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Université de Grenoble I, BP 74

F–38402 Saint Martin d’Hères Cedex, France
and

Laboratoire de Physique et Modélisation des Milieux Condensés
UMR CNRS-UJF 5493, Université de Grenoble I, BP 166
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Abstract

We propose an alternative to the usual time–independent Born–Oppenheimer ap-
proximation that is specifically designed to describe molecules with symmetrical Hy-
drogen bonds. In our approach, the masses of the Hydrogen nuclei are scaled differently
from those of the heavier nuclei, and we employ a specialized form for the electron en-
ergy level surface. Consequently, anharmonic effects play a role in the leading order
calculations of vibrational levels.

Although we develop a general theory, our analysis is motivated by an examination
of symmetric bihalide ions, such as FHF− or ClHCl−. We describe our approach for
the FHF− ion in detail.
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1 Introduction

In standard Born–Oppenheimer approximations, the masses of the electrons are held fixed,

and the masses of the nuclei are all assumed to be proportional to ε−4. Approximate solutions

to the molecular Schrödinger equation are then sought as expansions in powers of ε. For

the time–independent problem, the electron energy level surface is also assumed to behave

asymptotically like a quadratic function of the nuclear variables near a local minimum.

In this paper and in a future one [4], we propose an alternative approximation for

molecules that contain Hydrogen atoms as well as some heavier atoms, such as Carbon,

Nitrogen, or Oxygen. Our motivation is to develop an approach that is specifically tailored

to describe the phenomenon of Hydrogen bonding.

In this paper, we examine the specific case of systems with symmetric Hydrogen bonds,

such as FHF−. In [4], we plan to study non–symmetric cases, where the structure of the

typical electron energy surface is very different. The mathematical analysis of that situation

is consequently completely different.

The model we present here differs from the usual Born–Oppenhimer model in two ways:

1. We scale the masses of the Hydrogen nuclei as ε−3 instead of ε−4. This is physically

appropriate. If the mass of an electron is 1, and we define ε−4 to be the mass of a C12

nucleus, then ε = 0.0821, and the mass of a H1 nucleus is 1.015 ε−3.

2. We do not assume that the electron energy level is well approximated by an ε–independent

quadratic function near a local minimum. Instead, we allow it to depend on ε and to

take a particular form that we specify below. The particular form we have chosen is

motivated by a detailed examination of the lowest electronic potential energy surfaces

for FHF− and ClHCl−.

Although symmetric bihalide ions are quite special, our approach is flexible enough to

describe more general phenomena. For example, the lowest electron energy surface for FHF−

has a single minimum with the Hydrogen nucleus mid–way between the two Fluorines. Our

model can handle situations with single or double wells in the coordinates for a Hydrogen

nucleus that paticipates in Hydrogen bonding. We hope that the ideas in this paper and [4]

might provide some insight into some properties of Hydrogen bonded systems.

Our model leads to a different expansion from the usual Born–Oppenheimer approxima-

tion. For Hydrogen nuclei not involved in Hydrogen bonding, the vibrational energies are
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of order ε3/2, while the vibrational energies for the other nuclei and the Hydrogen nuclei in-

volved in the symmetric Hydrogen bonding are of order ε2. Furthermore, anharmonic effects

must be taken into account for a Hydrogen nucleus involved in Hydrogen bonding at their

leading order, ε2. In the standard Born–Oppenheimer model, all vibrational energies appear

in a harmonic approximation at order ε2. Anharmonic corrections enter at order ε4.

We present our ideas only in the simplest possible situation. In that situation, there are

only 3 nuclei, and they are constrained to move along a fixed line. We plan to study more

general possibilities, such as bending of the molecule, in the future.

The paper is organized as follows: In Section 2, we present the formal expansion. In

Section 3 we state our rigorous results as Theorems 3.6 and 3.7. The proofs of some technical

results are presented in Section 4.

Acknowledgements The authors would like to thank Thierry Gallay for several helpful

conversations. George Hagedorn would like to thank T. Daniel Crawford for teaching him

to use the Gaussian software of computational chemistry.

