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Abstract. In certain bodies, like the Council of the EU, the member
states have a voting weight which depends on the population of the re-
spective state. In this article we ask the question which voting weight
guarantees a ‘fair’ representation of the citizens in the union. The tra-
ditional answer, the square-root law by Penrose, is that the weight of a
state (more precisely: the voting power) should be proportional to the
square-root of the population of this state. The square root law is based
on the assumption that the voters in every state cast their vote inde-
pendently of each other. In this paper we concentrate on cases where
the independence assumption is not valid.

1. Introduction

All modern democracies rely on the idea of representation. A certain
body of representatives, a parliament for example, makes decisions on behalf
of the voters. In most parliaments each of its members represents roughly
the same number of people, namely the voters in his or her constituency.

There are other bodies in which the members represent different numbers
of voters. A prominent example is the Council of the European Union. Here
ministers of the member states represent the population of their respective
country. The number of people represented in the different states differs
from about 400,000 for Malta to more than 82 million for Germany. Due
to this fact the members of the Council have a certain number of votes
depending on the size of the country they represent, e.g. 3 votes for Malta,
29 votes for Germany. The votes of a country cannot be split, but have to
be cast as a block.1

Similar voting systems occur in various other systems, for example in
the Bundesrat, Germany’s state chamber of parliament and in the electoral
college in the USA.2

1The current voting system in the Council is based on the treaty of Nice. It has ad-
ditional components to the procedure described above, which are irrelevant in the present
context. For a description of this voting system and further references see e.g. [5].

2The electoral college is not exactly a heterogeneous voting system in the sense defined
below, but it is very close to it.
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Let us call such a system in which the members represent subsystems
(states) of different size a heterogeneous voting system. In the following we
will call the assembly of representatives in a heterogeneous voting system
the council, the sets of voters represented by the council members the states.

It is quite clear, that in a heterogeneous voting system a bigger state
(by population) should have at least as many votes in the council as a
smaller state. It may already be debatable whether the bigger states should
have strictly more votes than the smaller states (cf. the Senate in the US
constitution). And if yes, how much more votes the bigger state should get?

In this note we address the question: ‘What is a fair distribution of
power in a heterogeneous voting system?’

There exist various answers to this question, depending on the interpre-
tation of the words ‘fair’ and ‘power’.

The usual and quite reasonable way to formulate the question in an exact
way is to use the concept of power indices. One calls a heterogeneous voting
system fair if all voters in the member states have the same influence on
decisions of the council. By ‘same influence’ we mean that the power index
of each voter is the same regardless of her or his home state. If we choose
then Banzhaf power index to measure the influence of a voter we obtain the
celebrated Penrose’s square-root law (see e.g. [3]).

The square-root law states that the distribution of power in a hetero-
geneous voting system is fair if the power (index) of each council member
i is proportional to

√
Ni, where Ni is the population of the state which i

represents.
In their book [3] Felsenthal and Machover formulate a second square-

root law. There they base the notion of ‘fairness’ on the concept of majority
deficit.

The majority deficit is zero if the voters favoring the decision of the
council are the majority. If the voters favoring the decision of the council
are the minority then the majority deficit is the margin between the number
of voters objecting to the decision and those agreeing with it (see Def. 3.3.16
in [3]).

The notion of fairness we propose in this paper is closely related to
the concept of majority deficit. We will call a decision of the council in
agreement with the popular vote if the percentage of voters agreeing with a
proposal (popular vote) is as close as possible to the percentage of council
votes in favor of the proposal. (We will make this notion precise in the next
section.)

For both concepts we have to average over the possible voting configu-
rations. This is usually done by assuming that voters vote independently of
each other. The main purpose of this note is to investigate some (we believe
reasonable) models where voters do not vote independently.

We will discuss two voting models with voting behavior which is not
independent. The first model considers societies which have some kind of
‘common belief’. A typical situation of this kind is a strong religious group
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(or church) influencing the voting behavior of the voters. This model is
discussed in detail in Section 3.

In the other model voters tend to vote the same way ‘the majority does’.
This is a situation where voters do not want to be different from others. We
call this the mean field model referring to an analogous model from statistical
physics. See Section 5 for this model.

In fact, both models can be interpreted in terms of statistical physics.
Statistical physics considers (among many other things) magnetic systems.
The elementary magnet, called a spin, has two possible states which are ‘+1’
or ‘−1’ (spin up, spin down). This models voting ‘yes’ or ‘no’ in a voting
system. Physicists consider different kinds of interactions between the single
spins, one given through an exterior magnetic-field - corresponding to a
society with ‘a common belief’ - or through the tendency of the spins to
align - corresponding to the second voting model. We discuss the analogy
of voting models with spin systems in Section 4.

