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Summary. We investigate the dynamics associated to nearly–integrable dissipative
systems, with particular reference to some models of Celestial Mechanics which can
be described in a weakly dissipative framework. We start by studying some paradig-
matic models provided by the dissipative standard maps in 2 and 4 dimensions. The
dynamical investigation is performed applying frequency analysis and computing
the differential fast Lyapunov indicators. After recalling a few properties of adia-
batic invariants, we provide some examples of nearly–integrable dissipative systems
borrowed from Celestial Mechanics, and precisely the spin–orbit coupling and the
3–body problem. We conclude with a discussion on the existence of periodic orbits
in dissipative autonomous and non–autonomous systems.

1 Introduction

Celestial Mechanics provides a plethora of physical examples that are de-
scribed by nearly–integrable dissipative dynamical systems. For instance, the
celebrated three–body problem is known to be non–integrable, though in many
applications it can be considered close to an integrable system; however, the
conservative setting is not always sufficient to describe the dynamics: accurate
investigations of the motion of the celestial objects often require to take into
account dissipative effects, like the solar wind, the Yarkowsky effect or the
radiation pressure. Nevertheless in many situations the dissipative effects are
much less effective than the conservative contribution: for this reason we can
speak of a nearly–integrable weakly dissipative three–body problem. Another
example with similar features is the spin–orbit problem, concerning the mo-
tion of a rotating ellipsoidal satellite revolving on a Keplerian orbit around a
central body. In this case the conservative setting is described by a nearly–
integrable problem, which is ruled by a perturbing parameter representing the
equatorial oblateness of the satellite. The internal non–rigidity of the satel-
lite provokes a tidal torque, whose effect is typically much smaller than the
conservative part.
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In order to approach the analysis of the dissipative nearly–integrable systems,
we start by investigating a simple discrete model known as the dissipative
standard map (see [3], [4], [6], [8], [20], [29], [32]). Its dynamics is studied
through frequency analysis ([21], [22]) and by means of a quantity called the
differential fast Lyapunov indicator as introduced in [8]. We remark that these
approaches can be easily adapted to higher dimensional mappings as well as to
continuous systems. By means of these techniques we analyze the occurrence
of periodic attractors and of invariant curve attractors as the characteristic
parameters of the system are varied. The results obtained for the standard
map allow an easier approach to continuous systems; indeed after reviewing
some results on the adiabatic invariants for a dissipative pendulum, we start by
exploring some paradigms of nearly–integrable dissipative systems borrowed
from Celestial Mechanics. In particular, we focus on the spin–orbit interaction
for which we present some explicit expressions of dissipative forces known as
MacDonald’s and Darwin’s torques. In this context we discuss the occurrence
of capture into resonance, which depends on the specific form of the dissipation
(see, e.g., [10], [12], [15], [16]).
We also provide a short discussion of the restricted planar, circular, 3–body
problem and related sources of dissipation (see, e.g., [1], [2], [25], [31]). We
conclude by mentioning some results about the existence of periodic orbits in
(dissipative) autonomous and non–autonomous systems (compare with [27],
[28], [9], [30]).

2 The dissipative standard map

A simple model problem which inherits many interesting features of nearly–
integrable dissipative systems is given by the so–called generalized dissipative
standard map, which is described by the equations

{
y′ = by + c + ε

2π s(2πx)
x′ = x + y′ ,

(1)

where y ∈ R, x ∈ [0, 1), b ∈ R+, c ∈ R, ε ∈ R+ and s(2πx) is a periodic
function. In the case of the classical standard map one defines s(2πx) =
sin(2πx). The quantity ε is referred to as the perturbing parameter and it
measures the nonlinearity of the system. The parameter c is called the drift
parameter and it is zero in the conservative setting. Finally, b is named the
dissipative parameter, since the Jacobian of the mapping is equal to b. Indeed,
for b = 1 one reduces to the conservative case, 0 < b < 1 refers to the (strictly)
dissipative case, while for b = 0 one obtains the one–dimensional sine–circle–
map given by x′ = x + c + εs(2πx).
In the conservative case the dynamics is ruled by the rotation number ω ≡
limj→∞

xj−x0
j ; indeed, if ω is rational the corresponding dynamics is periodic,

while if ω is irrational, the corresponding trajectory describes for ε sufficiently
small an invariant curve on which a quasi–periodic motion takes place.
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In the dissipative setting it is useful to introduce the quantity

α ≡ c

1− b

and we immediately recognize that for ε = 0 the trajectory {y = α} × T 1 is
invariant. Notice that c = α(1 − b) = 0 for b = 1 (i.e., in the conservative
case).
In the following we shall specify the function s(2πx) by taking s1(2πx) =
sin(2πx) or s1,3(2πx) = sin(2πx) + 1

3 sin(2πx · 3). Moreover, we shall take α

as the golden mean, α =
√

5−1
2 , or as a rational number.