2 Description of the Model

We study a triatomic system with two identical heavy nuclei A and B, and one light

(Hydrogen) nucleus C. We begin by describing the Hamiltonian for this system in Ja-

cobi coordinates. We let xA and xB be the positions of the heavy nuclei, and let xC be

the position of the light nucleus C. We let their masses be mA = mB and mC . We

let R =
mAxA + mBxB + mCxC

mA + mB + mC

denote the center of mass of all three nuclei, and let

xAB =
xA + xB

2
denote the center of mass of the heavy nuclei. We let W = xB − xA

be the vector from nucleus A to nucleus B and let Z = xC − xAB be the vector from the

center of mass of A and B to C. We assume the electronic Hamiltonian he only depends on

the vectors between the nuclei, and we set mAB = mA + mB and M = mA + mB + mC . In

the original variables, the Hamiltonian has the form

− 1

2 mA

∆xA
− 1

2 mB

∆xB
− 1

2 mC

∆xC
+ he(xB − xA, xC − xA, xC − xB).

In these Jacobi coordinates, it has the form

− 1

2 M
∆R − mAB

2 mA mB

∆W − M

2 mAB mC

∆Z + he(W, Z + W/2, Z − W/2).
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Since we are interested in bound states, we discard the kinetic energy of the center of mass.

We take the electron mass to be 1, and the masses of the heavy nuclei to be mA = mB = ε−4µ,

for some fixed µ. The mass of the light nucleus is mC = ε−3ν, for some fixed ν. The electronic

Hamiltonian he then becomes he(W,Z +W/2, Z−W/2) ≡ h(W,Z), so that the Hamiltonian

of interest is

− ε4

µ
∆W − ε3

2 ν

(
1 +

ε ν

2 µ

)
∆Z + h(W, Z).

This computation is exact and valid in any dimension.

To simplify the exposition, we drop the term
ε ν

2 µ
in the factor that multiplies ∆Z . It

gives rise to uninteresting, regular perturbation corrections. Also, for simplicity, we assume

µ = 2 and ν = 1. This can always be accomplished by trivial rescalings of W and Z.

To describe our ideas in the simplest situation, we restrict W and Z to one dimension.

Thus, we are not allowing rotations or bending of the molecule. Furthermore, we introduce ε

dependence of the electronic Hamiltonian to model the pecularities of symmetric Hydrogen

bonds that we describe below.

These considerations lead us to study the Hamiltonian

H1(ε) = − ε4

2

∂2

∂W 2
− ε3

2

∂2

∂Z2
+ h(ε, W, Z). (2.1)

The electron Hamiltonian h(ε, W, Z) is an operator in the electronic Hilbert space that de-

pends parametrically on (ε, W, Z) and includes the nuclear repulsion terms. For convenience,

we assume that h(ε, W, Z) is a real symmetric operator.

We now describe the specific ε dependence of h(ε, W, Z) that we assume. Although the

electron Hamiltonian does not depend on nuclear masses, the parameter ε is dimensionless,

and thus may play more than one role. The dependence of h on ε we allow is motivated by the

smallness of a particular Taylor series coefficient we observed in numerical computations for

the ground state electron energy level for the real system FHF−. We allow only the ground

state eigenvalue to depend on ε. Otherwise, our electron Hamiltonian is ε–independent. With

the physical value of ε inserted in our Hamiltonian, we obtain the true physical Hamiltonian.

From numerical computations of E(W, Z) for FHF−, we observed that the Z2 coefficient

in the Taylor expansion about the minimum (W0, 0) of the ground state potential energy

surface had a small numerial value, on the order of the value of ε = ε0, where ε0 was defined

by setting ε−4
0 equal to the nuclear mass of the C12 isotope of Carbon.
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The value of ε0 is roughly 0.0821. We define a2 so that the true Z2 Taylor series term is

a2 ε0 Z2. We then obtain h(ε, W, Z) by adding (ε − ε0) a2 Z2 to the ground state eigenvalue

E(W, Z). We make no other alterations to the electron Hamiltonian. When ε = ε0, our

h(ε, W, Z) equals the true physical electron Hamiltonian h(ε0, W, Z).

