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Due to the sieving process represented by a Seconda ry Sieving Map; during the generation 

of the prime numbers, geometric structures with def inite symmetries are formed which become 

evident through their geometrical representations. The study of these structures allows the 

development of a constructive prime generating form ula. This defines a mean prime density 

yielding a second order recursive and discrete prim e producing formula and a second order 

differential equation whose solutions produce an im proved Prime Number Theorem. Applying these 

results to twin prime pairs is possible to generate  a “Twin Prime Number Theorem” and important 

conclusions about the infinitude of the twin primes . 

 

 Introduction 

Most of the knowledge about the sequence of numbers 

named primes is a set of unproved theorems and 

conjectures1. The reason of this fact remains as elusive 

as the very proofs. The approach of this work proposes 

a new and heuristic way of treating these problems. As 

it is well known, sieving algorithms are the only 

efficient way to produce primes. This fact should be 

taken as an indication that sieving is the natural way of 

producing primes. A myth has been generated about 

the sequence of primes, and many attempts have been 

undertaken to find some properties which should be 

intrinsic to the sequence itself, despite its generating 

procedure2. Most of them (perhaps all of them) are 

based on the famous Euler formula which relates the 

sequence of primes with the Zeta function3. This 

formula is nothing else than an analytic representation 

of the sieving process4. Through the construction of 

this formula a limit is taken, which eliminates the very 

heart of the process.  Due to this limit, the relevance of 

the erased part has remained hidden from the scientific 

community through centuries.  In the present work the 

structure of this hidden part is made evident through 

the iteration of a Secondary Sieving Map. Through the 

structure created by the construction of the primes, the 

reason why the twin primes should be infinite 

becomes clear. This last is known as the Twin Prime 

Conjecture1, which is one of the unproved icons in the 

modern number theory. Using a mean prime density 

derived from the geometric construction, a discrete 

second order equation is obtained as well as a 

continuous version of it, which is a second order non-

linear differential equation. This is a first 

approximation for a prime differential equation and is 

used to demonstrate constructively and to improve the 

best known approximation to the primes, known as the 

Prime Number Theorem. 

 

Sieving as a Recursive Map 

Usually recursive maps act on subsets of the real 

numbers, although some of them are defined on 

geometrical objects5.  A recursive map which acts on 

infinite and discrete sequences of numbers is proposed 

here. This map called Secondary Sieving Map (SSM) 

is denoted with the Greek letter b. Given: 
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{ }= , , , ,....α β χ δη η η η η ∞
 

An infinite and discrete sequence of natural 

numbers which satisfies: 

....α β χ δη η η η< < < < < ∞  

Then b act on this sequence h in the following 

way: 

( ) *
ββ η η η η η η= − = − ⋅  

* { , , , ... }β α β β β γ β δη η η η η η η η η= ⋅ ⋅ ⋅ ⋅ ∞  

The minus sign means element extraction. The 

temptation to factorize h should be avoided because 

the resulting equation is not the original; hb  is a 

number whereas h is a set. In order to make the last 

definition operational, h and h* should fulfill h û h*. 

The second element of the original sequence hb, is 

called the “pivot number”. The outcomes of applying 

b is named generation. The natural numbers set 

(without the cero) �* = n complies with all the 

features required to be an argument of b. Applying b 

on n recursively is similar, but not equal, to the 

Eratosthenes sieve, because the last one is not applied 

on an infinite sequence and it was not conceived as an 

iterative mapping. The SSM applied to n, could be 

written in Mathematica ® as 

“Nest[Complement[#,#[[2]]*#]&,Range[m1],m2]”, 

where m1 is the size of the natural numbers subset on 

which it will be applied, and m2 is the desired 

iterations number (it is impossible to act on a infinite 

set with a computer).   Acting once whit b on n 

produces the first generation, the set of odd numbers: 

( ) ( ) { }1
2n = n = 1,3,5,7,... =2.n+1β  

Using this last notation, n0 = n (generation 

cero). Observe that the first pivot number (the number 

2 which appears as a sub index in parentheses) used to 

generate de odd numbers, is not present in them. 

However the number one does appear. This is a 

persisting characteristic in b’s successive applications 

on n: the number one always survives and the pivot 

number used to generate the last iteration obviously 

disappears from it, because it was multiplied by one 

and extracted. In the second generation, the main 

features of these sequences start to emerge: 

( ) ( )( ) ( )( ) ( )

{ }
{ } { }

( ) ( )

2 1 2
2 2,3

1,5, 7,11,13,17,19, 23, 25, 29, ...

