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Abstract. In the last decades, renormalization group (RG) ideas have been applied

to describe universal properties of different routes to chaos (quasi-periodic, period

doubling or tripling, Siegel disk boundaries, etc.). Each of the RG theories leads to

universal scaling exponents which are related to the action of certain RG operators.

The goal of this announcement is to show that there is a principle that organizes

many of these scaling exponents. We give numerical evidence that the exponents

of different routes to chaos satisfy approximately some arithmetic relations. These

relations are determined by combinatorial properties of the route and become exact in

an appropriate limit.

PACS numbers: 05.45.Df 05.10.-a 05.10.Cc



Universal scalings of universal scaling exponents 2

1. Introduction

One of the most striking discoveries in dynamical systems in the last decades has been

the existence of scaling relations and self-similarity in the transition to chaotic behavior.

By now there is a plethora of transitions each with its own exponents. Many scaling

relations have been explained by renormalization group (RG) theory [1]. Our goal here

is to report on some organization among the scaling exponents of different transitions.

In many transitions, one can associate a combinatorics to the maps. For example,

in unimodal maps we can prescribe the kneading sequence or in quasiperiodic maps

the rotation number. There are natural operations among these combinatirics. For

example, one can use the ∗-operation among finite kneading sequences [2] or just the

juxtaposition among finite continued fraction expansions.

If we fix one of these combinatorics, we can consider successions of bifurcations

obtained by selecting mappings whose combinatorics is a power of the operation. For

example, the standard period doubling correspondes to considering (R∗)n and the

usual quasi-periodic route for the golden mean to take continued fractions Fn/Fn+1 =

[1, . . . , 1]. If we choose other sequence to raise to increasing powers, we obtain different

routes to chaos, which are often found to have scaling properties.

In this short paper we formulate the Principle of Approximate Combination of

Scaling Exponents (PACSE for short). PACSE asserts that the scaling exponents of

different transitions are related. PACSE can be formulated briefly as follows.

(A) If the combinatorics of two routes to chaos are joined, by the natural operation,

the scaling exponents of the joint combinatorics are approximated by the product of the

exponents of the two original routes.

(B) The approximate product rule in (A) becomes exact if the combination is repeated

infinitely many times.

(C) The convergence in part (B) is exponential.

In Sections 2–4, we make explicit the meaning of the combinatorics and their

combination rules in some examples. We also present numerical evidence for the points

(A), (B), (C) above. In Section 5 we indicate some theoretical ideas why PACSE should

be true.

2. PACSE for critical circle maps

2.1. Real- and parameter-space scaling exponents

We first describe the principle of approximate combination in the case of quasiperiodic

route to chaos.

In [3, 4, 5, 6] there is a description of phenomena in families of maps with a cubic

critical point and rotation number equal to the golden mean, σG := 1
2
(
√

5 − 1).

In this paper we consider more general quasi-periodic transitions. The different

quasi-periodic transitions are characterized by an irrational number ρ ∈ [0, 1) called
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the rotation number. The combinatorics of the transition is given by the continued

fraction expansion (CFE) of ρ [7]. We write 〈a1, a2, . . .〉 = 1/(a1 + 1/(a2 + · · ·)). We

consider numbers whose CEF is eventually periodic. Given finite sequences of natural

numbers A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq), we define their concatenation

AB = (a1, a2, . . . , ap, b1, b2, . . . , bq) and denote repeated concatenations by by exponents.

We will denote by 〈AB
∞〉 = 〈ABB . . .〉 the irrational number whose CFE is the

concatenation of A and infinitely many copies of B. To such a number, we can associate

a sequence of rational numbers which converge to it, Pn

Qn
= 〈AB

n〉.
As prototypes of circle maps we consider the two-parameter family

fω,β(x) = [x + ω + β g(x)] mod 1 , (1)

where g(x) is a smooth periodic function of period 1, i.e., sin 2πx. If f ′(x) becomes 0

at one point c (and, therefore, f−1 is not differentiable), we say that f is a critical map

and call c the critical point of f . Below fn(x) will stand for the nth iteration, i.e., to

the map f applied n times: fn(x) = f ◦ f ◦ · · · ◦ f(x).

For many rotation numbers of the form 〈AB
∞〉 the following behavior has been

observed.

