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1. INTRODUCTION

In this paper we consider Schrödinger operators

−∆ + V (x), V ∈ L∞(Rd)

acting in the spaceL2(Rd). If V = 0 then the operator has purely absolutely
continuous spectrum on(0,+∞). We find conditions onV which guarantee
that the absolutely continuous spectrum of both operatorsH+ = −∆ + V
andH− = −∆− V is essentially supported by[0,∞). This means that the
spectral projection associated to any subset of positive Lebesgue measure is
not zero. Our main result is the following theorem (compare with [6]):

Theorem 1.1. LetV ∈ L∞(Rd) be a real function. Assume that the nega-
tive spectrum of the operatorsH+ = −∆ + V andH− = −∆− V consists
only of eigenvalues, denoted byλn(V ) andλn(−V ), which satisfy the con-
dition ∑

n

√
|λn(V )|+

∑
n

√
|λn(−V )| <∞.

Then the absolutely continuous spectra of both operators are essentially
supported by[0,+∞).

Note that this theorem is proven ind = 1 by Damanik and Remling [6].
Ford ≥ 2 it is not a consequence of results obtained in [12], since it is still
unclear whether potentials whose negative eigenvalues are in`1/2 can be
approximated by compactly supported functions in a proper way.

Remark. If V is periodic and one of the operatorsH± has a gap in
the spectrum then we conclude that one of the operatorsH± must have a
spectral band intersecting the negative half- line.

Example [14]. If d ≥ 3 andV ∈ Ld+1(Rd) ∩ L∞(Rd) is a real potential
whose Fourier transform is square integrable near the origin then∑

n

√
|λn(V )|+

∑
n

√
|λn(−V )| <∞.
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Typically, slow decaying potentialsV must change their sign in order
to force the negative eigenvalues of−∆ ± V to be in`1/2. More precisely
they have the following structure (see also [5] where similar potentials were
considered):

Theorem 1.2. LetV ∈ L∞(Rd) be a real function. Let the essential spec-
trum of both operators−∆ + V and−∆ − V be either positive or empty.
Assume that the negative eigenvalues of the operators−∆+V and−∆−V
which are denoted byλn(V ) andλn(−V ) satisfy the condition∑

n

√
|λn(V )|+

∑
n

√
|λn(−V )| <∞.

Then
V = V0 + div(A) + |A|2

whereV0 and divA are locally bounded,A is continuous and has locally
square integrable derivatives,∫

(|V0|+ |A|2)|x|1−ddx <∞.

The property of a.c. spectrum to be essentially supported byR+ is not the
one which is shared by all Schrödinger operators with no negative spectrum.
One can conclude very little about the a.c. spectrum from the fact that
−∆ + V ≥ 0. Indeed, the theory of random operators gives examples
of Schr̈odinger operators with positiveV , whose spectrum is purely point.
Therefore one can obtain some information about the a.c. spectrum from
the behavior of the eigenvalues only by combining the information given
for V and−V . This idea was used in [3] in dimensiond = 1, where the
authors proved the following striking

Theorem 1.3. Damanik-Killip [3] LetV ∈ L∞(R+) If the spectrum of the
operators− d2

dx2 + V and− d2

dx2 − V on the half line is contained in[0,+∞)
then it is purely absolutely continuous and it coincides with[0,+∞).

Our methods are based on the estimates of the entropy of the spectral
measure, whose importance in the theory of one-dimensional Schrödinger
operators was discovered by P.Deift and R.Killip [7]. The main theorem of
[7] is a natural culmination of the results obtained by M.Christ, A.Kiselev
and C.Remling [1], M.Christ and A.Kiselev [2] and C.Remling [13]. It says
that one dimensional Schrödinger operators with square integrable poten-
tials have their a.c. spectra essentially supported by the positive real line.

2. PROOF OFTHEOREM 1.2

The proof of the following statement is obvious
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Lemma 2.1. [Damanik-Remling]Letφ be a real valued bounded function
with bounded derivatives. Suppose that−∆ψ + V ψ = λψ and the product
φψ vanishes on the boundary of the domain{a < |x| < b}. Then∫

a<|x|<b

(
|∇(φψ)|2 + V |φψ|2

)
dx =

∫
a<|x|<b

(
|∇φ|2ψ2 + λ|φψ|2

)
dx

In the next statement we need the notion of the internal size (i- size) of a
spherical layer{a < |x| < b}, which is by definitionb− a.

