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Abstract

The spin-fermion model describes a two level quantum systemS (spin 1/2) coupled to finitely many free
Fermi gas reservoirsRj which are in thermal equilibrium at inverse temperaturesβj . We consider non-equi-
librium initial conditions where not allβj are the same. It is known that, at small coupling, the combined
systemS +

P

j
Rj has a unique non-equilibrium steady state (NESS) characterized by strictly positive entropy

production. In this paper we study linear response in this NESS and prove the Green-Kubo formula and the
Onsager reciprocity relations for heat fluxes generated by temperature differentials.
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1 Introduction

This is the third in a series of papers dealing with linear response theory in quantum statistical mechanics. In
the first two papers in the series [JOP1, JOP2] we have given anabstract axiomatic derivation of the Green-Kubo
formula for the heat fluxes generated by temperature differentials. In this paper we verify that this axiomatic
derivation is applicable to the spin-fermion model (abbreviated SFM). We shall assume that the reader is familiar
with general aspects of linear response theory discussed inthe introduction of [JOP1].

The Green-Kubo formula is one of the pillars of non-equilibrium statistical mechanics and is discussed in many
places in physics literature (see e.g. [KTH]). A mathematical justification of this formula is one of the outstanding
open problems in mathematical physics [Si]. In the literature, most existing results concern currents induced
by mechanical driving forces such as time-dependent electric or magnetic fields (see [NVW, GVV, BGKS] for
references and additional information). In contrast, there are very few results dealing with fluxes generated by
thermodynamical driving forces such as temperature differentials. The central difficulty is that a mathematically
rigorous study of linear response to thermodynamical perturbations requires as input a detailed understanding
of structural and ergodic properties of non-equilibrium steady states (NESS). In the papers [JOP1, JOP2] we
have bypassed this difficulty by assuming the necessary regularity properties asaxioms. The general axiomatic
derivation of the Green-Kubo formula in [JOP1, JOP2] has ledto some new insights concerning the mathematical
structure of non-equilibriumquantum statistical mechanics. Concerning applications to concrete models, it reduced
the proof of the Green-Kubo formula to the study of regularity properties of NESS.

In most cases, the study of NESS of physically relevant models is beyond existing mathematical techniques.
The information necessary to study linear response theory has been obtained only recently and only for a handful
of models [JP3, JP4, AH, AP, FMU]. To the best of our knowledgethe SFM and its obvious generalizations are
the first class of non-trivial models in quantum statisticalmechanics for which the Green-Kubo formula and the
Onsager reciprocity relations have been proven. We would also like to mention related works [AJPP1, AJPP2]
where the Green-Kubo formula was established for some exactly solvable quasi-free models. Linear response
theory for the quantum Markovian semigroup describing the dynamics of the SFM in the van Hove weak coupling
limit was studied by Lebowitz and Spohn in [LeSp] and this work has motivated our program. The Green-Kubo
formula for a class of open systems in classical non-equilibrium statistical mechanics has been established in
[RBT].

The rest of this introduction is organized as follows. In Subsection 1.1 we quickly review a few basic no-
tions and results of algebraic quantum statistical mechanics. This subsection is primarily intended for notational
and reference purposes. The interested reader may consult [Ru3, JP4, FMU, AJPP1] for recent reviews of non-
equilibrium algebraic quantum statistical mechanics. In Subsection 1.2 we review the abstract axiomatic derivation
of the Green-Kubo formula given in [JOP1, JOP2]. In this paper we will also give a new proof of the main results of
[JOP1, JOP2] (see Section 2). This new proof emphasizes the important connection between linear response theory
and McLennan-Zubarev dynamical ensembles [M, Zu, ZMR1, ZMR2, TM] (this point will be further discussed in
[JOPR]). In Subsection 1.3 we introduce SFM and in Subsection 1.4 we state our main results. The results of this
paper can be used to refine the existing results concerning the thermodynamics of SFM and we discuss this point
in Subsection 1.5. Finally, some generalizations of our model and results are discussed in Subsection 1.6.

Acknowledgment.The research of the first author was partly supported by NSERC. A part of this work has been
done during the visit of the first author to CPT-CNRS. Y.O. is supported by the Japan Society for the Promotion of
Science. This work has been done during the stay of Y.O. to CPT-CNRS, partly supported by the Canon Foundation
in Europe and JSPS.

1.1 Basic notions

A quantum dynamical system is a triple(O, τ, ω) whereO is aC∗-algebra (usually called the algebra of observ-
ables) with identity1l , τ is aC∗-dynamics onO, andω is the initial (reference) state of the system. We denote by
Nω the set of allω-normal states onO and byI the set of allτ -invariant states onO.
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An anti-linear involutive∗-automorphismΘ : O → O is called time-reversal of(O, τ, ω) if Θ ◦ τ t = τ−t ◦ Θ
for all t ∈ R andω(Θ(A)) = ω(A∗) for all A ∈ O. More generally, a stateη onO is called time-reversal invariant
if η(Θ(A)) = η(A∗) for all A ∈ O.

Thermal equilibrium states of(O, τ, ω) are characterized by the KMS property. Letβ > 0 be the inverse
temperature. A stateωeq onO is called(τ, β)-KMS if for all A, B ∈ O there exists a functionFA,B(z), analytic
in the strip0 < Im z < β, bounded and continuous on its closure, and satisfying the KMS-boundary condition

FA,B(t) = ωeq(Aτ t(B)), FA,B(t + iβ) = ωeq(τ
t(B)A).

The three line theorem yields that
|FA,B(z)| ≤ ‖A‖‖B‖, (1.1)

for z in the closed strip0 ≤ Im z ≤ β. We shall writeωeq(Aτz(B)) = FA,B(z) for suchz.
If ω is a(τ, β)-KMS state one expects that

w∗ − lim
t→±∞

η ◦ τ t = ω,

for all statesη ∈ Nω. This property of return to equilibrium is a manifestation of the zeroth law of thermodynamics.
It has been established forN -level systems coupled to free reservoirs under fairly general assumptions (see [JP6,
BFS, DJ, FM])

Non-equilibrium statistical mechanics deals with the casewhereω is not a KMS state (or more precisely not
normal w.r.t. any KMS state of(O, τ, ω)). The non-equilibrium steady states (NESS) of(O, τ, ω) are defined as
the weak-∗ limit points of the net

{

1

T

∫ T

0

ω ◦ τsds
∣

∣ T > 0

}

,

asT ↑ ∞. The set of NESS, denoted byΣ+, is non-empty andΣ+ ⊂ I. For information about structural
properties of NESS we refer the reader to [Ru1, Ru2, Ru3, JP3,JP4, AJPP1].

In typical applications to open systems one expects thatΣ+ consists of a single NESSω+ and that

w∗ − lim
t→+∞

η ◦ τ t = ω+,

holds for allη ∈ Nω. Such strong approach to the NESS is a difficult ergodic problem and has been rigorously
established only for a few models.

Throughout the paper we will use the shorthands

L(A, B, t) =
1

β

∫ t

0

ds

∫ β

0

du ωeq(τ
s(A)τ iu(B)), (1.2)

and

L(A, B) = lim
t→+∞

L(A, B, t),

L(A, B) = lim
t→+∞

1

2

∫ t

−t

ωeq(τ
s(A)B)ds,

(1.3)

whenever the limits exists.
We shall freely use the well-known properties of KMS-statesdiscussed in classical references [BR1, BR2]. In

particular, we will need the following result:
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Theorem 1.1 Assume thatω is a (τ, β)-KMS state such that for allA, B ∈ O,

lim
|t|→∞

ω(Aτ t(B)) = ω(A)ω(B).

Then:
(1) For all A, B ∈ O,

lim
t→+∞

∫ t

−t

ω([A, τs(B)])ds = 0.

(2) Assume in addition that(O, τ, ω) is time-reversal invariant and thatA, B ∈ O are two self-adjoint observables
which are both even or odd underΘ. Then

lim
t→+∞

[

L(A, B, t) −
∫ t

−t

ω(Aτs(B))ds

]

= 0.

The first part of this theorem is a classical result (see Theorem 5.4.12 in [BR2]). The second part is proven in
[JOP1, JOP2].

In the sequelB(H) denotes theC∗-algebra of all bounded operators on a Hilbert spaceH.

1.2 Abstract Green-Kubo formula

In this subsection we review the abstract derivation of the Green-Kubo formula given in [JOP1, JOP2]. In view of
the specific models we will study in this paper, we consider the abstract setup where a "small" (finite dimensional)
quantum systemS is coupled to finitely many reservoirsR1, . . . ,RM . For a more general framework we refer the
reader to Section 5 in [JOP2].

The systemS is described by the finite dimensional Hilbert spaceHS and the HamiltonianHS . Its algebra of
observables isOS = B(HS) and its dynamics is

τ t
S(A) = eitHSAe−itHS .

A convenient reference state of the systemS is

ωS(A) =
1

dimHS
Tr(A),

but none of our results depends on this specific choice.
The reservoirRj is described by the quantum dynamical system(Oj , τj , ωj). We assume that reservoir is in

thermal equilibrium at inverse temperatureβj , i.e., thatωj is a(τj , βj)-KMS state onOj . The complete reservoir
systemR =

∑

j Rj is described by the quantum dynamical system(OR, τR, ωR) where

OR = ⊗M
j=1Oj , τR = ⊗M

j=1τj , ωR = ⊗M
j=1ωj .

Since we are interested in the non-equilibrium statisticalmechanics, we shall always assume thatM ≥ 2.

Notation. In the sequel, whenever the meaning is clear within the context, we will write A for the operatorsA⊗ I,
I ⊗ A.

