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Abstract. The stable and unstable invariant manifolds associated with Lya-

punov orbits about the libration point L1 between the primaries in the planar

circular restricted three-body problem with equal masses are considered. The

behavior of the intersections of these invariant manifolds for values of the en-

ergy between the one of L1 and that of the other collinear libration points L2

and L3 is studied using symbolic dynamics. Homoclinic orbits are classified

according to the number of turns about the primaries.

1. Introduction

In this paper we study, mainly through numerical methods, the dynamics in
the planar circular restricted three-body problem with equal masses. We describe
a method to find invariant manifolds of Lyapunov orbits near the libration point
L1 (located between the primaries) and the behavior of the invariant manifolds
and homoclinic trajectories for the energy levels between the ones of L1 and L2,
where L1, L2 and L3 refer to the collinear libration points. The orbits for these
energy levels are forced to move in a neighborhood of the primaries. We obtain
a classification of the homoclinic orbits with respect to the number of turns made
by the body of infinitesimal mass around the primaries. At the same time, we
provide numerical evidence for the existence of horseshoes with infinitely many
branches, as well as symbolic dynamics over infinitely many symbols, corresponding
to trajectories with prescribed itineraries.

The behavior of the invariant manifolds of Lyapunov orbits near L1 in the planar
restricted three-body problem — in the case when one primary has relative mass
close to zero — was described through analytical methods in [7, 19, 8, 27], and
through numerical methods in [16]. In this paper we show that the mechanisms
and the qualitative behavior identified in the papers mentioned above survive to
the case of the largest possible value of the relative mass. Techniques similar to
those described in this paper were applied in [12] to find homoclinic and heteroclinic
orbits between L4 and L5 for the planar restricted three-body problem, for varying
values of the mass ratio.

The problem investigated here can serve as a benchmark for the design of space
missions in which a spacecraft travels from one point to another on an optimal route,
without lingering unnecessarily neither around the libration points nor around the
small primary (see [5]). Other related applications can be found in [3, 22].

The model under consideration can be used in studying the dynamics of planets
orbiting systems of binary stars (see [14, 11]), in which case the primaries have
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masses of the same order. Here we mention that the first observed planet in a
tight binary star system (Gamma Cephei) was found by A. Hatzes of Thueringer
Landessternwarte Tautenburg and B. Cochran from the University of Texas, Austin
and the McDonald Observatory, in October 2002.

Another possible application regards mass transfers in binary stars. Mass trans-
fer commonly occurs in tight binary star systems. For example, mass transfer was
observed optically in the binary star system Algol (Betta Persei). Algol is a short
period binary well known for its transient accretion disk, in contrast to steady
accretion disks associated to longer period systems. Ballistic and hydrodynamic
models for mass transfers in Algol were studied in [18, 4]. We anticipate that the
mechanisms described in this paper can also be used to analyze mass transfers phe-
nomena of binary stars. Similar methods have been successfully employed in [9, 10]
in the study of the transport of material throughout the solar system.

2. The planar circular restricted three-body problem

In the planar circular restricted three-body problem, two bodies of large masses
m1 and m2 (called primaries) move along a circular orbit about their common
center of mass, while a third body, of infinitesimal mass, moves in the plane of the
circle, subject to the gravitational attraction of the primaries. The motion of the
primaries is not affected by the motion of the infinitesimal body. One can assume
that the angular velocity of the primaries is normalized to one. It is customary
to study the motion of the infinitesimal body with respect to a reference frame
that rotates with the primaries at the same angular velocity (called co-rotating, or
synodical frame). See [26]. Relative to such a frame, the position of the primaries
are (−µ, 0, 0) and (1−µ, 0, 0), where µ = m1/(m1 + m2) is the relative mass of the
first primary. The motion of the infinitesimal body is described by

(2.1) ẍ = 2ẏ +
∂V

∂x
, ÿ = −2ẋ +

∂V

∂y
,

where the function V (the effective potential) is given by

V (x, y) =
1

2
(x2 + y2) +

1 − µ

r1
+

µ

r2
.(2.2)

Here r1 = ((x + µ)2 + y2)1/2 and r2 = ((x− 1 + µ)2 + y2)1/2 are the distances from
the infinitesimal body to the primaries. The terms 2ẏ, −2ẋ in the expressions of ẍ
and ÿ in (2.1) represent the Coriolis force, while the term (1/2)(x2 + y2) in (2.2)
corresponds to the centrifugal force due to the rotation of the frame.

This motion has a first integral (called the Jacobi integral) given by

(2.3) C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2V (x, y).

The energy function is given by

(2.4) H(x, y, ẋ, ẏ) = −1

2
C(x, y, ẋ, ẏ).

The three-dimensional energy manifold

(2.5) Mh = {H(x, y, ẋ, ẏ) = h}, with h=constant,

is non-compact (see Figure 1). The projection of an energy manifold onto the
position space (x, y) is called a Hill’s region, and its boundary is a zero velocity
curve. Any trajectory is confined to the Hill’s region corresponding to the energy
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Figure 1. An (x, y, ẋ)-plot of an energy manifold for µ = 1/2.
To any point on this surface it corresponds a pair of points on the
energy manifold, whose ẏ-coordinates result from the energy con-
dition.

level of that trajectory. The shaded region in Figure 2 represents a Hill’s region for
an energy level typical of those considered below.

In the sequel, we restrict to the situation when the primaries have equal masses,
that is, µ = 1/2.

Notice that the equations of motion are symmetric with respect to

(2.6) (x, y, ẋ, ẏ, t) −→ (x,−y,−ẋ, ẏ,−t),

and, since µ = 1 − µ, also with respect to

(2.7) (x, y, ẋ, ẏ, t) −→ (−x,−y,−ẋ,−ẏ, t).

Any orbit either possesses these symmetries, or it has symmetric partners.
The equilibrium points of the differential equations (2.1) are given by the critical

points of V . There are five equilibrium points for this problem: three of them, which
we call L1, L2 and L3, are collinear with the primaries (with L1 located in between),
while the other two, which we call L4 and L5, form equilateral triangles with the
primaries. The distance from L1 to the less massive primary is given by the only
positive solution to Euler’s quintic equation (see [26])

γ5 − (3 − µ)γ4 + (3 − 2µ)γ3 − µγ2 + 2µγ − µ = 0,

while the distance from L2 to the less massive primary is given by the only positive
solution of

γ5 + (3 − µ)γ4 + (3 − 2µ)γ3 − µγ2 − 2µγ − µ = 0.

