MULTI-DIMENSIONAL SCHR ODINGER OPERATORS WITH
SOME NEGATIVE SPECTRUM
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1. INTRODUCTION

In this paper we consider Séttinger operators
~A+V(z), VeL®RY

acting in the spacé?(R?). If V = 0 then the operator has purely absolutely
continuous spectrum i, +oo). We find conditions of¥” which guarantee

that the absolutely continuous spectrum of both operators= —A + V

andH_ = —A — V is essentially supported B9, oo). This means that the
spectral projection associated to any subset of positive Lebesgue measure is
not zero. Our main result is the following theorem (compare with [6]):

Theorem 1.1.LetV € L>°(R?) be a real function. Assume that the nega-
tive spectrum of the operatof$, = —A+V andH_ = —A — V consists
only of eigenvalues, denoted hy(V') and \,,(—V"), which satisfy the con-

dition
S VIR V()] < .

Then the absolutely continuous spectra of both operators are essentially
supported by0, +00).

Note that this theorem is proven ih= 1 by Damanik and Remling [6].
Ford > 2itis not a consequence of results obtained in [12], since it is still
unclear whether potentials whose negative eigenvalues arfé’ican be
approximated by compactly supported functions in a proper way.

Remark. If V' is periodic and one of the operatofs. has a gap in
the spectrum then we conclude that one of the operdiargnust have a
spectral band intersecting the negative half- line.

Example[14]. If d > 3 andV € L4 (RY) N L>°(RY) is a real potential
whose Fourier transform is square integrable near the origin then

S VIR D VIA(=V)] < .
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Typically, slow decaying potentiale” must change their sign in order
to force the negative eigenvalues-of\ & V to be in¢'/2. More precisely
they have the following structure (see also [5] where similar potentials were
considered):

Theorem 1.2.LetV € L*(R?) be a real function. Let the essential spec-
trum of both operators-A + V and—A — V be either positive or empty.
Assume that the negative eigenvalues of the operatdrs-V and—A -V
which are denoted b¥,, (V') and A, (—V) satisfy the condition

S VIR + S V()] < .

Then

V =V, +div(A) + |A]?
wherel, anddivA are locally boundedA is continuous and has locally
square integrable derivatives,

/(W(ﬂ + AP |z|' e < oo.

The property of a.c. spectrum to be essentially supporterl,big not the
one which is shared by all Sdbdtinger operators with no negative spectrum.
One can conclude very little about the a.c. spectrum from the fact that
—A +V > 0. Indeed, the theory of random operators gives examples
of Schiddinger operators with positivig, whose spectrum is purely point.
Therefore one can obtain some information about the a.c. spectrum from
the behavior of the eigenvalues only by combining the information given
for V and—V. This idea was used in [3] in dimensiah= 1, where the
authors proved the following striking

Theorem 1.3. Damanik-Killip [3] LetV € L>(R,) If the spectrum of the
operators—% +V and—% — V' on the half line is contained iff), +o0)

then it is purely absolutely continuous and it coincides With+oo).

Our methods are based on the estimates of the entropy of the spectral
measure, whose importance in the theory of one-dimensionab&iciger
operators was discovered by P.Deift and R.Killip [7]. The main theorem of
[7] is a natural culmination of the results obtained by M.Christ, A.Kiselev
and C.Remling [1], M.Christ and A.Kiselev [2] and C.Remling [13]. It says
that one dimensional Sabdinger operators with square integrable poten-
tials have their a.c. spectra essentially supported by the positive real line.

2. PROOF OFTHEOREM 1.2

The proof of the following statement is obvious
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Lemma 2.1. [Damanik-Remling]Let¢ be a real valued bounded function
with bounded derivatives. Suppose thaky + Vi) = Ay and the product
¢ vanishes on the boundary of the doméin< |z| < b}. Then

/a<x<b<|V(¢¢)|2 + V|¢z/1|2)dx :/ (|V¢|2¢2 n )\Wﬁlz)dx

a<|z|<b
In the next statement we need the notion of the internal size (i- size) of a
spherical layef{a < |z| < b}, which is by definitiorb — a.