Our investigations of voting models with statistical dependence is much
inspired by the paper [7]. The first model is also based on the work by
Straffin [8].

It does not come as a surprise that we obtain a square-root law for a
model with independent voters, just as in the case considered by Felsenthal
and Machover ([3]).

For the mean field model we still get a square-root law for the best pos-
sible representation in the council as long as the mutual interaction between
voters is not too strong.

However as the coupling between voters exceeds a certain threshold, the
fairest representation in the council is no longer given by votes proportional
to
√

Ni but rather by votes proportional to Ni. This is a typical example of
a phase transition.

In the model of common belief the fair representation weight depends on
the strength of the common belief for large populations. If this strength is
independent of the population size fair representation is almost always given
by voting weights proportional to Ni, the square-root law occurring only in
marginal cases. However, if the common belief decreases with increasing
population one can get any power law behavior Ni

α for the optimal weight
as long as 1

2 ≤ α ≤ 1. In fact, statistical investigations on real life data
suggest that this might happen (see [4]).

We leave the mathematical proofs of our results for the appendices (Sec-
tions 7 to 9).

Acknowledgment: It is a pleasure to thank Hans-Jürgen Sommers,
Duisburg-Essen and Wojciech SÃlomczyński and Karol Życzkowski, Krakow
for valuable discussions.
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2. The general model

We consider N voters, denoted by 1, 2, . . . , N . Each of them may vote
‘yes’ or ‘no’; abstentions are not allowed. The vote of the voter i is denoted
by Xi.

The possible voting results are Xi = +1 representing ‘yes’ and Xi = −1
for ‘no’. We consider the quantity Xi as random, more precisely there is a
probability measure P on the space {−1, 1}N of possible voting results. This
measure will be specified later. The conventional assumption on P is that
the random quantities Xi are independent from each other, but we are not
making this assumption here.

Our interpretation of this model is as follows. The voters react on a
proposal in a rational way, that is to say: A voter does not roll a dice to
determine his or her voting behavior but he or she votes for or against a
given proposal according to his/her personal belief, knowledge, experience
etc. It is rather the proposal which is the source of randomness in this
system. We imagine the voting system is fed with propositions in a com-
pletely random way. This could be either a real source of proposals or just
a Gedankenexperiment to measure the behavior of the voting system.

The rationality of the voters implies that a voter who casts a ‘yes’ on
a certain proposition will necessarily vote ‘no’ on the diametrically opposed
proposition. Since we assume that the proposals are completely random any
proposal and its antithetic proposal must have the same probability. This
implies

P(Xi = 1) = P(Xi = −1) =
1
2

. (2.1)

More generally, we conclude that

P(Xi1 = ξ1, ..., Xir = ξr) = P(Xi1 = −ξ1, ..., Xir = −ξr) (2.2)

for any set i1..., ir of voters and any ξ1, ...ξr ∈ {−1, 1}.
We call the property (2.2) the symmetry of the voting system. Any

measure P satisfying (2.2) is called a voting measure.
The symmetry assumption (2.2) does not fix the probability measure P.

Only if we assume in addition that the Xi are statistically independent we
can conclude from (2.2) that

P(Xi1 = ξ1, ..., Xir = ξr) = (
1
2
)r . (2.3)

So far, we have not specified any decision rule for the voting system. The
above probabilistic setup is completely independent from the voting rule, a
fact which was emphasized in the work [7].

A simple majority rule for X1, . . . , XN is given by the decision rule:
Accept a proposal if

∑N
j=1 Xj > 0 and reject it otherwise.
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By a qualified majority rule we mean that at least a percentage q (called
the quota) of votes is required for the acceptance of a proposal. In term of
the Xj this means:

N∑

j=1

Xj ≥ (2q − 1)N. (2.4)

Indeed, it is not hard to see that the number of affirmative votes is given
by

1
2




N∑

j=1

Xj + N


 .

From this the assertion (2.4) follows.
In particular, the simple majority rule is obtained form (2.4) by choosing

q slightly bigger than 1
2 .

The sum
∑N

j=1 Xj gives the difference between the number of ‘yes’-votes
and the number of ‘no’-votes. We call the quantity

M(X) :=

∣∣∣∣∣∣

N∑

j=1

Xj

∣∣∣∣∣∣
(2.5)

the margin of the voting outcome X = (X1, . . . , XN ). It measures the
size of the majority with which the proposal is either accepted or rejected
in simple majority voting.

