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Due to the sieving process represented by a Seconda

of the prime numbers, geometric structures with def
evident through their geometrical representations.

development of a constructive prime generating form

yielding a second order recursive and discrete prim
differential equation whose solutions produce an im
results to twin prime pairs is possible to generate

conclusions about the infinitude of the twin primes

Introduction

Most of the knowledge about the sequence of numbers
named primes is a set of unproved theorems and
conjecture§ The reason of this fact remains as elusive
as the very proofs. The approach of this work psego

a new and heuristic way of treating these problekss.

it is well known, sieving algorithms are the only
efficient way to produce primes. This fact shoukl b
taken as an indication that sieving is the natwenf of
producing primes. A myth has been generated about
the sequence of primes, and many attempts have been
undertaken to find some properties which should be
intrinsic to the sequence itself, despite its gatieg
procedurd Most of them (perhaps all of them) are
based on the famous Euler formula which relates the
sequence of primes with the Zeta funcfiofhis
formula is nothing else than an analytic repregenta

of the sieving procedsThrough the construction of
this formula a limit is taken, which eliminates thery
heart of the process. Due to this limit, the ralme of

the erased part has remained hidden from the aent
community through centuries. In the present wbik t
structure of this hidden part is made evident tgrou

the iteration of a Secondary Sieving Map. Through t

ry Sieving Map; during the generation
inite symmetries are formed which become
The study of these structures allows the

ula. This defines a mean prime density
e producing formula and a second order

proved Prime Number Theorem. Applying these

a “Twin Prime Number Theorem” and important

structure created by the construction of the prjrtes
reason why the twin primes should be infinite
becomes clear. This last is known as the Twin Prime
Conjecturé, which is one of the unproved icons in the
modern number theory. Using a mean prime density
derived from the geometric construction, a discrete
second order equation is obtained as well as a
continuous version of it, which is a second ordamn-n
linear differential equation. This is a first
approximation for a prime differential equation aad
used to demonstrate constructively and to imprbee t
best known approximation to the primes, known as th

Prime Number Theorem.

Sieving as a Recursive Map

Usually recursive maps act on subsets of the real
numbers, although some of them are defined on
geometrical objects A recursive map which acts on
infinite and discrete sequences of numbers is fEepo
here. This map called Secondary Sieving Map (SSM)
is denoted with the Greek letigrGiven:



,7:{,7a’,7ﬁ'l7)(’,75""90}
An infinite and discrete sequence of natural

numbers which satisfies:

Mg <N <1, <M5<...<0
Theng act on this sequenagin the following

way:
Bn)=n-n"=n-n,0

m = n; W, 0y W, 00, 1,800

The minus sign means element extractidre
temptation to factorizey should be avoided because
the resulting equation is not the origina}; is a
number whereag is a set. In order to make the last
definition operationaly andn  should fulfill 3 2 7.

The second element of the original sequengeis
called the “pivot number”. The outcomes of applying
B is named generation. The natural numbers set
(without the cero)N* = n complies with all the
features required to be an argumenpBof\pplying 8

on n recursively is similar, but not equal, to the
Eratosthenes sieve, because the last one is nli¢@pp
on an infinite sequence and it was not conceiveanas
iterative mapping. The SSM applied to n, could be
written in Mathematica ® as
“Nest[Complement[#,#[[2]]*#]&,Range[m1],m2]",
where m1 is the size of the natural numbers sulrset
which it will be applied, and m2 is the desired
iterations number (it is impossible to act on anité
set with a computer).  Acting once whit on n

produces the first generation, the set of odd nugsibe

A(n)=n, 1,357} =2.n4

Using this last notation, °n= n (generation
cero). Observe that the first pivot number (the bam

2 which appears as a sub index in parentheses)ased

generate de odd numbers, is not present in them.