By iterating one of the above mappings, different kinds of attractors appear:
invariant curves, strange attractors and periodic orbits, characterized by dif-
ferent values of the largest Lyapunov exponent. Figure 1 reports the dynamics
of the mapping (1) with s(2πx) = sin(2πx) and α = 0.2, ε = 0.8, for different
values of the dissipative parameter; a transient of 10000 iterations is prelim-
inary performed to get closer to the attractor. For b = 0.1 one observes an
invariant curve attractor, while a piecewise attractor appears for b = 0.2718
and a periodic orbit attractor (denoted with crosses) is evident for b = 0.28.
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Fig. 1. Attractors of (1) with s(2πx) = sin(2πx), α = 0.2, ε = 0.8, while b takes
the values 0.1, 0.2718, 0.28.

The fate of the trajectories of the dissipative mapping is rather intriguing.
Indeed, orbits might wander the phase space running in zigzags through tori
and chaotic separatrixes or it may happen that the motion is permanently
captured into a resonance. An example is shown in Figure 2 which reports the
evolution of the dynamics associated to the mapping (1) with s(x) = s1(x)
and for α =

√
5−1
2 . The perturbing parameter is set to ε = 0.8, while the

dissipation is fairly weak, being b = 1 − 0.00001. Taking the initial values
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(y0, x0) = (5, 0), the left panel of Figure 2 shows that the evolution of 105

iterates escapes many resonances before being captured by the 3:2 resonance
(at approximately y0 = 1.5). Starting from the last of the previous 105 iterates,
we perform some more 5 ·105 iterations (see the right panel of Figure 2) which
manifest a spiralling toward the equilibrium point, after jumping across some
secondary resonances. Further iterations would lead to end–up on the center
of the resonance.
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Fig. 2. Capture into resonance for the mapping (1) with s(2πx) = s1(2πx), α =√
5−1
2

, ε = 0.8, b = 1 − 0.00001, (y0, x0) = (5, 0). Left panel: the first 105 iterates;
right panel: some more 5 · 105 iterations.

3 Techniques for the numerical investigation of the
dynamics

In order to analyze the dynamics of the dissipative standard map we im-
plement two complementary numerical techniques, which are based on the
frequency analysis (see, e.g., [21], [22], [23]) and on the computation of the
so–called fast Lyapunov indicators (see, e.g.,[13], [14], [17]), modified in or-
der to work in the dissipative case. We refer the reader to [8] for a complete
description and implementation of these techniques.

3.1 Frequency analysis

Frequency analysis relies on the computation of the frequency of motion, which
is determined by applying the following algorithm. For a given conservative 2–
dimensional mapping M , let us denote by Pn = Mn(P0) the n–th iterate of the



Weakly dissipative systems in Celestial Mechanics 5

point P0 which we assume to belong to an invariant curve with frequency ω.
Over a sample of N points (P1, ..., PN ) we denote by Pn1 the nearest neighbor
to P0 and we define the integer p1 through the expression n1ω = p1+ε1, where
ε1 is a small quantity. Since p1 counts the number of revolutions performed
around the invariant curve, the quantity ω can be approximated by the ratio
p1/n1. Increasing N , one gets a sequence of better approximations pk/nk

converging to ω up to small errors εk. Particular care must be taken when
applying this method to the dissipative case, since the starting point must be
close to the attractor; to this end, a preliminary set of iterations, typically
104, is performed before defining the starting point P0.

In order to investigate the effect of the joined variation of the dissipative and
of the perturbing parameters, we use frequency analysis by drawing the curve
ω = ω(b) for different values of ε (see Figure 3). This approach allows to recog-
nize the different kinds of attractors: indeed, invariant curves are characterized
by a monotone variation of the frequency curve, periodic orbits show a marked
plateau, while strange attractors exhibit an irregular behavior of the function
ω = ω(b). From experiments on different mappings and different choices of
α, we notice that invariant curves typically occur more frequently for small
values of ε, while periodic and strange attractors appear more often as ε gets
larger. With reference to Figure 3, we also remark that Figure 3a is ruled
by the irrational choice of α, while in Figure 3b there is a dominant periodic
attractor with period 1

3 whose basin of attraction increases as the parameter
ε gets larger. The remaining panels refer to the two–frequency map s1,3(2πx);
in Figure 3c the irrational choice of α is compensated by the selection of the
harmonics 1 and 3 which appear in the mapping s1,3(2πx), while in Figure 3d
both the choice of s1,3(2πx) and of α induce most of the orbits to be attracted
by the periodic attractor with frequency 1

3 .