1, 7,13,19, 25, ... 5,11,17, 23, 29, ...

1
6 1 6 5 6

5

n n n n

n n n

β β β β= = = =

=

=

 
⋅ + ⋅ + = ⋅ +  

 

∪

∪

 

Where U means as usual the union of two sets 

and the last equation is a convenient way to write the 

existence of two overlapped linear behaviors. Observe 

that the set of pivot numbers (which record is kept in 

n’s sub index) starts to form the set of prime numbers. 

Note also that the sequences n (2, 3)
2 and n (2)

1 are 

qualitatively different: a splitting has occurred in the 

first one. Instead of one linear function of n, there are 

two overlapped and simultaneous. In order to 

understand this segregation, the symmetric features of 

the SSM should be examined through a heuristic 

geometrical representation of it, shown in the next 

section. As a final sentence for this section, it should 

be noted that in the last decades some insight has been 

gained about a fractal structure of the primes6, and it is 

well known in dynamical systems that fractal 

structures are produced by iterative mappings5. The 

SSM acting on n could be the basis for the fractal 

structure of the primes. 

Mirror Symmetry and Periodicity in Generations, 

as a Geometrical Image of a Multiple Linear 

Representation 

The SSM can be represented geometrically using an 

infinite chain of curves (jumps) which connects the 

sequence of numbers denoted with h* (see equations 1 

and 2). The non-touched numbers corresponds to the 
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first generation. Further iterative applications of  b can 

be made on the same graph simply overlapping the 

geometrical representations of the corresponding h*. 

For example in Figure 1, the representations of three 

generations are seen in separate lines. The touched 

numbers under b’s action, are just touched once 

whereas in the graphical representation multiple 

touching is allowed. In this way the geometrical 

features are better observed.  From these drawings can 

be inferred that due to the successive applications of 

the SSM, periodic structures form spontaneously. The 

period of a particular generation is given by the 

multiplication of all the previous pivot numbers (the 

formal demonstration will be published elsewhere). 

Actually these structures are periodic both in the 

generations but also in the superposition of the h* 

produced and extracted during each generation. In fact 

this last superposition is the most notorious in the 

geometrical representations from Figure 1, Part A. As 

it can be observed in the same figure, the splitting 

mentioned in the past section is caused by the 

incommensurability of the first pivot number (2) and 

the second (3) which sets the first untouched numbers 

(1 and 5) to lie symmetrically around the number 

three. Then, due to the six-fold periodicity, the two 

linear behaviours represented in equation (3) are 

produced. Note that mirror symmetry around the 

numbers 3, 9, 15… as well as around the numbers 6, 

12, 18… starts to emerge. This symmetry will become 

more evident in the third generation and afterwards: 

( ) ( )
3 3

2,3,5 {1, 7,11,13,17,19, 23, 29,31...}

1 31 61 91 121 151 181 ...

7 37 67 97 127 157 187 ...

11 41 71 101 131 161 191 ...

13 43 73 103 133 163 193 ...

17 47 77 107 137 167 197 ...

19 49 79 109 139 169 199 ...

23 53 83 113 143 173 203 ...

29 59 89 119 149 179

n nβ = = =

1

7

11

13
30

17

19

23

209 ... 29

n

   
  
  
  
  
   = ⋅ +
  
  
  
  
        

 

Figure 1 | Generations and Discrete Scale Invariance Graphical Representations.  In Part A the first three 
generations geometric structure is shown through an analogy between extracted and touched numbers. The 
periodicity in each generation and their mirror symmetries are evident in the structures of the touching curves.  In 
Part B the DSI of the Second Generation is shown.  
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This last equation is again a condensed and 

convenient way to represent the third generation. In 

Figure 1 the corresponding representation shows a 

new period (30 = 2.3.5) and a new mirror symmetry 

around the multiples of 30 and their halves. In order to 

advance in a description of the subject, some 

definitions are needed. The numbers in the one-

column matrix  (1,5 for the second generation and 

1,7,11,13,17,19,23,29 for the third generation) are 

called seeds. Each seed form a branch through the 

proper periodicity of its generation. A branch 

represents a linear mapping of n with the 

correspondent period between their elements and its 

seed as starting phase. In the big matrix of the third 

generation, their 8 infinite branches are written starting 

with their corresponding 8 seeds. The mirror 

symmetry mentioned earlier can be easily identified in 

the seeds structure. For example, the third generation 

could be written as: 

( )
3
2 ,3,5

1 11

7 17
30 30

13 23

19 29

n n n

      
      