However the number one does appear. This is a
persisting characteristic ji's successive applications
on n: the number one always survives and the pivot
number used to generate the last iteration obwousl
disappears from it, because it was multiplied bg on
and extracted. In the second generation, the main

features of these sequences start to emerge:

B (n)=B(B(M)=5(%y)= s =
{1,5,7,11,13,17,19,23,25,29%} =
{1,7,13,19,25,}U{ 5,11,17,23,29 =

(6th+1)U(6+5) = 6En+[;j

WhereU means as usual the union of two sets
and the last equation is a convenient way to wihite
existence of two overlapped linear behaviors. Oleser
that the set of pivot numbers (which record is kept
n's sub index) starts to form the set of prime narab
Note also that the sequencesns’ and n' are
qualitatively different: a splitting has occurred the
first one. Instead of one linear function of n,rthare
two overlapped and simultaneous. In order to
understand this segregation, the symmetric featnfres
the SSM should be examined through a heuristic
geometrical representation of it, shown in the next
section. As a final sentence for this sectionhidd
be noted that in the last decades some insighbéais
gained about a fractal structure of the prifnasd it is
well known in dynamical systems that fractal
structures are produced by iterative mappinghe
SSM acting on n could be the basis for the fractal

structure of the primes.

Mirror Symmetry and Periodicity in Generations,
as a Geometrical Image of a Multiple Linear

Representation

The SSM can be represented geometrically using an
infinite chain of curves (jumps) which connects the
sequence of numbers denoted wjthsee equations 1

and 2). The non-touched numbers corresponds to the
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In Part A the first thre

generations geometric structure is shown throaghanalogy between extracted and touched numiérs
periodicity in each generation and their mirror syetriesare evident in the structures of the touching csirvin

Part B the DSI of the Second Generation is shown.

first generation. Further iterative applications®tan

be made on the same graph simply overlapping the
geometrical representations of the corresponding
For example in Figure 1, the representations aehr

generations are seen in separate lines. The touched

numbers under8’s action, are just touched once
whereas in the graphical representation multiple
touching is allowed. In this way the geometrical
features are better observed. From these drawengs
be inferred that due to the successive applicatains
the SSM, periodic structures form spontaneously Th
period of a particular generation is given by the
multiplication of all the previous pivot numberdét
formal demonstration will be published elsewhere).
Actually these structures are periodic both in the
generations but also in the superposition of the
produced and extracted during each generatioradn f
this last superposition is the most notorious ie th
geometrical representations from Figure 1, ParA#é\.

it can be observed in the same figure, the spijttin

mentioned in the past section is caused by the
incommensurability of the first pivot number (2)dan
the second (3) which sets the first untouched nusbe
(1 and 5) to lie symmetrically around the number
three. Then, due to the six-fold periodicity, theot
linear behaviours represented in equation (3) are
produced. Note that mirror symmetry around the
numbers 3, 9, 15...
12, 18..
more evident in the third generation and afterwards

as well as around the numbers 6,

. starts to emerge. This symmetry will become

B°(n)=n},y ={1,7,11,13,17,19,23,29,31..3

1 31 61 91 121 151 181 . 1
7 37 67 97 127 157 187 |. 7
11 41 71 101 131 161 191 |. 11
13 43 73 103 133 163 193 |. 13

=300h +

17 47 77 107 137 167 197 |. 17
19 49 79 109 139 169 199 |. 19
23 53 83 113 143 173 203 |. 23
|29 59 89 119 149 179209 .. 29




This last equation is again a condensed and
convenient way to represent the third generation. |
Figure 1 the corresponding representation shows a
new period (30 = 2.3.5) and a new mirror symmetry
around the multiples of 30 and their halves. Ireortt
advance in a description of the subject, some
definitions are needed. The numbers in the one-
column matrix (1,5 for the second generation and
1,7,11,13,17,19,23,29 for the third generation) are
called seeds. Each seed form a branch through the
A branch

the

proper periodicity of its generation.

