bounded away from singularities (e.g. in the case of regular Sinai scatterers),
the scattering function of the steep smooth flow approaches that of the billiard. On the
other hand, we showed that tangent periodic orbits of dispersing billiards and some of their
corner polygons give rise to islands of stability in the smooth flow at wedges of parameter
values that emanate from tleaxis. In particular, a substantial increase in the fractal di-
mension of the scattering function appears for arbitrary ssadlues. In other words, the
fractal dimension of the scattering function of the smooth flow can be controlled by tuning
the ratio between the steepness parameter and the billiard geometrical parameters. The
location of the wedges may be found numerically, as demonstrated here, or analytically, as
in [38, 44].

To elucidate and demonstrate these findings we studied scattering by two families of sin-
gular Sinai billiards: one with four disjoint discs and one witbverlapping discs (creating
n— 1 corners) and additional disjoint disc. Scattering by such billiards are relatively well
understood: usually, using geometrical methods, the invariant set may be fully character-
ized by employing symbolic dynamics with finite number of symbols and finite grammar

T7tor almost all parameter values.
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(finite partition) [13, 14]. When the parameters are varied, the invariant set may undergo
bifurcations, and the grammar changes at the bifurcation points. Since the invariant set is
hyperbolic, a bifurcation point necessarily corresponds to the appearance of singular orbits
in the invariant set. Most previous works on billiard scattering examined smooth convex
(mainly circular) obstacles, so the only singularities of the invariant set that were studied
were associated with tangencies. We demonstrated here that another source for such bi-
furcations are corners. Moreover, we showed that corners lead to discontinuous scattering
functions whereas tangencies lead to continuous, non-differentiable scattering functions
that are non-monotone only at the singular tangent points. For a specific geometrical set
up, we found an explicit formula relating the fractal dimension of the scattering function
to the number of corners of the scatterer, yet we propose that a more detailed analysis is
needed. Such an analysis may result in finding the signatures of different types of corners
on the scattering functions.

Studying the scattering functions of smooth steep potentials that approach singular Sinai
scatterers, the following scenario emerges;|felenote a bifurcation value for which the
billiard invariant set has a singularity, so that a stability wedge ir{he) plane emanates
from (u*,0) (i.e. the smooth flow has stable periodic orbit for all parameters in this wedge)
[38, 44]. For a fixedu value intersecting this wedge, there exist an intervad vélues,
[e7(W),e* (W], at which the periodic orbit is stable. At one edge of this interval the pe-
riodic orbit undergoes a saddle-center bifurcation and at the other end a period doubling
bifurcation. Fixing such a "generigivalue close tq*, where apithe billiard invariant set
is hyperbolic and non-singular, aed(|) are small, the following sequence of bifurcations
occurs ag is increased frond™:

(1) For a sufficiently smalt the hyperbolicity is preserved so the scattering function
is self-similar, and its fractal dimension approaches that of the billiard scattering
function atp. Isolated discontinuities in the billiard scattering function may lead
to additional singular components in the scattering function of the smooth flow.

(2) Increasinge towards and through the intervl (u), e (W)] leads to a sequence
of Hamiltonian bifurcations of the hyperbolic periodic orbits that produces elliptic
orbits. These bifurcations appear in the scattering function as the merge between
several unresolved regions. Rovalues inside the wedges of stability, the signa-
ture of non-hyperbolic chaotic scattering shows up — the density of singularities is
large and does not appear to converge to a discrete set as further magnifications
are employed. We notice that the stability interfeal(l), e (p)] indicates the sta-
bility property of a single periodic orbit. At least near the period-doubling end of
this interval there exist a cascade of other periodic orbits that are stable, hence, the
non-hyperbolic interval is certainly larger théaT (1), e* (p)].

(3) Further small increase afbeyond the stability interval may lead to the appear-
ance of additional interval of hyperbolic scattering or to the appearance of another
interval of stability that stems from another stability wedge emanating from some
otherp™. Depending on how far the stability wedges are located from each other,
the scattering may be either non-hyperbolic (with some KAM-tori) or hyperbolic
with a fractal dimension that is smaller than the one appearing for the billiard
limit.