Lemma 2.2. [Damanik-Remling]Assume that the lowest eigenvalue−γ2

ofH± on the domain{a < |x| < b} is negative. Ifb− a ≥ 6γ−1, then there
exist a spherical layerΩ ⊂ {a < |x| < b} whose i-size isd(Ω) = 6γ−1

such thatH± restricted ontoΩ has an eigenvalue not bigger than−γ2/2

Proof. Let ψ be the eigenfunction corresponding to the eigenvalue−γ2

for the problem on the domain{a < |x| < b} with the Dirichlet bound-
ary conditions. PutL = γ−1 and pick a numberc > 0 which gives the
maximum to the functional

∫
c−L<|x|<c+L

|ψ|2dx

(2.1) φ(x) =


1, ||x| − c| < L,

0, ||x| − c| ≥ 3L,

3/2− ||x| − c|/(2L), otherwise.

Let Ω be the intersection of the support ofφ with {a < |x| < b}. Without
loss of generality we can assume thatd(Ω) = 6γ−1. Now the interesting
fact is that ∫

a<|x|<b

|∇φ|2ψ2dx ≤ γ2

2

∫
a<|x|<b

|φψ|2dx

which is guaranteed by the choice ofc. Therefore by Lemma 2.1∫
a<|x|<b

(
|∇(φψ)|2 + V |φψ|2

)
dx ≤ −γ

2

2

∫
a<|x|<b

|φψ|2dx.

That proves the statement. �

Now we prove the following statement

Lemma 2.3. LetH± ≥ −γ2 on the spherical layerΩ = {a < |x| < b} for
both indices±. ThenV + γ2 = divA + |A|2 on Ω, whereA satisfies the
estimate

(2.2)
∫

a<|x|<b

|φ|2|A(x)|2dx ≤ C
(
γ2

∫
a<|x|<b

|φ|2dx+

∫
a<|x|<b

|∇φ|2dx
)

for anyφ ∈ C∞
0 (Ω) with a constantC independent ofγ, Ω andφ.
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Proof. The representationV = −γ2 + divA + |A|2 on Ω follows from
the results of [15]. Now∫

a<|x|<b

(
|∇φ|2 − V |φ|2

)
dx ≥ −γ2

∫
a<|x|<b

|φ|2dx

which leads to (2.2).�

The main ingredients of our proof are in the following technical lemmas,
which can be compared with the corresponding set of statements from [6].
Our proof is shorter because instead of functions with symmetric graphs
we will use functions whose gradient on the left of a certain set is different
from the one on the right of it. This will influence the choice of setsΩn.

Lemma 2.4. Let V (x) = 0 for |x| < 2. There is a sequence of spherical
layersΩn and a sequence of numbersεn > 0, such that

∑
n ε

1/2
n < ∞ and

the i-size ofΩn is bounded byCε−1/2
n with someC independent ofn. The

sequence of sets fulfils the condition, thatH± ≥ 0 on the setRd \ ∪nΩn.
Moreover

H± ≥ −εj(n), on Ωn

wherej(n) is the lowest numberj such thatΩj ∩ Ωn 6= ∅. If Ωj ∩ Ωn 6= ∅
and the i-size ofΩj ∩Ωn is bounded from below by6(1−20−1)ε

−1/2
k , where

k = min{j, n}. The choice of the sequences can be done so that for each
m the number ofn for whichΩm ∩ Ωn 6= ∅ is not bigger than 2.

Proof. In the proof we also need to construct some sequence of setsωn.
PutΩ0 = B2 andω0 = B1 whereBr denotes the ball of radiusr > 0 about
the origin;ε0 can be any sufficiently large number, for example100.

Givenωn ⊂ Ωn andεn for n < N we consider the set

S = Rd \ ∪n<NΩn

and define−εN as the lowest eigenvalue of both operatorsH± on S. Let
ωN ⊂ S be the largest spherical layer where one of the operatorsH± has
spectrum below−εN/2 and the i-size ofωN is not bigger thanL = 6ε

−1/2
N .