represents a linear mapping of n with
correspondent period between their elements and its
seed as starting phase. In the big matrix of tlirl th
generation, their 8 infinite branches are writterting

with their corresponding 8 seeds. The mirror
symmetry mentioned earlier can be easily identified
the seeds structure. For example, the third gdperat

could be written as:

1 11
S g =| 300+ ! U| 30h+ 17
n(2,3,5)_ 13

19 29

This seeds separation is quite interesting
because each has a six-fold periodicity which is
obviously a previous generation remnant. Each four
member sequence is defined as a stem. The mirroring
between these two stems is quite easily expressed
mathematically: the sum of the first and the second
stem inverted, results in the generation’s peribd;
29=7+23=13+17=19+ 11 =30. Stems ohéig
generations become more complicated. For example
the stems of the fourth generation are not anyrore
ordered as of the third ones. This has to do with a
important generation’s feature; they operate on two
characteristics lengths: one length is the periatithe
other is the prime confidence interval (PCI). Thel P

is defined through the most important characteristi

the generations: their ability to “forecast” nevinpes.

It was already mentioned that the set of pivot nerab

tend to form the set of primes. But each pivot namb

through its generation will certainly forecast #ile
primes between itself and its square, this intersal
called PCI. The PCl is depleted from the pivot nemb
multiples and the other numbers contained withiveha
their squares, cubes, etc certainly in the outsfdéis
interval. In this sense, the generations are ssocsy
better approximations to the sequence of primes. Th
pristine natural numbers n, are the generation.cero
They already predict the number 3 as the second
prime. In the following table, the beginning frotmet
first three generations, are seen with the pivohiners

and their squares iitalic, and the predicted primes in

bold:

1234

1,3,5,7,9

1,5,7,11,13,17,19,23,25

After the third generation each branch has its
own PCI, and then the number 29 is also predicted.
The PCI grows with the square of the pivot numbers
and the period grows as a factorial (the produdliof
previous pivot numbers, this prime factorial is aibu
called primorial in the literature). The PCI igyger
that the period (super-periodic region) at thetfirs
generations and the period outgrow the PCI after th
fourth generation (sub-periodic region). In the exup
periodic region the stems are composed of seedshwhi
are primes, in the sub-periodic region this is tat
case anymore, the seeds can be primes or noth@kis
important consequences on the structure of higher
generations due to what is called internal sievifxg.
last sentence (disclaimer) for this section: prdpab
many of the features mentioned here are already
known in modular algebra, but it has been preferred
link these

not to results with any established

mathematical theory in order to avoid confusions.



Those links, if needed, surely will be constructed

future works.

Relation with the Euler Identity

After the exposition of the main ideas developetil un
now, a question arises: does this approach shed new
light on the prime numbers? The answer is yes. The
symmetric structures produced by the SSM actually
are also present in the Euler equation:
Z(S):1+%+§];+%+§];+E];+

-1 -1 -1 -1
(1-2°) (1-3°) (=59 (= 79 ..

The function in the left is the Riemann Zeta
Function. During the deduction of this equalityirait

is taken in which the third step is shown here:

B3

1 1 1 1 1 1
1+ —+ + —+ +

1
+ ..
75

3t

23

117 13 17 19 29

The limit consists in repeating infinitely the peature
which produced the last equafityWhen the first
inverse prime after the number one, in the rigbesi
get extremely big, infinity in fact; the Euler idéwg is
proven. But note that in the exemplified step the
sequence of denominators are exactly the sameeas th
sequence of numbers corresponding to the third
generation. This is not surprising because as s ha
been mentioned previously; the SSM as well as the
Euler identity are nothing else than prime sieve
representations. But in Euler’s identity deductitire
structure of these sequences has been neglectdd due
the Ilimit and following an analytical prime
representation goal. The kernel of the problemhes t
successively broken symmetry of the prime sequence,
which is notorious in the end result but gives i b
priori of its origin, if the partially broken symrres