3.2 Differential Fast Lyapunov Indicator

A global analysis of conservative systems can be performed through the Fast
Lyapunov Indicators (hereafter, FLI) which are defined as follows. Let M̃
be the lift of the mapping; let us denote by z(0) ≡ (y(0), x(0)) the initial
condition and let v(0) ≡ (vy(0), vx(0)) be an initial vector with unitary norm.
For a fixed time T > 0, define the FLI as the quantity

FLI(z(0), v(0), T ) ≡ sup
0<t≤T

log ‖v(t)‖ ,

where v(t) is the solution of the differential system
{

z(t + 1) = M̃(z(t))
v(t + 1) = ∂M̃

∂z (z(t))v(t)

with initial data z(0), v(0). We stress that in the unperturbed case (ε = 0),
the largest Lyapunov exponent of an invariant curve is zero, while in the
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Fig. 3. Frequency analysis showing ω = ω(b) for 9 different values of ε from ε = 0.1

(lower curve) to ε = 0.9 (upper curve). a) Mapping s1(2πx) with α =
√

5−1
2

; b)

Mapping s1(2πx) with α = 1
3
; c) Mapping s1,3(2πx) with α =

√
5−1
2

; d) Mapping
s1,3(2πx) with α = 1

3
(after [8]).

dissipative case the corresponding FLI can take any value within the range
[log(|vx(0)|),+∞). By continuity the same problem holds for ε 6= 0; as a
consequence, in the dissipative setting the FLI might not be adequate to
differentiate between an invariant curve attractor and a strange attractor.
Henceforth we defined in [8] the quantity

DFLI0(z(0), v(0), t) ≡ F (z(0), v(0), 2t)− F (z(0), v(0), t) ,

where F (z(0), v(0), t) = F (t) ≡ log ‖v(t)‖. We remark that DFLI0 is zero
for curve attractors, negative for periodic orbits and positive for chaotic at-
tractors, in agreement with the value of the corresponding largest Lyapunov
exponent. Finally, in order to kill the oscillations of the norm of the vector v
a supremum has been introduced, which corresponds to adopt the following
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definition of differential FLI:

DFLI(T ) = G2T (F (t))−GT (F (t)) , (2)

where {
Gτ (F (t)) = sup0≤t≤τ F (t) if F (τ) ≥ 0
Gτ (F (t)) = inf0≤t≤τ F (t) if F (τ) < 0 .

The DFLI provides a complementary investigation to frequency analysis; to
represent it in an effective way, we used a color scale which helps to discrimi-
nate among the different attractors. As performed in [8] we computed grids of
500×500 initial values of b and ε regularly spaced in the interval [0.01 : 1]; the
initial conditions were set to y0 = 5 and x0 = 0, while T = 103 (see (2)), after
a transient of 104 iterations. Then, the color classification is performed on
the following basis: invariant curve attractors are denoted by grey and their
DFLI values are close to zero; strange attractors are labeled by light grey
and their DFLI values are positive; periodic orbit attractors are denoted by
dark grey to black with a negative DFLI.
As an example, we consider the two–frequency mapping s1,3(2πx) with α =√

5−1
2 ; the results are presented in Figure 4. The left panel shows the chart of

parameters b versus ε: scanning in the ε–direction we find invariant attractors
up to ε ' 0.36 and periodic attractors around ε ' 0.4; for ε > 0.4 a wide
zone filled by periodic attractors is surrounded by two regions of strange
attractors. The right panel provides the DFLI chart in the plane b versus the
initial condition y. We remark that for a fixed b, the basin of attraction is
typically unique, with the exception of the parameter region 0.65 < b < 0.9,
where different initial conditions can be attracted either by a periodic orbit
or by a strange attractor.

Fig. 4. Map s1,3(2πx) with α =
√

5−1
2

. Left panel: DFLI chart b vs. ε; right: DFLI
chart b vs. y (after [8]).
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An important issue, especially from the point of view of physical applications,
is the occurrence of periodic orbits and precisely the dependence of a given
periodic attractor upon the choice of α and of the mapping s(x). Numerical
experiments (see [8]) show that a q–periodic orbit is highly likely whenever
α = p

q or s(2πx) = sin(2πx · q). We remark also that periodic orbit attractors
with small period occur more frequently and that new periodic orbits arise
for increasing b.

The applications concerning Celestial Mechanics that we shall consider in the
following sections are typically characterized by a small value of the dissipation
b when compared to the perturbing parameter ε. In view of such investigations
we concentrate on the weakly dissipative regime, where b varies in the interval
[0.9, 1]. To be concrete, let us consider the mapping s(2πx) = sin(3 · 2πx)
with α = 1

2 and let us count the number of occurrences of a periodic orbit
attractor of period q as ε varies. This result is presented in Figure 5a using a
semi–log scale: the rotation number is computed taking 100 initial conditions,
say x0 = 0 and y0 in the interval [0, 10) and 1000 values of b in [0.901, 0.999],
while ε takes the discrete values 0.1, 0.2,..., 0.9.
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Fig. 5. Occurrence of periodic attractors versus ε. a) Mapping s(2πx) = sin(3 ·2πx)

with α = 1
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; b) mapping s(2πx) = sin(2πx)

cos(2πx)+1.4
with α = 1

2
(after [8]).