In absence of coupling the joint systemS+R is described by the quantum dynamical system(O, τ0, ω), where

O = OS ⊗OR, τ0 = τS ⊗ τR, ω = ωS ⊗ ωR.
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We denote byδj the generator ofτj and by

δ0 = i[HS , · ] +
M
∑

j=1

δj ,

the generator ofτ0.
Let V ∈ O be a self-adjoint perturbation describing the coupling betweenS andR and letτ be theC∗-

dynamics generated by

δ = δ0 + i[V, · ].
The coupled joint systemS + R is described by the quantum dynamical system(O, τ, ω).

Let βeq > 0 be a given reference (equilibrium) inverse temperature. Since we are interested in linear response
theory, without loss of generality we may restrict the inverse temperaturesβj of the reservoirs to an interval
(βeq − ǫ, βeq + ǫ), where0 < ǫ < βeq is a small number. For our purposes the size ofǫ is not relevant. Our first
assumption is:

(G1) The reference states ofRj are parametrized byβj ∈ (βeq − ǫ, βeq + ǫ) andωj is theunique(τj , βj)-KMS
state onOj .

We introduce the thermodynamical forces

Xj = βeq − βj ,

and setX = (X1, . . . , XM ). The vectorX uniquely describes the initial state of the system (note that the
valueX = 0 corresponds to the equilibrium case where allβj are the same and equal toβeq). The restriction
βj ∈ (βeq − ǫ, βeq + ǫ) is equivalent to|X |+ < ǫ, where|X |+ = max |Xj |. We setIǫ = {X ∈ RM | |X |+ < ǫ},
Dǫ = {X ∈ CM | |X |+ < ǫ}. We shall explicitly indicate the dependence of the reference states onX by denoting
ωXj

= ωj , ωRX = ωX1
⊗ · · · ⊗ ωXM

, and

ω
(0)
X = ωS ⊗ ωRX .

We denote byNX the set of allω(0)
X -normal states onO.

We now describe a particular state inNX which will play a central role in our study of linear responsetheory.
Consider theC∗-dynamicsσ(0)

X generated by

δ
(0)
X =

∑

j

(1 − Xj/βeq)δj .

The stateω(0)
X is the unique(σ(0)

X , βeq)-KMS state onO. Let σX be theC∗-dynamics onO generated by

δX = δ
(0)
X + i[HS + V, · ] = δ −

∑

j

Xj

βeq
δj .

The Araki perturbation theory [Ar, BR2, DJP] yields that there exists a unique(σX , βeq)-KMS state onO. We

denote this state byωX . The statesωX andω
(0)
X are mutually normal. Note thatωX=0 is the unique(τ, βeq)-KMS

state onO. We denote this state byωeq and assume:

(G2) For allA, B ∈ O,
lim

|t|→∞
ωeq(τ

t(A)B) = ωeq(A)ωeq(B).
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In the next assumption we postulate the existence of NESS w.r.t. the reference stateωX

(G3) For allX ∈ Iǫ there exists a stateωX+ onO such that for allA ∈ O,

lim
t→+∞

ωX(τ t(A)) = ωX+(A).

As we have already remarked in Subsection 1.1, under normal conditions one expects that the NESS is indepen-
dent of the choice of reference state inNX , i.e., that for allη ∈ NX andA ∈ O, limt→+∞ η(τ t(A)) = ωX+(A).
We however do not need such an assumption in our derivation ofthe abstract Green-Kubo formula.

Our next assumption deals with time-reversal invariance.

(G4) There exists a time-reversalΘ of (O, τ0) such thatΘ(V ) = V andΘ ◦ τ t
j = τ−t

j ◦ Θ for all j.

To define heat fluxes observables we need

(G5) For all j, V ∈ Dom(δj).

The observable describing the heat flux out ofRj is

Φj = δj(V ).

It is not difficult to show (see [JP4]) that
M
∑

j=1

ωX+(Φj) = 0,

which is the first law of thermodynamics (conservation of energy). The entropy production of the NESSωX+ is
defined by

Ep(ωX+) =

M
∑

j=1

XjωX+(Φj),

and
Ep(ωX+) ≥ 0,

see [Ru2, JP2]. The heat flux observables are odd under time-reversal, i.e., if (G4) holds, then

Θ(Φj) = −Φj. (1.4)

An observableA ∈ O is calledcenteredif ωX(A) = 0 for all X ∈ Iǫ. We denote byC the set of all centered
observables. If (G1) and (G4) hold, then it is not difficult toshow that the stateωX is time-reversal invariant (see
Lemma 3.1 in [JOP1]). This fact and (1.4) implyωX(Φj) = −ωX(Φj), and soΦj ∈ C.

It is an important fact that the heat flux observables are centered irrespectively of the time-reversal assumption.
The following result was proven in [JOP2].

Proposition 1.2 If (G1) and (G5) hold, thenΦj ∈ C for all j.

The key result in the abstract derivation of the Green-Kubo formula is the followingfinite time linear response
formulaproven in [JOP1, JOP2]. Recall thatL(A, B, t), L(A, B), L(A, B), are defined by (1.2) and (1.3). Set

Oc =
(

∩M
j=1Dom(δj)

)

∩ C.
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Theorem 1.3 Suppose that Assumptions (G1) and (G5) hold and letA ∈ Oc. Then for allt ∈ R the function

X 7→ ωX(τ t(A)),

is differentiable atX = 0 and
∂Xj

ωX(τ t(A))
∣

∣

X=0
= L(A, Φj , t).

In Section 2 we shall give a new proof of Theorem 1.3 which is different then the original argument in [JOP1,
JOP2] and which will play an important role in future developments [JOPR].

To derive the Green-Kubo formula from Theorem 1.3 we need theconcept of regular observable. An observable
A is called regular if the limit and derivative in the expressions

lim
t→+∞

∂Xj
ωX(τ t(A))

∣

∣

X=0
,

can be interchanged. More precisely:

Definition 1.4 Suppose that (G1) and (G3) hold. LetA ∈ O be an observable such that the function

X 7→ ωX(τ t(A)),

is differentiable atX = 0 for all t. We call such an observable regular if the function

X 7→ ωX+(A),

is also differentiable atX = 0 and for all j,

lim
t→+∞

∂Xj
ωX(τ t(A))

∣

∣

X=0
= ∂Xj

ωX+(A)
∣

∣

X=0
.

In study of concrete models one of the key steps is verification that physically relevant observables like heat
fluxes are regular. Our justification of this step will be based on the following general result.

Proposition 1.5 Suppose that Assumptions (G1) and (G3) hold. LetA ∈ O be an observable such that for some
ǫ > 0 and all t ≥ 0 the functions

X 7→ ωX(τ t(A)), (1.5)

have an analytic extension toDǫ satisfying

sup
X∈Dǫ,t≥0

∣

∣ωX(τ t(A))
∣

∣ < ∞.

Then for allX ∈ Dǫ the limit
h(X) = lim

t→+∞
ωX(τ t(A)),

exists and is an analytic function onDǫ. Moreover, ast → +∞, all derivatives of the functions (1.5) converge
uniformly on compact subsets ofDǫ to the corresponding derivatives ofh(X).

Proof. This result follows from the multivariable Vitali theorem.We sketch the proof for the reader convenience.
Setht(X) = ωX(τ t(A)). For0 < ρ < ǫ we denote

Tρ = {X ∈ C
M | |Xj| = ρ for all j }.
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The Cauchy integral formula for polydisk yields that forX ∈ Dρ,

ht(X) =
1

(2πi)M

∫

Tρ

ht(ξ1, . . . , ξM )

(ξ1 − X1) · · · (ξM − XM )
dξ1 · · ·dξM . (1.6)

It follows that the family of functions{ht}t≥0 is equicontinuous onDρ′ for anyρ′ < ρ. Hence, by the Arzela-
Ascoli theorem, for anyρ′ < ρ the set{ht}t≥0 is precompact in the Banach spaceC(Dρ′) of all continuous
functions onDρ′ equipped with the sup norm. The Cauchy integral formula (1.6), where nowX ∈ Dρ′ and the
integral is overTρ′ , yields that any limit inC(Dρ′) of the net{ht} ast → +∞ is an analytic function inDρ′ .
Assumption (G3) implies that any two limit functions coincide forX real, and hence they are identical. This yields
the first part of the theorem. The convergence of partial derivatives ofht(X) is an immediate consequence of the
Cauchy integral formula.2

The next two theorems are an immediate consequence of Theorem 1.3.

Theorem 1.6 Suppose that Assumptions (G1), (G3) and (G5) hold.
(1) LetA ∈ Oc be a regular observable. Then

∂Xj
ωX+(A)

∣

∣

X=0
= L(A, Φj). (1.7)

(2) If in addition (G2) and (G4) hold andA ∈ ∩jDom(δj) is a regular self-adjoint observable such thatΘ(A) =
−A, then

∂Xj
ωX+(A)

∣

∣

X=0
= L(A, Φj). (1.8)

Relation (1.7) is the Green-Kubo formula without the time reversal assumption. Relation (1.8), which follows from
(1.7) and Part (2) of Theorem 1.1, is the Green-Kubo formula in the standard form.

Specializing Theorem 1.6 to the heat-flux observables we derive

Theorem 1.7 Suppose that Assumptions (G1), (G3) and (G5) hold and thatΦk ∈ ∩jDom(δj). Then:
(1) The kinetic transport coefficients

Lkj = ∂Xj
ωX+(Φk)

∣

∣

X=0
,

satisfy
Lkj = L(Φk, Φj).

(2) If in addition (G2) and (G4) hold, then
Lkj = L(Φk, Φj), (1.9)

and
Lkj = Ljk. (1.10)

The Onsager reciprocity relations (1.10) follow from (1.9)and Part (1) of Theorem 1.1.