(4) Alargerincrease imis problem specific and may involve some topological changes
of the corresponding Hill's region. In our examples, it finally leads to the reduc-
tion of the invariant set to one unstable periodic orbit and then to the destruction
of the invariant set.
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The above description suggests that by choosing a one parameter family of steep poten-
tials (W, e(p)) — (K*,0) such thate(p) € (€ (W), e (p)) for all pvalues (see Fig. 6), the
fractal dimension of the corresponding scattering functidbfar arbitrary smalk. While
the fractal dimension of the billiard scattering is expected to be discontinuous @€ross
there is no evidence that it approaches one at these singuédwes. Thus, we conjecture
that the fractal dimension of the scattering function is continuousanO™ for regularp
values and is discontinuousdrat 0" at singulan values.

Another interesting aspect of our results is the ability to numerically detect non-ergodic
behavior in steep potentials that limit to Sinai billiards on the torus, without the need of
phase space plots: embedding the torus in the plane, islands of stability are expected to
cause the fractal dimension of the scattering functions to approach one. Thus, the fractal
dimension of the scattering function may be used as a detection tool for locating (non
accelerating) islands of stability.

Finally, we note that [34] implies that scattering by multi-dimensional smooth steep po-
tentials may be similarly analyzed by studying scattering by the limiting multi-dimensional
billiards. Moreover, we have recently shown that in such situations, for arbitrary large
dimension, islands of stability may emerge [35]. The influence of such islands on the
multi-dimensional scattering functions are yet to be studied. More generally, in the multi-
dimensional case there are numerous types of singularities and bifurcations, and their ex-
pression in the scattering functions are yet to be found. The proposed methodology may
be useful in exploring these issues.
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APPENDIXA. CLOSENESS THEORY

Let us first recall the condition#/(q; €) needs to satisfy so that the regular trajectories
of the billiard will be shadowed by trajectories of the smooth flow [35§in= Satelion\ D
(taking a fixedA > Oinsures that the sectiane Sk consists of interior points of the billiard
flow in D):

Condition I. For any fixed (independent @) R and a compact regiok c D the po-
tential W(g; €) diminishes along with all its derivatives as— 0:

(22) lim [W(q; €)lqek lcr+1 = 0.

The growth of the potential near the boundary for sufficiently sma#lues is treated
as in [38]. We assume that the level set$\bimay be realized by sonfaite function near
the boundary. Namely, 1&4(I"*) denote the fixed (independent®fneighborhood of the
corner set andN(l";) denote the fixed neighborhood of the smooth boundary component
Ii; definelN; = N(T')\N(I™*) (we assume thdli NN = 0 wheni # j). Assume that for all
smalle > O there exista pattern function

Q(g;e) : Ul\] —R?

which isC"*1 with respect tajin each of the neighborhooti§ and it depends continuously
one (in theC'*1-topology, so it has, along with all derivatives, a proper limieas 0).
Further assume that in each of the neighborhdgdbke following is fulfilled.
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Condition lla. The billiard boundary is composed of level surfaceQ(; 0)18:
(23) Q(0;€ = 0)|ger, i, = Qi = constant

In the neighborhoodll; of the boundary componeft (soQ(q;¢) is close toQ;), define
a barrier function #}(Q; ), which isC™*! in Q, continuous ine and does not depend
explicitly on g, and assume that there exisgssuch that

Condition llb. Forall € € (0,¢q] the potential level sets iN; are identical to the pattern
function level sets and thus:

(24) W(G;€)|ger; = M(Q(ar€) — Qise),

and
Condition lic. For all & € (0,€&o], W does not vanish in the finite neighborhoods of
the boundary surfaced\;, thus:

(25) 0Qlger; # O
and for allQ(q; €) e

(26) diQ‘W(Q—Qi;s)?éQ

Now, the rapid growth of the potential across the boundary may be described in terms
of the barrier functions alone. Note that by (25), the pattern fun€@monotone across
riNN;, so eitheQ > Q corresponds to the points ndarinsideK andQ < Q; corresponds
to the outside, or vice versa. To fix the notation, we will adopt the first convention.

Condition Ill. There exists a constant (may be infinfe)> 0 such that ag — +0 the
barrier function increases from zero #® across the boundarly;:

: )0 Q>Q
27) slinlo WQie) = { E, Q<Q
Let,
(28) E = i:r?inﬁﬁ.

By (26), for smalle, Q could be considered as a function®f ande near the boundary:
Q=Q + Q;(W;¢). Condition IV states that for smadla finite change ir#/ corresponds
to a small change iQ:

Condition IV. Ase — +0, for any fixedW1 and W5 such thatd < M), < Wh < E,
for each boundary componeht, the functionQ;(W;€) tends to zero uniformly on the
interval [ W4, Mh] along with all its(r + 1) derivatives.