This experiment shows that there is a competition between the frequency
q = 3 (equal to the leading harmonic of s(2πx)) and the frequency q = 2 (as
a consequence of the choice α = 1

2 ). The occurrence of periodic orbits with
period 3 increases as ε gets larger; on the other hand, the occurrence of the
frequency q = 2 increases as ε gets smaller, which means that α is dominant for
low values of ε. This example contributes to explain the roles of α and s(2πx)
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in the weakly dissipative regime. In a similar way we interpret the results for
the case of the mapping s(2πx) = sin(2πx)

cos(2πx)+1.4 which admits a full Fourier
spectrum (Figure 5b). We remark that the weakly dissipative solution can
be analyzed also perturbatively by introducing the small quantity β ≡ 1− b.
Indeed, let us develop the solution in powers of β as y = y(0)+βy(1)+β2y(2)+
..., x = x(0) + βx(1) + β2x(2) + ...; inserting such equations in the definition of
the mapping, one easily gets recursive relations on the quantities y(k), x(k).
The investigation of these series expansion might provide information about
the solution in the weakly dissipative regime.

3.3 The 4–dimensional standard mapping

The results presented for the two–dimensional mapping can be easily general-
ized to higher dimensional maps as well as to continuous systems. For example,
let us consider the dissipative 4–dimensional standard map described by the
equations

y′ = by + c1 + ε
[
sin(x) + γ sin(x− t)

]

x′ = x + y′

z′ = bz + c2 + ε
[
sin(t)− γ sin(x− t)

]

t′ = t + z′ ,

where y, z ∈ R, x, t ∈ [0, 2π) and c1, c2 are real constants. The mapping de-
pends also on three parameters: b ∈ R+ is the dissipative parameter, ε ∈ R+

is the perturbing parameter, γ ∈ R+ is the coupling parameter. Indeed,
for γ = 0 we obtain two uncoupled 2–dimensional standard mappings; we
also remark that for ε = 0 we obtain two uncoupled mappings which admit
rotational invariant circles with frequencies α1 ≡ c1

1−b and α2 ≡ c2
1−b . Let

ω = (ω1, ω2) be the frequency vector. With reference to Figure 6 we select
ω =

(
1
s , s− 1

)
= (0.754877..., 0.324717...), s being the root of the third order

polynomial s3 − s − 1 = 0 (i.e., the smallest Pisot–Vijayaraghavan number
of third degree; see, e.g., [7]). Figure 6 shows the two main frequencies as a
function of the perturbing parameter in the case b = 0.7, γ = 0.8. A regu-
lar behavior is observed for values of ε ≤ 0.5, followed by a chaotic motion
manifested by an irregular variation of the frequency curves.

4 Adiabatic invariants of the pendulum

Let us consider a pendulum equation to which we add a small linear dissipative
force, say

ẍ + α sin x + βẋ− γ = 0 ,

for x ∈ [0, 2π]. We can write the above equation also as
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Fig. 6. Frequency analysis of the 4–dimensional standard map with ω =
(0.754877..., 0.324717...), b = 0.7, γ = 0.8 and initial conditions y = 1, x = 0,
z = 0.7, t = 0.

ẏ = −α sin x− βy

ẋ = y − γ

β
;

we remark that the choice of this example is motivated by the fact that it is
very close to the spin–orbit equation described in the following section.
According to [18] the adiabatic invariant Y ≡ 1

2π

∮
y dx slowly changes for a

small variation of the dissipation factor β according to Y (t) = e−βt Y (0). The
phase–space area enclosed by a guiding trajectory is provided by the formula

Γ ≡
∮

ẋ dx = 2πY − γ

β

∮
dx .

As shown in [18], in case of positive circulation the spin slows approaching
the resonance; in the librational regime the trajectory tends to the exact
resonance; for negative circulation there are two possible behaviors: if 8

√
α >

2π γ
β the guiding trajectory tends to the resonance, while if 8

√
α < 2π γ

β the
motion can evolve toward an invariant curve attractor.
To provide a concrete example, let us follow the trajectory with initial condi-
tions x = 0, y = −0.2; the set of parameters (α, β, γ) = (0.0061, 0.01, 0.001)
satisfies the condition 8

√
α < 2π γ

β and the corresponding dynamics is at-
tracted by an invariant curve (see Figure 7, left panel); on the contrary, such
condition is not fulfilled by (α, β, γ) = (0.0063, 0.01, 0.001) and consistently
we find that the corresponding trajectory is attracted by a resonance as shown
in Figure 7, right panel.
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Fig. 7. Evolution of the dissipative pendulum in the phase space; left panel: attrac-
tion to an invariant curve, right panel: approach to a resonance.

5 A paradigm from Celestial Mechanics: the spin–orbit
model

5.1 The conservative model

A simple interesting physical problem which gathers together many features
of nearly–integrable weakly dissipative systems is provided by the spin–orbit
coupling in Celestial Mechanics. Let us start with the description of the con-
servative model. We immediately remark that under suitable assumptions the
equation of motion describing such model is very similar to the pendulum
equation already met in the context of adiabatic invariants. More precisely,
the model is the following: we consider a triaxial satellite S orbiting around a
central planet P and rotating at the same time about an internal spin–axis.
We denote by Trev and Trot the periods of revolution and rotation of S. The
Solar System provides many examples of the so–called spin–orbit resonances,
which are characterized by peculiar relationships between the revolution and
rotation periods, according to the following

Definition. A spin–orbit resonance of order p : q (with p, q ∈ Z+, q 6= 0)
occurs whenever

Trev

Trot
=

p

q
.