In our case, the solution to the first equation is the distance from L1 to either
primary, and the solution to the second equation is the distance from either L2
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Figure 2. A Hill’s region for µ = 1/2. The motion for the level
of energy considered is restricted to the the shaded area.
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Figure 3. The five libration points for µ = 1/2 and the zero
velocity curve for C = C2.

and L3 to the closest primary. We obtain L1 = (0, 0), L2 = (1.198406145, 0),
L3 = (−1.198406145, 0), L4 = (0, 0.8660254038), and L5 = (0,−0.8660254038).

The point L1 corresponds to a Jacobi constant of C1 = 4, L2 and L3 to C2 =
C3 = 3.456796224, and L4 and L5 to C4 = C5 = 2.75. Their position is shown in
Figure 2. The figure also shows the zero velocity curve enclosing the Hill region
corresponding to C2. In order to have a Hill’s region of the type as shown in Figure
2 (that is, with a bottle-neck channel through which the infinitesimal body could
move from left to right and viceversa, but not to the outside part), the Jacobi
constant should satisfy C2 < C < C1.
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3. The dynamics near L1

The equations (2.1) are equivalent to the following first order system

(3.1)
ẋ = u, ẏ = v,

u̇ = 2v +
∂V

∂x
, v̇ = −2u +

∂V

∂y
.

The linearization of this system at L1 yields

(3.2)
ẋ = u, ẏ = v,
u̇ = 2v + 17x, v̇ = −2u − 7y.

The eigenvalues of this linear system are ±λ0 and ±iν0, where λ0 =
√

3 + 8
√

2 =

3.783346205 and ν0 = |
√

3 − 8
√

2| = 2.883350220. The corresponding eigenvectors
are

vλ0
= (1,−σ, λ0,−λ0σ), v−λ0

= (1, σ,−λ0,−λ0σ),

viν0
= (1, iτ, iν0,−ν0τ), v−iν0

= (1,−iτ,−iν0,−ν0τ),

where σ = 0.3550152901, τ = 4.389634724. Using these eigenvectors as a new basis,
and new coordinates (ξ1, ξ2, η1, η2) with respect to this basis, the equations (3.2)
become

ξ̇1 = λ0ξ
1, ξ̇2 = −λ0ξ

2, η̇1 = ν0η
2, η̇2 = −ν0η

1.

The solutions to the above equations with initial conditions ξ1
0 , ξ2

0 , η1
0 , η2

0 are

ξ1(t) = ξ1
0eλ0t, ξ2(t) = ξ2

0e−λ0t, η1(t) + iη2(t) = (η1
0 + iη2

0)e−iν0t.

This shows that the dynamics near L1 is of saddle-center type, with 2-dimensional
center direction, 1-dimensional unstable direction, and 1-dimensional stable direc-
tion.

Going back to the (x, y, ẋ, ẏ)-coordinate system, the periodic orbits of the lin-
earized system are elliptical orbits of the form

x(t) = α cos(ν0t + φ0), y(t) = κα sin(ν0t + φ0),(3.3)

where α is the amplitude of the orbit, ν0 is the frequency, φ0 is the phase, and
κ =

√
1 − e2, where e is the eccentricity of the orbit. By the Lyapunov Center

Theorem (see [1]), there exist periodic orbits for the original system which, in the
limit, have frequencies related to ν0. We use Lindstedt-Poincaré expansions to
obtain the Lypunov orbits to the original equations that now are written in this
form:

(3.4)

ẍ − 2ẏ − 17x =
∂

∂x

∑

n≥3

cnρnPn

(

x

ρ

)

,

ÿ + 2ẋ + 7y =
∂

∂y

∑

n≥3

cnρnPn

(

x

ρ

)

,

where ρ =
√

x2 + y2, Pn(t) =
1

2nn!

dn

dtn
[(t2 − 1)n] is the Legendre polynomial of

degree n, and cn = 4(1+(−1)n), for n ≥ 2. The coefficients cn in the case µ = 1/2,
follow from a general formula described in [23]. The equations (3.4) are obtained
from (2.1) by scaling the distance by 1/2 (the distance from L1 to any primary is
taken as a new unit of distance) and then expanding the resulting equations using
the Legendre polynomials. The transformation can be found in [15, 20].
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In order to find periodic orbits near L1, we look for formal series in powers of
the amplitude α of the type

(3.5)

x(t) =
∞
∑

i=1





∑

|h|≤i

xih cos(h(νt + φ0))



 αi,

y(t) =

∞
∑

i=1





∑

|h|≤i

yih sin(h(νt + φ0))



 αi.

The frequency ν does not have to be equal to the corresponding frequency ν0 of
the periodic solution of the linearized system. Instead, ν can also be represented
as a formal series in powers of α of the type

ν = ν0 +

∞
∑

i=1

νiα
i.

In order to find periodic orbits, one has to solve recurrently for the coefficients xih,
yih, and νi up to some reasonably large order. If these coefficients are computed
up to a certain order n − 1, then the expression of x and y from (3.5) truncated
at i = n − 1 are substituted in the right hand side of (3.4), producing terms
of order n in α. Then the coefficients of order n are computed by identifying
the unknown coefficients from the left hand side with combinations of the already
known coefficients from the right hand side. For details, see [15] and the references
listed there. In this way, one can explicitly find Lyapunov orbits for energy levels
sufficiently close to that of L1. In the sequel, we will consider an energy level
slightly above that of L1.

4. Surface of section

We will consider the Poincaré first return map to the surface of section

Π+ = {(x, y, ẋ, ẏ) |x > 1/2, y = 0, ẏ > 0},

where the x-coordinate is restricted to the interval between the right-hand side
primary and L2.

Any trajectory that intersects transversally the surface of section Π+ is uniquely
determined, up to its sense, by the (x, ẋ)-coordinates of the intersection point, since
an initial condition for that trajectory can be obtained by letting y = 0 and solving
for ẏ from the energy condition (2.4).