(a) Parameter-space scaling. For a fixed value of the nonlinearity parameter β in

(1), let In(β) be a phase locking interval, i.e., the interval of values of the parameter

ω for which the circle map fω,β has rational rotation number Pn

Qn
= 〈AB

n〉. Then the

lengths of the phase locking intervals behave with n as

|In(β)| ≈ Cδ−n
B

,

where δB is a universal number, that is, a number that depends only on B (but

not on the head A of CFE 〈AB
∞〉) and on the order of the critical point c, but is

otherwise independent of the families fω,β (when the families range over a small enough

neighborhood). We will indicate the order of the critical point c with a superscript

on δB.

(b) Real-space scaling (scaling of recurrences). Let f be a critical circle map

with critical point c, and rotation number 〈AB
∞〉. Then the iterates fQn(c) approach c

geometrically:

|fQn(c) − c| ≈ Cα−n
B

,

where αB is a universal number (in the same sense as for δB). A superscript will denote

the order of criticality.

2.2. Formulation of PACSE for critical circle maps

For circle maps, PACSE is expressed as follows.

(i) For a fixed order of criticality of c, there exist constants C1 and C2 such that

C1 ≤
δAB

δA δB

≤ C2 , C1 ≤
αAB

αA αB

≤ C2 , (2)
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where C1 and C2 depend only on max(a1, . . . , ap, b1, . . . , bq).

(ii) For a fixed order of criticality of c and fixed A and B, the following limits exist:

lim
k→∞

δAkB

(δA)k δB

, lim
k→∞

αAkB

(αA)k αB

. (3)

(iii) For a fixed order of criticality of c and fixed A and B, the ratios Dk =
δ
AkB

(δA)kδB

and

Ak =
α

AkB

(αA)kαB

approach their limiting values D∞ and A∞ exponentially:

|Dk − D∞| ≈ Cξk , |Ak − A∞| ≈ Cηk , (4)

for some constants ξ and η.

The bounds (2) are quite surprising because αA and especially δA are huge when

the length of A is large.

2.3. Evidence for PACSE for critical circle maps

We studied the following families of circle maps.

• The “standard” cubic critical (C) family (0 ≤ K < 4
3
)

fC
K, ω(x) =

[

x + ω − 1
2π

(K sin 2πx + 1−K
2

sin 4πx)
]

mod 1 ,

where the coefficients are chosen in such a way that for every K in the interval (0, 4
3
),

fC
K, ω(x) = ω + 2π2(4−3K)

3
x3 + O(x5).

• The “standard” quintic critical (Q) family (1
2
≤ K < 3

2
)

fQ
K, ω(x) =

[

x + ω − 1
2π

(K sin 2πx + 9−8K
10

sin 4πx + 3K−4
15

sin 6πx)
]

mod 1 ,

where the coefficients are chosen in such a way that for every K in the interval (1
2
, 3

2
),

fQ
K, ω(x) = ω + 8π4(3−2K)

5
x5 + O(x7).

• The maps

f(x) = x + ω − b

2π

sin 2πx

a − cos 2πx
(5)

with (a, b) = (2, 1), for which f is cubic critical [f(x) = ω + 8
3
π2x3 + O(x5)]; and

(a, b) = (−2,−3), for which f is quintic critical [f(x) = ω + 4
45

π4x5 + O(x7)].

Since the maps (5) with a fixed order of critical point do not contain any free

parameter, we only computed the α exponents. This was to reassure us that the results

apply to functions with infinitely harmonics.

For more detail on algorithms for computing the critical values, we refer to [8],

which only considered the case of the golden mean. Table 1 presents our numerical

results for the scaling exponents δ and α for the cases of cubic and quintic critical maps.

In the quintic critical case we studied rotation numbers of the form 〈(1k2)∞〉, while in

the cubic critical case we did it for 〈(1k2)∞〉 and 〈(1k3)∞〉. The errors do not exceed 2

in the last digit. When we did not detect good enough convergence we just put “?”.

In Table 2 we present the ratios in (2) and (3), keeping only the number of digits
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Table 1. Scaling exponents of C and Q maps with rotation numbers 〈B∞〉, B = (1k2),

and of C maps with rotation numbers 〈B∞〉, B = (1k3).