1.3 Spin-fermion model

The spin-fermion model is an example of abstractS +R model which describes a two level quantum system (spin
1/2) coupled toM free Fermi gas reservoirs. This model—a paradigm of open quantum system—has been much
studied and we shall be brief in its description. The reader not familiar with the model may consult [JP3] or any of
the references [Da, BR1, BR2, LeSp, JP4] for additional information.

The small systemS is described by the Hilbert spaceHS = C2 and the HamiltonianHS = σz (we denote the
usual Pauli matrices byσx, σy , σz).
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The reservoirRj is a free Fermi gas in thermal equilibrium at inverse temperature βj . It is described by
the quantum dynamical system(Oj , τj , ωj), whereOj = CAR(hj) is the CAR algebra over a single fermion
Hilbert spacehj , theC∗-dynamicsτ t

j is the group of Bogoliubov∗-automorphisms generated by a single particle
Hamiltonianhj andωj is the unique(τj , βj)-KMS state onOj . The assumption (G1) is automatically satisfied.

Let
Vj = σx ⊗ ϕj(αj), (1.11)

whereαj ∈ hj is a given vector (sometimes called "form-factor"), and

ϕj(αj) =
1√
2
(aj(αj) + a∗

j (αj)) ∈ Oj ,

is the field operator associated toαj . The interaction ofS with Rj is described byλVj whereλ ∈ R is the coupling
constant. The complete interaction betweenS andR is described by

Vλ = λ
M
∑

j=1

Vj .

In the sequel we shall explicitly indicate theλ-dependence by writingδλ = δ, τλ = τ , ωλX = ωX , etc.
The spin-fermion system is time-reversal invariant. Indeed, for all j there exists a complex conjugationcj

on hj which commutes withhj and satisfiescjαj = αj . The mapΘj(a(fj)) = a(cjfj) uniquely extends to
an involutive anti-linear∗-automorphism ofOj such thatΘj ◦ τ t

j = τ−t
j ◦ Θj . Let ΘS be the standard complex

conjugation onOS . Obviously,ΘS(σz) = σz , ΘS(σx) = σx, and in particularΘS ◦ τ t
S = τ−t

S ◦ ΘS . Let
Θ = ΘS ⊗ Θ1 ⊗ · · · ⊗ ΘM . ThenΘ(Vj) = Vj for all j, andΘ ◦ τ t

λ = τ−t
λ ◦ Θ for all λ ∈ R. Hence, Assumption

(G4) holds.
Concerning Assumptions (G2) and (G3), we need to recall several results concerning non-equilibrium thermo-

dynamics ofS + R established in [JP3]. We first list technical conditions needed for these results.

(A1) hj = L2(R+, ds ; Hj) for some auxiliary Hilbert spaceHj andhj is the operator of multiplication bys ∈ R+.

Let I(δ) = {z ∈ C | |Im z| < δ} and letH2
j (δ) be the usual Hardy class of analytic functionsf : I(δ) → Hj .

(A2) For someδ > 0, κ > βeq, and allj, e−κsαj(|s|) ∈ H2
j (δ).

(A3) For all j, ‖αj(2)‖Hj
> 0.

(A1) and (A2) are regularity assumptions needed for the spectral theory of NESS developed in [JP3]. As-
sumption (A3) is the "Fermi Golden Rule" condition which ensures thatS is effectively coupled to each reservoir
Rj .

The following result was proven in [JP3].

Theorem 1.8 Assume that (A1)-(A3) hold. Then there existΛ > 0, ǫ > 0 and statesωλX+ onO such that for
0 < |λ| < Λ, X ∈ Iǫ, η ∈ NX , andA ∈ O,

lim
t→+∞

η(τ t
λ(A)) = ωλX+(A). (1.12)

The statesωλX+ are the NESS of the joint systemS + R and are the central objects of the non-equilibrium
statistical mechanics of this system. We remark thatωλX=0+ is the unique(τλ, βeq)-KMS state onO (hence,
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ωλeq = ωλX=0+), and in this case Relation (1.12) is the statement of the zeroth law of thermodynamics. In
particular, Theorem 1.8 implies that for0 < |λ| < Λ and allA, B ∈ O,

lim
|t|→∞

ωλeq(Aτ t
λ(B)) = ωλeq(A)ωλeq(B).

Note also that (A1)-(A2) imply (G5). The observable describing the heat flux out ofRj is

Φj = λδj(Vj) = λσx ⊗ ϕj(ihjαj).

We summarize:

Theorem 1.9 Suppose that Assumptions (A1)-(A3) are satisfied. Then there existsǫ > 0 andΛ > 0 such that
Assumptions (G1)-(G5) hold for0 < |λ| < Λ.

If the thermodynamical forcesXj are not all the same, then one expects that the NESSωλX+ is thermodynam-
ically non-trivial and has strictly positive entropy production. This result was also established in [JP3] (see also
[JP4]). If (A1)-(A3) hold and theXj ’s are not all the same, then forλ non-zero and small enough,Ep(ωλX+) > 0.
We will return to this topic in Subsection 1.5.

1.4 Green-Kubo formula for the spin-fermion system

In this subsection we state our main results concerning linear response ofωλX+ to the thermodynamical forces
Xj .

Suppose that (A1) and (A2) hold and leth̃j = L2(R, ds; Hj). To anyfj ∈ hj we associatẽfj ∈ h̃j by

f̃j(s) =

{

fj(s) if s ≥ 0,

(cjfj)(|s|) if s < 0.
(1.13)

Let δ andκ be as in (A2) and

Aj = {fj ∈ hj | e−bsf̃j(s) ∈ H2
j (δ) for someb > (κ + βeq)/2 }.

Let Õ be a∗-subalgebra ofO generated by

{Q ⊗ a#
j (fj) | Q ∈ OS , fj ∈ Aj , j = 1, . . . , M},

wherea# stands either fora or a∗. Let
Õc = Õ ∩ C.

Obviously,Õc is a vector subspace ofO. In addition, we have

Proposition 1.10 Suppose that (A1) and (A2) hold. Then
(1) Õc ⊂ ∩M

j=1Dom(δj).

(2) Φj ∈ Õc.
(3) The algebraÕ is dense inO and for allA ∈ Õ, A − Θ(A∗) ∈ Õc.
(4) Suppose in addition that (A3) holds. Then there existsΛ > 0 such that for0 < |λ| < Λ and allA, B ∈ Õc,

ωλeq(τ
t
λ(A)B) = O(e−γ(λ)|t|),

whereγ(λ) > 0. In particular,L(A, B) is well-defined for allA, B ∈ Õc.
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Proof. Part (1) is obvious. One easily checks thatihjαj ∈ Aj and this yields (2). Letφj ∈ hj be given. Write
φj = φj+ + φj−, wherecj(φj±) = ±φj±. Then

{e−αs2

φj+ |α > 0} ⊂ Aj , {ie−αs2

φj− |α > 0} ⊂ Aj ,

and so the linear span ofAj is dense inhj . This yields thatÕ is dense inO. SinceωλX is time-reversal invariant
(see [JOP1]),ωλX(A − Θ(A∗)) = 0. Hence,A − Θ(A∗) ∈ C for all A ∈ O and the second part of (3) follows.
Part (4) was proven in [JP3].2

The main technical result of this paper is:

Theorem 1.11 Suppose that (A1) and (A2) hold. Then there existΛ > 0 andǫ > 0 such that for0 < |λ| < Λ,
t ≥ 0 andA ∈ Õ the function

X 7→ ωλX(τ t
λ(A)),

has an analytic extension toDǫ such that

sup
X∈Dǫ,t≥0

∣

∣ωλX(τ t
λ(A))

∣

∣ < ∞.

Combining Theorem 1.11 with Propositions 1.5, 1.10 and Theorems 1.6, 1.7, 1.9, we derive our main result:

Theorem 1.12 Suppose that Assumptions (A1)-(A3) are satisfied. Then there existsΛ > 0 andǫ > 0 such that
for 0 < |λ| < Λ the following holds.
(1) For all A ∈ Õ the map

Iǫ ∋ X 7→ ωλX+(A),

extends to an analytic function onDǫ.
In the remaining statements we assume thatA ∈ Õc.
(2) For all j,

∂Xj
ωλX+(A)

∣

∣

X=0
=

1

βeq

∫ ∞

0

ds

∫ βeq

0

du ωλeq(τ
s
λ(A)τ iu

λ (Φj)).

(3) If in additionA is a self-adjoint observable such thatΘ(A) = −A, then

∂Xj
ωλX+(A)

∣

∣

X=0
=

1

2

∫ ∞

−∞

ωλeq(τ
t
λ(A)Φj)dt.

(4) The kinetic transport coefficients
Lλkj = ∂Xj

ωλX+(Φk)
∣

∣

X=0
, (1.14)

satisfy

Lλkj =
1

2

∫ ∞

−∞

ωλeq(τ
t
λ(Φk)Φj)dt, (1.15)

and
Lλkj = Lλjk. (1.16)

Our final result is:
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Theorem 1.13 Assume that (A1)-(A3) hold. Then there isΛ > 0 such that the functionsλ 7→ Lλkj are analytic
for |λ| < Λ and have power expansions

Lλkj =

∞
∑

n=2

λnL
(n)
kj . (1.17)

Moreover, fork 6= j,

L
(2)
kj = − π

(coshβeq)2

‖αk(2)‖2
Hk

‖αj(2)‖2
Hj

∑

i ‖αi(2)‖2
Hi

, (1.18)

andL
(2)
jj = −∑k 6=j L

(2)
kj .