In order to write the equations of motion, we make the following hypotheses:
i) the satellite moves on a Keplerian orbit around the planet;
ii) the spin–axis coincides with the smallest physical axis of the ellipsoid;
iii) the spin–axis is perpendicular to the orbital plane.

Under these assumption the equation of motion can be written as follows.
Let a, r, f be the semimajor axis, the instantaneous orbital radius and the
true anomaly of the satellite; let A < B < C be its principal moments of
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inertia and let x be the angle between the longest axis of the satellite and the
pericentre line. Then, the motion is described by the equation

ẍ +
3
2

B −A

C
(
a

r
)3 sin(2x− 2f) = 0 . (3)

Notice that the quantities r and f are known Keplerian functions of the time;
setting ε ≡ 3

2
B−A

C , equation (3) can be expanded in Fourier series as (see, e.g.
[5])

ẍ + ε

∞∑

m=−∞,m6=0

W (m, e) sin(2x−mt) = 0 , (4)

for some coefficients W (m, e) which decay as powers of the eccentricity being
proportional to e|2m−2|.
We remark that the parameter ε represents the equatorial oblateness of the
satellite; when ε = 0 one has equatorial symmetry and the equation of motion
is trivially integrable. Moreover, the dynamical system is integrable also in
the case of circular orbit, since the radius r coincides with the semimajor axis
and the true anomaly becomes a linear function of the time.

5.2 The dissipative model

In writing equation (3) (equivalently (4)) we have neglected many contribu-
tions, like the gravitational attraction due to other celestial bodies or any kind
of dissipative forces. Among the dissipative terms, the strongest contribution
is due to the internal non–rigidity of the satellite. This tidal torque may as-
sume different mathematical formulations; among the others we quote the
classical MacDonald’s ([24]) and Darwin’s ([11]) torques which are reviewed
in the following subsections (see [16], [26]). Let us summarize by saying that
MacDonald expression assumes a phase lag depending linearly on the angular
velocity, while Darwin’s formulation Fourier decomposes the tidal potential,
assigning to each component a constant amplitude. For more elaborated for-
mulations of the tidal torque involving the internal structure of the satellite
we refer to [19].

MacDonald’s torque

Let δ be the angle formed by the direction to the planet and the direction to
the maximum of the tidal bulge. Let us denote by r̂ the versor to P and by
r̂T the versor to the tidal maximum, i.e. the sub–planet position on S a short
time, say ∆t, in the past; then we have

r̂T = r̂(t−∆t) ' r̂ − dr̂

dt
∆t , (5)

where the derivative is computed in the body–frame. Using the relations
cos δ = r̂ · r̂T , sin δ = r̂T ∧ r̂, we obtain that MacDonald’s torque takes the
expression (see, e.g., [16])
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T =
3k2Gm2

P R5

2r6
sin(2δ)

=
3k2Gm2

P R5

r6
(r̂ · r̂T )(r̂T ∧ r̂) ,

where k2 is the so–called Love’s number, G is the gravitational constant, mP

is the mass of the planet, R is the satellite’s mean radius. Taking into account
(5) and the relation r̂ · r̂T = 1, we obtain

T =
3k2Gm2

P R5∆t

r6
(r̂ ∧ d

dt
r̂) .

Let (ex, ey, ez) be the versors of the reference orbital plane; denote by Ω
the longitude of the ascending node, I is the obliquity, while ψm is the angle
between the ascending node and the body axis of minimum moment of inertia.
Then, one obtains the relation ([26])

r̂ ∧ d

dt
r̂ = ψ̇m sin I cos(f −Ω)(− sin fex + cos fey)

+ (ḟ − Ω̇ − ψ̇m cos I)ez .

Taking only the component along the z–axis, one obtains that the average of
the tidal torque over the orbital period is given by

〈T 〉 =
3k2Gm2

P R5∆t

a6

(
nN(e)− L(e)ψ̇m cos I

)
ez ,

where n is the mean motion and N(e), L(e) are related to the following aver-
ages over short–period terms:

〈a
6

r6
ḟ〉 ≡ nN(e) = n(1 +

15
2

e2 +
45
8

e4 +
5
16

e6)
1

(1− e2)6

〈a
6

r6
〉 ≡ L(e) = (1 + 3e2 +

3
8
e4)

1
(1− e2)9/2

.

According to assumption iii) of the previous section we can set I = 0, so that
ψm coincides with x. Finally, the equation of motion (3) under the effect of
the MacDonald’s torque is given by

ẍ +
3
2

B −A

C
(
a

r
)3 sin(2x− 2f) = −K

[
L(e)ẋ−N(e)

]
,

where we have used ω∆t = 1
Q , Q being the so–called quality factor ([26]), and

where we have introduced a dissipation constant K depending on the physical
and orbital characteristics of the satellite:

K ≡ 3n
k2

ξQ
(
R

a
)3

mP

mS
,
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where mS is the mass of the satellite and ξ is a structure constant such that
C = ξmR2. For the cases of the Moon and Mercury the explicit values of such
constants are given in Table I; it results that the dissipation constant amounts
to K = 6.43162 · 10−7 yr−1 for the Moon and K = 8.4687 · 10−7 yr−1 for
Mercury.