In qualified majority voting with quota q the corresponding quantity is
the q-margin Mq(X) given by:

Mq(X) :=

∣∣∣∣∣∣

N∑

j=1

Xj − (2q − 1)N

∣∣∣∣∣∣
. (2.6)

Now, we turn to voting in the council. We consider M states, the state
number ν having Nν voters. Consequently the total number of voters is
N =

∑
Nν . The vote of the voter i in state ν is denoted by Xνi, ν = 1, ..., M

and i = 1, ..., Nν .3

We suppose that each state government knows the opinion of (the ma-
jority of) the voters in that state and acts accordingly.4 That is to say: If
the majority of people in state ν supports a proposal, i.e. if

3We label the states using Greek characters and the voters within a state by Roman
characters.

4Although this is the central idea of representative democracy this idealization may
be a little naive in practice.
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Nν∑

i=1

Xνi > 0 (2.7)

then the representative of state ν will vote ‘yes’ in the council otherwise
he or she will vote ‘no’. If we set χ(x) = 1 for x > 0, χ(x) = −1 for x ≤ 0
the representative of state ν will vote

ξν = χ

(
Nν∑

i=1

Xνi

)
(2.8)

in the council. If the state ν has got a weight wν in the council the result
of voting in the council is given by:

M∑

ν=1

wν ξν =
M∑

ν=1

wν χ

(
Nν∑

i=1

Xνi

)
. (2.9)

Thus, the council’s decision is affirmative if
∑M

ν=1 wνξν is positive, pro-
vided the council votes according to simple majority rule.

The result of a popular vote in all countries ν = 1, . . . , N is

P =
M∑

ν=1

Nν∑

i=1

Xνi. (2.10)

We will call voting weights wν for the council fair or optimal, if the
council’s vote is as close as possible to the public votes. To make this
precise let us define

C =
M∑

ν=1

wν χ

(
Nν∑

i=1

Xνi

)
(2.11)

the result of the voting in the council. Both P and C are random quantities
which depend on the random variables Xνi. So, we may consider the mean
square distance M between P and C, i.e. denoting the expectation over the
random quantities by E, we have

M = E
(
(P − C)2

)
(2.12)

= E




{
M∑

ν=1

Nν∑

i=1

Xνi −
M∑

ν=1

wνχ
( Nν∑

i=1

Xνi

)
}2


 . (2.13)

In a democratic system the decision of the council should be as close
as possible to the popular vote, hence we call a system of weights fair or
optimal if M=M (w1, . . . , wM ) is minimal among all possible values of wν .

In the following we suppose that the random variables Xνi and Xµj are
independent for ν 6= µ. This means that voters in different states are not
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correlated. We do not assume at the moment that two voters from the same
state vote independently of each other.

We have the following result:

Theorem 2.1. Fair voting in the council is obtained for the values

wν =
1
2
E

(∣∣∣∣∣
Nν∑

i=1

Xνi

∣∣∣∣∣

)

=
1
2
E

(
M(Xν1, . . . , XνNν )

)
.

This result can be viewed as an extension of Penrose’s square-root law to
the situation of correlated voters. We will see below that it gives wν ∼

√
Nν

for independent voters.
Theorem 2.1 has a very easy - we hope convincing - interpretation: wν

is the expected margin of the voting result in state ν. In other words, it
gives the expected number of people in state ν that agree with the voting of
ν in their council minus those that disagree, i.e. the net number of voters
which the council member of ν actually represents.

If we choose any multiple cw1, . . . , cwNν (c > 0) of the weights w1, . . . .wNν

we obtain the same voting system as the one defined by w1, . . . , wn. In this
sense the weight wν of Theorem 2.1 are not unique, but the voting system
is.

We will prove Theorem 2.1 in section 7. We remark that the proof
requires the symmetry assumption (2.2) and the independence of voters
from different states.

The next step is to compute the expected margin E(M(Xν)), at least
asymptotically for large number of voters Nν . This quantity depends on the
correlation structure between the voters in state ν. As we will see, different
correlations between voters give very different results for E(M(Xν)) and
hence for the optimal weight wν .

We begin with the classical case of independent voters.

Theorem 2.2. If the voters in state ν cast their votes independently of
each other then

E

(∣∣∣∣∣
Nν∑

i=1

Xνi

∣∣∣∣∣

)
∼ c

√
Nν (2.14)

for large Nν .

Thus, we recover the square-root law as we expected. (For the square-
root law see Felsenthal and Machover [3].) In terms of power indices the
independence assumption is associated to the Banzhaf power index. There-
fore, it is not surprising that also the Banzhaf index leads to a square-root
rule.
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It is questionable (as we know from the work of Gelman, Katz and
Bafumi [4]) whether the independent voters model is valid in many real-life
voting systems. This is one of the reasons to extend the model as we do in
the present paper.