Lemma 2.2. [Damanik-Remling] Assume that the lowest eigenvalue?
of H. on the domaifa < |z| < b} is negative. Ih —a > 6771, then there
exist a spherical layef) C {a < |z| < b} whose i-size igl(2) = 677!
such that restricted ontd has an eigenvalue not bigger tham? /2
Proof. Let 1) be the eigenfunction corresponding to the eigenvalyé
for the problem on the domaifu < |z| < b} with the Dirichlet bound-

ary conditions. Puf, = ~~! and pick a numbet > 0 which gives the
maximum to the functionafﬁk'xkcﬂ [Y2dx

Loz = < L,

(2.1) o(xr) =10, |lz|—c| >3L,
3/2 — ||lz| — ¢|/(2L), otherwise.

Let ©2 be the intersection of the supportofwvith {a < |z| < b}. Without
loss of generality we can assume tiéf)) = 6y~'. Now the interesting

fact is that
2
[ wekwar< L [ vt
a<|z|<b 2 a<|z|<b

which is guaranteed by the choicewfTherefore by Lemma 2.1
2
[ (veor+vies)i <=2 [ joupa.
a<l|z|<b a<l|z|<b

That proves the statement. [

Now we prove the following statement

Lemma 2.3. Let H, > —~? on the spherical layef2 = {a < |z| < b} for
both indicest. ThenV +~? = divA + |A]? on (2, where A satisfies the
estimate

(2.2) 62 A(x) P < 0(72/ i b\(b]Qda:Jr/ i byv(py?dm)

a<l|z|<b a

for any¢ € C5°(Q2) with a constantC' independent of, 2 and ¢.
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Proof. The representatioh’ = —+* + divA + |A]* on Q follows from
the results of [15]. Now

/a<|m<b<|v¢|2 - V|¢|2>daj > _72/ |6[2dz

a<|z|<b
which leads to (2.2).0]

The main ingredients of our proof are in the following technical lemmas,
which can be compared with the corresponding set of statements from [6].
Our proof is shorter because instead of functions with symmetric graphs
we will use functions whose gradient on the left of a certain set is different
from the one on the right of it. This will influence the choice of $ets

Lemma 2.4. LetV(z) = 0 for |z| < 2. There is a sequence of spherical

layers(2, and a sequence of numbers> 0, such thaty el < oo and

the i-size o2, is bounded by, /> with someC independent of.. The
sequence of sets fulfils the condition, titat > 0 on the sefR¢ \ U, ,..
Moreover

H:I: > —€j(n), ON Qn
wherej(n) is the lowest number such that2; N Q, # 0. If Q, N Q,, # 0

and the i-size of2; N, is bounded from below k(1 —20~")¢, '/?, where
k = min{j,n}. The choice of the sequences can be done so that for each
m the number of: for which(,, N Q,, # () is not bigger than 2.

Proof. In the proof we also need to construct some sequence obsets
PutQ)y, = B, andwy, = B; whereB, denotes the ball of radius> 0 about
the origin;ey can be any sufficiently large number, for exampé.

Givenw, C , ande, for n < N we consider the set

S = Rd \ Un<NQn

and define—¢y as the lowest eigenvalue of both operatéis on S. Let
wy C S be the largest spherical layer where one of the operdiardas
spectrum below-¢y /2 and the i-size ofuy is not bigger thar, = 6¢,,"/”.

In the case if the boundary afy is also contained in the interior domain
of S, the i-size ofwy is equal toL = 6¢,"/>. The existance of this set is
proven in Lemma 2.2. Denote kfy, andS_ the right and left connected
component ofS \ wy correspondingly. Lef2; =: Q_ andQ, =: Q,
j,k < N, be the two sets which have common boundary withand S
correspondingly. Denote_ = w; andw; = wy . Our construction (or
induction assumptions) allow us to assume thaf{dist S} > L., where
L_ = 6¢;? and Ly = 6¢,"/? If the i-size of S, is not bigger tharsL
we includeSy \ {z : dist(z,ws) < Li/20} into Qy by definition by
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demanding thaf{z : dist(z,wy) < Ly/20} andQy has a non- empty
piece of common boundary afd : dist(z,ws) < Li/20} N Qy = 0.
Otherwise