Table I.

Moon Mercury

k2 0.02 0.4
Q 150 50
mS 7.35 · 1022 kg 3.302 · 1023 kg
mP 5.972 · 1024 kg 1.99 · 1030 kg
R 1737.5 km 2440 km
ξ 0.392 0.333
a 3.844 · 105 km 5.79093 · 107 km
e 0.0554 0.2056
n 84.002 yr−1 26.0879 yr−1

K 6.43162 · 10−7 yr−1 8.4687 · 10−7 yr−1

Darwin’s torque

In the case of Darwin’s torque we just provide the explicit expression which
is related to the Fourier expansion (4) as

ẍ +
3
2

B −A

C
(
a

r
)3 sin(2x− 2f) = −K

(
W (−2, e)2sgn(x + 1)

+ W (−1, e)2sgn(x +
1
2
) + W (1, e)2sgn(x− 1

2
) + W (2, e)2sgn(x− 1)

+ W (3, e)2sgn(x− 3
2
) + W (4, e)2sgn(x− 2) + W (5, e)2sgn(x− 5

2
)

+ W (6, e)2sgn(x− 3)
)

,

where the coefficients Wk take the form

W (−2, e) =
e4

24
W (−2, e) =

e3

48

W (1, e) = −e

2
+

e3

16
W (2, e) = 1− 5e2

2
+

13e4

16

W (3, e) =
7e

2
− 123e3

16
W (4, e) =

17e2

2
− 115e4

6

W (5, e) =
845e3

48
W (6, e) =

533e4

16
.
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5.3 Capture into resonance

Bearing in mind the discussions about the capture into resonance for the
dissipative standard map, we proceed to illustrate some classical results (see
[16], [27]) about resonance capture in the spin–orbit problem. We will see that
such event strongly depends on the form of the dissipation. Using (4) let us
write the dissipative spin–orbit equation as

ẍ +
3
2

B −A

C

∞∑

m=−∞,m6=0

W (m, e) sin(2x−mt) = T . (6)

Let us introduce the p–resonant angle γ ≡ x − pt; after averaging over one
orbital period one gets

Cγ̈ +
3
2
(B −A)W (p, e) sin 2γ = 〈T 〉 . (7)

Constant torque

Let us consider the case 〈T 〉 = const; a first integral associated to (7) is
trivially obtained as

1
2
Cγ̇2 − 3

4
(B −A)W (p, e) cos 2γ = 〈T 〉γ + E0 ≡ E . (8)

We plot in Figure 8 the behavior of 1
2 γ̇2 versus γ as derived from (8) (see [16]).

We denote by γmax the point at which γ̇ = 0. Assuming an initial positive γ̇,
we proceed along the curve until we reach γmax; at this moment the motion
reverses sign, thus escaping from the resonance.

MacDonald’s case

Let us now assume that 〈T 〉 = −K1(γ̇ + V ) for some constants K1 and V ;
then we have:

d

dt

[1
2
Cγ̇2 − 3

4
(B −A)W (p, e) cos 2γ

]
= −K1(γ̇2 + V γ̇) =

dE

dt
,

where the behavior of 1
2 γ̇2 is provided in Figure 9. Let us denote by ∆E the

difference of γ̇2

2 between two successive minima, say γ1 and γ2; let δE be the
difference between the two minima with the same ordinate γ1. Let E1 be the
ordinate of the highest minimum at γ1; being |δE| > E1 there exists a second
zero of γ̇2

2 near γ1, so that γ̇ reverses sign again and γ is trapped in libration
between γ1 and γ2.
On the other hand, if |δE| < E1 the planet escapes from the resonance and
continues to despin (see Figure 10).
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Fig. 9. MacDonald’s case: trapping in libration.
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Fig. 10. MacDonald’s case: escape from resonance.

Following [16] we can compute the probability of capture P as follows. Assum-
ing that the values of E1 are distributed with uniform probability in [0,∆E]
we define P as P ≡ δE

∆E ; then we obtain

P ' 2
1 + πV∫ γ2

γ1
γ̇dγ

.

Darwin’s case

We assume that 〈T 〉 = −W −Z sgn(γ̇), for some constants W and Z. Denote
by δE′ the difference of 1

2 γ̇2 between γ2 and the second minimum at γ1; then,
one can easily show that (see [16])

∆E = −(W + Z)π δE = −2πZ ,

so that the probability of capture can be written as

P =
2Z

W + Z
,

which turns out to be independent on B−A
C .