      = ⋅ + ⋅ +
      
         

      

∪
 

This seeds separation is quite interesting 

because each has a six-fold periodicity which is 

obviously a previous generation remnant. Each four 

member sequence is defined as a stem. The mirroring 

between these two stems is quite easily expressed 

mathematically: the sum of the first and the second 

stem inverted, results in the generation’s period, 1 + 

29 = 7 + 23 = 13 + 17 = 19 + 11 = 30.  Stems of higher 

generations become more complicated.  For example 

the stems of the fourth generation are not anymore so 

ordered as of the third ones. This has to do with an 

important generation’s feature; they operate on two 

characteristics lengths: one length is the period and the 

other is the prime confidence interval (PCI). The PCI 

is defined through the most important characteristic of 

the generations: their ability to “forecast” new primes. 

It was already mentioned that the set of pivot numbers 

tend to form the set of primes. But each pivot number 

through its generation will certainly forecast all the 

primes between itself and its square, this interval is 

called PCI. The PCI is depleted from the pivot number 

multiples and the other numbers contained within have 

their squares, cubes, etc certainly in the outside of this 

interval. In this sense, the generations are successively 

better approximations to the sequence of primes. The 

pristine natural numbers n, are the generation cero. 

They already predict the number 3 as the second 

prime. In the following table, the beginning from the 

first three generations, are seen with the pivot numbers 

and their squares in italic, and the predicted primes in 

bold:  

1,2,3,4 

1,3,5,7,9 

1, 5, 7,11,13,17,19,23,25 

 

After the third generation each branch has its 

own PCI, and then the number 29 is also predicted. 

The PCI grows with the square of the pivot numbers 

and the period grows as a factorial (the product of all 

previous pivot numbers, this prime factorial is usually 

called primorial in the literature).  The PCI is bigger 

that the period (super-periodic region) at the first 

generations and the period outgrow the PCI after the 

fourth generation (sub-periodic region). In the super-

periodic region the stems are composed of seeds which 

are primes, in the sub-periodic region this is not the 

case anymore, the seeds can be primes or not. This has 

important consequences on the structure of higher 

generations due to what is called internal sieving. A 

last sentence (disclaimer) for this section: probably 

many of the features mentioned here are already 

known in modular algebra, but it has been preferred 

not to link these results with any established 

mathematical theory in order to avoid confusions. 
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( )
4
2 , 3 , 5 , 7

1
1 1
1 3
1 7
1 9
2 3
2 9
3 1
3 7
4 1
4 3
4 7
5 3
5 9
6 1
6 7
7 1
7 3
7 9
8 3
8 9
9 7

1 0 1
1 0 3
1 0 7
1 0 9
1 1 3
1 2 1
1 2 7
1 3 1
1 3 7
1 3 9
1 4 3
1 4 9
1 5 1
1 5 7
1 6 3
1 6 7
1 6 9
1 7 3
1 7 9
1 8 1
1 8 7
1 9 1
1 9 3
1 9 7
1 9 9
2 0 9

2 1 0 .n n

 
 
 
 
 
 
 
 
 
 
 













= + 
























 









































Those links, if needed, surely will be constructed in 

future works.  

Relation with the Euler Identity 

After the exposition of the main ideas developed until 

now, a question arises: does this approach shed new 

light on the prime numbers? The answer is yes. The 

symmetric structures produced by the SSM actually 

are also present in the Euler equation: 

( )

( ) ( ) ( ) ( )1 1 1 1

1 1 1 1 1
1 ....

2 3 4 5 6

1 2 1 3 1 5 1 7 ....

s s s s s

s s s s

sζ

− − − −− − − −

= + + + + + + =

− − − −
 

The function in the left is the Riemann Zeta 

Function. During the deduction of this equality a limit 

is taken in which the third step is shown here: 

( )1 1 1
1 1 1

2 3 5

1 1 1 1 1 1 1 1
1 ...