(the generations in the present work nomenclaime)

neglected. Then it is important to know exactly how

each generation is produced from the previous tirou

the SSM. Due to the generation’s primorial

periodicity, it is possible to restrict the element
extraction to the zone corresponding to the next
primorial during the construction (application d3/8)
of the next generation. For instance in the constn

of the fourth generation from the third generation:

1 31 61 (9% 121 181
() 37 67 97 127 187
11 41 71 101 131 191
13 43 73 103 (133 193
17 47 107 137 197
19 (49 109 139 199
23 53 143 203
29 59 149 209

79
83
89

(119

13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113
121
127
131
137
139
143
149
151
157
163
167
169
173
179
181
187
191
193
197
199
209

210.n +

4 —
n(2,3,5,7) -




The enclosed numbers correspond to the
sequence; of the fourth generation. Note that the
branches have a cut-off just before the first mkrio
(2357 =

interesting; they follow a repetitive pattern dwethe

210) because further elements are un-

periodicity. Note also that the new pivot humber js
and there are 7 columns in the matrix. But one efgm
will be extracted in each row for the next genemati
leaving 6. This gives the hint that the seed nuniber
each generation is the product of each pivot number
minus one: 1, 2, 8, 48, etc. (the formal demoristnat
will be published elsewhere). From the previous
matrix, once the enclosed elements have been
extracted and the two dimensional matrix reduced to
one dimension, one obtains the large multi-linear
representation in the previous page. All what was
written before suggest that is possible to rechst t
SSM in a form which involves no infinite sequence.
This would mean an equation which is closer thaar ev
to a prime generating formula. In fact this goat te

achieved and it is done in the next section.

Discrete Scale Invariance and Internal Sieving
Leading to a Finite and Constructive Formula for
Prime Generation

The SSM is based on element extraction. This isdon
throughn* in the defining equations @. Butn* andn

are both infinite sequences. In preceding sections
strong arguments have been given indicating tHat al
features of the SSM can be reduced to the firsoger
due precisely to the intrinsic periodicity of this
mapping’s results. Can a new mapping based in the
symmetries from the SSM constructed with finitesset
or sequences as argument? The affirmative answer to
this question was partially given in the last satti
when the fourth generation was obtained from the
third in just the new generation interval (210).tBu
how should be reduced the element extraction to one
period? The solution to this question lies in a new
symmetry of the SSM. This symmetry could be

expressed as follows: The patterns produced by the

segregation (with primorial periodicity and mirror
symmetries as already mentioned) between extracted
and non-extracted elements of n, afté&s successive
applications, are the same seen from the perspeativ

a 1-periodic infinite sequence (the original n)va|

as from the perspective of any r-periodic infinite
sequence if r is relative prime with the set of thk
pivot numbers used during the mappings fof In
particular all the “future” or still not used pivot
numbers (which in fact are all the rest of the grim
numbers) make sequences which show the same
patterns or symmetric structures. In Figure 1, Bart
two examples of this symmetry are shown in the last
row. This last definition have all the features af
“Discrete Scale Invariance” (DSIput one: the known
DSI has a preferred scale and the rest of the seaée
powers of the fundamental one. In the present case
there is no preferred scale and no invariant discre
scale is a power of any other because all areivelat
primes. The proof of the DSI for the sequencesistud

in this work will be published elsewhere. This
powerful symmetry has dramatic consequences on
what is now defined as “internal sieving”. The SSM
contains a normal sieve which is performed withd an
on, infinite sequences. The DSI symmetry allows to
find the extracted elements restricted to the first
period. As the already extracted elements, byhal t
previous mappings df, leaved the same patterns on
all the still unused pivot numbers; the patterthef set

of numbers which will be extracted by the next pivo
number is known. It is simply the pattern embedited
the sequence of seeds multiplied by the pivot numbe
For example; in the previous construction of thertio
generation, the extracted numbers for the next
generation are: (7, 49, 77, 91, 119, 133, 161, 208)