In the case if the boundary ofωN is also contained in the interior domain
of S, the i-size ofωN is equal toL = 6ε

−1/2
N . The existance of this set is

proven in Lemma 2.2. Denote byS+ andS− the right and left connected
component ofS \ ωN correspondingly. LetΩj =: Ω− and Ωk =: Ω+,
j, k < N , be the two sets which have common boundary withS− andS+

correspondingly. Denoteω− = ωj andω+ = ωk . Our construction (or
induction assumptions) allow us to assume that dist{ω±, S±} ≥ L±, where
L− = 6ε

−1/2
j andL+ = 6ε

−1/2
k If the i-size ofS± is not bigger than3L

we includeS± \ {x : dist(x, ω±) ≤ L±/20} into ΩN by definition by
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demanding that{x : dist(x, ω±) ≤ L±/20} andΩN has a non- empty
piece of common boundary and{x : dist(x, ω±) ≤ L±/20} ∩ ΩN = ∅.
Otherwise

S± \ {x : dist(x, ωN) < L} = S± \ ΩN .

Observe that the distance from the boundary ofΩN to ωN is not less than a
specific positive number. Obviously, for anyγ > 0 there exist a numberN
such that the infimum of the spectrum of both operatorsH± on the domain

Rd \ ∪n<NΩn

is higher than−γ. Assume the opposite. Then for anyN one of the opera-
torsH± on the domain

Rd \ ∪n<NΩn

has an eigenvalue which is not bigger than−γ. Then there is an eigenvalue
of one of the the operators onωN which is not bigger than−γ/2. This
implies that the negative spectrum of one of the operatorsH± is not discrete.
So we come to the conclusion thatH± >≥ 0 on

Rd \ ∪nΩn.

Now let us observe that
∑

n ε
1/2
n <∞, because the domainsωn are disjoint.

Also, it is clear that any bounded ballBr of radiusr < ∞ intersects only
finite number ofΩn, otherwise a Schrödinger operator onBr would have
infinite number of eigenvalues below zero.�

It follows from the proof of this theorem that one can assume that

Rd \ ∪nΩn = ∅.
So we formulate

Lemma 2.5. In Lemma 2.4 one can choose the sequences so that

(2.3) Rd \ ∪nΩn = ∅.

Proof. Indeed, every time when there is a shperical layerG which has a
common boundary withΩn1 andΩn2 and has the property thatH± ≥ 0 on
this layer, we putΩN ⊃ G and

ΩN ∩ Ωnj
= {x : dist(x,G)) < 6(1− 20−1)ε−1/2

nj
} ∩ Ωnj

�

Lemma 2.6. The sequencesΩn andεj in Lemma 2.4 can be chosen so that
(2.3) holds and there exists a sequence ofH1-functionsφn ≥ 0 supported
byΩn such that∑

n

φn(x) = 1,
∑

n

∫
|∇φn(x)|2|x|1−ddx ≤ C

∑
n

ε1/2
n <∞
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and the number of indicesj 6= n for whichφjφn 6= 0 is 2. Moreover we can
require thatV + εj(n) = divAn + |An|2 onΩn with the bound∑

n

∫
Ωn

|An|2|x|1−ddx ≤ C
(
1 +

∑
n

ε1/2
n

)
<∞.

Proof. Let the functionsφn be already constructed forn < N . Ob-
serve that the distance from the boundary ofΩN to ωN in the proof of
Lemma 2.4 is not less than a specific positive number. That leads to the
following property: letΩj andΩk, j, k < N , be the two sets in the con-
struction of Lemma 2.4 which have common boundary withS− andS+

correspondingly, then one can always define a functionφN supported on
ΩN with∫

Ωj

|∇φN |2|x|1−ddx ≤ Cε
1/2
j ,

∫
Ωk

|∇φN |2|x|1−ddx ≤ Cε
1/2
k ,∫

Rd\Ωk∪Ωj

|∇φN |2|x|1−ddx ≤ Cε
1/2
N .