The condition for a trajectory to meet Π+ transversally is that the vector field
associated with (3.1) is not perpendicular to the normal (0, 1, 0, 0) to Π+, which
translates into ẏ 6= 0. For a trajectory tangential to Π+, the (x, ẋ)-coordinates at
tangency points should satisfy

(ẋ)2 = 2V (x, 0) − c

= x2 + 2
1 − µ

x + µ
+ 2

µ

x + µ − 1
− c,

where c is the corresponding Jacobi constant. The tangency curves depend on both
the energy level and the surface of section considered. This equation represents a
curve, which we will refer to as the tangency curve (see Figure 4).
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Figure 4. Tangency curves in the surface of section Π+, for Jacobi
constants C = 4, C = 3.85, C = 3.7.

The equations (2.1) along the tangency curve in Π+ are

ẍ = x − (1 − µ)(x + µ)

(x + µ)3
− µ(x + 1 − µ)

(x + 1 − µ)3
,

ÿ = −2ẋ.

There is only one intersection of the tangency curve with the x-axis in Π+, given by
the only root between the right-hand side primary and L2 of the quartic equation

(

x2 − c
)

(x + µ)(x + 1 − µ) + 2x + 2(−1 + 2µ) = 0.

At this point ẋ = 0 hence ÿ = 0. Note that ÿ 6= 0 at any other point of the tangency
curve.

Assume by contradiction that
...
y = 0 at the intersection point of the tangency

curve with the x-axis. Since

∂V

∂y
= y

[

2 − 1 − µ

((x + µ)2 + y2))3/2
− µ

((x − 1 + µ)2 + y2))3/2

]

,

∂V

∂y
= 0 and

d

dt

∂V

∂y
at any tangency point. Since ÿ = −2ẋ +

∂V

∂y
,

...
y = −2ẍ +

d

dt

∂V

∂y
,

so
...
y = 0 implies ẍ = 0. Using ẍ = 2ẏ + ∂V /∂x, we infer that ∂V /∂x = 0 at

the tangency point. This means the tangency point is a critical point of V , i.e., a
libration point, which is impossible. Thus the third order derivative of y cannot be
equal to zero at a tangency point.

We have obtained the following classification of trajectories in terms of their type
of intersection with the surface of section:

• Each trajectory that meets the surface of section at points off the tangency
curve is transverse to the surface of section.

• Each trajectory that meets the surface of section at points along the tan-
gency curve with ẋ 6= 0 exhibits a quadratic tangency with the surface of
section.
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Figure 5. Trajectory tangent to Π+, projected onto the xy-plane.

• There are precisely two trajectories that meet the surface of section at the
point on the tangency curve with ẋ = 0, and these two trajectories exhibit
cubic tangencies with the surface of section.

A trajectory exhibiting a quadratic tangency is shown in Figure 5.
We denote by Φ+ : Π+ → Π+ the Poincaré first return map to Π+: for x ∈ Π+,

Φ+(x) represents the first point of intersection of the forward trajectory of x with
Π+. This map is only partially defined, since it is possible for a point x ∈ Π+ that
its forward trajectory makes a transfer to the region x < 0 and never returns to Π+.
It is also possible for a point x ∈ Π+ that its forward trajectory makes a transfer
to the region x < 0 and and returns to Π+ after a while; in this case Φ+(x) is well
defined, however it provides no information on the behavior of the trajectory of x
in x < 0. In this situation, it is convenient to consider the surface of section Π−,
symmetric to Π+ about L1, given by

Π− = {(x, y, ẋ, ẏ) |x < −1/2, y = 0, ẏ < 0},

where the x-coordinate is restricted to the interval between the left-hand side
primary and L3. In a similar fashion, we consider the partially defined map
Φ− : Π− → Π−, the Poincaré first return map to Π−. Since Φ− presents the
same inconvenience as Φ+, we also define

Φ : Π+ ∪ Π− → Π+ ∪ Π−,

where for x ∈ Π+∪Π−, Φ(x) represents the first point of intersection of the forward
trajectory of x with either Π− or Π+. Except for the case when the trajectory of
x collides with one of the primaries (see Section 8), Φ(x) is well defined for all x.
If x ∈ Π+ and Φ(x) ∈ Π+, then Φ(x) = Φ+(x); if x ∈ Π− and Φ(x) ∈ Π−, then
Φ(x) = Φ−(x). We can take iterates of the map Φ, in which case ΦN (x) represents
the N -th intersection of the forward trajectory of x with Π+∪Π−, after performing
a total number of N revolutions about either primary.
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Figure 6. The stable and unstable manifolds of L1, projected
onto the xy-plane.

5. Stable and unstable manifolds of Lyapunov orbits

For the level of energies considered, the Lyapunov orbits have 2-dimensional
stable and unstable manifolds. If we let the energy level tend to that of L1, the sta-
ble and unstable manifolds reduce to 1-dimensional stable and unstable manifolds
W s(L1) and Wu(L1) of the libration point L1, respectively. Note that the energy
manifold is degenerate at L1, so L1 is not a hyperbolic fixed point. Nevertheless
Wu(L1) and W s(L1) are tangent to vλ0

and v−λ0
at L1, respectively. Numerical

integration in the stable and the unstable directions seem to indicate that Wu(L1)
and W s(L1) do not to intersect (hence they do not coincide), but they get arbi-
trarily close to one another. They appear to intersect the surface of section only
transversally, at points off the tangency curve. It also appears Wu(L1) and W s(L1)
fill up densely the same positive measure region of the energy manifold. See Fig-
ure 6 and Figure 7. This would constitute an obstruction against integrability: it
would imply that there is no other real analytic integral besides the Jacobi integral.
However, it seems quite difficult to verify, either analytically or numerically, that
the stable and unstable manifolds of L1 do not coincide yet get arbitrarily close one
to the other.

The region defined by the intersections of the stable and unstable manifolds
with the surface of section appears to be stochastic. The role of this region in the
dynamics will be discussed below. We note that this region is similar to the ‘maple
leaf’ stochastic region described for Hill’s problem in [24].