In [34] it was shown that not only can we establish that the regular hyperbolic orbits
of the billiard flow and the smooth flow are close, we can even find the order of the cor-
rection terms. To this aim, following [34], we define the bounds on the rate at which
W(Q) (respectivelyQ(W)) approach zero as the exterior part of the boundary layer (re-
spectively the interior part of the boundary layer) is approached. First we define the re-

gion Ds..; Choose somé(e) — +0 such that for every boundary surfacg the surfaces

18rhisis theQ(x,y; 0) defined in Section 2.1.
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Q(0;€)lqer, = Qi+ 8(€) together withdN (™) bound a regiorDf, insideD in which the
potentialW tends to zero uniformly along with all its derivatives. Let

(29) mO(@&e) = sup  [dV(ge)l.
a€ Dy
1<I<r+1

According to Conditions | and Ilim(") approaches zero as— 0 for any fixedd > 0,
therefore the same holds true for any choice of sufficiently slowly tending toX¥eyo

We then define the auxiliary billiard domaibt: for eachi, take any;(€) — +0 such
that the function (inverse barrier);(7/;€) tends to zero along with all its derivatives,
uniformly forh > W > v; (recall thath < Z; for all i). We will use the notation

(30) MOize) = sup QY we)l.
vi<W<h
0<I<r+1

Condition IV implies thaM (") (the vector of aIIMi(r)(vi;s)) approaches zero as— 0 for
any fixed vector ob(€) with v; > 0, hence the same holds true for any sufficiently slowly
tending to zeros(€), i.e. the required;(g) exist. Letn;(e) = Q;(vi;€) and consider the
billiard in the domainD* which is bounded by the surfacE§: Q(d;€)|qer, = Qi +Ni(€).
For sufficiently smalk, the surfacé{ is a smooth surface which is closeltpand is com-
pletely contained ifN; (its boundaries belong t4(r*)). Indeed, recall that the boundaries
I of the original scatteref) are given by the level se®(q;0) = Q; and thatn;(¢) is
small, so the new billiard is close to the original one. In particular, for regular reflections,
the billiard mapB¢ of the auxiliary billiard defined irD# tends to the original billiard map
B along with all its derivatives. It is easy to see thatfar 0, the domains thus obtained
obeyDE, C DF C Dy (h) C D, whereDyj; denotes the Hill's region, the region exterior
to the level set8V(q; €) = h that surround the scatterers for sufficiently snsall

In [34] it was established that the auxiliary billiard md35, defined by the regioms,
provides an excellent approximation to the smooth flow as long as singularities (tangen-
cies and corners) are avoided: away from a small boundary layer which can be precisely
estimated, it is close, together with itslerivatives to the smooth flow and it may be used
to find the next order correction terms. Moreover, it was established that a global Poincare
map®¢ of the smooth flow may be defined on the cross-section

(31) S ={p=(a,p) :q€ 9D (p,n(q)) > O}

for regular orbits - orbits that interse@¢b® at an angle bounded away from zero, and that
this map iC"-close to the auxiliary billiard mape. As the billiard magB¢ is close to the
original billiard mapB, we obtain the closeness of the Poirecarap®t to B as well®. The
following theorem, follows directly from [34]:

Theorem 2. Consider a Hamiltonian system with a potentiéiq, €) satisfying Condition
I-IV in the domainD =§5t€"°"\ D, whereD is a Sinai scatterer. Choosge),(€) such
thatv(g),5(g), M (g), M (g) — 0 ase — 0. LetP°(t) denote a regular hyperbolic orbit
for the billiard flow in . Then, for anyh € (0, E), for sufficiently smalk, the smooth
Hamiltonian flow has a uniquely defined hyperbolic ofitt) which staysO(v + m(V) 4
M®)-close toPP(t) for all t outside of the collision intervals (finitely many of them in

19 [34], the mapB? (rather tharB) is used as the zeroth order approximation for an explicit asymptotic
expansions fo?.
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any finite interval of time) of lengt®(|5| + M(™). Away from the collision intervals,

the local Poincaé map neaP® is O, (v +m(") +M())-close to the local Poincér map

near P°(t). In particular, the stable and unstable manifoldsRSf approximateQ,, (v +

m") +M())-closely the stable and unstable manifold$Bft) on any compact, forward-
invariant or, respectively, backward-invariant piece bounded away from the singularity set
in the billiard’s phase space.