Also φN + φj = 1 on the intersectionΩN ∩ Ωj andφN + φk = 1 on the
intersectionΩN ∩ Ωk. One can additionally require that∑

j≤N

φj(x) = 1, ∀x, dist(x, ωN) < L/20.

The estimates forAn in this construction follow from Lemma 2.3 where
instead of the functionφ one takes functions|x|(1−d)/2φ̃n, whereφ̃n andφn

have similar graphs however the support ofφ̃n is bigger, so that̃φn = 1 on
Ωn. �

The end of the proof of Theorem 1.2.Let us define

A =
∑

n

φnAn, W = −
∑

n

εj(n)φn V1 = W + div(A) + |A|2

Then one can easily see that

V1 = V+
∑

n

An∇φn+
∑

n

(φnAn

∑
j

φjAj−φn|An|2), so that

∫
|V−V1||x|1−ddx <∞

PutV0 = V − V1 +W . It remains to note that∫
|W ||x|1−ddx <∞,

∫
|A|2|x|1−ddx <∞.

and we come to the conclusion thatV = V0 + div(A) + |A|2, where∫
(|V0|+ |A|2)|x|1−ddx <∞. �
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Proof of Theorem 1.1Now we apply the following technique developed in
[12]. Without loss of generality we can assume thatV (x) = 0 for |x| <
2. There is a probability measureµ on the real lineR with the following
properties. The essential support of the a.c. component ofµ is not bigger
as a set than the essential support of the a.c. spectrum of the operatorH+.
Namely, one constructs an operatorA+ having the same a.c. spectrum as
H+:

A+ = −∆+V, D(A+) = {u ∈ H2(Rd\B1) : u(θ) = 0, θ ∈ Sd−1}
and then one setsµ(δ) = (EA+(δ)f, f) for a spherically symmetric function
f supported in a certain spherical layer (see [12]):

suppf ⊂ {x ∈ Rd : 1 < |x| < 2}.
It holds

Theorem 2.1. [12] If V is compactly supported then

(2.4)
∫ b

a

log
1

µ′(λ)
dλ ≤ C(

∑
j

√
|λj(V )|+

∫
V (x)|x|1−ddx+ 1)

whereC depends on0 < a < b <∞.

One of the important properties of the measureµ is that

Vn → V in L2
loc ⇒ µn → µ weakly.

Let [V0]+ be the positive part of the functionV0 consider the Schrödinger
operator with the potential[V0]+ +div(A)+ |A|2. Letµ1 be the correspond-
ing measure for that operator. Then by the upper semi-continuity of the
entropy (see [9]) we obtain

(2.5)
∫ b

a

log
1

µ′1(λ)
dλ ≤ C(

∫
(|V0|+ |A|2)|x|1−ddx+ 1).

Now we can extend (2.4) to the general case. Indeed letχn be the char-
acteristic function of the ball of radiusn and letVn = [V0]+ − χn[V0]− +
div(A) + |A|2 then|λj(Vn)| is monotonically increasing inn, so we obtain∫ b

a

log
1

µ′(λ)
dλ ≤ C(

∑
j

√
|λj(V )|+

∫
(|V0|+ |A|2)|x|1−ddx+ 1).

Convergence of the integral in the left hand side implies thatµ′ > 0 almost
everywhere on(a, b). This completes the proof of Theorem 1.1.�

Note that this theorem leads to the following result [14] : ifd ≥ 3 and
V ∈ Ld+1(Rd) ∩ L∞(Rd) is a real potential whose Fourier transform is
square integrable near the origin, then the a.c. spectrum of−∆ + V is
essentially supported byR+.
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Example. For eachn ∈ N = {1, 2, . . . } we introduce the characteristic
functionχn of the interval[n−1, n) ⊂ R and for eachj ∈ Zd we introduce
the characteristic functionξj of the cubej + [0, 1)d ⊂ Rd. We put

fn,j(x) := χn(|x|)ξj(nsx/|x|), n ∈ N, j ∈ Zd,

with a parameters > 1 to be specified later. Note that
∑

n,j fn,j ≡ 1.
Suppose thatωn,j, n ∈ N, j ∈ Zd, are bounded, independent and identically
distributed random variables with zero expectations,

E[ωn,j] = 0,

and consider the (bounded) random potential

Vω(x) =
∑
n,j

n−αωn,jfn,j(x), x ∈ Rd.

whereα > d/(d + 1). Note that for|x| > 1 the absolute value of this
potential can be estimated from below byc|x|−α with somec > 0.