3. The ‘common belief ’ model

In this section we consider a model we dub the ‘common belief model’.
It generalizes a voting measure introduced and investigated by Straffin [8]
in connection with the Shapley-Shubik power index.

We imagine that inside a certain society there is a strong common belief
which may for example be due to a powerful religious group, a generally
accepted political ideology or a strong tradition. This causes a tendency to
a creation of strong majorities in a certain type of questions. For example, in
a country with a strong catholic majority there may be a strongly correlated
view about abortion among voters, but, may be, not about speed limits on
highways. One might have a similar effect if a person dominates the public
or private media or both.

We model such a situation by introducing a random variable Z which
reflects the ‘common belief’ on the subject at hand. Z = +1 means that all
voters agree to accept the given proposal, Z = −1 means that all voters will
reject it. The random variable Z is allowed to take any value in [−1, 1]. If
Z = 0 there is no common belief on the proposal. If Z > 0 there is some
common belief favoring the proposal which is weak if Z is close to 0 and
strong if it is close to 1. The probability distribution of Z is denoted by µ,
hence

µ([a, b]) = P(Z ∈ [a, b]). (3.1)

Z has to satisfy a symmetry condition similar to (2.1), namely

P(Z ∈ [a, b]) = P(Z ∈ [−b,−a]), (3.2)

i.e.
µ([a, b]) = µ([−b,−a]) . (3.3)

In our model the ‘common belief’ variable Z influences the probability
that a voter i votes ±1. Given Z = ζ ∈ [−1, 1], then the conditional
probability that Xi = 1 given Z = ζ is given by:

P(Xi = 1|Z = ζ) =
1
2
(ζ + 1) = pζ . (3.4)

Thus, if ζ = 1 any voter i will vote ”+1” with probability 1, if ζ = −1
he or she will vote ”+1” with probability 0 and if ζ = 0 then i votes with
probability one half in favor or against the proposal.

We denote by Ps the probability measure on {−1, +1}N with Ps(Xi =
1) = s and Ps(Xi = −1) = 1− s, which makes the Xi independent. We also
denote by Es the expectation with respect to Ps. Note that the probability
pζ = 1

2(1 + ζ) in (3.4) is chosen in such a way that Epζ
(Xi) = ζ. Thus the
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value of the ‘common belief’ variable Z gives the expected voting result of
a single voter.

For given Z = ζ we assume the Xi to be independent. Thus we have

P(X1 = ξ1, ..., XN = ξN ) =
∫ ( N∏

1

Ppζ
(Xi = ξi)

)
dµ(ζ) . (3.5)

The measure P in (3.5) depends on the probability distribution µ, hence
we sometimes denote it by Pµ.

The probability measure Pµ defined in (3.5) satisfies the symmetry con-
dition (2.2) due to assumption (3.3). Of course, Pµ defines a whole class
of examples, each (symmetric) probability measure µ on [−1, 1] defines its
unique Pµ. If we choose µ = δ0, i.e. µ([a, b]) = 1 if a ≤ 0 ≤ b and = 0
otherwise, we obtain independent random variables Xi as discussed in the
final part of section 2. Indeed, µ = δ0 means that Z = 0, consequently
(3.5) defines independent random variables. Observe, that this is the only
measure for which Z assumes a fixed value (µ has to be symmetric!).

Another interesting example is the case when µ is the uniform distribu-
tion on [−1, 1]. This case was considered by Straffin [8]. He observed that
this model is intimately connected with the Shapley-Shubik power index.

To apply the ‘common belief’ model to a given heterogeneous voting
model we have to specify the measure µ, of course. In fact, this measure
may change from state to state. In particular, one may argue that larger
states tend to have a less homogeneous population and hence a weaker in-
fluence of a religious or political group. For example, we will later discuss a
model modifying Straffin’s example where µ(dz) = 1

2χ[−1,1](z)dz to a mea-
sure where µN depends on the population N , namely

µN (dz) =
1

2aN
χ[−aN ,aN ](z)dz (3.6)

with parameters 0 < aN ≤ 1. In particular, if we have aN → 0 as N →∞,
the parameter aN reflects the tendency of a common belief to decrease with
a growing population.