Now we consider the stable and unstable manifolds of Lyapunov orbits. Each
Lyapunov orbit TC (which is a 1-dimensional object), corresponding to a Jacobi
constant C, has a 2-dimensional stable manifold W s(TC), and a 2-dimensional
unstable manifold Wu(TC). The manifolds W s(TC) and Wu(TC) are contained in
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Figure 7. The (x, ẋ)-plot of the stable manifold of L1 (and also
of the unstable manifold of L1) when it intersects the surface of
section, and the tangency curve for C = 4.

the same energy manifold as TC itself. The branches of each manifold are semi-
cylinders symmetric with respect to L1 (due to the symmetry (2.7)), and they
consist of orbits asymptotic (in positive or negative time) to the Lyapunov orbit.
Each point of the Lyapunov orbit can be uniquely described by a phase in [0, 2π]
(see Section 3). Therefore, we can parametrize the section plots using the initial
phase. See Figure 9. The whole manifold, regarded as a tube of orbits, is computed
using Lindstedt-Poincaré procedures, in a manner similar to that for the Lyapunov
orbits. These orbits are solutions of the system given by (2.1), with initial conditions
given by a point on the Lyapunov orbit and the corresponding stable or unstable
direction at that point. These solutions are obtained by means of formal series in
powers of amplitudes α1, α2 and α3, of the form:

x(t) =
∑

e(i−j)λt
[

xh
ijk cos(h(νt + φ0)) + x̄h

ijk sin(h(νt + φ0))
]

αi
1α

j
2α

k
3 ,

y(t) =
∑

e(i−j)λt
[

yh
ijk cos(h(νt + φ0)) + ȳh

ijk sin(h(νt + φ0))
]

αi
1α

j
2α

k
3 ,

where

ν =
∑

νijkαi
1α

j
2α

k
3 , λ =

∑

λijkαi
1α

j
2α

k
3 .

Summation is extended over all i, j, k and h ∈ N. The amplitude α1 is the amplitude
α in (3.5) associated with the Lyapunov orbit. The amplitudes α2 and α3 are associ-
ated with the hyperbolic manifolds. The coefficients xh

ijk, x̄h
ijk, yh

ijk, ȳh
ijk, νijk, λijk

are computed recursively; many of them are actually zero due to symmetries. In
our experiments, the series were truncated at the order 15.

When the unstable manifold crosses the section the first few times, the inter-
sections are diffeomorphic copies of a circle. See Figure 8. Sometime after an
intersection of the stable and unstable manifolds occurs (as we will describe in Sec-
tion 6) the circles are destroyed. It appears that the cuts made by the stable and
unstable manifolds are ‘attached’ to the stochastic region described above, which
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Figure 9. A branch of the unstable manifold of a Lyapunov orbit.

plays the role of a ‘skeleton’ for the regular behavior. See Figure 10. A similar
behavior was described for Hill’s problem in [24].

The stable and unstable manifolds of Lyapunov orbits are separatrices of the
phase space (see [6, 16]). They divide the phase space into two disjoint open regions.
The trajectories inside the tube correspond to transit orbits, i.e., orbits that go from
x > 0 to x < 0 and viceversa. The trajectories outside the tube bounce back to
their region of origin to make at least one full turn around the primary. Consider,
for example, the case when the stable and unstable manifolds of a Lyapunov orbit
cross the surface of section Π+ into two intersecting circles. Then the surface of
section is subdivided into four regions with behavior as illustrated in Figure 11.
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Figure 10. Successive cuts of the stable manifolds and unsta-
ble manifolds, and the stochastic region (the unstable manifold —
dashed red line, the stable manifold — solid blue line).
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Figure 11. Transit and non-transit trajectories. Here Wu
i (TC)

denotes the i-th crossing in forward time of Wu(TC) with Π+, and
W s

j (TC) denotes the j-th crossing in backwards time of W s(TC)

with Π+.

6. Transverse homoclinic connections to Lyapunov orbits

An intersection of the stable and unstable manifolds could be transverse, which
occurs generically, or tangential. The relative position of the circles determined by



GEOMETRY OF HOMOCLINIC CONNECTIONS IN A THREE-BODY PROBLEM 13

the intersections of Wu(TC) and W s(TC) with Π+ determines the nature of the
intersection between Wu(TC) and W s(TC) in Mh. The tangency of the circles
implies the tangency between Wu(TC) and W s(TC) at that point. To see this, note
that the common tangent to the circles in the surface of section and the tangent
to the homoclinic orbit (through the point of intersection of the two circles) are
two linearly independent directions that span the tangent spaces of both mani-
folds. These manifolds are 2-dimensional, the energy manifold is 3-dimensional.
The tangent spaces do not sum up to a 3-dimensional vector space, thus Wu(TC)
and W s(TC) cannot be transverse. Conversely, if the circles determined by the
intersections of Wu(TC) and W s(TC) with the Π+ intersect transversally at some
point, so do Wu(TC) and W s(TC) in Mh.

An example of a transverse intersection of stable and unstable manifolds of a
Lyapunov orbit is shown in Figure 12 (Jacobi constant C = 3.95). Solid lines in
the plot correspond to the stable manifold and dashed lines to the unstable one.
For example, Wu

1 denotes the first intersection of the unstable manifold of the
Lyapunov orbit with the surface section, and W s

3 refers to the third intersection
of the stable manifold when we integrate backwards. The intersection points are
labeled with A,B, . . . (and also with A′, B′, . . ., which correspond to homoclinic
orbits symmetrical to those through A,B, . . .). For example, A, B represent the
intersections of Wu

1 with W s
5 , that is, two homoclinic orbits that cross five times

the surface of section. The other ones are:

Points Wu
∗ W s

∗ crossings with the surface of section
A, B 1 5 5
C, D 2 5 6
E, F 2 4 5
G, H 3 4 6
I, J 3 3 5

The homoclinic orbits I and J are symmetrical because they satisfy ẋ = 0. For
this level of energy, we conclude that 5 is the minimum number of crossings that a
homoclinic orbit can have with the section. The orbit corresponding to J is shown
in Figure 13. It is clear that the set of points A, B, E, F , I, J corresponds to
only two different trajectories. Similarly, C, D, G, H correspond to two homoclinic
orbits having 6 crossings with the section.