7 1 1 1 3 17 19 2 3 2 9 31

s s s

s s s s s s s s

sζ     − − − =     
     

+ + + + + + + + +

 

The limit consists in repeating infinitely the procedure 

which produced the last equality4. When the first 

inverse prime after the number one, in the right side, 

get extremely big, infinity in fact; the Euler identity is 

proven. But note that in the exemplified step the 

sequence of denominators are exactly the same as the 

sequence of numbers corresponding to the third 

generation. This is not surprising because as it has 

been mentioned previously; the SSM as well as the 

Euler identity are nothing else than prime sieve 

representations. But in Euler’s identity deduction, the 

structure of these sequences has been neglected due to 

the limit and following an analytical prime 

representation goal. The kernel of the problem is the 

successively broken symmetry of the prime sequence, 

which is notorious in the end result but gives no hint a 

priori of its origin, if the partially broken symmetries 

(the generations in the present work nomenclature) are 

neglected. Then it is important to know exactly how 

each generation is produced from the previous through 

the SSM. Due to the generation’s primorial 

periodicity, it is possible to restrict the element 

extraction to the zone corresponding to the next 

primorial during the construction (application of SSM) 

of the next generation. For instance in the construction 

of the fourth generation from the third generation: 

1 31 61 91 121 151 181 ...

7 37 67 97 127 157 187 ...

11 41 71 101 131 161 191 ...

13 43 73 103 133 163 193 ...

17 47 77 107 137 167 197 ...

19 49 79 109 139 169 199 ...

23 53 83 113 143 173 203 ...

29 59 89 119 149 179 209 ...

 
 
 
 
 
 
 
 
 
 
 
  
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The enclosed numbers correspond to the 

sequence h* of the fourth generation. Note that the 

branches have a cut-off just before the first period 

(2.3.5.7 = 210) because further elements are un-

interesting; they follow a repetitive pattern due to the 

periodicity. Note also that the new pivot number is 7, 

and there are 7 columns in the matrix. But one element 

will be extracted in each row for the next generation, 

leaving 6. This gives the hint that the seed number in 

each generation is the product of each pivot number 

minus one: 1, 2, 8, 48, etc. (the formal demonstration 

will be published elsewhere). From the previous 

matrix, once the enclosed elements have been 

extracted and the two dimensional matrix reduced to 

one dimension, one obtains the large multi-linear 

representation in the previous page. All what was 

written before suggest that is possible to recast the 

SSM in a form which involves no infinite sequence. 

This would mean an equation which is closer than ever 

to a prime generating formula. In fact this goal can be 

achieved and it is done in the next section.       

Discrete Scale Invariance and Internal Sieving 

Leading to a Finite and Constructive Formula for 

Prime Generation 

The SSM is based on element extraction. This is done 

through h* in the defining equations of β. But h* and h 

are both infinite sequences. In preceding sections 

strong arguments have been given indicating that all 

features of the SSM can be reduced to the first period, 

due precisely to the intrinsic periodicity of this 

mapping’s results. Can a new mapping based in the 

symmetries from the SSM constructed with finite sets 

or sequences as argument? The affirmative answer to 

this question was partially given in the last section 

when the fourth generation was obtained from the 

third in just the new generation interval (210). But 

how should be reduced the element extraction to one 

period? The solution to this question lies in a new 

symmetry of the SSM. This symmetry could be 

expressed as follows: The patterns produced by the 

segregation (with primorial periodicity and mirror 

symmetries as already mentioned) between extracted 

and non-extracted elements of n, after b’s successive 

applications, are the same seen from the perspective of 

a 1-periodic infinite sequence (the original n) as well 

as from the perspective of any r-periodic infinite 

sequence if r is relative prime with the set of all the 

pivot numbers used during the mappings of b. In 

particular all the “future” or still not used pivot 

numbers (which in fact are all the rest of the prime 

numbers) make sequences which show the same 

patterns or symmetric structures. In Figure 1, Part B, 

two examples of this symmetry are shown in the last 

row. This last definition have all the features of a 

“Discrete Scale Invariance” (DSI)7 but one: the known 

DSI has a preferred scale and the rest of the scales are 

powers of the fundamental one. In the present case 

there is no preferred scale and no invariant discrete 

scale is a power of any other because all are relative 

primes. The proof of the DSI for the sequences studied 

in this work will be published elsewhere. This 

powerful symmetry has dramatic consequences on 

what is now defined as “internal sieving”. The SSM 

contains a normal sieve which is performed with, and 

on, infinite sequences. The DSI symmetry allows to 

find the extracted elements restricted to the first 

period. As the already extracted elements, by all the 

previous mappings of β, leaved the same patterns on 

all the still unused pivot numbers; the pattern of the set 

of numbers which will be extracted by the next pivot 

number is known. It is simply the pattern embedded in 

the sequence of seeds multiplied by the pivot number. 

For example; in the previous construction of the fourth 

generation, the extracted numbers for the next 

generation are: (7, 49, 77, 91, 119, 133, 161, 203) = 7. 