Except for the trivial case µ = δ0 the random variables Xi are never
independent under Pµ. This can be seen from the covariance

〈Xi, Xj〉µ := Eµ(XiXj)− Eµ(Xi)Eµ(Xj) . (3.7)

In (3.7) as well as in the following Eµ denotes expectation with respect
to Pµ. In fact, the random variables Xi are always positively correlated:

Theorem 3.1. For i 6= j we have

〈Xi, Xj〉µ =
∫

ζ2 dµ(ζ) . (3.8)

The quantity
∫

ζ2 dµ(ζ) is called the second moment of the measure µ.
Since the first moment

∫
ζ dµ(ζ) vanishes due to (3.3) the second moment

equals the variance of µ. Observe that
∫

ζ2dµ(ζ) = 0 implies µ = δ0. For
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independent random variables 〈Xi, Xj〉µ = 0, so (3.8) implies that Xi, Xj

depend on each other unless µ = δ0.
To investigate the impact of the common belief measure µ on the ideal

weight in a heterogeneous voting model we have to compute the quantity

Eµ(|
∑

Xi|) (3.9)

for a measure µ and population N (at least for large N). This is done with
the help of the following Theorem:

Theorem 3.2.
∣∣∣ Eµ( 1

N |∑N
1 Xi |)−

∫ |ζ| dµ(ζ)
∣∣∣ ≤ 1√

N
.

If we choose µ 6= δ0 independent of the (population of the) state Theorem
3.2 implies that the optimal weight in the council is proportional to N (rather
than

√
N). This is true in particular for the original Straffin model [8] where

µn ≡ 1
2χ[−1,1](z) dz which corresponds to the Shapley-Shubik power index.

Let us define µ =
∫ |ζ| dµ(ζ). If µ = µN depends on the population then

EµN (|
∑

Xi|) ∼ N µN

as long as µN ≥ 1
N1/2−ε for some ε > 0. However, if µN ≤ 1

N1/2−ε , then

EµN (|
∑

Xi|) ∼
√

N .

Hence, in this case we rediscover a square-root law.
We summarize:

Theorem 3.3. Let us suppose that a state with a population of size N
is characterized by a common belief measure µN , then:

(1) If

µN =
∫
|ζ| dµN (ζ) ≥ C

1
N1/2−ε

(3.10)

for some ε > 0 and for all large N then the optimal weight wN is
given by:

wN = Eµ( |
N∑

1

Xi| ) ∼ N µN . (3.11)

(2) If

µN =
∫
|ζ| dµN (ζ) ≤ C

1
N1/2+ε

(3.12)

then for large N the optimal weight wN is given by:

wN = Eµ( |
N∑

1

Xi| ) ∼
√

N. (3.13)
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Example: In our Straffin-type example (3.6) we choose:

µN (dz) =
1

2aN
χ[−an,an](z)dz, (3.14)

then:

µN =
1
2

aN . (3.15)

So, if aN ≤ C 1√
N

we have wN ∼ √
N , otherwise we obtain wN ∼ aN .

Remarks 3.4.
(1) Our result shows that in all cases the optimal weight wN satisfies

C
√

N ≤ wN ≤ N . It is a matter of empirical studies to determine
which measure µN is appropriate to the given voting system. Any of
the empirical results of [4] can be modeled by an appropriate choice
of µN .

(2) It is only µN that enters the formulae (3.11) and (3.13), no other
information about µN is relevant. The quantities µN can be esti-
mated using Theorem 3.2. In fact, more is true by the following
result.

Theorem 3.5. Let PN be the distribution of 1
N

∑N
i=1 Xi under the mea-

sure PµN then the sequence of measures PN − µN converges weakly to 0.

Note that the distribution of 1
N

∑N
i=1 Xi is the distribution of the vot-

ing results of the voter i = 1, . . . , N . This is the quantity considered in
[4]. Theorem 3.5 tells us that the distribution of the voting results for large
number N of voters is approximately equal to the distribution µN . In par-
ticular, for independent voting the voting result is always extremely tight
while for Straffin’s example any voting result has the same probability, i.e.
it is equally likely that a proposal gets 99% or 53% of the votes.

4. Voting models as spin systems

Spin systems are a central topic in statistical physics. They model mag-
netic phenomena. The spin variables, usually denoted by σi, may take values
in the set {−1, +1} with +1 and −1 meaning ‘spin up’ and ‘spin down’ re-
spectively. The spin variables model the elementary magnets of the material
(say the electrons or nuclei in a solid). The index i runs over an index set I
which represents the set of elementary magnets.