(1, 7,11, 13,17, 19, 23, 29). The finite sequéndbe
last parenthesis is the set of the seeds fromtting t
generation. Then the Internal Sieving (IS) is dedias
the sieving restricted to the first period. The alethe
elements which will be extracted is constructedhwit
the product between the seeds from the previous

generation and the next pivot number. With these



“intra-period” rules theQ) mapping will be defined,
acting on finite sequences and producing primeken
form of “used” pivot numbers. Omega acts initiadly
two numbers {{S}, T} where T is the initial period
T=1, and S is the initial seed S=1 (the cero
generation). Because 2 is the start and the enteof
first branch (2 is the first pivot number), Omeghils

to the only seed “1” the period “1” just once, fong
the sequence: (S, S+T) = (1, 2). Then the outymun f

the first mapping of omega is (the first genergtion

o(f{n.3)={13-{2 12={{} }

Repeating the procedure on the first generation:

o({{g.4)={{r33-{3 2p={{1F }

Here again to the unique seed 1, the period 2 is
successively added until the last number (5) i# sti
smaller than the period (6 = 2.3); then 3 timesgée
of the seeds is extracted. The only element froi th
last set which is contained in the unique brancB.is
Then the number 3 is extracted leaving the already
known bilinear superposition. Observe that it is
redundant to maintain a record of the period (the
primorial right part) because it can be obtained
summing the two extremes of the seeds. However it i
kept for the sake of clarity. After the first geagon,

the action of) becomes systematic:

o{{rg .4)={{17.1319,25511,17,2324 §25}:3

{{1.7.11,13,17,19,23,p9 B0

And in general:

Q(a) [0’+OO’+0’1+:L0+ 201"')- g+ )10 +):H g

Where o, and o; are o's second and last
elements, and- is used as column vector forming the

matrix between the brackets. Here again the minus

sign after the closing bracket means element
extraction. A vectorial version fof) is given as

follows:

Qo) = (aDvaz_l)-(l,a_lH) -0,

Hereo is the vector of seedg, is the matrix

external generalized product (in which the last

operation between individual elements is a two
dimensional vector instead the usual product). The
vector v is composed from the natural numbers
starting at cero until the second see®l minus one.
The numbew; is the last seed and the bold point is a
scalar product. The line over the entire operation
means that the resulting matrix is projected in one
dimension (“vectorized”) and ordered. The minusisig
is a set operation and means element extraction. Fo

example operating with Omega on (1, 5):

Q

((.5)=((29
il

,0),

(0123)4) 16 % 15
1)3 1);316 (5,29=

51117232 (5259 (47,1113,17,19,23

These operations can be resumed in one line of
Mathematica® code:

Nes{ Conplemeft Ftn Qufer Lt R - 1. 4 [} 1 ]2 J ke 5

This command has already the iterative order
Nest embedded as the last operation. Observe rihat i
this example 3 iterations are produced. Note disd t
the starting generation is the second one; {1, 5}
instead the cero generation {1}. This is due to@e
singular behaviour when it is started at the cero
generation. After the second generation the branch
production becomes systematic. A final reflection o
Q; reducing the action of the SSM to the first perad
each generation, made evident that the primeshare t

remnant of a decimating machine. This machine when
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Figure 2 | Second Order Discrete Prime Producing Equation Gainess. The clcseness othe results i
quantized in stripes below and over the real prirakies. The difference values look like entire dige
quantities, but in fact they are fractional valuesy close to the integers.

applied to the natural numbers eliminates all @nth
but the number one. The difference between the
primes and the no-primes is the “door” through they
are leaving the set of the numbers modified (by
those which leaves through the last door (activated
the multiplication by 1, which is always in the sdt
seeds) are primes, those leaving through the feékeo
internal sieving, are not. This prime generating
decimation machine is self-regulated: If the deneit
the possible primes is high (low) in any regionsthi
will mean that in the next generation the decinmatio
will be high (low), lowering (elevating) in this wahe
density. This property is notorious at the verystfir
generations where the density of possible priméiseis
highest ever, leading to a fierce decimation ana to

rapid stabilization of the density of primes.