Thus, we assume the ground state electron level has the specific form

E1(ε, W, Z) = E0 + a1 (W − W0)
2 +

(
a2 ε − a3 (W − W0)

)
Z2 + a4 Z4 + · · · , (2.2)

with aj = O(1). As we shall see, the leading order behavior of the energy and the wave

functions for the molecule are determined from the terms written explicitly in (2.2). The

terms not explicitly displayed are of orders (W −W0)
α Z2β, where α and β are non-negative

integers that satisfy α + β ≥ 3. They play no role to leading order, but contribute to higher

order corrections.

We assume a1, a3, and a4 are positive, but that a2 can be positive, zero, or negative.

When a2 is negative, E1(ε, W, Z) has a closely spaced double well near (W0, 0) instead of a

single local minimum.

To ensure that the leading part of E1(ε, W, Z),

Ẽ1(ε, W, Z) = E0 + a1 (W − W0)
2 +

(
a2 ε − a3 (W − W0)

)
Z2 + a4 Z4,

is bounded below, we assume that either

a2
3 < 4 a1 a4, (2.3)

or

a2
3 = 4 a1 a4 and a2 ≥ 0. (2.4)

These conditions are equivalent to the property Ẽ1(ε, W, Z) ≥ −C for some C, since we

can write

Ẽ1(ε, W, Z) = a1

(
(W − W0) − a3

2a1

Z2

)2

+

(
a4 − a2

3

4a1

)
Z4 + a2 ε Z2.

By rescaling with w = (W − W0)/ε and z = Z/ε1/2, we see that the Hamiltonian

− ε4

2

∂2

∂W 2
− ε3

2

∂2

∂Z2
+ Ẽ1(ε, W, Z)

is unitarily equivalent to ε2 times the ε–independent Normal Form Hamiltonian

HNF = − 1

2

∂2

∂w2
− 1

2

∂2

∂z2
+ ENF(w, z), (2.5)
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where

ENF(w, z) = a1 w2 +
(

a2 − a3 w
)

z2 + a4 z4. (2.6)

Remark Although we do not use it, further scaling shows that HNF is essentially a three–

parameter model, since the change of variables w = α s, z = α t, yields

HNF ' α−2

(
− 1

2

∂2

∂s2
− 1

2

∂2

∂t2
+ α1 s2 + α2 t2 − α3 s t2 + t4

)
,

with

α = a
−1/6
4 , α1 =

a1

a
2/3
4

, α2 =
a2

a
2/3
4

, and α3 =
a3

a
5/6
4

.

Under conditions (2.3) or (2.4), HNF is essentially self-adjoint on C∞
0 (IR2) and has purely

discrete spectrum. This last property is easy to verify under condition (2.3), or condition

(2.4) with a2 > 0, because ENF(w, z) tends to infinity as ‖ (w, z) ‖ → ∞. When (2.4) is

satisfied with a2 = 0, the result is more subtle because ENF(w, z) attains its minimum value

of zero along a parabola in (w, z). In that case we prove that the spectrum is discrete in

Proposition 3.1.

Explicit Computations for FHF− The expression (2.2) is clearly special. Our compu-

tations for FHF− that motivate this expression have roughly the following values, where

distances are measured in Angstroms and energies are measured in Hartrees:

W0 = 2.287,

E0 = −200.215,

a1 = 0.26,

a2 = 1.22 ( if ε = 0.0821 ),

a3 = 1.29,

a4 = 1.62.

These results came from fitting the output from Gaussian 2003 using second order Moller–

Plesset theory with the aug–cc–pvtz basis set. We observed that the process of fitting the

data was numerically quite unstable, and that condition (2.3) was barely satisfied by these

aj.
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Figure 1. Contour plot of the ground state electronic potential energy surface in the Jacobi

coordinates (W, Z). It is obviously not well approximated by a quadratic. Our technique

exploits the flatness of the surface in the Z direction near the minimum.