Se\ {z: dist(x,wy) < L} = 5L\ Q.
Observe that the distance from the boundarf2gfto wy is not less than a
specific positive number. Obviously, for any> 0 there exist a numbe¥
such that the infimum of the spectrum of both operatérson the domain

Rd \ Un<N§2n

is higher than—~. Assume the opposite. Then for anyone of the opera-
tors H1 on the domain

Rd \ Un<NQn
has an eigenvalue which is not bigger tham. Then there is an eigenvalue
of one of the the operators any which is not bigger than-~/2. This
implies that the negative spectrum of one of the operdiiarss not discrete.
So we come to the conclusion thdt. >> 0 on

R\ U, Q.

Now let us observe that ex/> < o0, because the domains are disjoint.

Also, it is clear that any bounded bal. of radiusr < oo intersects only

finite number of(2,,, otherwise a Scliadinger operator o3, would have

infinite number of eigenvalues below zerd.]

It follows from the proof of this theorem that one can assume that

R\ U, 0, = 0.

So we formulate

Lemma 2.5. In Lemma 2.4 one can choose the sequences so that

(2.3) RN\ U, Q, = 0.

Proof. Indeed, every time when there is a shperical layavhich has a
common boundary witk,,, and(2,,, and has the property that. > 0 on
this layer, we puf2y D G and

Oy NQ,, = {z: dist(z,G)) < 6(1—20")e, "} NG,
O

Lemma 2.6. The sequences,, ande; in Lemma 2.4 can be chosen so that
(2.3) holds and there exists a sequencg®@tfunctionsg, > 0 supported
by ©2,, such that

Zfbn(az) =1, Z/|V¢n(x)|2]a:\l_ddm < 026711/2 < o0
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and the number of indices# n for which¢,;¢,, # 0is 2. Moreover we can
require thatV’ + ¢;,,) = divA, + |A,|* on(,, with the bound

S [ APl <014 Y dR) < o
n Qn n

Proof. Let the functionsy, be already constructed for < N. Ob-
serve that the distance from the boundary$nf to wy in the proof of
Lemma 2.4 is not less than a specific positive number. That leads to the
following property: let(2; and(2, j,k < N, be the two sets in the con-
struction of Lemma 2.4 which have common boundary withand S,
correspondingly, then one can always define a functignsupported on

L/\V¢meﬂd¢ngc§”, Vo ?|z|dx < Ce)?,
Q;

Qp

/ Vo [?|z)~dde < Cell®.
RA\QUQ;

Also ¢ + ¢; = 1 on the intersectiofily N Q; and¢y + ¢, = 1 on the
intersectior2y N . One can additionally require that

Z oj(x) =1, Ve, dist(z, wy) < L/20.

J<N
The estimates forl,, in this construction follow from Lemma 2.3 where
instead of the function one takes functiong:|('~9/2¢,,, whereg, ande,,
have similar graphs however the supportxgfis bigger, so that,, = 1 on
Q,. O

The end of the proof of Theorem 1Lzt us define
A= "¢uAn, W == €moa Vi=W+div(4)+ |4

Then one can easily see that
Vi= V—i—Z Aanzﬁn—l—Z((;ﬁnAnZ¢jAj—¢n|An]2), so that /|V—V1||:z:|1_ddx < 00
n n J
PutlVy, =V — V; + W. It remains to note that
/|W||x|1_ddx < 00, /|A|2|a:|1_ddx < 00.
and we come to the conclusion tHat= 1; + div(A) + | A]?, where

/(|V0| + |AP)|z|*dz < 0o. O
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Proof of Theorem 1.Now we apply the following technique developed in
[12]. Without loss of generality we can assume thdt:) = 0 for |z| <
2. There is a probability measugeon the real lineR with the following
properties. The essential support of the a.c. componenti®hot bigger
as a set than the essential support of the a.c. spectrum of the opiérator
Namely, one constructs an operatbr having the same a.c. spectrum as
H.:
AL = —A+V, D(A,) ={uec H*R\B,)): u(0) =0, S}
and then one sefg0) = (E4, (6) f, f) for a spherically symmetric function
f supported in a certain spherical layer (see [12]):

suppf C {zr € RY: 1< |z] <2}
It holds

Theorem 2.1. [12] If V' is compactly supported then

(2.4) / log d)\ < O( Z /1A (V)] +/ (z)|z|'~%dx + 1)

whereC depends 00 < a<b<oo.