A “Mean Field Theory” for Primes leads to an

Improved Prime Number Theorem.

Using some properties from Omega, it is easy to
obtain the mean behavior of the prime numbers. Each
time Q is applied; the period is increased by the pivot
number p used at that iteration and the number of
seeds by (p-1). In the PCI all the seeds are pranes

one can make the supposition that their densithas
same there and in the zone outside the PCI. Then
applying Omega changes the mean density of primes

from A,; to A, through the following factors:

1
A, |1-—
( pn]

But A, andA,_; can be expressed as the inverse

An—l(pn _1) =

Pn

A =

n

of the difference of two consecutive prime numbers:

1 1

Apy= iD=
(Py— Pos) (Ppr= P,)

n-1 n
As in a lattice of atoms, between two sites one
can count the distance as corresponding to one,atom
one prime in this case. Substituting these equstion
the previous one and solving fop.p one obtains a

second order recursive equation for the next prime:

pn (2 pn - pn—l_l)
(pn _1)

pn+1 =

The accuracy of the former equation is variable,
but in a fraction of the cases it gives the nextnpr
almost exactly. In Figure 2 the differences betwiwen



true primes and the numbers produced through the

former formula with the two previous true primes as
arguments, are shown for the first 1000 primess Thi

a logarithmic plot in the abscissa and shows that t
“errors” in the prime prediction are approximately
symmetrically distributed around the cero. In a
fraction of the trials, quasi-exact (the differerioethe
true prime is a fraction less than one) solutiors a
obtained. Besides the first few cases, all the
“predicted” primes are almost entire numbers and
separated from the real ones by an even almogfente
difference (producing the quantized stripes frora th
graph). The conversion of the former discrete éqoat

in a continuous one with derivatives; has the gwal
reproducing the results of the Prime Number Theorem
and even to improve them. If the functipfn) is able

to generate sequentially the prime numbers with
natural numbers as arguments, thém) = p, where p

is the nth prime. This means that the minimal

measurable difference between two arguments has to

be 1. Then the best approximation for a derivagve

n+1)- n
p ()=
Substituting these results in the discrete

equation of prime densities, the following equatisn

obtained:

()= () )

Calculating the second derivative ¢f in a

similar way:

Substituting this last result in the former
equation, the following simple, non-linear diffetiah
equation is obtained (these are approximationsaied

are calledy,) :

ro(n)
Yo (n)

The general solution to this equation can be

vo'(n)=
found in terms of exponential integrals:

V. (n) _ e[—A+Ei(_l)(eA(n+ B)]

Where A and B, are the integration constants
and Ei™Y is the inverse function of the exponential
integral given by:

o -t
. e
Ei(x) = j = dt
ot
If the constants are set to cero; A = B = 0 then

the simplest version is obtained:

o)==

The functionr (n) is defined as the number of
primes which exist in the interval (0,%n)f p, is the
nth prime, then there are n primes in the intef@al
pn). But p, = y(n), applyingr to both sides:

ﬂ(pn):ﬂ(y(n)): n

Thenr andy, are the inverse of each other.
Knowing the simplest approximate solution fgrone

can obtain the correspondeninverting it:

t
€ 4t
-In(yo) t

n=Ei[In(y,)]=-]

Substituting t = - In[z] the following equation is

obtained:

v 1
- fo In (z

)dz: Li(y,)
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But n is the number of primes less or equal than
v = py then n is 7 (p,), which constitutes the first
constructive demonstration of the Prime Number
Theorem (the right side defines the Logarithm Irakg
function). Even more, it is the first constructiohan
approximate differential equation for the prime
numbers. This is the simplest version of the sotuti
If the constants A and B are left free, then anrompd