Remark. Starting with formula (1.15), this theorem can be proven by an explicit computation based on the spectral
theory of the standard Liouvillean. Our proof in Section 4 issomewhat indirect and emphasizes the important
connection betweenL(2)

kj and the weak coupling Green-Kubo formula established in [LeSp]. This connection is
discussed in more detail in Subsection 1.6

1.5 Thermodynamics of the SFM revisited

The results established in this paper could be used to improve existing results concerning the thermodynamics of
the SFM. In this subsection we do not assume thatǫ is small andβeq does not play any particular role. For this
reason, in this subsection we replace the subscriptsX by ~β = (β1, . . . , βM ). Hence,ωβj

= ωj is the initial state
of the reservoirRj , ωR~β = ωβ1

⊗ · · · ⊗ωβM
, ω~β = ωS ⊗ωR~β is the reference state of the joint system,N~β is the

set of allω~β -normal states onO, etc. For0 < γ1 < γ2 we denoteIγ1γ2
= [γ1, γ2]

M ⊂ RM . In this subsection
we will always assume the constantκ in Assumption (A2) satisfiesκ > γ2.

The following results hold:

Theorem 1.14 Let 0 < γ1 < γ2 be given and assume that (A1)-(A3) hold. Then there existΛ > 0 and states
ωλ~β+ onO such that:

(1) For all 0 < |λ| < Λ, ~β ∈ Iγ1γ2
, η ∈ N~β , andA ∈ O,

lim
t→+∞

η(τ t
λ(A)) = ωλ~β+(A). (1.19)

(2) The limit (1.19) is exponentially fast in the following sense: There existρλ~β > 0, a norm dense set of states
N0~β ⊂ N~β , and a norm-dense∗-subalgebraO0 ⊂ O such that forη ∈ N0~β , A ∈ O0, andt > 0,

|η(τ t
λ(A)) − ωλ~β+(A)| ≤ CA,η,λe−ρ

λ~β
t. (1.20)

Moreover,ω~β ∈ N0~β , Φj ∈ O0, and

ρλ~β =
π

2





∑

j

‖αj(2)‖2
Hj



λ2 + O(λ4), (1.21)

where the remainder is uniform in~β ∈ Iγ1γ2
.

(3) There exists a neighborhoodOγ1γ2
of Iγ1γ2

in C
M such that for allA ∈ O0 the functions

(λ, ~β) 7→ ωλ~β+(A), (1.22)

extend to analytic functions on{λ | |λ| < Λ} × Oγ1γ2
.
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Remark. Parts (1) and (2) are proven in [JP3] and are stated here for reference purposes. The new result is (3)—in
[JP3] the analyticity of the functions (1.22) was discussedonly w.r.t. λ.

We denote bŷIγ1γ2
the "off-diagonal" part ofIγ1γ2

, i.e.,

Îγ1γ2
= Iγ1γ2

\ {~β |β1 = . . . = βM}.

Theorem 1.15 Let 0 < γ1 < γ2 be given and assume that (A1)-(A3) hold. Then there existsΛ > 0 such that for
0 < |λ| < Λ and~β ∈ Îγ1γ2

the following holds:
(1) Ep(ωλ~β+) > 0.
(2) There are noτλ-invariant states inN~β .

Remark 1. Statements (1) and (2) are equivalent. Indeed, the exponentially fast approach to NESS (Part (2)
of Theorem 1.14) and Theorem 1.1 in [JP3] yield that (2) implies (1). On the other hand, ifη is a normalτλ-
invariant state inN~β , then, by Part (1) of Theorem 1.14,η = ωλ~β+. This fact and Theorem 1.3 in [JP5] yield that
Ep(ωλ~β+) = 0, and so (2) implies (1).
Remark 2. Theorem 1.15 was proven in [JP3] under the additional assumption that for someδ > 0,

∑

i,j

|βi − βj | > δ.

The constantΛ was dependent onδ.
Remark 3. A result related to Part (2) of Theorem 1.15 was recently established in [MMS].

The proofs of Theorems 1.14 and 1.15 are given in Section 5.

1.6 Some generalizations

All our results easily extend to more general models whereS is anN -level atom described by the Hilbert space
HS = CN and the HamiltonianHS . EachVj is a finite sum of terms of the form

Qj,k ⊗ ϕj(αj,k,1) · · ·ϕj(αj,k,nj,k
) + h.c.,

wherenj,k ≥ 1, Qj,k ∈ OS = M(CN ) andαj,k,n ∈ hj satisfy:

(A0) If k 6= l or n 6= m, then(αj,k,n, eithjαj,l,m) = 0 for all t ∈ R.

We shall call this modelthe general spin-fermion model(abbreviated GSFM). The GSFM may not be time-
reversal invariant. Assume that (A1) holds. Letcj be a distinguished complex conjugation onhj and letα̃j,k,n(s)
be defined by (1.13).

(A4) For someδ > 0, κ > βeq, and allj, k, n, e−κsα̃j,k,n(s) ∈ H2
j (δ).

The general "Fermi Golden Rule" non-degeneracy condition is formulated as follows. Assumptions (A0), (A1)
and (A4) ensure that for allX there exists a linear mapKX : OS → OS such that for allA, B ∈ OS ,

lim
t→+∞

ω
(0)
X (Aτ

−t/λ2

0 ◦ τ
t/λ2

λ (B)) =
1

N
Tr(AetKX (B)). (1.23)

As usual, we writeKeq = KX=0. This relation (the quantum Markovian semigroup approximation of the dynam-
ics of an open quantum system in the van Hove weak coupling limit) is a celebrated result of Davies [Da] who has
proven it under very general technical conditions (see also[De, JP3, JP4]). The result of Davies was the starting
point of numerous studies of thermodynamics of open quantumsystems in weak coupling limit (see [LeSp, AJPP1]
for references and additional information). We will returnto this point at the end of this subsection.
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We recall that the generatorKX has the form

KX =

M
∑

j=1

KXj
,

whereKXj
is the generator obtained by considering the weak coupling limit of the systemS + Rj w.r.t. the

initial stateωS ⊗ ωXj
. By construction, the spectrum ofKXj

is contained in{z |Re z ≤ 0} and0 ∈ σ(KXj
).

Assumption (A3) is replaced with

(A5) For all j and|Xj | < ǫ, σ(KXj
) ∩ iR = {0} and0 is a simple eigenvalue ofKXj

.

In the literature one can find various algebraic characterizations of (A5) (see [Sp, De] for references and additional
information).

If Assumptions (A1), (A4) and (A5) hold, then Theorem 1.8 holds for the GSFM. The heat fluxes are again
defined byΦj = λδj(Vj), and if not allXj ’s are the same, the entropy production ofωλX+ is strictly positive for
smallλ (see [JP3, JP4]).

Our next assumption concerns time-reversal invariance.

(A6) The complex conjugationscj commute withhj and satisfycjαj,k,n = αj,k,n for all j, k, n. Moreover, the
matricesHS andQj,k are real w.r.t. the usual complex conjugation onB(HS).

This assumption ensures that there exists an involutive, anti-linear∗-automorphism (time-reversal)Θ of O such
that for allj, Θ(Vj) = Vj , Θ ◦ τ t

j = τ−t
j ◦Θ, andΘ ◦ τ t

S = τ−t
S ◦Θ. In particular,Θ ◦ τ t

λ = τ−t
λ ◦Θ for all λ ∈ R.

Theorem 1.9 holds for the GSFM under the Assumptions (A0), (A1), (A4), (A5), (A6). The definition ofÕ
andOc and Proposition 1.10 holds under the Assumptions (A0), (A1), (A4) (obviously, in the second part of Part
(3) we also need (A6)). Theorem 1.11 holds under the Assumption (A0), (A1), (A4). Finally, Parts (1) and (2)
of Theorem 1.12 hold for the GSFM under the Assumptions (A0),(A1), (A4), (A5). Parts (3) and (4) require in
addition the time reversal assumption (A6).

Before discussing the generalization of Theorem 1.13 we recall a few basic definitions and results of the
weak coupling (sometimes also called Fermi Golden Rule or FGR) thermodynamics of open quantum systems.
Assumption (A5) ensures that there exists a density matrixωSX+ onHS such that for any initial density matrixρ
onHS andA ∈ OS ,

lim
t→+∞

Tr(ρ etKX (A)) = Tr(ωSX+A) ≡ ωSX+(A).

The density matrixωSX+ is the weak coupling NESS of the open quantum systemS +
∑

j Rj . Clearly,

ωSX=0+ = e−βeqHS/Tr(e−βeqHS ),

and we will writeωSX=0+ = ωSeq. Weak coupling heat flux observables are defined byΦjX = KXj
(HS) and

we denoteΦjeq = ΦjX=0. The weak coupling entropy production is

Ep =

M
∑

j=1

XjωSX+(ΦjX).

One always hasEp ≥ 0. Lebowitz and Spohn [LeSp] have shown that if (A4) holds thenEp > 0 wheneverXj

are not all equal. In the same paper they have also proven the Green-Kubo formula for weak coupling heat fluxes:
If (A5) holds, then the functionsX 7→ ωSX+(ΦkX) are differentiable atX = 0 and

Lkj ≡ ∂Xj
ωSX+(ΦkX)

∣

∣

X=0
=

∫ ∞

0

ωSeq(e
tKeq(Φkeq)Φjeq)dt. (1.24)
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These results are very robust and can be derived under very mild technical conditions. If in addition (A6) holds,
thenLkj = Ljk, that is, the weak coupling Onsager reciprocity relations hold.

One naturally expects that the weak coupling thermodynamics is the first non-trivial contribution (inλ) to
the microscopic thermodynamics. Indeed, it was proven in [JP3, JP4] that if (A0), (A4) and (A5) hold, then for
A ∈ OS andλ small enough,

ωλX+(A) = ωSX+(A) + O(λ),

ωλX+(Φj) = λ2ωSX+(ΦjX) + O(λ3),

Ep(ωλX+) = λ2Ep + O(λ3).