The experimentally observed values [9] for the excitation energies to the first symmet-

ric stretching vibrational mode and the first asymmetric vibrational mode of FHF− are

583.05 cm−1 and 1331.15 cm−1, respectively. With the values of aj above, the leading order

calculation from our model predicts 600 cm−1 and 1399 cm−1. By leading order, we mean

E0 + ε2 E2 in the expansion we present below. These values depend sensitively on precisely

how we fit the potential energy surface, which itself depends sensitively on the electron
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structure calculations. By comparison, Gaussian 2003 with the aug-cc-pvdz basis set pre-

dicts harmonic frequencies of 608 cm−1 and 1117 cm−1. We could not obtain frequencies for

the aug-cc-pvtz basis set from Gaussian because of our computer limitations.

For some very recent numerical results for vibrational frequencies of FHF− that appeared

as we were finishing this paper, see [2].

We now mimic the technique of [3] to obtain an expansion for the solution to the eigen-

value problem for (2.1). We could have used the technique of [5], but that would have led

to more complicated formulas.

For convenience, we replace the variable W by W − W0, so that henceforth, W0 = 0.

The technique of [3] uses the method of multiple scales. Instead of searching directly for

an eigenvector Ψ(ε, W, Z) for (2.1), we first search for an eigenvector ψ(ε, W, Z, w, z) for an

operator that acts in more variables. When we have determined ψ, we obtain Ψ by setting

Ψ(ε, W, Z) = ψ(ε, W, Z, W/ε, Z/ε1/2).

This is motivated physically by the following observation: The dependence of the electrons

on the nuclear coordinates occurs on the length scale of (W, Z), while the semiclassical

quantum fluctuations of the nuclei occur on the length scale of (w, z). To leading order in

ε, these effects behave independently.

The equation for ψ is formally

H2(ε) ψ(ε, W, Z, w, z) = E(ε) ψ(ε, W, Z, w, z), (2.7)

where

H2(ε) = − ε4

2

∂2

∂W 2
− ε3 ∂2

∂W ∂w
− ε2

2

∂2

∂w2
− ε3

2

∂2

∂Z2
− ε5/2 ∂2

∂Z ∂z
− ε2

2

∂2

∂z2

+ [ h(ε, W, Z) − E(ε, W, Z) ] + E(ε, ε w, ε1/2z)

+
∞∑

m=6

εm/2
(

Tm/2(W, Z) − Tm/2(ε w, ε1/2z)
)
. (2.8)

The functions Tm/2 in this expression will be chosen later. Different choices yield equally

valid expansions for Ψ(ε, W, Z), although they alter the expressions for ψ(ε, W, Z, w, z) by

converting (W, Z) dependence into (w, z) dependence.
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In (2.8), we expand both E(ε, εw, ε1/2z) and Tm/2(εw, ε1/2z) in Taylor series in powers

of ε1/2. We then make the Ansatz that (2.7) has formal solutions of the form

ψ(ε,W,Z,w, z) = ψ0(W,Z,w, z) + ε1/2 ψ1/2(W,Z,w, z) + ε1 ψ1(W,Z,w, z) + · · · , (2.9)

with

E(ε) = E0 + ε1/2 E1/2 + ε1 E1 + · · · . (2.10)

We substitute these expressions into (2.7) and solve the resulting equation order by order in

powers of ε1/2.

Note: The description in this section is purely formal. In particular, it does not take into

account the cutoffs that are necessary for rigorous results. The mathematical details are

dealt with in the next section.

Order 0 The order ε0 terms require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ0 + E0 ψ0 = E0 ψ0.

We solve this by choosing

E0 = E0,

and

ψ0(W, Z, w, z) = f0(W, Z, w, z) Φ(W, Z),

where Φ(W, Z, · ) is a normalized ground state eigenvector of h(ε, W, Z). Under our as-

sumptions, we can choose Φ(W, Z, · ) to be real, smooth in (W, Z), and independent of ε.

This choice satisfies

〈Φ(W, Z, · ), ∇W,ZΦ(W, Z, · ) 〉Hel
= 0, (2.11)

where the inner product is in the electronic Hilbert space. We assume that f0(W, Z, w, z)

is not identically zero.