Prime Number Theorem is obtained:

EiIn(x)+A] )

()= A
1 7 €'

— —dt—-B

e —In(J.x)—A t

This equation has a curious behavior depending
on the values of A and B. With appropriate values
given to A and B (A = .52; B = -0.71, obtained
through the best fit for the 100 first primes) theve
on the graph of Figure 3, Part A, is remarkablyselo
to n than the Logarithm Integral. But this closeness is
limited; if one looks deeper the function crossegn)
and then remains far away from it. This means that
certain values of A, produces almost exact redolts
bounded regions of the argument. This confirms the
fact that the previous differential equation is an

approximation to the real differential equationy(t).

For a 100 times bigger domain window the
approximation remains below of the real (n) after
certain point, as it shown in Figure 3, Part B. The
approximate differential equation foy can be
transformed on an approximate differential equation

for 7 just applying the chain rule to the inverse

function:
[dﬂ0 (y)j2
d?m, (y) .\ dy 0
dy? y

This last equation has the same solution as the

previous.

On the Infinitude of the Twin Primes

As it was mentioned, the successive generations are
finer and finer approximations to the prime numbers
In this sense the first generation states thatttel
primes are odd numbers. It also states that alrebe

of the primes after the number two should be sieved
out from an infinite sequence of twin primes. Thetf
generation is the cradle of all twin primes. Buttle

first generation, version Omega, the seed 1 doesn’t
express the presence of twin primes. Just in tbersk
generation with the seeds 1 and 5 the twin primes a

explicitly present in between the seeds (in a sbrt



11

“periodic boundaries” the branches corresponding to instead of one (repetition of the internal sievinghe
first and then to 1 have all their elements sepdraty same twin pair is impossible because this wouldmea
two units). Then, all twin primes bigger than therp that two integers are far apart in lees than orig.un
(3, 5), are contained in the sequence of pairs {bn This last sentence, expressed in equations, means t
6.n + 7). Only in the third generation the existné the mean density of twin primes will change as a
twin primes is evident in the seed structure7111, function of the generations in the following way:

13, 17, 19 23, 29 The first twin pair is shown in bold

and the second in italic. As in the previous gethema AN = AD ( p, -~ 2]

the limiting branches corresponding to the seedsdl r r P,

29 also constitutes a pair of twin prime producing

branches. If the internal sieving is neglected seéhe Where A; is the mean density of twin primes
number of potential twin primes would grow at a  and the superscript indicates its generation, bging

similar rate as the branches, with (p-1)#. The twin  the generation’s pivot number. This last equation

prime structure from the third generation ensuhes t shows that the twin primes never fade out: By
all the forthcoming twin primes will belong to oné construction of eithef or Q the number of possible
the three sets: (30.n + 11, 30.n + 13), (30.n +307n twin primes in each generation is never cero. ¢ th

+ 19) or (30.n + 29, 30.n + 31). During the synibes pivot numbers limits to infinity, the mean densa§

of a new generation each branch looses one member twin primes in each generation tends to be the same

due to the internal sieving. Then a simple arithiecnet non cero quantity. As well as in the case of traml
proves that the number of twin primes is infinity; prime numbers, this discrete equation can be cteder
starting at the third generation, the number ofjie in a differential equation:

twin primes will grow in each generation with atfarc

p-2, where p is the generation’s pivot number. This r(n)" 2

because each branch grows like the pivot number r(n)' y (n)
[0}

minus one (due to the internal sieving). But each . )
Where t(n) represents a hypothetical function

member of a twin prime pair belongs to different
n prl Pt g ! which gives the nth prime number belonging to antwi

branches, then the internal sieving eliminates i2agw

1500

1250

1000

Twin Primes

500

6] e
0 20 40 60 80 100

n

Figure 4] Goodness f the t(n) Approximation to the nth Twin Prime. The real positions of the Twin Prim
are shown with discrete points and the approximatih a continuous line.