We now discuss what happens to the intersections of Wu
∗ and W s

∗ as the num-
ber of crossings of Wu(TC) with Π+ increases (and the number of crossings of
W s(TC) with Π+ in negative time decreases to keep the number of intersections
of the homoclinic orbit the same). In positive time, when the unstable manifold
turns around the right hand-side primary, the intersections up to the 5-th encounter
are diffeomorphic copies of a circle. The different trajectories that constitute the
unstable tube travel at different speeds, so they will intersect the surface of section
at different times, and the shape of the successive intersection will be progressively
distorted. After the intersection of Wu

5 with W s
1 , the trajectories near the homo-

clinic orbit will be redirected back to the Lyapunov orbit, while the rest of the
trajectories will keep turning around the mass. See Figure 14. According to the
diagram shown in Figure 11, some of the redirected trajectories will go to the re-
gion x < 0 and approach the branch of unstable manifold in that region, and some
others will approach the branch of the unstable manifold in x > 0.
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Figure 12. First transverse intersections of Wu(TC) and W s(TC)
within the (x, ẋ)-plane, for Jacobi constant C = 3.95.
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We plot the time to reach the 6-th cut versus the initial phase for points on the
Lyapunov orbit. There is a gap in this graph, between the two vertical asymptotes
that mark the phases which give the homoclinic orbits. The phases inside the gap
correspond to transit orbits. See Figure 15.

The successive intersections of the unstable tube with the surface of section
after the 5-th crossing are no longer homeomorphic to a circle. Excluding a small
neighborhood about the homoclinic orbit, the 6-th crossing of the unstable manifold
will consist of a segment of a circle, which endpoints are marked by S and T in
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Figure 14. (a) Trajectories close to the homoclinic orbit transit-
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back to x > 0 and approaching the branch of the unstable manifold
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Figure 15. A graph of return time versus phase for points on the
surface of section near the Wu(TC)-crossing. The two asymptotes
mark the phases which give the homoclinic orbits. The phases
inside the gap correspond to orbits which transit to x < 0.

Figure 16 (top), corresponding to the phases also marked by S and T in Figure
15. Within that neighborhood, there will be trajectories that make some number
of turns near the Lyapunov orbit and then return to mimic the behavior of the
unstable manifold prior to the 5-th crossing. The portion of Wu

6 corresponding to
phases between S and the first vertical asymptote and portion corresponding to
phases between the second vertical asymptote and T in Figure 15 represent two
semi-open curves that wind around Wu

1 infinitely many times and approach Wu
1

asymptotically from the outside (due to the Lambda Lemma and to the fact that
the unstable manifold does not self intersect). See Figure 16. Thus, letting aside
the orbits of Wu(TC) which transit to x < 0 after the 5-th cut, Wu

6 consists of
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However the convergence is so fast that after a short time the
curves are indistinguishable in the plot.

an open curve that winds infinitely many times towards Wu
1 in both ends, and

so creates infinitely many approximative copies of Wu
1 . The intersections of these

copies with W s
5 correspond to homoclinic orbits. Therefore, there are infinitely

many such homoclinic orbits, each of them crossing Π+ exactly 10 times. That
is, for this energy level, 10 is the smallest positive integer for which there exist
infinitely many homoclinic orbits with a given number of crossings.

The orbits of Wu(TC) corresponding to the phases between the two asymptotes
shown in Figure 15 form an open curve that transits to x < 0 in forward time
and follows closely the branch of the unstable manifold in x < 0. This open curve
approaches asymptotically the (x < 0)-branch of the unstable manifold from the
inside, with booth ends winding infinitely many times towards that branch. Then
an intersection with the corresponding branch of the stable manifold occurs in an
almost symmetrical way as in the case x > 0. The open curve inside the (x < 0)-
branch of the unstable manifold is going to be cut by the (x < 0)-branch of the
stable manifold into infinitely many open curve segments. These curve segments
represent orbits of Wu(TC) that transit most rapidly to x < 0 and transit back
most rapidly to x > 0. In the Poincaré section Π+, they will appear as an infinite
collection of open curves winding around Wu

1 and approaching Wu
1 from the inside.

In the sequel, we present numerical evidence that the stable and unstable man-
ifolds of any Lyapunov orbit always intersect. In the case of ‘big’ Lyapunov orbits
(of Jacobi constant not very close to C1), we generate numerically the stable and
unstable manifolds of the Lyapunov orbits, and plot their intersection points within
the surface of section. In the case of ‘small’ Lyapunov orbits (of Jacobi constant
close to C1), we argue the existence of intersection of the manifolds based on the
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Figure 17. Tangential intersection of Wu(TC) and W s(TC)
along a homoclinic orbit with 5 crossings, for Jacobi constant
C = 3.9556106472755. There are some transverse intersection of
Wu(TC) with W s(TC), but they occur along two homoclinic tra-
jectories with 6 crossings.

assumption that the stable and unstable manifolds of L1 are disjoint and pass
arbitrarily close to one another.

If we consider Lyapunov orbits for Jacobi constants C tending to that for L1, the
number NC of crossings that a homoclinic orbit can have with the section increases
with C. For example, when C = 3.95, we have NC = 5. When C increases, the
pairs of Wu

∗ (TC) and W s
∗ (TC) intersecting along the two homoclinic trajectories

with 5 crossings are gradually pulled apart. For some bifurcation value of C, the two
homoclinic orbits with 5 crossings coalesce into one, and the corresponding Wu

∗ (TC)
and W s

∗ (TC) intersect only tangentially. A tangential intersection of Wu
∗ (TC) and

W s
∗ (TC) is shown in Figure 17, for C = 3.9556106472755. As we increase the Jacobi

constant beyond this value, the minimum number of crossings that a homoclinic
orbit can have with the section increases to 6.