Proof. See theorem 5 of [34] where this theorem is proved for periodic orbits. Here we
simply use the note of [34] that the same results and proof apply to any regular hyperbolic
orbit, with the same error estimates as for the hyperbolic periodic orbit case. By regular
hyperbolic orbit, we mean that this orbit is bounded away from the singularity set[]

Table 3.3.1 in [34] supplies the optimized error estimates and the boundary layer scal-
ings for typical potentials (power-laws, exponentials and Gaussian). For example, for the
exponential potential which is used here we find that by choosing a boundary layer width
of orderO(g|Ing|) the auxiliary billiard regular trajectories a@x ( "¥¢) close to the cor-
responding smooth flow trajectories. Using the existence of a Poincarebm#mat is
close to the billiard map away from tangent reflections, it is easy to establish that regular
hyperbolic sets appear also for the smooth flow as stated in corollary 1. Indeed, consider
the billiard partition which is used to construtt By assumption on the regularity ©f,
each component is mapped to its image by a regular reflection (hamely, there are no tangent
reflections). It follows that for sufficiently smadl the image of the partition components
under the Poincare map?, which is well defined for all orbits in these components since
they all have non-tangent reflections, is close, inGh&pology, to the image of the com-
ponents under the auxiliary billiard map (i.e. both the topology of the invariant set and
the hyperbolicty properties that are governed by the first derivatives of the billiard map are
inherited by the Poincare map of the smooth flow). It follows that the invariant séts of
andA¢® are conjugated by the same symbolic dynamics and that their Lyapunov exponents
and cone structure af& close as well.

Let us now examine how these results translate to the properties of the scattering map:

Corollary 2. Under the same conditions of theorem 2(sf, (bin, $in; R), din) is a non-
trivial regular value (respectively(sn,din) € Zian has a finite number of collisions, one
tangent and all the rest regular) of the billiard scattering mghen there exists a nearby
initial condition (s,, ¢f,), limiting to (sn, ¢in) as€ — 0, such that the smooth scattering
mapS isC' close (respectively, 8° close) toSat (si, din) . Furthermore, for the regular
case, away from the short collision intervals of len@fjd| + M), the orbit of (5, ¢¢,)

is O(v+m® + M®)-close to the corresponding orbit of the billiard flow.

Proof. Recall that the scatterers are assumed to be dispersing(s®, in) is a regular
orbit it is necessarily hyperbolic. |

Fig. 13, in which only two circular obstacles are considered (as in [11]), demonstrates
these closeness results. In this case the invariant set has only one periodic orbit which is
hyperbolic for alle values, so the scattering is regular, and the smooth scattering function
P4 (s;€) limits to ®4 (s; € = 0) smoothly on its smooth parts and continuously at its singular-
ity points. Figs. 12 and 3 demonstrate these results for sufficiently srradin-uniformly
in the distance from the singular Sinai scatterers).

Finally, we note that we did not analyze the far field behavior of the scattering functions,
behavior which depends on the rate of decay of the potential. In principle, to obtain similar
results uniformly inR, so that impact coordinates may be used in the smooth case, one
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FIGURE 13. Scattering function for a simple invariant set - one hyper-
bolic orbit (®1(s;€) for the case of two disks, i.e=1).

needs to impose sufficiently rapid decay rate of the potential at tpvgluies. We propose
that imposing the following condition should suffice:

Condition V. There exists afR, such that for alllg| > R, there existsx > 0 (R anda
are independent o) and a functionA(g) which limits to0 as e — 0, such that for all
€ € (0,€max)

(32) W(a;e)| <

in theC'*1 topology.
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Indeed, using this condition, it is easy to show by successive approximation method of

the integral form of the Hamiltonian flow (1) that the asymptotic velocitgg+), p§(+))
and thus the corresponding asymptotic directipfis,; may be defined oS (see, e.g.
[44]). While (32) is not sufficient to guarantee that an asymptotic direatjoexists, it is
still possible to define asymptotic impact parameggras in [44]. Then the mapping from

S(R.) whereR,, > Rto S(R) is smooth and the properties of the smooth scattering map at

S(R) are inherited by the smooth scattering mag#.).
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