Order 1/2 The order ε1/2 terms require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ1/2 + E0 ψ1/2 = E0 ψ1/2 + E1/2 ψ0.

The components of this equation in the Φ(W, Z) direction in the electronic Hilbert space

require

E1/2 = 0.
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The components of the equation orthogonal to Φ(W, Z) in the electronic Hilbert space require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ1/2 = 0,

so

ψ1/2(W, Z, w, z) = f1/2(W, Z, w, z) Φ(W, Z).

Orders 1 and 3/2 By similar calculations, the order ε1 and ε3/2 terms yield

E1 = E3/2 = 0,

ψ1(W, Z, w, z) = f1(W, Z, w, z) Φ(W, Z), and

ψ3/2(W, Z, w, z) = f3/2(W, Z, w, z) Φ(W, Z).

Order 2 The order ε2 terms that are multiples of Φ(W, Z) in the electronic Hilbert space

require

− 1

2

∂2f0

∂w2
(W, Z, w, z) − 1

2

∂2f0

∂z2
(W, Z, w, z) + ENF(w, z) f0(W, Z, w, z)

= E2 f0(W, Z, w, z), (2.12)

where ENF(w, z) is given by (2.6).

Because of the form of ENF(w, z), (2.12) does not separate into two ODE’s. We do

not know E2 or f0 exactly, although accurate numerical approximations can be found easily.

These eigenvalues and eigenfunctions describe the coupled anharmonic vibrational motion

of all three nuclei in the molecule. As we commented earlier, hypotheses (2.3) or (2.4)

guarantee that the eigenvalues E2 are discrete and bounded below, with normalized bound

states f0(W, Z, w, z) in (w, z) for any (W, Z).

Later in the expansion, we choose the operator T3 so that f0 has no (W, Z) dependence.

With this in mind, equation (2.12) determines E2 and a normalized function f0(w, z) (up to

a phase) for any given vibrational level.

The terms of order 2 that are orthogonal to Φ(W, Z) require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ2 = 0,

Thus,

ψ2 = f2(W, Z, w, z) Φ(W, Z).
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We split the scalar functions fα(W, Z, w, z) with α > 0 into two contributions

fα(W, Z, w, z) = f ‖
α(W, Z, w, z) + f⊥

α (W, Z, w, z)

where for each fixed W and Z, f
‖
α(W, Z, ·, · ) is a multiple of f0(·, · ), and f⊥

α (W, Z, ·, · )
perpendicular to f0(·, · ) in L2(R2, dw dz). Furthermore, we choose the operators T3+m/2

later in the expansion so that f
‖
α(W, Z, ·, · ) has no (W, Z) dependence. We will not precisely

normalize our approximate eigenfunctions, so we henceforth assume f
‖
α(W, Z, w, z) = 0 for

all α > 0.

Order m/2 with m > 4 We equate the terms of order m/2 and then separately examine

the projections of the resulting equation into the Φ(W,Z) direction in the electron Hilbert

space and into the direction perpendicular to Φ(W,Z).

From the terms in the Φ(W, Z) direction, we obtain the value of Em/2 and an expression

for f(m−4)/2(W, Z, w, z) = f⊥
(m−4)/2(W, Z, w, z). When m = 6 we choose T3 so that f0 can

be chosen independent of (W, Z). When m > 6, we choose Tm/2, so that f
‖
(m−6)/2 can be

taken to be zero.

The terms orthogonal to Φ(W, Z) in the electronic Hilbert space give rise to an equation

for [ h(ε, W, Z) − E(ε, W, Z) ] ψm/2. This equation has a solution of the form

ψm/2(W, Z, w, z) =
(

f
‖
m/2(W, Z, w, z) + f⊥

m/2(W, Z, w, z)
)

Φ(W, Z)

+ ψ⊥
m/2(W, Z, w, z),

where ψ⊥
m/2 is obtained by applying the reduced resolvent operator [h(ε, W, Z)−E(ε, W, Z) ]−1

r

to the right hand side of the equation.

In the next section, we prove that this procedure yields a quasimode whose approximate

eigenvalue and eigenvector each have asymptotic expansions to all orders in ε1/2.