prime andy,(n) is already known. Using the simplest
solution for: y4(n) = Ei “Y(n); the following solution

for T is obtained:

r(n)=A+BE (B (9)-1)

Where A and B are the integration constants.
Setting A = 4.5 and B = 0.61 the curve shown in
Figure 4 is produced. In the same plot, the trukeed
values of the prime numbers belonging to twin psme
are shown as points. If the general solutionyfm) is

used, then 4 integrations constants are present:

EH 1 g (e g
Ei¢Y (—eﬁD( n+ Q)Z

A+S] cone
2

Finally it should be noted that it is impossible
to invert the solution fort(n) (looking for an
equivalentr function of the twin primes) due to the

multiplicity of the function Ei¥(n) in it.

Conclusions

In none of the classical papers about the prime
numbers, it is stated from where comes the indight
hypothesize and then to prove that the functioRr)Lg

a good approximation for(x). There were no reasons
beyond the experimental fact and its plotting in a
logarithmic scal® A direct consequence of this was
the extreme difficulty to prove anything about tfast

and about the prime numbers in general. A lack of a
working model for prime numbers has built the
general sense that they were beyond the reacheof th
human intellectual powersWithout such a model the
mathematicians relied on feeble hints hidden in the
apparently not understandable structure of the g@rim
numbers. This made the few available proofs intgehu
efforts very difficult to elaborate and practicajlyst

on the level of some specialists. In this work mpe
model

and beautiful of the prime numbers is

constructed starting from the geometrical symmetrie
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formed during the sieving process. These symmetries
are related with the relative position of the prime
numbers and not with the numbers itself or withirthe
restricted divisibility. The study of this restrct
divisibility, as a fundamental fact about the Prane
was another misleading path. The restricted diisib

is more a consequence than a cause in the set of
features which characterize the prime numbers.
Following the right path of this model to its logic
consequences, it was possible to elaborate a ttieory
the mean quantities of the primes. This theoryddad

a second order discrete and approximate equatidn an
to a second order continuous differential equafmn

the primes. This is the first time that such equri

are presented. The simplest solution of this eqgoati
produces the Li(x) approximation as well as a galner
solution with two constants associated with theosdc
order differential equation. The behaviors of the
solutions under the adjustment from these constants
demonstrate that the theory elaborated in this vi®rk
incomplete, and that even deeper symmetries dfe sti
lurking in the structure of the prime numbers. Reth

the biggest advance of this work is the elaboratioa
recursive and finite formula for the production of
prime numbers. In this formula the infinitude ofth
twin primes is explicitly shown through its structu
This

mentioned differential equation for the primes;ato

leads, in combination with the formerly
approximation of a differential equation for theiriw
primes which is analytically solvable. All these
successes show that the model for the prime numbers
presented in this work is the correct one. Furtleen
some new results, which were reported as
breakthroughs, are simply natural consequenceseof t
present model. For example the existence of aritiome
progressions of primes is obligatory due to the
branches This

straightforwardly connected with the

structure of the model is

Riemann
Hypothesis through the Euler identity. However, as
was shown in this work, the presence of the unique
argument “s” in the Riemann function seems to be

irrelevant to the structure of the primes, at last



relation with their mean properties. In this reasgn

the zeros related to this argument, are also iragle

In fact the symmetric structures formedgimndQ are

the same which form the Euler identity with s =r1 o
with any other value. It is the author’s belief ttitfais
work has just scratched the surface of the Priraab r
structure. Following the lead set by it, it will be
possible to finally find an exact solution for theme
problem. Some of the deeper symmetries are already
envisioned by the author and will be published soon
elsewhere. Finally a possible bonus: the already
discovered symmetries suggest that unveiling the
complete prime number structure would be the same
as obtaining the unique natural counting systen, no

binary, not decimal, but prime.
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