We want to argue that for any sufficiently large positive integer N , there exists a
Lyapunov orbit whose stable and unstable manifolds do not intersect for the first N
revolutions around the mass, but they do intersect transversally after some n > N
revolutions (under the hypothesis that stable and the unstable manifolds of L1 do
not intersect, but they get arbitrarily close). Consider an integer N , the points
p1, p2, . . . , pN corresponding to the intersection number 1, 2, . . . , N , respectively, of
Wu(L1) with Π+, and the points p′1, p

′
2, . . . , p

′
N corresponding to the intersection

number 1, 2, . . . , N , respectively, of W s(L1) with Π+. Choose pairwise disjoint
disks Bpn

(ε), Bp′

n

(ε) of radius ε > 0, n = 1, . . . , N , around these points, where ε is
sufficiently small. Due to continuity with respect to initial conditions, there exists
a Lyapunov orbit TC (very close to L1), such that, for each n = 1, 2, . . . , N , the
n-th intersection between Wu(TC) and Π+ is contained in Bpn

(ε), and the n-th
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intersection between W s(TC) and Π+ is contained in Bp′

n

(ε). These intersections
are homeomorphic to a circle. Thus, there exists a Lyapunov orbit whose stable
and unstable manifold crossings with the surface of section are all diffeomorphic
copies of S1 before the (N +1)-th crossing. Hence there is no homoclinic connection
to TC before the (N + 1)-th crossing. On the other hand, since we assume that the
stable and unstable manifolds of L1 fill densely a region on the Poincaré section,
the manifolds of small Lyapunov orbits will intersect for a large enough number of
cuts with the Poincaré section.

7. Symbolic dynamics

A discrete dynamical system (X, f) is said to posses symbolic dynamics if there
exits a finite or a countable set of symbols S, a homeomorphism h : X → SZ, and a
positive integer k such h◦fk = σ◦h. Here S is provided with the discrete topology,
the space of bi-infinite sequences SZ is provided with the product topology, and
the homeomorphism σ : SZ → SZ shifts every sequence one place to the left. The
properties of the homeomorphism h ensure that all orbits of f can be matched with
orbits of the shift map σ.

The existence of symbolic dynamics in the restricted three-body problem was
proved analytically in several papers [8, 21, 17, 27] in the case when µ ≈ 0. The
basic idea is to show analytically the existence of transverse homoclinic orbits to
a periodic orbit at infinity. Then the Birkhoff-Smale homoclinic orbit theorem
implies the existence of a horseshoe map, and, consequently, of symbolic dynamics.
The existence of an invariant set of Cantor type for the horseshoe map implies that
there cannot be any other analytic first integrals besides the Jacobi integral.

Our numerical investigations provide evidence for the existence of symbolic dy-
namics, and thus for the non-integrability of the problem in the case of µ = 0.5. For
the energy level corresponding to C = 3.95, N = 5 is the smallest positive integer
for which (Φ+)N is well defined on some subset of the surface of section. Let q be
one of the points A,B,E, F, I, J corresponding to a homoclinic orbit with N cuts
(see Figure 12). By the Smale-Birkhoff homoclinic orbit theorem, there exists an
(Φ+)N -invariant set Λ in a neighborhood of q such that (Φ+)N restricted to Λ is
conjugate to a full shift on infinitely many symbols.

We can choose for example, a rectangle R+
1 by the point B, as in Figure 18.

The lower right hand side vertex corresponds to the homoclinic point B. One of
the almost vertical sides of R+

1 is chosen very close to W s
5 , while one of the almost

horizontal sides of R+
1 is chosen very close to Wu

1 . Since Wu
1 is transverse to W s

5 ,
infinitely many components of Wu

6 intersect W s
5 transversally. Thus, the image of

R+
1 under ΦN (N = 5) crosses R+

1 in a horseshoe with infinitely many components,
of the type shown in Figure 19. This shows the existence of symbolic dynamics over
infinitely many symbols. There is a ΦN -invariant set Λ+

1 ⊂ R+
1 . Choosing the set

of symbols S = N, each point in Λ+
1 is associated to a unique sequence of symbols

(. . . , n−2, n−1, n0, n1, n2, . . .). The terms n0, n1, n2, . . . of the sequence describe an
orbit that, in forward time, makes n0 turns about the Lyapunov orbit followed by
N turns about the primary at x = 0.5, then goes back to the Lyapunov orbit to
make n1 turns thereby, followed by another N turns about the primary at x = 0.5,
then goes back again to the Lyapunov orbit to make n2 turns thereby, followed by
another N turns around the primary at x = 0.5, and so on. The terms n−1, n−2, . . .
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Figure 19. Infinite horseshoe (qualitative picture).
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Figure 20. Rectangles and their images under Φ5 (qualitative picture).

describe the number of turns made about the Lyapunov orbit, intermingled with
sequences of N turns about the primary at x = 0.5, done in the past.
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The rectangle R+
1 was chosen outside the ‘circles’ Wu

1 and W s
5 . We can construct

similar rectangles: R+
2 outside Wu

1 and inside W s
5 , R+

3 inside both Wu
1 and W s

5 ,
and R+

4 inside Wu
1 and outside W s

5 . We can also construct the counterparts of
these rectangles R−

1 , R−
2 , R−

3 , R−
4 in the Poincaré section Π− in x < −0.5. They

are illustrated schematically in Figure 20. We can associate symbolic dynamics to
all orbits that visit the rectangles R+

1 , R+
2 , R+

3 , R+
4 , R−

1 , R−
2 , R−

3 , R−
4 . This symbolic

dynamics describes the typical ‘acrobatics’ that an orbit can do.
The past and the future orbits of points in R+

1 , R+
2 , R+

3 , R+
4 , R−

1 , R−
2 , R−

3 , R−
4 is

dictated by the fact that the stable and unstable manifolds are separatrices of the
phase space in the sense described in Section 5. The behavior of such points can
be summarized by the following tables:

comes from after N turns
around x = −0.5

goes to

R−
1 x < 0 x < 0

R−
2 x < 0 x > 0

R−
3 x > 0 x > 0

R−
4 x > 0 x < 0

comes from after N turns
around x = 0.5

goes to

R+
1 x > 0 x > 0

R+
2 x > 0 x < 0

R+
3 x < 0 x < 0

R+
4 x < 0 x > 0

The possible transitions can be represented by the following directed graph:

R2
+ R3

− R2
−R3

+

R4
+

R4
−

R1
−R1

+

Each arrow in the graph represents a visit to the Lyapunov orbit that makes
some arbitrary number ni of turns over there, where i > 0 refers to the future
trajectory and i < 0 refers to the past trajectory of a point originating in one of
the rectangles. When the arrow joins R+

j to R+
k the arrow represents ΦN ; this is a

map that takes a point x ∈ Π+ ∪Π−, performs N revolutions about the primary in
the region of departure, and lands again at Φn(x) ∈ Π+ ∪ Π−. When the point is
taken from Π+ and lands in Π+, the map is ΦN = (Φ+)N ; when the point is taken
from Π− and lands in Π−, the map is ΦN = (Φ−)N .