6 The restricted, planar, circular, 3–body problem

Another basic example of a dissipative nearly–integrable system in Celestial
Mechanics is represented by gravitationally interacting bodies, subject to a
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dissipative force. Focussing our attention to the restricted, planar, circular,
3–body problem, we can derive the equations of motion in a synodic reference
frame as follows. We investigate the motion of a massless body S under the
influence of two primaries P1, P2 with masses µ and 1−µ; we assume that the
motion of the primaries is circular around their common barycenter and that
all bodies move on the same plane. If (x, y, px, py) denote the coordinates of
the minor body in the synodic frame, the equations of motion under a linear
dissipation read as

ẋ = y + px

ẏ = −x + py

ṗx = py − 1− µ

r3
1

(x + µ)− µ

r3
2

(x− 1 + µ)−Kpx

ṗy = −px − 1− µ

r3
1

y − µ

r3
2

y −Kpy , (9)

where r1 ≡
√

(x + µ)2 + y2, r2 ≡
√

(x− 1 + µ)2 + y2. The effect of the dissi-
pation is simulated by adding the terms (−Kpx,−Kpy) to the equations for
ṗx and ṗy. Let us now look at the survival of periodic orbits under the effect
of the dissipation. By Newton’s method we determine the periodic orbit in
the conservative case; then we slowly increase the dissipation parameter and
we compute the periodic orbit through a continuation method. This proce-
dure might fail or work in different situations as shown in Figure 11: the left
panel provides a periodic orbit in the conservative setting with period twice
the basic period of the primaries; however, such orbit immediately disappears
as K 6= 0. On the other hand the periodic orbit shown in the right panel of
Figure 11 has period 3 times the basic period of the primaries and can be
continued in the dissipative context up to K = 10−4.
We conclude by mentioning that many other dissipative forces can be consid-
ered in the framework of the 3–body problem, such as the solar wind (which
is caused by charged particles originating from the upper atmosphere of the
Sun), the Yarkowsky effect (consisting in the anisotropic emission of ther-
mal photons due to the rotation of the celestial body), the radiation pressure
(caused by electromagnetic radiation). This last force is a component of the
Poynting–Robertson drag exerted by solar radiation on dust grains. Other
dissipative forces widely studied in the literature are the Stokes and Epstein
drags, which affect the orbital evolution of a dust grain in a gas planetary
nebula, and are respectively valid for low and high Reynold numbers.

7 Periodic orbits for non–autonomous and autonomous
systems

A remarkable discussion of the existence of periodic orbits for non–autonomous
and autonomous systems can be found in [27] (see also [28], [9], [30]). Indeed,
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Fig. 11. Left panel: periodic orbit of period 2 for K = 0, corresponding to a
semimajor axis equal to 1.58 and eccentricity equal to 0.22. Right panel: periodic
orbit of period 3 for K = 0, corresponding to a semimajor axis equal to 1.31 and
eccentricity equal to 0.76.

the arguments we are going to present apply to the two examples we have
discussed so far, namely the non–autonomous spin–orbit problem and the au-
tonomous restricted, planar, circular, 3–body problem. In particular, we want
to show that
i) for the non–autonomous spin–orbit problem described by (6) one can find
periodic orbits with period equal (or multiple) to that of the conservative
problem;
ii) for the restricted, planar, circular, 3–body problem one can apply in the
conservative case (eq.s (9) with K = 0) the theory for autonomous systems,
which allows to find periodic solutions with the same period of the case in
which the perturbing parameter µ is set to zero;
iii) for the dissipative restricted, planar, circular, 3–body problem, one can
use the autonomous theory to find periodic orbits with period close (but not
exactly equal) to that obtained for K = 0.

We report in the Appendix the perturbative computation up to the second
order of periodic orbits in an autonomous dissipative case.

7.1 Non–autonomous systems

Consider the differential equation

ẋ = f(x, t; γ) ,

where x = (x1, ..., xn) and f is a T–periodic function depending on a real
parameter γ. Assume that for γ = 0 we know a T–periodic orbit described by
the equations

x(t) = ϕ(t) with ϕ(T ) = ϕ(0) .
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Then, if γ is sufficiently small, one can prove the existence of a periodic
solution with period T . In fact, assume that the initial data of the periodic
orbit for γ 6= 0 are

x(0) = ϕ(0) + β ,

where β = (β1, ..., βn). After one period one has

x(T ) = ϕ(0) + β + ψ ,

where ψ = (ψ1, ..., ψn) are holomorphic functions in β1, ..., βn, γ. In order to
prove the existence of a periodic solution, the following n equations in the
unknowns (β1, ..., βn) must be satisfied:

ψ = (ψ1, ..., ψn) = 0 .

Applying the implicit function theorem, if γ is sufficiently small and if the
Jacobian of ψ with respect to β satisfies

(∂ψ

∂β

)
|γ=β=0 6= 0 ,

then there exists β = β(γ) such that β(0) = 0 and there exists a T–periodic
orbit provided γ is sufficiently small.

7.2 Autonomous systems

Consider the autonomous system

ẋ = f(x; γ) ,

where x = (x1, ..., xn) and f depends on the real parameter γ. Assume that
for γ = 0 we know a T–periodic orbit, given by the equations

x(t) = ϕ(t) with ϕ(T ) = ϕ(0) .