One of the important properties of the measuie that
Vi, — Vin L7 = pi, — p weakly.

Let [V5] be the positive part of the functior, consider the Sclidinger
operator with the potentidl;], +div(A) +|AJ%. Lety, be the correspond-

ing measure for that operator. Then by the upper semi-continuity of the
entropy (see [9]) we obtain

’ 1 2 1—
(2.5) / log ulmdA < (J(/(|Vo| + |AP)|z) %z + 1).

Now we can extend (2.4) to the general case. Indeeg, jdie the char-
acteristic function of the ball of radius and letV,, = [VO] — Xn[Vo]-
div(A) + |A|? then|);(V},)| is monotonically increasing in, so we obtaln

/log d)\<GZ\/ |+/|Vo|+|A| )| dr + 1).

Convergence of the mtegral in the left hand side implies ghat 0 almost
everywhere orja, b). This completes the proof of Theorem 1.1]

Note that this theorem leads to the following result [14] Zif> 3 and
V e LTYRY) N L>=(RY) is a real potential whose Fourier transform is
square integrable near the origin, then the a.c. spectrumff+ V is
essentially supported 3, .



8 O. SAFRONOV

Example For eachn € N = {1,2,... } we introduce the characteristic
functiony,, of the intervaln — 1,n) C R and for eachj € Z< we introduce
the characteristic functiogy of the cubej + [0, 1)¢ C R¢. We put

Fai(@) = xa(l2))g(n 2 /z]),  neN, jeL,

with a parametes > 1 to be specified later. Note thEm o =1

Suppose that, ;, n € N, j € Z4, are bounded, independent and identically
distributed random variables with zero expectations,

E[wn,j] = 0,

and consider the (bounded) random potential

Vo(x) = Z N wp i foi(2), z € R
n.j
wherea > d/(d + 1). Note that for|x| > 1 the absolute value of this

potential can be estimated from below &y|~* with somec > 0.

Theorem 2.2.Letd > 3, s > 2 + (g(;ff‘;). Then the negative eigenvalues of

the operator— A + V,, almost surely satisfy the condition
> V()] < o

Proof. We consider the Fourier transform

V) = 02 [

R

e_iEwVw($) dr = Z Z wmjn_afn,j (6)

and note thalty,, ;(£)| < Cynl@=D01=%) for all ¢ with a constant’; indepen-
dent ofj, n. Hence for any compact sét

E| [ [Vo(©Pd¢| =Elwool Y 0>y [ [%n (€7 dE <
[0 ] =Elens] S 3 [

< 02|K’ Z n(d—l)(2—s)—2a,

and the sum on the right hand side converges. Since the Fourier transform
of V, belongs almost surely tb>c andV,, € L¢*!, the assertion follows
from the main result of [14]. U
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3. ONE QUESTION ABOUT THELIEB-THIRRING ESTIMATES

1. Let us note that for any potenti&l there is the following eigenvalue
estimate ford < 4

BY s N( [ Werd [viere).

lgl<r

with v = 2 — d/2 > 0 (see [14]). This leads to the following very simple
observation. Lef,, ; andw, ; be the same as in Theorem 2.2. Consider the
potential

Vo= § Un,jWn.j fn.j

n,j

wherev,, ; are fixed real coefficients satisfying the condition
0[]0 := Z!v @ < oo,
For the ballK of radiusr about the origin we have

| Ve )| = Bleo P IILHy IEGRE

< CglK‘ Z ’Un,j’2n(d71)(2728)~

n,j
Let us introduce the following norm of the sequence

[o][3, = Z|v n(DEm2),

We conclude from (3.1) that
Theorem 3.1.Foranys > 1,d <4 andy =2 —d/2

E(3 NN < Clllwli3, + 110l15,).