(Φ+)N , when it joins R−
j to R−

k the arrow represents (Φ−)N , when it joins R+
j

to R−
k or when it joins R−

j to R+
k the arrow represents the arrow represents ΦN .

Similar symbolic dynamics is carefully described and argued in [2, 16].

8. Behavior of the homoclinic orbits to Lyapunov orbits as the

energy level approaches that of L1

Homoclinic orbits can be classified in terms of the number of turns they make
about a primary. This section is concerned with homoclinic orbits that remain in
x > 0 and make the smallest number of turns about a primary at a given energy
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level. Homoclinic orbits with lowest number of turns around the primary are of
interest in astrodynamics since they provide zero cost trajectories which approach
asymptotically a Lyapunov orbit in both forward and backwards time, while they
minimize the time they spend around the libration point and around a primary.
See [5].

We perform numerical explorations for Jacobi constants C2 < C < C1, corre-
sponding to Hill’s regions that have the dynamical channels at L2 and L3 closed,
and the dynamical channel at L1 open. For a wide range of energy levels corre-
sponding to C2 < C < C1, there exist infinitely many homoclinic orbits, making
various numbers of turns. From all homoclinic orbits, we will search for the ‘short-
est’ ones, i.e., those which make the smallest number of turns about the primary
at x = 1/2. For each C in the range, we generate W s

i and Wu
j up to some reason-

ably large number of cuts and then look for the intersections that give the minimal
value of i + j − 1. When C approaches C1 and the Lyapunov orbits get smaller
and smaller, the cuts made by the stable and unstable manifolds off the surface of
section resemble more and more to the ‘fish’ (see Figure 7). The whole range of Ja-
cobi constants C2 < C < C1 can be naturally partitioned into intervals such that,
for each C in an interval, the number of turns made by the shortest homoclinic
orbits remains constant. We will describe mechanisms that produce homoclinic
orbits with the smallest number of turns for C2 < C < C1. The geometry of these
mechanisms will be described in relation to the anatomy of the ‘fish’. Here we make
an amusing remark that the ‘fish’ is anatomically correct (see Figure 25). We will
not attempt to find each range of Jacobi constants for which this number of turns
stays constant.

We first describe the behavior of homoclinic orbits for Jacobi constants C slightly
larger than C2; we start with the value C2 + ε, where we choose ε = 10−6. For
C2 + ε < C < 3.90, the stable and unstable manifolds of the Lyapunov orbits
exhibit collisions and close encounters with the mass at µ. Therefore KS (Levi-
Civita) regularization has been used to avoid ill conditioning and increase of errors
during numerical integration (see [25] for the classical theory).

For C < 3.64309, the stable manifold W s(TC) and the unstable manifold Wu(TC)
collide with the mass µ at the first encounter with y = 0, x < 0.5 or with y = 0, x >
0.5. For C > 3.64208, the stable and unstable manifold intersect the first time
they meet Π+, producing homoclinic orbits that make 1 turn about the mass. See
Figure 21.

As C increases, the invariant manifolds cease to collide with the mass while
they still intersect along homoclinic orbits making 1 turn about the mass. At
C ≈ 3.845065165, W s

1 and Wu
1 cease to intersect, and the shortest homoclinic

orbits make 2 turns around the mass. They occur as intersection of W s
2 and Wu

1 ,
and as intersection of W s

1 and Wu
2 . This trend continues as C increases from 3.64208

to 3.90, and the numbers of turns made by the shortest homoclinic orbits is given
by the sequence

1, 2, 3, 4.

The corresponding orbits are realized as intersections between W s
1 and Wu

1 , W s
1

and Wu
2 (and also W s

2 and Wu
1 ), W s

2 and Wu
2 , and W s

2 and Wu
3 (and also W s

3 and
Wu

2 ), respectively.
When C > 3.90, the stable and unstable manifolds can be integrated without

using regularization. The shortest homoclinic orbits are obtained as the intersection



22 MARIAN GIDEA AND JOSEP J. MASDEMONT

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0.5  0.55  0.6  0.65  0.7  0.75  0.8

 1

 1

C=3.64208

Figure 21. Stable and unstable manifolds colliding with the primary.
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Figure 23. Poincaré section of homoclinic orbits with the small-
est number of turns equal to 5.
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Figure 24. Poincaré section of homoclinic orbits with the small-
est number of turns equal to 6. Intersections between W s

6 and Wu
1

are observed. On the right, W s
6 and Wu

1 are tangent.

of Wu
1 with W s

5 , and make 5 turns bout the primary. For 3.90 < C < 3.955610,
the smallest number of turns that a homoclinic orbit can have remains 5. At
C ≈ 3.955610, the cuts Wu

1 and W s
5 meet tangentially. See Figure 23. When C

is increased beyond 3.955610, the cuts Wu
1 and W s

5 cease to meet. The smallest
number of turns that a homoclinic orbit can have increases to 6. See Figure 24.
Homoclinic orbits with 6 cuts are obtained as intersections of Wu

1 with W s
6 .

We now describe a mechanism that produces homoclinic orbits for the range
3.995610 < C < 3.999690. There are two types of orbits produced. The first type
are orbits that occur by the middle of the ‘tail-fin of the fish’ (see Figure 25), as
possible intersections of W s

6n and W s
6n+6 with Wu

6n and Wu
6n+6, for n ≥ 1. These

possible intersections result in homoclinic orbits that make 12n − 1, 12n + 5 and
12n+11 turns about the primary. The orbits that make 12n−1 or 12n+11 turns are
symmetric orbits (with respect to (x, y, ẋ, ẏ) → (x,−y,−ẋ, ẏ)), and those that make
12n + 5 turns are non-symmetric orbits. The second type are orbits that occur by
the upper half of the ‘tail-fin of the fish’ (see Figure 25), as possible intersections of
W s

6m and W s
6m+6 with Wu

6m+1 and Wu
6m+7, for m ≥ 1. These possible intersections

result in homoclinic orbits that make 12m, 12m + 6 and 12m + 12 turns about
the primary. They are all non-symmetric orbits. All homoclinic orbits described
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Figure 25. Poincaré section of homoclinic orbits formed in the
middle of the ‘tail-fin’ and the upper/lower half of the ‘tail-fin’
of the ‘fish’. Intersections between W s

18 and Wu
18, W s

24 and Wu
24,

W s
18 and Wu

24, W s
24 and Wu

19, and of their symmetric counterparts,
are observed. They correspond to homoclinic orbits that make
29 = 12 · 2 + 5, 35 = 12 · 2 + 11, 42 = 12 · 3 + 6 turns about the
primary. Intersections between W s

6 and Wu
6 , and W s

12 and Wu
12,

for example, cease to exist at this energy level.

above have counterparts in other regions of the ‘fish’: in the ‘soft dorsal fin’, in the
‘spinous dorsal fin’, in the ‘pelvic fin’, in the ‘anal fin’, and in the lower half of the
‘tail-fin of the fish’.