We immediately remark that if there is one periodic orbit, then there exists
an infinity, since if x(t) = ϕ(t) is periodic, also x(t) = ϕ(t + h) for any real h
is periodic, being the system autonomous.
Let γ 6= 0 and look for a solution such that

x(0) = ϕ(0) + β , x(T + τ) = ϕ(0) + β + ψ ,

where ψ = (ψ1, ..., ψn) are holomorphic in β1, ..., βn, γ, τ .

Such solution is (T + τ)–periodic if

ψ = (ψ1, ..., ψn) = 0 ,

which represents n equations in the n + 1 unknown quantities β1, ..., βn, τ .
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Since there are several choices of the initial conditions which lead to the same
orbit (indeed, taking any other point of the orbit we change only the epoch
and not the orbit), we can arbitrarily set βn = 0. Therefore we have n + 1
equations ψ = (ψ1, ..., ψn) = 0, βn = 0 in the n + 1 unknowns β1, ..., βn, τ . By
the implicit function theorem, if the jacobian




∂ψ1
∂β1

... ∂ψ1
∂βn−1

∂ψ1
∂τ

...
∂ψn

∂β1
... ∂ψn

∂βn−1

∂ψn

∂τ




γ=β=τ=0

6= 0 ,

and if γ is sufficiently small, there exists a periodic solution with period T +τ .

7.3 Autonomous systems with integrals

In the autonomous case assume there exists an integral

G(x) = C = const .

Then the equations
ψ1 = ... = ψn = βn = 0 (10)

are not anymore distinct and one can replace the above equations with

ψ1 = ... = ψn = βn = 0 , G = C + λγ , (11)

where λ is a generic constant; alternatively, one can replace (10) with the
equations

ψ1 = ... = ψn = βn = 0 , τ = 0 . (12)

Equations (11) imply that the energy level is changed, while equations (12)
imply that if there exists an integral G(x) = C, one can find a T–periodic
solution for γ small.

A Second–order computation of periodic orbits in the
autonomous dissipative case

Consider the differential equations

ẋ = f(x, γ) , (13)

where x = (x1, ..., xn) and f depends also on a real small parameter γ. We
want to look for a periodic solution with period Tγ , such that

x(Tγ) = x(0) .

To this end we expand the solution x and the period Tγ in series of γ as
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x = x0 + γx1 + γ2x2 + ...

Tγ = T0 + γT1 + γ2T2 + ... (14)

Let us denote by fγ = ∂f
∂γ , f ′ = ∂f

∂x , f ′′ = ∂2f
∂x2 ; inserting (14) in (13) and

equating same orders of γ up to the 2nd order we get

ẋ0 = f(x0, 0)
ẋ1 = f ′(x0, 0)x1 + fγ(x0, 0)

ẋ2 = f ′(x0, 0)x2 +
1
2
f ′′(x0, 0)x2

1 .

Suppose now that for γ = 0 we know a T0–periodic orbit, described by x0 =
x0(t) with initial data x0(0) and periodicity conditions x0(T0) = x0(0). Then,
for γ 6= 0 we look for a Tγ–periodic orbit described by x = x(t), whose initial
data are displaced with respect to the conservative case as

x(0) = x0(0) + β ; (15)

moreover we require that the following periodicity conditions are satisfied:

x(Tγ) = x0(0) + β . (16)

Develop β in powers of γ as β = γβ1 + γ2β2 + ...; from (15) one has

x0(0) + γx1(0) + γ2x2(0) + ... = x0(0) + γβ1 + γ2β2 + ...

Comparing same orders of γ, one obtains βj = xj(0), so that the βj ’s are
the corrections at order j to the initial data. Using (16) and recalling that
x0(T0) = x0(0), one obtains

x0(T0) + γẋ0(T0)(T1 + γT2) +
1
2
ẍ0(T0)γ2T 2

1 + x1(T0)γ + ẋ1(T0)T1γ
2 + x2(T0)γ2 + ...

= x0(0) + γβ1 + γ2β2 + ...

Equating same orders of γ up to the order 2, one gets

ẋ0 = f(x0, 0)
x0(T0) = x0(0)

ẋ1 = f ′(x0, 0)x1 + fγ(x0, 0)
β1 = x1(T0) + ẋ0(T0)T1 ;

ẋ2 = f ′(x0, 0)x2 +
1
2
f ′′(x0, 0)x2

1

β2 = x2(T0) + ẋ0(T0)T2 +
1
2
ẍ0(T0)T 2

1 + ẋ1(T0)T1 .

Let us analyze the last equation; recalling that β2 = (β(1)
2 , ..., β

(n)
2 ), we have n

equations in the n+1 unknowns β
(1)
2 , ..., β

(n)
2 , T2. To eliminate the ambiguity,

we can set β
(n)
2 = 0 and solve the equations with respect to the remaining

unknowns.
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solution of the dissipative standard map, Int. J. Bif. Chaos 8, n. 12 (1998),
2471–2479.

7. A. Celletti, C. Falcolini and U. Locatelli, On the break-down threshold of in-
variant tori in four dimensional maps, Regular and Chaotic Dynamics 9, n. 3
(2004) 227–253.
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