(1.25)

In the next theorem we relateLλkj andLkj and complete the link between the microscopic and the weak coupling
thermodynamics for this class of models.

Theorem 1.16 Assume that (A0), (A1), (A4) and (A5) hold. Then there isΛ > 0 such that the functionsλ 7→ Lλkj

are analytic for|λ| < Λ and have power expansions

Lλkj =

∞
∑

n=2

λnL
(i)
kj .

Moreover,
L

(2)
kj = Lkj .

Remark 1. It follows immediately from this result, the Green-Kubo formula and Relation (1.24) that

lim
λ→0

λ−2 1

βeq

∫ ∞

0

dt

∫ βeq

0

du ωλeq(τ
t
λ(Φk)τ iu

λ (Φj))dt =

∫ ∞

0

ωSeq(e
tKeq(Φkeq)Φjeq)dt.

If in addition (A6) holds, then we also get

lim
λ→0

λ−2 1

2

∫ ∞

−∞

ωλeq(τ
t
λ(Φk)Φj)dt =

∫ ∞

0

ωSeq(e
tKeq(Φkeq)Φjeq)dt,

i.e. the rescaled microscopic flux-flux correlation functions converge to the corresponding weak coupling correla-
tion functions.
Remark 2. The relation between the microscopic and the weak coupling thermodynamics is discussed in detail in
the lecture notes [AJPP1] in the context of an exactly solvable quasi-free model.

The proofs of the results described in this subsection are only notationally different from the proofs of Theo-
rems 1.12 and 1.13 and details can be found in the forthcomingreview article [JP7].

Theorems 1.14 and 1.15 also hold for the GSFM under the Assumptions (A0), (A1), (A4) withκ > γ2, and
(A5) for all ~β ∈ Iγ1γ2

. The only parts that need to be modified are Relations (1.20) and (1.21). In general, the
constantCA,η,λ is replaced by a polynomial int. The leading term in the expansion (1.21) is equal to the absolute
value of the real part of the non-zero eigenvalue ofK~β closest toiR and in general depends on~β. For additional
discussion of these points we refer the reader to [JP7].

2 Abstract Green-Kubo formula

In this section we give a new proof of Theorem 1.3 and hence a new derivation of the abstract Green-Kubo formula.
To motivate the argument, we shall first prove Theorem 1.3 in the case where the reservoirsRj are finite

dimensional. The interested reader should compare this argument with the finite dimensional computation given
in the introduction of [JOP1].
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2.1 Finite dimensional case

We shall identify the finite dimensional states with associated density matrices and writeω(A) = Tr(Aω).
Suppose thatRj is described by the finite dimensional Hilbert spaceHj and the HamiltonianHj . Hence,

Oj = B(Hj),
τ t
j (A) = eitHj Ae−itHj ,

andωj = e−βjHj /Zj whereZj is the normalization constant. The complete reservoir system is described by the
Hilbert spaceHR = ⊗jHj and the HamiltonianHR =

∑

j Hj . Finally, the interacting joint systemS + R is
described by the Hilbert spaceH = HS ⊗HR and the HamiltonianH = HS + HR + V . We set

HX = H −
M
∑

j=1

Xj

βeq
Hj .

Clearly,O = B(H) and

τ t(A) = eitHAe−itH ,

σt
X(A) = eitHX Ae−itHX ,

ωX = e−βeqHX /ZX .

Note also that

Φj = i[Hj , V ] = − d

dt
τ t(Hj)

∣

∣

t=0
.

The next four steps complete the proof of Theorem 1.3 in the finite dimensional case.

Step 1.The relationτ−t(HX) = HX −∑j(Xj/βeq)
∫ t

0 τ−s(Φj)ds yields that

ωX ◦ τ t =
1

ZX
e−βeq(HX−

P

j(Xj/βeq)
R

t
0

τ−s(Φj)ds). (2.26)

Step 2.Step 1 and the Duhamel formula (see, for example, [BR2], pages 94-95) yield

ωX(τ t(A)) = ωX(A)



1 −
∑

j

Xj

∫ t

0

ωX(τ−s(Φj))ds





+
∑

j

Xj

βeq

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj))) + O(|X |2).

Step 3.If A is centered, thenωX(A) = 0 andωX=0(τ
t(A)) = ωX=0(A) = 0. Hence, Step 2 yields

ωX(τ t(A)) − ωX=0(τ
t(A)) =

∑

j

Xj

βeq

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj))) + O(|X |2), (2.27)

Step 4.SinceσX=0 = τ (recall also thatωeq = ωX=0),

lim
X→0

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj))) =

∫ t

0

ds

∫ βeq

0

du ωeq(τ
s(A)τ iu(Φj))).

and (2.27) yields

∂Xj
ωX(τ t(A))

∣

∣

X=0
=

1

βeq

∫ t

0

ds

∫ βeq

0

du ωeq(τ
s(A)τ iu(Φj)).
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2.2 Proof of Theorem 1.3

Throughout this subsection we suppose that (G1) and (G5) hold. Under these assumptions each of the Steps 1-4
can be extended to the abstract systemS + R.

We start with the Step 4. The following result was established in [JOP1] (Lemmas 3.3 and 3.4).

Lemma 2.1 (1) The groupτ preserves∩jDom(δj).
(2) For all A ∈ O,

lim
X→0

ωX(A) = ωeq(A).

(3) For all A ∈ O andt ∈ R,
lim

X→0
σt

X(A) = τ t(A).

We shall also need:

Lemma 2.2 For all A, B ∈ O and0 ≤ u ≤ βeq,

lim
X→0

ωX(Aσiu
X (B)) = ωeq(Aτ iu(B)).

Proof. For j = 1, 2, . . . let

BjX =

√

j

π

∫

R

e−jt2σt
X(B)dt.

By the properties of analytic approximations (see Section 2.5.3 in [BR1]),

lim
j→∞

‖B − BjX‖ = 0, (2.28)

and

σiu
X (BjX) =

√

j

π

∫

R

e−j(t−iu)2σt
X(B)dt. (2.29)

We writeBj = BjX=0. Relation (2.29) and Lemma 2.1 yield that

lim
X→0

σiu
X (BjX) = τ iu(Bj),

lim
X→0

ωX(Aσiu
X (BjX)) = ωeq(Aτ iu(Bj)).

(2.30)

SinceωX is a(σX , βeq)-KMS state, the bound (1.1) implies that for allX ,

|ωX(Aσiu
X (B)) − ωX(Aσiu

X (BjX))| ≤ ‖A‖‖B − BjX‖,
and so for allj,

|ωX(Aσiu
X (B)) − ωeq(Aτ iu(B))‖ ≤ ‖A‖(‖B − BjX‖ + ‖B − Bj‖)

+ |ωX(Aσiu
X (BjX)) − ωeq(Aτ iu(Bj))|.

Relations (2.30) imply that for allj,

lim sup
X→0

|ωX(Aσiu
X (B)) − ωeq(Aτ iu(B))| ≤ 2‖A‖‖B − Bj‖,

and (2.28) yields the statement.2

Lemma 2.2 and the bound
‖ωX(Aσiu

X (τ−s(Φj)))‖ ≤ ‖A‖‖Φj‖,
yield the extension of the Step 4 to the abstract systemS + R.
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Proposition 2.3

lim
X→0

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj))) =

∫ t

0

ds

∫ βeq

0

du ωeq(τ
s(A)τ iu(Φj)).

We now turn to the Step 1. LetΓt be the unitary cocycle such that

τ t(A) = Γtτ
t
0(A)Γ∗

t ,

explicitly

Γt = 1l +
∑

n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnτ tn

0 (V ) · · · τ t1
0 (V ),

see Proposition 5.4.1 in [BR2].

Lemma 2.4 Γt ∈ ∩jDom(δj) and

δj(Γt)Γ
∗
t = i

∫ t

0

τs(Φj)ds. (2.31)

Proof. SinceV ∈ Dom(δj), one easily shows thatΓt ∈ Dom(δj) and that

δj(Γt) =
∑

n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn
∑

k

τ tn

0 (V ) · · · τ tk

0 (δj(V )) · · · τ t1(V ).

This formula yields that the functionR ∋ t 7→ δj(Γt) ∈ O is continuously differentiable and that

dδj(Γt)

dt
= δj

(

dΓt

dt

)

(2.32)

To prove relations (2.31), we recall that

dΓt

dt
= iΓtτ

t
0(V ),

dΓ∗
t

dt
= −iτ t

0(V )Γ∗
t .

The first relation and (2.32) yield

dδj(Γt)

dt
= iδj(Γt)τ

t
0(Φj) + iΓtτ

t
0(Φj).

Hence,

dδj(Γt)

dt
Γ∗

t = iδj(Γt)τ
t
0(V )Γ∗

t + iΓtτ
t
0(Φj)Γ

∗
t

= −δj(Γt)
dΓ∗

t

dt
+ iτ t(Φj),

and (2.31) follows.2

Set

PXt = −
∑

j

Xj

βeq

∫ t

0

τ−s(Φj)ds. (2.33)

Let t be fixed and letσXt be theC∗-dynamics generated by

δXt = δX + i[PXt, · ],
i.e. σu

Xt = euδXt . The next proposition is the extension of the Step 1 to the abstract systemS + R.
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Proposition 2.5 ωX ◦ τ t is a (σXt, βeq)-KMS state onO.

Proof. Let A ∈ ∩jDom(δj). RelationΓ∗
t Γt = 1l and Part (1) of Lemma 2.1 yield

δj(τ
t(A)) = δj(Γtτ

t
0(A)Γ∗

t )

= δj(Γt)Γ
∗
t τ

t(A) + τ t(δj(A)) + Γtτ
t
0(A)δj(Γ

∗
t ),

and
Γtτ

t
0(A)δj(Γ

∗
t ) = −τ t(A)δj(Γt)Γ

∗
t .