(1, 7, 11, 13, 17, 19, 23, 29). The finite sequence in the 

last parenthesis is the set of the seeds from the third 

generation. Then the Internal Sieving (IS) is defined as 

the sieving restricted to the first period. The set of the 

elements which will be extracted is constructed with 

the product between the seeds from the previous 

generation and the next pivot number. With these 
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“intra-period” rules the W mapping will be defined, 

acting on finite sequences and producing primes in the 

form of “used” pivot numbers. Omega acts initially on 

two numbers {{S}, T} where T is the initial period 

T=1, and S is the initial seed S=1 (the cero 

generation). Because 2 is the start and the end of the 

first branch (2 is the first pivot number), Omega adds 

to the only seed “1” the period “1” just once, forming 

the sequence: (S, S+T) = (1, 2).  Then the output from 

the first mapping of omega is (the first generation):  

{ }{ }( ) { } { }{ } { }{ }1 ,1 1, 2 2 ,1.2 1 , 2Ω = − =  

Repeating the procedure on the first generation: 

{ }{ }( ) { } { }{ } { }{ }1 , 2 1, 3, 5 3 , 2 .3 1, 5 , 6Ω = − =  

Here again to the unique seed 1, the period 2 is 

successively added until the last number (5) is still 

smaller than the period (6 = 2.3); then 3 times the set 

of the seeds is extracted. The only element from this 

last set which is contained in the unique branch is 3. 

Then the number 3 is extracted leaving the already 

known bilinear superposition. Observe that it is 

redundant to maintain a record of the period (the 

primorial right part) because it can be obtained 

summing the two extremes of the seeds. However it is 

kept for the sake of clarity. After the first generation, 

the action of W becomes systematic:  

{ }{ }( ) { } { }{ }
{ }{ }

1,5 ,6 1,7,13,19,25,5,11,17,23,29 5,25 ,30

1,7,11,13,17,19,23,29 ,30

Ω = − =

 

And in general: 

( ) ( ) ( )( )1 1 2 1 20, 1, 2 1 ,..., 1 1σ σ σ σ σ σ σ σ σ σσ− − − Ω = + + + + + + − + − 
 

Where s2 and s-1, are s’s second and last 

elements, and s is used as column vector forming the 

matrix between the brackets. Here again the minus 

sign after the closing bracket means element 

extraction. A vectorial version for W is given as 

follows:  

( ) ( ) ( )
2 1 1 21, 1σσ σ ν σ σ σ− −Ω = ∧ + − ⋅i  

Here s is the vector of seeds, ⁄ is the matrix 

external generalized product (in which the last 

operation between individual elements is a two 

dimensional vector instead the usual product). The 

vector n is composed from the natural numbers 

starting at cero until the second seed s2 minus one. 

The number s-1 is the last seed and the bold point is a 

scalar product. The line over the entire operation 

means that the resulting matrix is projected in one 

dimension (“vectorized”) and ordered. The minus sign 

is a set operation and means element extraction. For 

example operating with Omega on (1, 5): 

( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1,5 1,5 0,1,2,3,4 1,6 5 1,5

1,0 , 1,1 , 1,2 , 1,3 , 1,4
1,6 5,25

5,0 , 5,1 , 5,2 , 5,3 , 5,4

1,7,13,19,25 5,25 1,7,11,13,17,19,23,295,11,17,23,29

Ω = ∧ − ⋅ =

  − = 
 

− =

i

i  

These operations can be resumed in one line of 

Mathematica ” code:  

[ ][ ] [ ][ ]{ } [ ][ ] { }Nest ,#, # 2 1 . 1,# 1 1 ,# 2 *# &, 1,5 ,3Complement Flatten Outer List Range − − +          
 

  This command has already the iterative order 

Nest embedded as the last operation. Observe that in 

this example 3 iterations are produced. Note also that 

the starting generation is the second one; {1, 5} 

instead the cero generation {1}. This is due to the W’s 

singular behaviour when it is started at the cero 

generation. After the second generation the branch 

production becomes systematic. A final reflection on 

W; reducing the action of the SSM to the first period of 

each generation, made evident that the primes are the 

remnant of a decimating machine. This machine when 
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applied to the natural numbers eliminates all of them 

but the number one. The difference between the 

primes and the no-primes is the “door” through they 

are leaving the set of the numbers modified by W; 

those which leaves through the last door (activated by 

the multiplication by 1, which is always in the set of 

seeds) are primes, those leaving through the rest of the 

internal sieving, are not. This prime generating 

decimation machine is self-regulated: If the density of 

the possible primes is high (low) in any region this 

will mean that in the next generation the decimation 

will be high (low), lowering (elevating) in this way the 

density. This property is notorious at the very first 

generations where the density of possible primes is the 

highest ever, leading to a fierce decimation and to a 

rapid stabilization of the density of primes. 