Theorem 2.2.Letd ≥ 3, s > 2 + (1−2α)
(d−1)

. Then the negative eigenvalues of
the operator−∆ + Vω almost surely satisfy the condition∑

n

√
|λn(Vω)| <∞.

Proof. We consider the Fourier transform

V̂ω(ξ) = (2π)−1/2

∫
R
e−iξxVω(x) dx =

∑
n

∑
j

ωn,jn
−αf̂n,j(ξ)

and note that|χ̂n,j(ξ)| ≤ C1n
(d−1)(1−s) for all ξ with a constantC1 indepen-

dent ofj, n. Hence for any compact setK

E
[∫

K

|V̂ω(ξ)|2 dξ
]

= E[ω0,0]
∑

n

n−2α
∑

j

∫
K

|χ̂n,j(ξ)|2 dξ ≤

≤ C2|K|
∑

n

n(d−1)(2−s)−2α,

and the sum on the right hand side converges. Since the Fourier transform
of Vω belongs almost surely toL2,loc andVω ∈ Ld+1, the assertion follows
from the main result of [14]. �
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3. ONE QUESTION ABOUT THEL IEB-THIRRING ESTIMATES

1. Let us note that for any potentialV there is the following eigenvalue
estimate ford ≤ 4

(3.1)
∑

j

|λj(V )|γ ≤ C(r)
(∫

|ξ|<r

|V̂ (ξ)|2dξ +

∫
|V (x)|4dx

)
,

with γ = 2 − d/2 ≥ 0 (see [14]). This leads to the following very simple
observation. Letfn,j andωn,j be the same as in Theorem 2.2. Consider the
potential

Vω :=
∑
n,j

vn,jωn,jfn,j

wherevn,j are fixed real coefficients satisfying the condition

||v||44,s :=
∑
n,j

|vn,j|4 n(1−s)(d−1) <∞.

For the ballK of radiusr about the origin we have

E
[∫

K

|V̂ω(ξ)|2 dξ
]

= E[ω0,0]
∑

n

∑
j

|vn,j|2
∫

K

|χ̂n,j(ξ)|2 dξ ≤

≤ C2|K|
∑
n,j

|vn,j|2n(d−1)(2−2s).

Let us introduce the following norm of the sequencev:

||v||22,s :=
∑
n,j

|vn,j|2n(d−1)(2−2s).

We conclude from (3.1) that

Theorem 3.1.For anys > 1, d ≤ 4 andγ = 2− d/2

E
(∑

j

|λj(Vω)|γ
)
≤ C(||v||22,s + ||v||44,s).

In particular, if the right hand side is finite, then
∑

j |λj(Vω)|γ <∞ almost
surely.

Note that ifd = 4 then the number of negative eigenvalues is finite almost
surely.

2. Let us study the problem in a more general setting. First of all for any
self adjoint operatorT ands > 0 we define

n± (s, T ) = rankE±T (s,+∞),
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whereET (·) denotes the spectral measure ofT . We also putn(s, T ) =
n(s2, T ∗T ) for a non-selfadjoint operatorT . Recall the following relations

n±(s+ t, T + S) ≤ n±(s, T ) + n±(t, S);

n(st, TS) ≤ n(s, T ) + n(t, S).

We can always represent the Lieb-Thirring sum as an integral∑
j

|λj(V )|γ = γ

∫ ∞

0

sγ−1n−(1, (H+ + s)−1/2V (H+ + s)−1/2) ds

LetE = EH+(0, δ) whereδ > 0 and letP = I − E. Then
(3.2)
(H+ + s)−1/2V (H+ + s)−1/2 = (H+ + s)−1/2EV E(H+ + s)−1/2 + T (s)

whereT (s) satisfies the estimate

(3.3) γ

∫ ∞

0

sγ−1n−(1/2, T (s)) ds ≤ C

∫
|V |2γ+d(x)dx.