Hence,
δj(τ

t(A)) − τ t(δj(A)) = [δj(Γt)Γ
∗
t , τ

t(A)].

This identity and Lemma 2.4 yield

τ−t(δj(τ
t(A))) − δj(A) = i

∫ t

0

[τ−s(Φj), A]ds. (2.34)

Since∩jDom(δj) is dense inO, (2.34) implies that for allu ∈ R,

τ−t ◦ σu
X ◦ τ t = σu

Xt. (2.35)

Finally, sinceωX is a(σX , βeq)-KMS state, (2.35) yields thatωX ◦ τ t is a(σXt, βeq)-KMS state.2

We now turn to the extension of the Step 2. Recall that|X |+ = max |Xj|

Proposition 2.6 LetA ∈ O andt be fixed. Then there is a constantC such that if

|X |+ ≤ 1/(4|t|
∑

j

‖Φj‖), (2.36)

then

∣

∣

∣ωX(τ t(A)) − ωX(A)



1 −
∑

j

Xj

∫ t

0

ωX(τ−s(Φj))ds





+
∑

j

Xj

βeq

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj)))

∣

∣

∣
≤ C|X |2.

Proof. Proposition 2.5 and Araki’s theory of perturbation of KMS states (Theorem 5.44 Part (3) in [BR2]) yield
that if ‖PXt‖ < 1/2βeq, then

ωX(τ t(A)) = ωX(A) −
∫ βeq

0

ds
[

ωX(Aσiu
X (PXt)) − ωX(A)ωX(PXt)

]

+ R,

where the remainderR can be estimated as

‖R‖ ≤
∞
∑

n=2

(2βeq)
n‖PXt‖n‖A‖. (2.37)
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The obvious estimate

‖PXt‖ ≤ |t|
βeq

∑

j

|Xj |‖Φj‖,

combined with (2.36) and (2.37) implies

‖R‖ ≤ 8‖A‖(2βeq|t|
∑

j

‖Φj‖)2|X |2+,

and the statement follows.2

As in the finite dimensional Part 3, the definition of a centered observable and Proposition 2.6 imply

Proposition 2.7 LetA ∈ O be a centered observable and lett be given. Then

ωX(τ t(A)) − ωX=0(τ
t(A)) =

∑

j

Xj

βeq

∫ t

0

ds

∫ βeq

0

du ωX(Aσiu
X (τ−s(Φj))) + O(|X |2),

asX → 0.

Propositions 2.3 and 2.7 yield Theorem 1.3.
Remark. The density matrix (2.26) or the corresponding infinite dimensional expression (2.33) are the starting
point of Zubarev construction of NESS. In some sense, they provide a way to map thermodynamical perturbations
into mechanical ones.

3 Proof of Theorem 1.11

The proof of Theorem 1.11 is based on techniques and estimates of [JP1, JP3]. We recall the ingredients we need.
Throughout this section we assume that (A1)-(A3) hold. The GNS-representation of the algebraO associated to
the product stateω(0)

X can be explicitly computed [AW]. We will describe it in the glued form of [JP3]. Denote by
e± the eigenvectors ofσz associated to the eigenvalues±1. SetHS = C

2 ⊗ C
2 and define a unit vector inHS by

ΩS =
1√
2
(e− ⊗ e− + e+ ⊗ e+).

Let πS : OS → B(HS) be given by
πS(A) = A ⊗ I.

The triple(HS , πS , ΩS) is the GNS representation ofOS associated toωS . We set

LS = HS ⊗ I − I ⊗ HS .

LetFj be the anti-symmetric Fock space overh̃j = L2(R, ds; Hj) andΩj the vacuum vector inFj . We denote
by ãj , ã∗

j the annihilation and creation operators and byNj the number operator onFj. Let Lj = dΓ(s) be the

second quantization of the operator of multiplication bys on h̃j . To anyfj ∈ hj we associatẽfj ∈ h̃j by (1.13).
ForX ∈ RM we set

f̃jX(s) =
(

e(Xj−βeq)s + 1
)−1/2

f̃j(s).

Finally, we define a mapπjX : Oj → B(Fj) by

πjX(ϕj(fj)) = ϕ̃j(f̃jX) =
1√
2

(

ãj(f̃jX) + ã∗
j (f̃jX)

)

.
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The mapπjX uniquely extends to a representation ofOj on the Hilbert spaceFj .
We set

HR = ⊗M
j=1Fj , πRX = ⊗M

j=1πjX , ΩR = ⊗M
j=1Ωj .

The triple(HR, πRX , ΩR) is the GNS representation of the algebraOR associated to the stateωRX . Let

H = HS ⊗HR, πX = πS ⊗ πRX , Ω = ΩS ⊗ ΩR.

The triple(H, πX , Ω) is the GNS-representation of the algebraO associated to the stateω(0)
X . Note thatH andΩ

do not depend onX .
The spectral theory of NESS is based on a particular non-selfadjoint operator acting onH, the adjoint of the

so-calledC-Liouvillean. This operator is defined as follows. LetLR =
∑

j Lj and

L0 = LS + LR.

Let

VjX = πX(Vj) = σx ⊗ I ⊗ ϕ̃j(α̃jX),

WjX = I ⊗ σx ⊗ 1√
2
(−I)Nj

(

ã∗
j (e

(Xj−βeq)sα̃jX) − ãj(α̃jX)
)

,

and
VX =

∑

j

VjX , WX =
∑

j

WjX .

The adjoint of theC-Liouvillean associated to the triple(O, τλ, ω
(0)
X ) is

LλX = L0 + λ(VX + WX).

This operator is closed onDom(L0) and generates a quasi-bounded strongly continuous groupeitLλX onH. The
operatorLλX is characterized by the following two properties:

(i) For anyA ∈ O and anyt ∈ R, πX(τ t
λ(A)) = eitLλX πX(A)e−itLλX .

(ii) L∗
λXΩ = 0.

Thus, forA, B ∈ O we have

ω
(0)
X (τ t

λ(A)B) = (πX(A∗)Ω, e−itLλX πX(B)Ω), (3.38)

and hence the function

z 7→
∫ ∞

0

ω
(0)
X (τ t

λ(A)B) eitzdt = i(πX(A∗)Ω, (z − LλX)−1πX(B)Ω),

is analytic in the upper half-plane. The basic strategy of [JP3] is to show that for appropriateA, B this function
has a meromorphic continuation to a larger half-plane and that the behavior oft 7→ ω

(0)
X (τ t

λ(A)B) ast → ∞ is
controlled by the poles of this continuation (the resonances) via the inverse Laplace transform.

Let pj = i∂s be the generator of the group of translations onh̃j , Pj = dΓ(pj) its second quantization. Let
Uj(θ) = e−iθPj = Γ(e−iθpj ), θ ∈ R, be the second quantization of this group and

VX(θ) =
∑

j

Uj(θ)VjXUj(−θ) =
∑

j

σx ⊗ I ⊗ ϕ̃j(e
−iθpj α̃jX),

WX(θ) =
∑

j

Uj(θ)WjXUj(−θ) =
∑

j

I ⊗ σx ⊗ 1√
2
(−I)Nj

(

ã∗
j (e

−iθpj α̃jX) − ãj(e
−iθpj (e(Xj−βeq)sα̃jX))

)

.
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Lemma 3.1 There existǫ > 0 andδ′ > 0 such that the maps

(X, θ) 7→ VX(θ), (X, θ) 7→ WX(θ),

extend to analytic operator-valued functions onDǫ × I(δ′) satisfying

sup
X∈Dǫ,θ∈I(δ′)

(‖VX(θ)‖ + ‖WX(θ)‖) < ∞. (3.39)

In particular, one has
sup

X∈Dǫ,|t|≤1

∥

∥eitLλX
∥

∥ < ∞. (3.40)

Proof. The proof of the first part of this result is the same as the proof of Lemma 4.1 and Proposition 4.4 (iii) in
[JP1]. The only additional fact needed is that for someǫ > 0 andµ > 0 the function

R × R ∋ (x, s) 7→ w(x, s) = (e−xs + 1)−1/2,

has an analytic continuation to the regionO = {z : |z − βeq| < ǫ} × I(µ) such that

sup
(z,θ)∈O

|w(z, θ)| < ∞.

SinceL0 is self-adjoint, the bound (3.40) is a simple consequence of(3.39).2

Let N =
∑

j Nj . ForX ∈ Dǫ andθ ∈ I(δ′) we set

L0(θ) = L0 + θN,

LλX(θ) = L0(θ) + λ(VX(θ) + WX(θ)).

The family of operatorsLλX(θ), X ∈ Dǫ, θ ∈ I(δ′), is a complex deformation of the family of operatorsLλX ,
X ∈ Iǫ. Note thatL0X(θ) = L0(θ) is a normal operator which does not depend onX . The spectrum ofL0(θ)
consists of two simple eigenvalues±2, a doubly degenerate eigenvalue0 and a sequence of lines{x+inIm θ |x ∈
R, n ≥ 1}. The next lemma is a consequence of Lemma 3.1 and regular perturbation theory and is deduced in the
same way as the corresponding results in [JP1, JP3].