Cubic critical, B = (1k2) Cubic critical, B = (1k3) Quintic critical, B = (1k2)

k δC
1k2

αC
1k2

δC
1k3

αC
1k3

δQ

1k2
αQ

1k2

0 6.79922516 1.58682670 13.760284 1.855060 7.7912246 1.3791501

1 17.66905276 1.9691355 31.623877 2.17411 21.573320 1.5985

2 52.04449 2.590589 98.32467 2.945324 68.620816 1.9392

3 145.425152 3.308635 269.104 3.71001 205.43 2.2997

4 414.51561 4.28301 774.04 4.836423 629.5 2.7536

5 1171.7123 5.5067 2179.3 6.19630 1910.6 3.2836

6 3323.73 7.1039 6193 8.0082 5820 3.9216

7 9413.7 9.14860 17530 10.3035 17710 4.6815

8 26681 11.7923 49700±20 13.287 53500 5.590

9 75590 15.1929 140800 17.117 160000 6.677

10 214000 19.579 400000±20000 22.061 500000 7.970

11 607900 25.230 ? 28.428 1600000 9.53

Table 2. Ratios of scaling exponents as in (2) for the data from Table 1.

Cubic critical, B = (1k2) Cubic critical, B = (1k3) Quintic critical, B = (1k2)

k
δC
1k2

(

δC
1

)k
δC
2

αC
1k2

(

αC
1

)k
αC

2

δC
1k3

(

δC
1

)k
δC
3

αC
1k3

(

αC
1

)k
αC

3

δQ

1k2
(

δQ
1

)k
δQ
2

αQ

1k2
(

αQ
1

)k
αQ

2

1 0.9170936095 0.96302277 0.81104983 0.909524 0.90981984 0.97084

2 0.9533118 0.9832182 0.8899277 0.9562160 0.95091785 0.98652

3 0.940068655 0.9745199 0.859552 0.934735 0.93539 0.97995

4 0.94562895 0.978997 0.87252 0.9456449 0.9418 0.98283

5 0.94332356 0.97682 0.86694 0.940214 0.93926 0.98170

6 0.944333 0.97793 0.8694 0.94302 0.9401 0.98206

7 0.94389 0.977369 0.8685 0.941586 0.9300 0.98199

8 0.94411 0.977671 0.869 0.94231 0.924 0.9822

9 0.9439 0.977519 0.869 0.94207 0.93 0.9827

10 0.943 0.97761 0.87 0.94226 0.94 0.9825

11 0.945 0.97765 ? 0.94229 1.0 0.984

such that the error does not exceed 2 in the last digit, unless otherwise specified. In

the computations we used the values of the scaling exponents δ1 and α1 for rotation

number golden mean, 〈1∞〉: δC
1 = 2.8336106559, αC

1 = 1.28857456, δQ
1 = 3.04337774,

αQ
1 = 1.193857.

As a numerical confirmation of the exponential convergence of the ratios Dk and

Ak (see (4)), we present in Figure 1 the differences |Dk −D∞| and |Ak −A∞| versus k.

Note that for large values of k the computation is very sensitive to numerical errors.

We also studied numerically the scaling exponents for maps with rotation numbers

that are eventually periodic (like 〈31∞〉, 〈321∞〉, 〈32(12)∞〉), and found that the values

of the scaling exponents depend only on the tail of the continued fraction expansions,
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Figure 1. Left: log-linear plot of the differences
∣

∣δC
1k2

/[(δC
1 )kδC

2 ] − 0.944
∣

∣;

right: log-linear plot of the differences
∣

∣[αC
1k2

/[(αC
1 )kαC

2 ] − 0.9776
∣

∣ (thin lines),
∣

∣[αC
1k3

/(αC
1 )kαC

3 ] − 0.9422
∣

∣ (thick lines), |[αQ

1k2
/(αQ

1 )kαQ
2 ]−0.9822| (dashed lines) vs. k

for k = 1, 2, . . . , 9.

as predicted by the general theory.

3. PACSE for area-preserving twist maps of the cylinder

We considered the standard (Taylor-Chirikov) family of area-preserving twist maps,

(x′, y′) = (x + y′, y + K
2π

sin 2πx) .

We refer to [9] for background on the standard maps and the algorithms used, although

[9] studies only one fixed rotation number. RG theory of such maps is developed in

[10, 6, 11, 12].

Given a rotation number 〈B∞〉, the critical events we studied are the existence of

tangencies between the stable and unstable manifolds of periodic orbits with rotation

number 〈Bn〉 and 〈Bn+1〉. Denoting the critical parameter values by Kn, and the area

of the lobes enclosed by the tangency by Ln, we observed the following scalings:

|Kn − K∞| ≈ C∆−n
B

, Ln ≈ Cλ−n
B

,

where ∆B and λB are universal numbers depending only on B. In Table 3 we summarize

our numerical results.