To prove the relations (3.2), (3.3) one has to follow the proof in [14] given
for the caseγ = 1/2. Now let us define a real valued functionV0 so that

(3.4) V̂0(ξ) = χB2
√

δ
(ξ)V̂ (ξ)

whereχB2
√

δ
is the characteristic function of the ball of radius2

√
δ about

the origin. Then
EV0E = EV E.

Therefore

γ

∫ ∞

0

sγ−1n−(1/2, (H+ + s)−1/2EV E(H+ + s)−1/2) ds ≤
∑

j

|λj(2V0)|γ

≤ C0

∫
|V0|γ+d/2dx

Finally we obtain

Proposition 3.1.LetV be a real valued function onRd and letV0 be defined
in (3.4). Then forγ ≥ 1/2∑

j

|λj(V )|γ ≤ Cδ

(∫
|V0|d/2+γdx+

∫
|V |d+2γdx

)
.

Now let us give an application of this estimate to the theory of random
operators. Letωn be independent bounded identically distributed random
variables and letχn be the characteristic functions of disjoint setsQn. Con-
sider the potential

Vω :=
∑

n

vnωnχn
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wherevn are fixed real coefficients satisfying the condition

||v||d+2γ
d+2γ,1 :=

∑
n

|vn|d+2γ |Qn| <∞.

Consider first the cased/2 + γ = 2. For the ballK of radiusr about the
origin we have

E
[∫

K

|V̂ω(ξ)|2 dξ
]

= C
∑

n

∑
j

|vn|2
∫

K

|χ̂n(ξ)|2 dξ ≤

≤ C1|K|
∑

n

|vn|2|Qn|2.

Let us introduce the following norm of the sequencev = {vn}:

‖v‖p
p,2 :=

∑
n

|vn|p|Qn|2.

and consider the map
T : v 7→ (Vω)0

where(Vω)0 is constructed fromVω in the same way asV0 from V in (3.4),
but instead of the characteristic functionχB2

√
δ

we multiply V̂ by a realC∞
0 -

function in (3.4). If the coefficients are bounded then(Vω)0 is bounded; if
the norm‖v‖p,2 is finite, then(Vω)0 is inL2(Rd × Ω), whereΩ is the set of
all pointsω. Since the map is linear, we can apply the interpolation:

E
(
||(Vω)0||pLp

)
≤ C||v||pp,2, p ≥ 2.

We conclude from Proposition 3.1 that

Theorem 3.2.For γ ≥ (2− d/2)+ =max(2− d/2, 0)

E
(∑

j

|λj(Vω)|γ
)
≤ C(||v||pp,2 + ||v||2p

2p,1), p = γ + d/2.

In particular, if the right hand side is finite, then
∑

j |λj(Vω)|γ <∞ almost
surely.

Note that ifd ≥ 4 then the number of negative eigenvalues is finite almost
surely provided that the right hand side is finite forp = d/2.

Example. Let χn be the characteristic function of an interval∆n with
the lengthdn wheren ∈ N. Assume that the intervals are not only disjoint
but the left edge of the next interval∆n+1 is the right edge of∆n. Let ωn

be bounded, independent and identically distributed random variables with
E[ωn] = 0 and define

Vω(x) :=
∑

n

ωnχn(x), x ∈ R.
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Theorem 3.3.Assume that∑
n

dn

n∑
j=1

d2
j <∞.

Then ∑
j

√
|λj(Vω)| <∞

almost surely.

Proof. IndeedVω = W ′
ω, whereWω =

∫ x

0
Vω(x)dx. Now observe that

E
(∫

W 2
ω(x)dx

)
= C

∫ ∑
n

(

∫ x

0

χn(y)dy)2dx <∞.

ThusWω ∈ L2 almost surely. It remains to note that the operator−d2/dx2+
2Vω + 4W 2

ω is positive, therefore∑
j

√
|λj(Vω)| ≤ 4L

∫
W 2

ω dx,

with the Lieb- Thirring constantL. �
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