Proposition 3.2 There existΛ > 0, ǫ > 0 and0 < µ < δ′ such that for|λ| < Λ, −µ < Im θ < −3µ/4 and
X ∈ Dǫ, the spectrum ofLλX(θ) is contained in the set

{z | Im z > −µ/8} ∪ {z | Im z < −µ/2}.
The spectrum inside the half-plane{z | Im z > −µ/8} is discrete and, forλ 6= 0, consists of four simple eigenval-
uesEjλX which do not depend onθ and are bounded analytic functions of(λ, X) ∈ {λ | |λ| < Λ}×Dǫ. Moreover,
E0λX = 0 and Im EjλX < 0 for j = 1, 2, 3, X ∈ Dǫ, and0 < |λ| < Λ. The corresponding eigenprojections
PjλX (θ) are bounded analytic functions of the variables(λ, X, θ).

With regard to the results of [JP1, JP3], the only part of Proposition 3.2 that requires a comment are the relations
E0λX = 0 andIm EjλX < 0 for j = 1, 2, 3, which hold forX ∈ Dǫ and0 < |λ| < Λ. Regular perturbation theory
and an explicit Fermi Golden Rule computation yield that theeigenvaluesEjλX , j = 2, 3, which are respectively
near±2, satisfy

E2λX = −2 +
λ2

2

∑

j

(

−iπ‖αj(2)‖2
Hj

− PV

∫

R

‖α̃j(s)‖2
Hj

s − 2
ds

)

+ λ4R2(λ, X),

E3λX = 2 +
λ2

2

∑

j

(

−iπ‖αj(2)‖2
Hj

+ PV

∫

R

‖α̃j(s)‖2
Hj

s − 2
ds

)

+ λ4R3(λ, X),
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wherePV stands for Cauchy’s principal value and the functionsRj(λ, X), j = 2, 3, are bounded and analytic for
X ∈ Dǫ and|λ| < Λ. Clearly, by choosingΛ small enough, we have thatIm EjλX < 0 for j = 2, 3, X ∈ Dǫ,
and0 < |λ| < Λ. The eigenvaluesEjλX , j = 0, 1, which are near0, are the eigenvalues of a2 × 2-matrixΣλX

which has the form
ΣλX = λ2Σ2(X) + λ4R(λ, X),

where the matrix-valued functionR(λ, X) is analytic and bounded forX ∈ Dǫ and|λ| < Λ and

Σ2(X) = −iπ
∑

j

‖αj(2)‖2
Hj

1

2 coshβj

[

eβj −e−βj

−eβj e−βj

]

, βj = βeq − Xj . (3.41)

The eigenvalues ofΣ2(X) are0 and−iπ
∑

j ‖αj(2)‖2
Hj

, and we conclude that forΛ small enough the eigenvalues
E0λX andE1λX are analytic functions, thatE0λX 6= E1λX for λ 6= 0, and thatIm E1λX < 0 for X ∈ Dǫ,
0 < |λ| < Λ. By construction of theC-Liouvillean,E0λX = 0 for X real. Hence, by analyticity,E0λX = 0 for
X ∈ Dǫ and|λ| < Λ.

The next technical result we need is:

Proposition 3.3 There existΛ > 0, ǫ > 0, andµ > 0 such that for all|λ| < Λ, all θ in the strip−µ < Im θ <
−3µ/4 and allΨ ∈ H, the functions defined by

F+(z) = sup
X∈Dǫ

‖(z − LλX(θ))−1Ψ‖, F−(z) = sup
X∈Dǫ

‖(z − LλX(θ)∗)−1Ψ‖,

satisfy
∫

R

|F±(x ± iµ)|2dx ≤ 16π

µ
‖Ψ‖2, (3.42)

and
lim

|x|→∞
F±(x + iη) = 0. (3.43)

for all |η| ≤ µ/4.

Proof. We only deal withF+(z), the other case is similar. We start withΛ, ǫ, andµ as in Proposition 3.2 and set

Qµ = (R + iµ/4) ∪ (R − iµ/4) ∪ {z ∈ C | |Re z| ≥ 2 + µ/4, |Im z| ≤ µ/4}.

SinceL0(θ) is normal and dist(Qµ, σ(L0(θ))) ≥ µ/4 for Im θ ≤ −3µ/4, the spectral theorem yields that

sup
z∈Qµ,Im θ≤−3µ/4

‖(z − L0(θ))
−1‖ ≤ 4

µ
. (3.44)

The estimate
∫

R

‖(x ± iµ/4 − L0(θ))
−1Ψ‖2dx ≤ 4π‖Ψ‖2

µ
, (3.45)

holds for allΨ ∈ H, and the dominated convergence theorem yields

lim
|z|→∞,z∈Qµ

‖(z − L0(θ))
−1Ψ‖ = 0. (3.46)

We further impose thatΛ andµ satisfy

sup
X∈Dǫ,−µ<Im θ<0

‖VX(θ) + WX(θ)‖ ≤ µ

8Λ
.
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The resolvent identity yields

(z − LλX(θ))−1 = G(z, λ, X, θ)(z − L0(θ))
−1,

where
G = G(z, λ, X, θ) =

(

I − λ(z − L0(θ))
−1(VX(θ) + WX(θ))

)−1
.

The estimate (3.44) yields
sup ‖G‖ ≤ 2,

where the supremum is taken overz ∈ Qµ, |λ| < Λ, X ∈ Dǫ, andθ in the strip−µ < Im θ < −3µ/4. Hence, for
z ∈ Qµ,

sup
X∈Dǫ

‖(z − LλX(θ))−1Ψ‖ ≤ 2 ‖(z − L0(θ))
−1Ψ‖,

and (3.45), (3.46) yield (3.42), (3.43).2

Assumption (A2) ensures that there isǫ > 0 such that the operators

V (X, u) =

M
∑

j=1

σx ⊗ I ⊗ 1√
2

(

ã∗
j (e

−u(1−Xj/βeq)sα̃jX) + ãj(e
u(1−Xj/βeq)sα̃jX)

)

,

acting onH are well-defined continuous functions of(X, u) ∈ Iǫ × [0, βeq] satisfying

sup
(X,u)∈Iǫ×[0,βeq]

‖V (x, u)‖ < ∞.

If we set

GλX = 1l +
∑

n≥1

(−βeq)
n

∫

0≤tn≤···≤t1≤1

(λV (X, βeqtn) + πX(HS)) · · · (λV (X, βeqt1) + πX(HS))dt1 · · · dtn,

then the Araki perturbation theory [Ar, BR2, DJP] yields that the reference stateωλX can be written as

ωλX(A) =
(Ω, πX(A)GλXΩ)

(Ω,GλXΩ)
. (3.47)

Consider the unitary group
U(θ) = e−iθ

P

j Pj ,

onH.

Proposition 3.4 There existǫ > 0 andµ > 0 such that:
(1) The function

Iǫ × R ∋ (X, θ) 7→ U(θ)GλXΩ ∈ H,

extends to a bounded analyticH-valued function in the regionDǫ × I(µ) for all λ ∈ R. We denote this analytic
extension byΩλXθ.
(2) For all A ∈ Õ the function

Iǫ × R ∋ (X, θ) 7→ U(θ)πX(A)Ω ∈ H,

extend to bounded analyticH-valued functions in the regionDǫ × I(µ). We denote this analytic extensions by
ΨAXθ.
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Proof. We sketch the proof of (1). The proof of (2) is similar and simpler.
For (X, u, θ) ∈ Iǫ × [0, βeq] × R we set

Vθ(X, u) = U(θ)V (X, u)U(θ)∗

=
M
∑

j=1

σx ⊗ I ⊗ 1√
2

(

ã∗
j (e

−iθpj e−u(1−Xj/βeq)sα̃jX) + ãj(e
−iθpj eu(1−Xj/βeq)sα̃jX)

)

.

SinceU(θ)Ω = Ω, we can writeU(θ)GλXΩ = GλXθΩ whereGλXθ is obtained by replacingV (X, u) by Vθ(X, u)
in the definition ofGλX . It is easy to see for anyǫ > 0, µ > 0 andρ > 0 the entire analytic functiong(u, z, s) =
eu(1−z/βeq)s satisfies

sup
|u|<(1+ρ)βeq,|z|<ǫ,|Im s|<µ

∣

∣

∣

∣

g(u, z, s)

cosh(ls)

∣

∣

∣

∣

< ∞,

wherel = (1 + ρ)(ǫ + βeq). Let κ > βeq be as in Assumption (A2). Chooseρ andǫ such thatl < κ. Since by
(A2) one hascosh(κs)α̃jX ∈ H2

j (δ), it follows thatVθ(X, u) has a bounded analytic extension to the set

{(X, u, θ) |X ∈ Dǫ, u ∈ C, |u| < (1 + ρ)βeq, |Im θ| < µ}.

This yields the statement.2

Proof of Theorem 1.11. We chooseΛ > 0, ǫ > 0, andµ > 0 sufficiently small so that the statements in
Propositions 3.2, 3.3 and 3.4 hold. Combining (3.38) and (3.47) we can write

ωλX(τ t
λ(A)) =

(πX(A∗)Ω, e−itLλXGλXΩ)

(Ω,GλXΩ)
. (3.48)

Since forX ∈ Iǫ

(Ω,GλXΩ) = ‖e−βeq(
P

j(1−Xj/βeq)Lj+πX(λV +HS))/2Ω‖2 > 0,

by Proposition 3.4 (and by possibly takingǫ smaller), the functionX 7→ (Ω,GλXΩ) extends to an analytic function
in the regionDǫ such that

inf
X∈Dǫ

|(Ω,GλXΩ)| > 0.

Thus, it suffices to consider the numerator in (3.48). ForIm z > 0 we set

DX(z) = i(πX(A∗)Ω, (z − LλX)−1GλXΩ).