 

A “Mean Field Theory” for Primes leads to an 

Improved Prime Number Theorem. 

Using some properties from Omega, it is easy to 

obtain the mean behavior of the prime numbers. Each 

time W is applied; the period is increased by the pivot 

number p used at that iteration and the number of 

seeds by (p-1). In the PCI all the seeds are primes and 

one can make the supposition that their density is the 

same there and in the zone outside the PCI. Then 

applying Omega changes the mean density of primes 

from Dn-1 to Dn through the following factors: 

( )
n 1 1

1 1
1n

n n
n n

p

p p− −

−  
∆ = ∆ = ∆ − 

 

 

But Dn and Dn-1 can be expressed as the inverse 

of the difference of two consecutive prime numbers: 

( ) ( )n-1 n
1 1

1 1
;

n n n np p p p− +

∆ = ∆ =
− −

 

As in a lattice of atoms, between two sites one 

can count the distance as corresponding to one atom, 

one prime in this case. Substituting these equations in 

the previous one and solving for pn+1, one obtains a 

second order recursive equation for the next prime:  

( )
( )

1
n+1

2 1
p

1
n n n

n

p p p

p
−− −

=
−

 

The accuracy of the former equation is variable, 

but in a fraction of the cases it gives the next prime 

almost exactly. In Figure 2 the differences between the 

Figure 2 | Second Order Discrete Prime Producing Equation Goodness.  The closeness of the results is 
quantized in stripes below and over the real prime values. The difference values look like entire discrete 
quantities, but in fact they are fractional values very close to the integers.   
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true primes and the numbers produced through the 

former formula with the two previous true primes as 

arguments, are shown for the first 1000 primes. This is 

a logarithmic plot in the abscissa and shows that the 

“errors” in the prime prediction are approximately 

symmetrically distributed around the cero. In a 

fraction of the trials, quasi-exact (the difference to the 

true prime is a fraction less than one) solutions are 

obtained. Besides the first few cases, all the 

“predicted” primes are almost entire numbers and 

separated from the real ones by an even almost integer 

difference (producing the quantized stripes from the 

graph). The conversion of the former discrete equation 

in a continuous one with derivatives; has the goal of 

reproducing the results of the Prime Number Theorem 

and even to improve them. If the function g(n) is able 

to generate sequentially the prime numbers with 

natural numbers as arguments, then g(n) = pn where pn 

is the nth prime. This means that the minimal 

measurable difference between two arguments has to 

be 1. Then the best approximation for a derivative is: 

( ) ( ) ( )
1

1
n  

1 n n

n n
p p

γ γ
γ +

+ −
′ = = −  

Substituting these results in the discrete 

equation of prime densities, the following equation is 

obtained: 

( ) ( ) ( )
1

n-1 n 1
n

γ γ
γ

 
′ ′= −  

 

  

Calculating the second derivative of g in a 

similar way: 

( ) ( ) ( )n n n-1γ γ γ′ ′ ′ ′= −  

Substituting this last result in the former 

equation, the following simple, non-linear differential 

equation is obtained (these are approximations to γ and 

are called γo) : 

( ) ( )
( )

o
o

o

n
n

n

γ
γ

γ
′

′ ′ =   

The general solution to this equation can be 

found in terms of exponential integrals: 

( )
( ) ( )( )1

n
AA Ei e n B

o eγ
− − + +  =  

Where A and B, are the integration constants 

and Ei (-1) is the inverse function of the exponential 

integral given by: 

( )
t

x

e
Ei x dt

t

∞ −

−

= ∫  

If the constants are set to cero; A = B = 0 then 

the simplest version is obtained: 

( )
( ) ( )1

n
Ei n

o eγ
− 

  =  

The function p (n) is defined as the number of 

primes which exist in the interval (0, n)8. If pn is the 

nth prime, then there are n primes in the interval (0, 

pn). But pn = g(n), applying p to both sides: 

( ) ( )( )np n nπ π γ= =  

Then p and g, are the inverse of each other. 

Knowing the simplest approximate solution for g, one 

can obtain the correspondent p inverting it: 

( )
( )ln

ln
o

t

o

e
n Ei dt

tγ
γ

∞

−
 = = −  ∫  

Substituting t = - ln[z] the following equation is 

obtained: 

( ) ( )
0

1

ln
o

on d z L i
z

γ
γ= =∫  
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But n is the number of primes less or equal than 

g = pn, then n is  p (pn), which constitutes the first 

constructive demonstration of the Prime Number 

Theorem (the right side defines the Logarithm Integral 

function). Even more, it is the first construction of an 

approximate differential equation for the prime 

numbers. This is the simplest version of the solution. 