The probability measure underlying the statistical structure is typically
given by a ‘Gibbs measure’ defined through an energy functional E({σi}i∈I).
E gives the energy of a given spin configuration {σi}. The system prefers
configurations with low energy E . This is expressed in the Gibbs measure
given by:

q ({σi}i∈I) = e−βE({σi}i∈I). (4.1)
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The parameter β plays the role of an inverse temperature. q defines a
(counting) measure on the space Ω = {−1,+1}I . It has total mass:

Z =
∑

{σi}∈Ω

e−βE({σi}i∈I). (4.2)

Hence we obtain a probability measure by setting:

p ({σi}i∈I) = Z−1 e−βE({σi}i∈I). (4.3)
Of course, we may interpret any spin system as a voting system with

voting measure p, as long as E({σi}) = E({−σi}), and vice versa.
In particular, independent voting corresponds to the energy functional

E({σi}) ≡ 1.
Moreover, the ‘common belief’ model is given by an energy function:

E({σi}) = − h
∑

i

σi (4.4)

where h is a random variable connected to the variable Z defined in (3.1)
by:

1
2

(1 + Z) =
eh

eh + e−h
. (4.5)

Note, that when h runs from −∞ to ∞ in (4.5) the value of Z runs
monotonously from −1 to +1.

In term of statistical physics the above model is a system without spin-
spin interaction in a random but constant magnetic field. The inverse tem-
perature β which we encountered in equation (4.1) is superfluous in this
model as it can be absorbed in the magnetic field strength h.

5. The voters’ interaction model

In the common belief model the voting behavior of each voter is in-
fluenced by a preassigned, a priori given common belief variable Z. The
correlation between the voters results from the general voting tendency de-
scribed by the value of Z.

In this section we investigate a model with a direct interaction between
the voters, namely a tendency of the voters to vote in agreement with each
other. In the view of statistical physics this corresponds to the tendency
of magnets to align. There are various models in statistical physics to pre-
scribe such a situation. Presumably the best known one is the Ising model
where neighboring spins interact in the prescribed ways. The neighborhood
structure is most of the time given by a lattice (e.g. Zd). The results on the
system depend strongly on that neighborhood structure, in the case of the
lattice Zd on the dimension d.

In the following we consider another, in fact easier model where no
such assumption on the local ‘neighborhood’ structure has to be made. We
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consider it an advantage of the model that very little of the microscopic
correlation structure of a specific voting system enters into the model.

The model we are going to consider is known in statistical mechanics
as the Curie-Weiss model or the mean field model (see e.g. [9], [1] or [2]).
In this model a given voter (spin) interacts with all the other voters (resp.
spins) in a way which makes it more likely for the voters (spins) to agree than
to disagree. This is expressed through an energy function E which is smaller
if voters agree. Note that a small energy for a given voting configuration
(relative to the other configurations) leads to a high probability of that
configuration relative to the others through formula (4.3).

The energy E for a given voting outcome {Xi}i=1...N is given in the mean
field model by:

E({Xi}
)

= − J

N − 1

∑
i,j
i6=j

XiXj . (5.1)

Here J is a non negative number called the coupling constant. According
to (5.1) the energy contribution of a single voter Xi is expressed through
the averaged voting result of all other voters 1

N−1

∑
j 6=i Xj . If Xi agrees

in sign with this average the voter i makes a negative contribution to the
total energy, otherwise Xi will increase the total energy. The strength of
this negative or positive contribution is governed by the coupling constant
J . In other words: situations for which Xi agrees with the other voters in
average are more likely than others. This can be seen from the formula for
the probability of a given voting outcome, namely:

pJ

({Xi}
)

= Z−1 e−E({Xi}) = Z−1 e
J

N−1

P
i6=j XiXj (5.2)

where we have set
Z =

∑

{Xi}∈ {±1}N

e−E({Xi}). (5.3)

As before the parameter β is not needed, it can be absorbed in the
coupling constant J .

Our goal is to compute the average:

wN = EJ,N

( |
N∑

i=1

Xi |
)
. (5.4)

Here EJ,N denotes expectation with respect to the measure defined in
(5.2). The quantity wN gives the optimal weight in the council for a popu-
lation of N voters with a correlation structure given by a mean-field model
with coupling constant J . We will see that the value of wN changes dramat-
ically when J changes from a value below one to a value above one. This has
to do with the fact that the mean-field model undergoes a phase transition
at the point J = 1 (see [1, 2, 9]).

Theorem 5.1.
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(1) If J < 1 then

wN = EJ,N

( |
N∑

i=1

Xi |
) ∼

√
2√
π

1√
1− J

√
N as N →∞. (5.5)

(2) If J > 1 then

wN = EJ,N

( |
N∑

i=1

Xi |
) ∼ C(J) N as N →∞. (5.6)

Remarks 5.2.

(1) By xN ∼ yN as N →∞ we mean that limn→∞ xN
yN

= 1.
(2) The constant C(J) in (5.6) can be computed: If J > 1 then C(J)

is the (unique) positive solution C of

tanh(J C) = C. (5.7)

Note that for J ≤ 1 there is no positive solution of equation of 5.7.