4. Other contexts for PACSE

In this section, we describe some other contexts for PACSE, making precise the meaning

of combinatorics. We have some numerical data, but will not present it to keep the

announcement short.
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Table 3. Scaling exponents of critical area-preserving twist maps with rotation

numbers 〈(21k)∞〉; we used that ∆1 = 1.62802, ∆2 = 2.4569, λ1 = 4.339143,

λ2 = 14.60.

k ∆21k λ21k

∆21k

∆2 (∆1)k

λ21k

λ2 (λ1)k

1 3.778 59.548 0.944 0.939

2 6.298 284.53 0.967 1.035

3 10.168 1141.44 0.959 0.956

4.1. Unimodal maps of the interval

Renormalization for unimodal maps is analogous to the renormalization for circle maps.

The kneading sequences play a role similar to the role of the rotation numbers. An

analogue of concatenation of continued fractions is the ∗-operation of [13, 14, 2, 15]. For

a given a kneading sequence K and a family fλ, it is standard to check for the parameters

λn characterized by the critical point being periodic and having an itinerary given by

K
∗n. In this case, one can obtain parameter- and real-space scaling exponents by

|λn − λ∞| ≈ Cδ−n
K

, f
|K∗n|
λn+1

(0) ≈ Cα−n
K

.

Again, δK, αK are universal numbers which depend on K. If K = K1∗K2, PACSE predicts

that

δK ≈ δK1
δK2

, αK ≈ αK1
αK2

.

4.2. Boundaries of Siegel disks

We recall that Siegel disks are the domains of stability around the origin of maps of the

complex plane of the form f(z) = az + O(z2) where a = exp(2πi〈B∞〉).
Siegel disks have been intensively studied from the renormalization point of view

since [16, 17]. It has been found that, in many cases, the boundaries of the Siegel

disks contain a critical point c. The renormalization theories are very similar to that of

rotations since multiplication by a is just a rotation, so that the combinatorics are

the same as those of the circle maps. We can define real-space scaling exponents

by fQn(c) − c ≈ Cα−n
B

and parameter-space scaling by searching for an such that

fQn(c) = c and verifying an−a ≈ Cδ−n
B

, where again αB and δB are universal but depend

on B. In contrast with the other cases mentioned above, the scaling exponents are

complex numbers. Nevertheless, for each level of renormalization, the scaling exponents

conjugate.

We have that

|δAB| ≈ |δA| |δB| , |αAB| ≈ |αA| |αB| .
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4.3. Rigid rotations and smooth diffeomorphisms of the circle

For rigid rotations of the circle PACSE follows from a detailed study [18] of the Gauss

map [7]. For circle diffeomorphisms PACSE for real-space scalings follows from the fact

that the map can be smoothly conjugated to a rigid rotation [19, 20].

4.4. p-renormalization

In [21], the authors considered some special kneading sequences K = RLLL . . . L, for

which they could compute rigorously the asymptotics of the scaling exponents. By

extending slightly their computation, one can verify PACSE both for parameter- and

real-space scaling [18].

4.5. Unimodal maps that are functions of |x|1+ε

The papers [22, 14] consider unimodal maps that are functions of |x|1+ε and construct

fixed points of renormalization. They present calculations of some fixed points and their

scaling exponents for ε small. By extending their calculations slightly, one can verify

[18] the first statement of PACSE up to leading order in ε. Indeed, some version of

PACSE for parameter-space scaling is mentioned in passing in [14, p. 276].

5. Conclusions

We established numerically some approximate relations between several scaling

exponents of different RGs.

The existence of this regularity seems to be good evidence that there is a global

RG applicable for maps of all rotations (or all kneading sequences). It seems possible

that PACSE can be considered evidence for certain dynamical behaviors of these global

renormalization operators. The paper [18] suggests that PACSE is evidence for the

existence of a horseshoe with 1-dimensional unstable manifolds which, furthermore,

satisfy some transversality conditions.

Global renormalizations have been proposed for Siegel discs [23, 24, 25, 26],

unimodal maps [27, 28], critical circle maps [29, 30]. We hope that this paper can

serve as a stimulus for the development of these theories.
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