If the constants A and B are left free, then an improved 

Prime Number Theorem is obtained: 

( ) ( )

( )ln

ln

1

A

t

A
x A

Ei x A
x B

e

e
dt B

e t

π Ω

∞ −

− −

 + = − =

−∫
 

This equation has a curious behavior depending 

on the values of A and B. With appropriate values 

given to A and B (A = .52; B = -0.71, obtained 

through the best fit for the 100 first primes) the curve 

on the graph of Figure 3, Part A, is remarkably closer 

to p than the Logarithm Integral. But this closeness is 

limited; if one looks deeper the function crosses  p (n) 

and then remains far away from it. This means that 

certain values of A, produces almost exact results for 

bounded regions of the argument. This confirms the 

fact that the previous differential equation is an 

approximation to the real differential equation of γ(n). 

For a 100 times bigger domain window the 

approximation remains below of the real  p (n) after 

certain point, as it shown in Figure 3, Part B. The 

approximate differential equation for g can be 

transformed on an approximate differential equation 

for p just applying the chain rule to the inverse 

function: 

( )
( ) 2

2

2

y
0

dy

o

o

d y

dyd

y

π
π

 
 
 + =  

This last equation has the same solution as the 

previous. 

On the Infinitude of the Twin Primes 

As it was mentioned, the successive generations are 

finer and finer approximations to the prime numbers. 

In this sense the first generation states that all the 

primes are odd numbers. It also states that all the rest 

of the primes after the number two should be sieved 

out from an infinite sequence of twin primes. The first 

generation is the cradle of all twin primes. But in the 

first generation, version Omega, the seed 1 doesn’t 

express the presence of twin primes. Just in the second 

generation with the seeds 1 and 5 the twin primes are 

explicitly present in between the seeds (in a sort of 

Figure 3 | Comparison of the Old and New Approximations to π(n). The values of π(n) are shown as isolated points, 
the new approximation as a continuous line and Li(x) as a doted line. In the Part B; Li(x) remains close to π(n), whereas 
the new approximation diverges slowly. 
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“periodic boundaries” the branches corresponding to 5 

first and then to 1 have all their elements separated by 

two units). Then, all twin primes bigger than the pair 

(3, 5), are contained in the sequence of pairs (6.n + 5, 

6.n + 7). Only in the third generation the existence of 

twin primes is evident in the seed structure: 1, 7, 11, 

13, 17, 19, 23, 29. The first twin pair is shown in bold 

and the second in italic. As in the previous generation 

the limiting branches corresponding to the seeds 1 and 

29 also constitutes a pair of twin prime producing 

branches. If the internal sieving is neglected, these 

number of potential twin primes would grow at a 

similar rate as the branches, with (p-1)#. The twin 

prime structure from the third generation ensures that 

all the forthcoming twin primes will belong to one of 

the three sets: (30.n + 11, 30.n + 13), (30.n + 17, 30.n 

+ 19) or (30.n + 29, 30.n + 31). During the synthesis 

of a new generation each branch looses one member 

due to the internal sieving. Then a simple arithmetic 

proves that the number of twin primes is infinity; 

starting at the third generation, the number of possible 

twin primes will grow in each generation with a factor 

p-2, where p is the generation’s pivot number. This is 

because each branch grows like the pivot number 

minus one (due to the internal sieving). But each 

member of a twin prime pair belongs to different 

branches, then the internal sieving eliminates 2 twins 

instead of one (repetition of the internal sieving in the 

same twin pair is impossible because this would mean 

that two integers are far apart in lees than one unit).  

This last sentence, expressed in equations, means that 

the mean density of twin primes will change as a 

function of the generations in the following way: 

1 2n n n

n

p

pτ τ
+  −∆ = ∆  

 
 

Where ∆τ is the mean density of twin primes 

and the superscript indicates its generation, being pn 

the generation’s pivot number. This last equation 

shows that the twin primes never fade out: By 

construction of either β or Ω the number of possible 

twin primes in each generation is never cero. If the 

pivot numbers limits to infinity, the mean density of 

twin primes in each generation tends to be the same 

non cero quantity. As well as in the case of the plain 

prime numbers, this discrete equation can be converted 

in a differential equation: 

( )
( ) ( )

'' 2

' o

n

n n

τ
τ γ

=   

Where τ(n) represents a hypothetical function 

which gives the nth prime number belonging to a twin 

Figure 4| Goodness of the τ(n) Approximation to the nth Twin Prime. The real positions of the Twin Primes 
are shown with discrete points and the approximation with a continuous line.  
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prime and γo(n) is already known. Using the simplest 

solution for:  γo(n) = Ei (-1)(n); the following solution 

for τ is obtained: 

( ) ( ) ( )( )( 1) ( 1). . 1Ei nn A B e Ei nτ
− −= + −  

Where A and B are the integration constants. 