The proof of Theorem 5.1 will be given in section 9.

6. Conclusions

The above calculations show that one can reproduce the square-root law
as well as the results of [4] and other laws by assuming particular correlation
structures among the voters of a certain country. To find the right model is
a question of adjusting the parameters of the models to empirical data of the
country under consideration. Moreover, the models allow us to investigate
questions about voting systems on a theoretical level. We believe that the
models described above can help to understand voting behavior in many
situations.

To design a nonhomogeneous voting system for a constitution in the
light of our results is a question of different nature. Even knowing the
correlation structure of the countries in question exactly would be of limited
value to design a constitution. Constitutions are meant for a long term
period, correlation structures of countries on the other hand are changing
even on the scale of a few years.

One might argue that modern societies have a tendency to decrease the
correlation between their members. In all modern states, at least in the
West, the influence of churches, parties, and unions is constantly declining.

In addition to this it seems more important to protect small countries
against a domination of the big ones than the other way round. This moti-
vates us to choose a square-root law in these long term cases.

7. Appendix 1: Proofs for section 2

We start with a short Lemma:



SQUARE-ROOT LAW 15

Lemma 7.1. Suppose X1, ..., XN are {−1, 1}−valued random variables
with the symmetry property (2.2) then

E(
N∑

i=1

Xi) = 0 (7.1)

and

E(
N∑

i=1

Xi χ(
N∑

i=1

Xi)) =
1
2
E(|

N∑

i=1

Xi|) . (7.2)

Remark 7.2. As defined above χ(x) = 1 if x > 0, χ(x) = −1 if x ≤ 0.

Proof. (2.2) implies

P(Xi = 1) = P(Xi = −1) =
1
2

hence E(Xi) = 0 and (7.1) follows.
To prove (7.2) we observe that due to (2.2)

E(|
N∑

1

Xi|) = E(
N∑

i=1

Xi χ(
N∑

i=1

Xi))− E(
N∑

i=1

Xi χ(−
N∑

i=1

Xi))

= 2E(
N∑

i=1

Xi χ(
N∑

i=1

Xi)) .

¤

We turn to the proof of Theorem 2.1.

Proof. (Theorem 2.1) Let us abbreviate: Sν :=
∑Mν

i=1 Xνi.
Observe that the Sν are independent by assumption and satisfy E(Sν) =

0, moreover

E(Sν χ(Sµ)) = 0 if ν 6= µ (7.3)

and

E(Sν χ(Sν)) =
1
2
E(|Sν |) (7.4)

by Lemma 7.1. To find the minimum of the function

∆(w1, ..., wM ) = E((
M∑

1

Sν −
M∑

1

wν χ(Sν))2)

we look at the zeros of ∂∆
∂wµ

.

0 =
∂∆
∂wµ

= −2E
(
(

M∑

1

Sν −
M∑

1

wν χ(Sν))χ(Sµ)
)

= −2E(Sµ χ(Sµ)− wµ χ(Sµ) χ(Sµ)) .
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So
wµ E((χ(Sµ))2) = E(Sµ χ(Sµ)) =

1
2
E(|Sµ|) .

Since χ(Sµ)2 = 1 we obtain

wµ =
1
2
E(|Sµ|) .

¤
We turn to the proof of Theorem 2.2.

Proof. Let X1, ..., XN be {−1, 1}−valued random variables with
P (Xi = 1) = P (Xi = −1) = 1

2 . Then

E(|
N∑

1

Xi|) =
√

N E(| 1√
N

N∑

1

Xi|) .

By the central limit theorem (see e.g. [6]) 1√
N

∑N
1 Xi has asymptotically a

normal distribution with mean zero and variance 1, hence
E(| 1√

N

∑N
1 Xi|) →

√
2√
π
. ¤

8. Appendix 2: Proofs for Section 3

Proof. (Theorem 3.1) Since Eµ(Xi) = 0,

〈Xi, Xj〉µ = Eµ(XiXj) (8.1)
= Pµ(Xi = Xj = 1) + Pµ(Xi = Xj = −1)− 2Pµ(Xi = 1, Xj = −1)

=
∫

dµ(ζ){P 1
2
(1+ζ)(Xi = Xj = 1) + P 1

2
(1+ζ)(Xi = Xj = −1)

−2P 1
2
(1+ζ)(Xi = 1, Xj = −1)}

=
∫

dµ(ζ){1
4
(1 + ζ)2 +

1
4
(1− ζ)2 − 1

2
(1− ζ2)}

=
∫

ζ2dµ(ζ) .