The shortest homoclinic orbits obtained through this mechanism are either of
the first type or of the second type.

In the first stage, both types of orbits described above compete for the shortest
homoclinic orbit. Consider, for example, C = 3.99391. There exist intersections of
W s

12 with Wu
12. This intersections result in a pair of symmetric homoclinic orbits

that make 23 turns about the primary. There also exist intersections of W s
6 with

Wu
1 and Wu

7 , and of W s
12 with Wu

1 and Wu
7 . These intersections result in pairs of

homoclinic orbits that make 6, 12 and 18 turns about the primary. The homoclinic
orbits with the smallest number of turns are those making 6 turns.

As C is increased, at some point W s
6 and Wu

1 cease to intersect. See Figure 26.
The corresponding sequence of the smallest number of turns made by a homoclinic
orbit evolves as

12, 18.

In the second stage, starting with C = 3.99391, the homoclinic orbits with the
smallest number of turns only occur in the middle of the ‘tail-fin of the fish’. They
are orbits resulting from the possible intersections of W s

6n and W s
6n+6 with Wu

6n

and Wu
6n+6, n ≥ 2. There are two possible cases. One case is when W s

6n intersects
with Wu

6n, W s
6n intersects with Wu

6n+6, W s
6n+6 intersects with Wu

6n, and W s
6n+6



GEOMETRY OF HOMOCLINIC CONNECTIONS IN A THREE-BODY PROBLEM 25

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

C=3.997

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

C=3.998

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

C=3.999

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

19

20

21

22
23

24

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

19

20

21

22
23

24

C=3.9992

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

16
17

18

C=3.995

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

C=3.9948 C=3.9949

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

1617

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44 45

46

47

48

49

50
51

52

53

54

55

56
57

58

59

60 1

 2

 3

 4
 5

 6

 7

 8

 9

10
11

12

13

14

15

1617

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44 45

46

47

48

49

50
51

52

53

54

55

56
57

58

59

60

C=3.99983

Figure 26. Poincaré section of homoclinic orbits with the small-
est number of turns at least 12.
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Figure 27. New mechanisms competing in generating homo-
clinic orbits with the smallest number of turns.

intersects with Wu
6n+6. Then the homoclinic orbits with the smallest numbers of

turns about the primary are those with 12n− 1 turns. The other case is when W s
6n

does not intersect with Wu
6n, W s

6n intersects with Wu
6n+6, W s

6n+6 does not intersect
with Wu

6n, and W s
6n+6 intersects with Wu

6n+6. Then the homoclinic orbits with the
smallest numbers of turns about the primary are those with 12n + 5 turns.

Consider, for example, C = 3.995. There exist intersections of W s
12 with Wu

12,
of W s

12 with Wu
18, of W s

18 with Wu
12, and of W s

18 with Wu
18. These intersections

result in pairs homoclinic orbits that make 23, 29 and 35 turns about the primary.
There also exist intersections of W s

12 with Wu
19, of W s

18 with Wu
13, and of W s

18 with
Wu

19. These intersections result in pairs of homoclinic orbits that make 30 and 36
turns about the primary. The homoclinic orbits with the smallest number of turns
about the primary are those with 23 turns. Now, consider C = 3.997. There exist
intersections of W s

12 with Wu
18, of W s

18 with Wu
12, and of W s

18 with Wu
18 . These

intersections result in pairs of homoclinic orbits that make 29 and 35 turns about
the primary. There also exist intersections of W s

18 with Wu
25, of W s

24 with Wu
19, and

of W s
24 with Wu

25. These intersections result in pairs homoclinic orbits that make
42, 48 and 52 turns about the primary. The homoclinic orbits with the smallest
number of turns about the primary are those with 29 turns.

The corresponding sequence of the smallest number of turns made by a homo-
clinic orbits is

23, 29, 35, 41, 47, 53.

In the third stage, the shortest homoclinic occur only in the upper half of the
‘tail-fin of the fish’. The corresponding sequence of the smallest number of turns
made by a homoclinic orbits continues as

54, 60, 66.

In conclusion, the sequence of the smallest numbers of turns made by homoclinic
orbits about the primary that we found so far is

1, 2, 3, 4, 5, 6, 12, 18, 23, 29, 35, 41, 47, 53, 54, 60, 66.

When C is increased further, it appears that new mechanisms may compete
for producing the shortest homoclinic orbits. The geometry of the cuts made by
the stable and unstable manifolds with the Poincaré section in the upper half of
the ‘tail-fin of the fish’ indicates two rows of cuts where the competition for the
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shortest homoclinic orbits seems to have moved. For some values of C, the shortest
homoclinic orbits are among the intersections between cuts in the outward row and
cuts in the inward row. This is the case, for example, when C = 3.9999983, when
the shortest homoclinic orbits makes 132 turns. Increasing C further, the shortest
homoclinic orbits occur exclusively as intersections among cuts in the inward row.
This is the case, for example, when C = 3.9999999, when the shortest homoclinic
orbits makes 180 turns. See Figure 27.

Of course, as we keep increasing C, some aspects of the numerical computations
need a careful check. We have decided to stop them at C = C1 − ε where ε =
10−6 because, although we could proceed somewhat further, the lack of theoretical
support about the behavior of the manifolds of L1 will constitute at some point an
obstruction to the resolution of our computations, independently of the numerical
procedure used.
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