Setting A = 4.5 and B = 0.61 the curve shown in 

Figure 4 is produced. In the same plot, the true ordered 

values of the prime numbers belonging to twin primes 

are shown as points.  If the general solution for γo(n) is 

used, then 4 integrations constants are present: 

( ) ( )( ) ( )( )( )
( )( )

1
( 1)

2( 1)

1

2

DC Ei e n C D

D

e Ei e n CB
A C n

Ei e n C

− −+ − + − −

− −

 + − + + + + − + 
 

 

Finally it should be noted that it is impossible 

to invert the solution for τ(n) (looking for an 

equivalent π function of the twin primes) due to the 

multiplicity of the function Ei(-1)(n) in it. 

Conclusions 

In none of the classical papers about the prime 

numbers, it is stated from where comes the insight to 

hypothesize and then to prove that the function Li(x) is 

a good approximation for p(x). There were no reasons 

beyond the experimental fact and its plotting in a 

logarithmic scale8. A direct consequence of this was 

the extreme difficulty to prove anything about this fact 

and about the prime numbers in general. A lack of a 

working model for prime numbers has built the 

general sense that they were beyond the reach of the 

human intellectual powers2. Without such a model the 

mathematicians relied on feeble hints hidden in the 

apparently not understandable structure of the prime 

numbers. This made the few available proofs into huge 

efforts very difficult to elaborate and practically just 

on the level of some specialists. In this work a simple 

and beautiful model of the prime numbers is 

constructed starting from the geometrical symmetries 

formed during the sieving process. These symmetries 

are related with the relative position of the prime 

numbers and not with the numbers itself or with their 

restricted divisibility. The study of this restricted 

divisibility, as a fundamental fact about the Primes, 

was another misleading path. The restricted divisibility 

is more a consequence than a cause in the set of 

features which characterize the prime numbers.  

Following the right path of this model to its logical 

consequences, it was possible to elaborate a theory for 

the mean quantities of the primes. This theory leads to 

a second order discrete and approximate equation and 

to a second order continuous differential equation for 

the primes. This is the first time that such equations 

are presented. The simplest solution of this equation 

produces the Li(x) approximation as well as a general 

solution with two constants associated with the second 

order differential equation. The behaviors of the 

solutions under the adjustment from these constants 

demonstrate that the theory elaborated in this work is 

incomplete, and that even deeper symmetries are still 

lurking in the structure of the prime numbers. Perhaps 

the biggest advance of this work is the elaboration of a 

recursive and finite formula for the production of 

prime numbers. In this formula the infinitude of the 

twin primes is explicitly shown through its structure. 

This leads, in combination with the formerly 

mentioned differential equation for the primes; to an 

approximation of a differential equation for the twin 

primes which is analytically solvable. All these 

successes show that the model for the prime numbers 

presented in this work is the correct one. Furthermore, 

some new results, which were reported as 

breakthroughs, are simply natural consequences of the 

present model. For example the existence of arithmetic 

progressions of primes is obligatory due to the 

structure of the branches9. This model is 

straightforwardly connected with the Riemann 

Hypothesis through the Euler identity. However, as 

was shown in this work, the presence of the unique 

argument “s” in the Riemann function seems to be 

irrelevant to the structure of the primes, at last in 
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relation with their mean properties. In this reasoning, 

the zeros related to this argument, are also irrelevant. 

In fact the symmetric structures formed in β and Ω are 

the same which form the Euler identity with s = 1 or 

with any other value. It is the author’s belief that this 

work has just scratched the surface of the Primes real 

structure. Following the lead set by it, it will be 

possible to finally find an exact solution for the prime 

problem. Some of the deeper symmetries are already 

envisioned by the author and will be published soon 

elsewhere. Finally a possible bonus: the already 

discovered symmetries suggest that unveiling the 

complete prime number structure would be the same 

as obtaining the unique natural counting system, not 

binary, not decimal, but prime.  
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