In particular, if the right hand side is finite, then, ; [A;(V.,)|” < oo almost
surely.

Note that ifd = 4 then the number of negative eigenvalues is finite almost
surely.
2. Let us study the problem in a more general setting. First of all for any
self adjoint operatof’ ands > 0 we define
n =+ (s,7) = rankFE (s, +00),
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where E7(-) denotes the spectral measurelof We also putn(s,T) =
n(s%, T*T) for a non-selfadjoint operatdr. Recall the following relations

n:l:(s +t, T+ S) < n:l:(57 T) + n:l:(t7 S)u
n(st,TS) < n(s,T)+n(t,S).
We can always represent the Lieb-Thirring sum as an integral
ST = [ (L (b s VAV, ) ds
- 0
J

Let E = Ey, (0,6) whered > 0 and letP = I — E. Then
(3.2)
(Hy+5)"?V(Hy +5)7"? = (Hy + )" ?EVE(H, +5)7"% 4+ T(s)

whereT'(s) satisfies the estimate

33) /0 o (1/2,T(s)) ds < C / V() da

To prove the relations (3.2), (3.3) one has to follow the proof in [14] given
for the casey = 1/2. Now let us define a real valued functidf so that

(3.4) Vo(&) = xB, 5 (OV (&)

whereXBm is the characteristic function of the ball of radi2¢/s about
the origin. Then
EVoE = EVE.

Therefore

3 [ (U2 () PEVE(H, 4 5) ) ds < 3 2V
0 .
J

<Co [ Wap s
Finally we obtain

Proposition 3.1. LetV be a real valued function di? and letV; be defined
in (3.4). Then fory > 1/2

>IN < Cs (/ Vol 27 d + / |V|d+27dx>.
i

Now let us give an application of this estimate to the theory of random
operators. Let, be independent bounded identically distributed random
variables and leyt,, be the characteristic functions of disjoint séts. Con-

sider the potential
Vw = Zynwan
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whereuv,, are fixed real coefficients satisfying the condition
[oll75570 = D [0l ™77 |Qn| < oo
n

Consider first the cas#/2 + v = 2. For the ballK of radiusr about the
origin we have

EVKWW(@W&} :C;Z!vn\Q/I(\Xn(f)IQdfﬁ

< Ci|K| Z [0n] 2| @Qn]?.
Let us introduce the following norm of the sequence {v, }:

[ollp2 =Y [oal”| Q.

and consider the map

v (Vo
where(V],), is constructed fron¥,, in the same way ag, from V' in (3.4),
butinstead of the characteristic functigp, s we multiply V by a realC'se-

function in (3.4). If the coefficients are bounded théf)), is bounded; if
the norm||v]|, 2 is finite, then(V,,), is in L2(R? x Q), whereQ is the set of
all pointsw. Since the map is linear, we can apply the interpolation:

E(II(Vo)oll5s) < Clivll p22
We conclude from Proposition 3.1 that
Theorem 3.2.Fory > (2 — d/2), =max2 — d/2,0)

E(D Vo)) < Clle + lIE),  p=7+d/2
J

In particular, if the right hand side is finite, then, ; [A;(V,,)|” < oo almost
surely.

Note thatifd > 4 then the number of negative eigenvalues is finite almost
surely provided that the right hand side is finite foe d/2.

Example. Let y,, be the characteristic function of an intena), with
the lengthd,, wheren € N. Assume that the intervals are not only disjoint
but the left edge of the next interval,, ,; is the right edge of\,,. Letw,
be bounded, independent and identically distributed random variables with
E[w,] = 0 and define

V() = anXn(l‘), r € R.
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Theorem 3.3. Assume that

Zdnid?<oo.
1

n Jj=
D M) < o0
j
almost surely.

Proof. IndeedV,, = W/, whereW,, = fo’” V., (xz)dx. Now observe that

E(/ Wg(x)dx) - c/;%x X (y)dy)?dz < oo

ThusW,, € L? almost surely. It remains to note that the operatdt /dz>+
2V, + 4W2 is positive, therefore

SNl < 4L/W3 iz,

with the Lieb- Thirring constant. [

Then
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