For |λ| < Λ, X ∈ Iǫ and−µ < Im θ < −3µ/4 one has

DX(z) = i(ΨA∗Xθ, (z − LλX(θ))−1ΩλXθ),

which, by Proposition 3.2, has a meromorphic extension to the half-plane{Im z > −µ/2}. Forα > 0 denote by
Γα the boundary of the rectangle with vertices±α ± iµ/4. For large enoughα one has

IX(t) =

∮

Γα

e−itzDX(z)
dz

2πi
= i

3
∑

j=0

(ΨA∗Xθ, PjλX (θ)ΩλXθ)e
−itEjλX .

Denote bySα the part of the above contour integral corresponding to the two vertical sides ofΓα. It follows
from the dominated convergence theorem and Proposition 3.3that limα→∞ Sα = 0. Since by Proposition 3.3 the
functionx 7→ DX(x + iµ/4) is in L2(R, dx) it follows from the Plancherel theorem that there exists a sequence
αn such that

lim
n

∫ αn

−αn

e−it(x+iµ/4)DX(x + iµ/4)
dx

2π
= (πX(A∗)Ω, e−itLλXGλXΩ),
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for Lebesgue almost allt > 0. Integration by parts and (3.43) yield that fort > 0

lim
n

∫ αn

−αn

e−it(x−iµ/4)DX(x − iµ/4)
dx

2π
=

∫ ∞

−∞

e−it(x−iµ/4)D′
X(x − iµ/4)

dx

2πit
,

whereD′
X(z) denotes the derivative ofDX(z) with respect toz. Combining these facts we obtain the identity

(πX(Φj)Ω, e−itLλXGλXΩ) =
3
∑

j=0

(ΨA∗Xθ, PjλX(θ)ΩλXθ)e
−itEjλX

− e−µt/4

2πt

∫ ∞

−∞

e−itx(ΨA∗Xθ, (x − iµ/4 − LλX(θ))−2ΩλXθ)dx,

(3.49)

which holds for Lebesgue for almost allt > 0. By Proposition 3.3 the integrand on the right hand side of (3.49)
is in L1(R, dx). Hence, both side of this identity are continuous functionsof t and (3.49) holds for allt > 0. By
Propositions 3.2 and 3.4 both terms on the right hand side of (3.49) have analytic extensions toX ∈ Dǫ which are
bounded uniformly inX andt ≥ 1. The bound (3.40) and Proposition 3.4 yield that

sup
X∈Dǫ,t∈[0,1]

∣

∣(ΨA∗X0, e
−itLλX ΩλX0)

∣

∣ < ∞,

and the result follows.2

4 Proof of Theorem 1.13

In Part (1) of Theorem 1.12 we have established that for givenλ andA ∈ Õ, the functionX 7→ ωλX+(A) is
analytic near zero. In fact, a stronger result holds.

Theorem 4.1 Assume that (A1)-(A3) hold and letA ∈ Õ. Then there isΛ > 0 andǫ > 0 such that the maps

(λ, X) 7→ ωλX+(A),

extend to analytic functions on{λ | |λ| < Λ} × Dǫ.

Proof. By the construction of the NESSωλX+,

ωλX+(A) = (Ω, P0λX(θ)U(θ)πX (A)Ω),

where−µ < Im θ < −3µ/4 andP0λX(θ) andµ are as in Proposition 3.2. The analyticity ofP0λX(θ) and Part
(2) of Proposition 3.4 yield the statement.2

Theorem 4.1 yields that the functionλ 7→ Lλkj is analytic near zero. To compute the leading term in its power
expansion we argue as follows.

By the relation (1.25) established in [JP3, JP4],

ωλX+(Φk) = λ2ωSX+(ΦkX) + O(λ3),

where the remainder is uniform inX . Hence, (1.17) holds and

L
(2)
kj = ∂Xj

ωSX+(ΦkX)
∣

∣

X=0
.
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Let D ⊂ OS be the set of observables which are diagonal in the eigenbasis{e+, e−} of HS . The generatorsKX

andKXk
preserveD. The vector spaceD is naturally identified withC2. After this identification,KX = iΣ2(X)∗,

whereΣ2(X) is given by (3.41), and

KXk
= −π‖αk(2)‖2

Hk

2 coshβk

[

eβk −eβk

−e−βk e−βk

]

, βk = βeq − Xk.

These relations between the generatorsKX , KXk
and the Fermi Golden Rule for the resonances of theC-

Liouvillean are quite general—for the proofs and additional information we refer the reader to [DJ1]. Hence,

ΦkX = KXk

[

1
−1

]

= −
π‖αk(2)‖2

Hk

coshβk

[

eβk

−e−βk

]

.

The density matrix describingωSX+ (which we denote by the same letter) is also diagonal in the basis{e+, e−} and
the vector inC2 associated to its diagonal elements is the eigenvector ofΣ2(X) corresponding to the eigenvalue
0. Hence,

ωSX+ =

(

∑

i

‖αi(2)‖2
Hi

)−1











∑

i

‖αi(2)‖2
Hi

e−βi

2 coshβi

∑

i

‖αi(2)‖2
Hi

eβi

2 coshβi











,

and we get

ωSX+(ΦkX) = π

(

∑

i

‖αi(2)‖2
Hi

)−1 ‖αk(2)‖2
Hk

coshβk

∑

i

‖αi(2)‖2
Hi

sinh(βi − βk)

coshβi
. (4.50)

It follows that forj 6= k,

L
(2)
kj = ∂Xj

ωSX+(ΦkX)
∣

∣

X=0
= − π

(coshβeq)2

‖αk(2)‖2
Hk

‖αj(2)‖2
Hj

∑

i ‖αi(2)‖2
Hi

.

Since
∑

k ωSX+(ΦkX) = 0 we can conclude thatL(2)
jj = −∑k 6=j L

(2)
kj .

Finally, we remark that the formula (4.50) yields that

Ep =
π

2

(

∑

i

‖αi(2)‖2
Hi

)−1
∑

k,j

‖αk(2)‖2
Hk

‖αj(2)‖2
Hj

coshβk cosh βj
(βk − βj) sinh(βk − βj). (4.51)

Clearly,Ep > 0 wheneverβj ’s are not all equal.

5 Proofs of Theorems 1.14 and 1.15.

In this section we use the notational conventions of Subsection 1.5.
Proof of Theorem 1.14. The only part that requires a proof is (3). We only sketch theargument. Let~β0 =
(β10, . . . , βM0) be a given point andOǫ = {~β ∈ CM | |~β − ~β0| < ǫ}. Arguing as in the proof of Lemma 3.1 one
shows that there existsǫ > 0 andδ′ > 0 such that such that the maps

(~β, θ) 7→ V~β(θ), (~β, θ) 7→ W~β(θ),

extend to analytic operator-valued functions onOǫ × I(δ′) satisfying

sup
~β∈Oǫ,θ∈I(δ′)

(

‖V~β(θ)‖ + ‖W~β(θ)‖
)

< ∞.
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This implies that Proposition 3.2 holds withDǫ replaced withOǫ (of course, the indexX is also replaced by
~β). Note thatΛ depends on theǫ. Complementing the construction in [JP3] with arguments used in the proof of
Proposition 3.4 one easily shows that there exists a norm-dense∗-algebraO0 of O such that:
(a)O0 does not depend on the choice of~β0;
(b) Φj ∈ O0;
(c) for all A ∈ O0 the functions

(~β, θ) 7→ U(θ)π~β(A)Ω ∈ H,

extend to bounded analyticH-valued functions in the regionOǫ × I(µ). The representation

ωλ~β+(A) = (Ω, P0λ~β(θ)U(θ)π~β(A)Ω),

where−µ < Im θ < −3µ/4 andP0λ~β(θ) andµ are as in the analog of Proposition 3.2, yields the following

statement: For any given~β0 ∈ Iγ1γ2
there existsΛ andǫ such that the function

(λ, ~β) 7→ ωλ~β+(A),

extends to an analytic functions on{λ | |λ| < Λ} × Oǫ for all A ∈ O0. This fact and the compactness ofIγ1γ2

yield the statement.2

Proof of Theorem 1.15. By Remark 1 after Theorem 1.15, it suffices to establish Part(1). By Remark 2, it suffices
to show that there existsδ > 0 andΛ > 0 such that for0 < |λ| < Λ

Ep(ωλ~β+) > 0,

for ~β ∈ Iγ1γ2
satisfying0 <

∑

i,j |βi − βj | < δ.

Let ~β0 = (β0, . . . , β0) be a given point on the diagonal ofIγ1γ2
. We set

Oδ = {~β ∈ C
M |

∑

j

|βj − β0| < δ},

andIδ = Oδ ∩ RM . One can chooseΛ andδ such that(λ, ~β) 7→ Ep(ωλ~β+) is an analytic function on{|λ| <

Λ} × Oδ. We set
Y~β = (β2 − β1, . . . , βM − β1).

Settingβ1 = βeq one deduces from the formula (4.51) and the Taylor series forEp(ωλ~β+) (use thatEp(ωλ~β+)

and∂βi
Ep(ωλ~β+) vanish when allβj are equal) that there exists(M −1)×(M −1)-matrix valued functionsA(~β)

andB(λ, ~β) such that:
(a)A(~β) is analytic for~β ∈ Oδ and strictly positive for~β real;
(b) B(λ, ~β) is analytic and bounded on{|λ| < Λ} × Oǫ;
(c)

Ep(ωλ~β+) = λ2(Y~β , A(~β)Y~β) + λ3(Y~β , B(λ, ~β)Y~β).

By choosingΛ small enough we can ensure that for all~β ∈ Iδ and|λ| < Λ,

(Y~β , A(~β)Y~β) > |λ(Y~β , B(λ, ~β))Y~β)|.

This yields thatEp(ωλ~β+) > 0 for 0 < |λ| < Λ and~β ∈ Iδ satisfyingY~β 6= 0. This local result combined with an
obvious compactness argument yields the statement.2
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