¤
To prove Theorem 3.2 we need the following Lemma:

Lemma 8.1. Eµ( 1
N |

∑
(Xi − Z)|) ≤ 1√

N
.

Proof.

Eµ

( 1
N
|
∑

(Xi − Z)|) =
1
N
Eµ

(|
∑

(Xi − Z)|)

≤ 1
N

{
Eµ

((∑
(Xi − Z)

)2
)}1/2

=
1
N

{∫
dµ(ζ) Epζ

(( N∑

1

(Xi − ζ)
)2

)}1/2
.(8.2)
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Given Z = ζ the random variables Xi − ζ have mean zero and are indepen-
dent with respect to the measure Ppζ

, thus

Epζ

(( N∑

1

(Xi − ζ)
)2

)
= NEpζ

(Xi − ζ)2 = N(1− ζ2) ≤ N ,

hence

(8.2) ≤ 1√
N

(
∫

dµ(ζ)(1− ζ2))1/2 ≤ 1√
N

.

¤

Using Lemma 8.1 we are in a position to prove Theorem 3.2:

Proof. (1) Suppose that:

µN =
∫
|ζ| dµN (ζ) ≥ C

1
N1/2−ε

(8.3)

then we estimate:

EµN (
1
N
|

N∑

1

Xi|) = EµN (| 1
N

N∑

1

(Xi − Z) + Z|)

≤ EµN (|Z|) + EµN (| 1
N

N∑

1

(Xi − Z)|)

≤ µN +
1√
N

(8.4)

by Lemma 8.1. Moreover

EµN (
1
N
|

N∑

1

Xi|) ≥ EµN (|Z|)− EµN (| 1
N

∑
Xi − Z|)

≥ µN − 1√
N

. (8.5)

Hence

|EµN (
1
N
|

N∑

1

Xi|) − µN | ≤
1√
N

(8.6)

which proves (3.11).
(2) To prove (3.13) we obtain by the same reasoning as above:

|EµN (
1
N
|

N∑

1

Xi|) − µN | ≤
1√
N

(8.7)

¤

We end this section with the proof of Theorem 3.5:
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Proof. We have to prove that for bounded continuous functions f :
∫ (

f(
1
N

N∑

i=1

Xi)− f(Z)
)

dPµN → 0. (8.8)

The convergence (8.8) is clear for continuously differentiable f from
Lemma 8.1. It follows for arbitrary bounded continuous f by a density
argument. ¤

9. Appendix 3: Proofs for section 5

In this section we prove Theorem 5.1.

Proof. (Theorem 5.1 (1) )
We denote by E

(N)
0 the expectation of the coin tossing model for N inde-

pendent symmetric {+1,−1}-valued random variables, i.e.:

E
(N)
0

(
F (X1, . . . , XN )

)
=

1
2N

∑

{xi}∈ {+1,−1}N

f(x1, . . . , xN ). (9.1)

We set:

ZJN = E
(N)
0

(
e

J
2

(
1√
N

PN
i=1 Xi

)2)
(9.2)

and:

XJN = E
(N)
0

(
| 1√

N

N∑

i=1

Xi| e
J
2

(
1√
N

PN
i=1 Xi

)2)
. (9.3)

Then:

EJN (|
N∑

i=1

Xi|) =
√

N
XJ,N

ZJ,N
. (9.4)

Under the probability law E
(N)
0 the random variables Xi are centered and

independent, thus the central limit theorem (see e.g. [6]) tells us that
1√
N

∑N
i=1 Xi converges in distribution to a standard normal distribution.

Consequently, for J < 1 and N →∞ :

ZJN → 1√
2π

∫ ∞

−∞
e−

(1−J) x2

2 dx =
1√

1− J
(9.5)

and:

XJN → 1√
2π

∫ ∞

−∞
|x| e− (1−J) x2

2 dx =
√

2√
π

1
1− J

. (9.6)

Consequently:

EJN (|
N∑

i=1

Xi|) =
√

N
XJ,N

ZJ,N
∼

√
2√
π

1√
1− J

√
N. (9.7)

¤
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Proof. (Theorem 5.1 (2) )
By Theorem 6.3 in [1] the distribution νN of SN = 1

N

∑N
i=1 Xi converges

weakly to the measure ν = δ−C(J) + δC(J) where C(J) was defined in (5.7).
Hence,

EJ(|
N∑

i=1

Xi|) = N EJ(|SN |) (9.8)

= N

∫
|λ| dνN (λ) (9.9)

≈ N

∫
|λ| dν(λ) (9.10)

= N C(J). (9.11)

¤
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