3 Mathematical Considerations

In this section we present a mathematically rigorous version of the expansion of Section 2.

This involves inserting cutoffs and proving that many technical conditions are satisfied at

each order of the expansion.
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Proposition 3.1 Assume (2.3) or (2.4).

Then, the spectrum of HNF = − 1

2

∂2

∂w2
− 1

2

∂2

∂z2
+ ENF (w, z) is purely discrete.

Proof We use Persson’s Theorem (see, e.g., [6]) to show that the essential spectrum of

HNF is empty. This theorem says that if V ∈ Lp(IRn) + L∞(IRn), with p = 2 if n ≤ 3, p > 2

if n = 4, and p ≥ n/2 if n ≥ 5, then the bottom of the essential spectrum of H = −∆ + V

is characterized by the behavior of the operator at infinity. More precisely,

inf σess(H) = sup
K∈IRn

K compact

inf
ϕ 6=0

{ 〈ϕ, H ϕ 〉
‖ϕ‖2

: ϕ ∈ C∞
0 (IRn \ K)

}
.

Since ENF does not satisfy the hypotheses, we replace it with a cut off potential

ET (w, z) =

{
ENF (w, z), if ENF (w, z) ≤ T,

T, otherwise.

The operator HT = −∆+ET is self-adjoint on the domain of −∆. Because C∞
0 is a core for

both HNF and HF , and 〈ϕ, HNF ϕ 〉 ≥ 〈ϕ, HT ϕ 〉, for any ϕ ∈ C∞
0 , the min-max principle

shows that

inf σess(HNF ) ≥ inf σess(HT ). (3.1)

Under hypothesis (2.3) or (2.4) with a2 > 0, ENF is arbitrarily large for all large argu-

ments. Persson’s Theorem easily shows that inf σess(HT ) = T for all large positive T .

Inequality (3.1) immediately implies the proposition.

Thus, we need only consider the case of hypothesis (2.4) with a2 = 0. Since ET ≤ T , we

see that inf σess(HT ) ≤ T . We shall use Persson’s Theorem to prove the reverse inequality.

Consider a square K(R) of side 2R > 0, centered at the origin, and let ϕ ∈ C∞
0 (IRn \

K(R)). We observe that ENF (w, z) = T on the set LR = {w ≤ −R} ∪ {|z| ≥ R, |w| ≤ R},
for R > 2a1/a3, provided T ≤ a1R

2. Therefore,∫
LR

ϕ(w, z)
(−∂2

w/2 − ∂2
z/2 + ET (w, z)

)
ϕ(w, z) dw dz ≥

∫
LR

T |ϕ(w, z)|2 dw dz.

For w ≥ R, we estimate the integral as follows∫
{w≥R, z∈IR}

ϕ(w, z)
(−∂2

w/2 − ∂2
z/2 + ET (w, z)

)
ϕ(w, z) dw dz

≥
∫

w≥R

∫
z∈IR

ϕ(w, z)
(−∂2

z/2 + ET (w, z)
)

ϕ(w, z) dz dw

≡
∫

w≥R

〈ϕ(w, · ), hT (w) ϕ(w, · ) 〉z dw. (3.2)
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For each value of w ≥ R, the operator hT (w) is a one-dimensional Schrödinger operator with

potential given by a (cut off) symmetric quartic double well. Hence hT (w) always has a

ground state below T , for any large T . We shall show that the ground state converges to T

as w → ∞.

To do this, we show that hT (w) → −∂2
z/2 + T in the norm resolvent sense. By the

resolvent identity, this follows if we show that ‖(ET (w, z)− T )(−∂2
z/2 + T )−1‖ tends to zero

as w → ∞. To show this we use the following claim:

There exists c(T ), such that,

‖V (−∂2
z + T )−1 ‖L2(IR)→L2(IR) ≤ c(T ) ‖V ‖2,

for all V ∈ L2(IR).

By Theorem IX.28 in [11], given any a > 0, there exists b ≥ 0, such that

‖ϕ‖∞ ≤ a ‖(−∂2
z )ϕ‖2 + b ‖ϕ‖2, for any ϕ in the domain of −∂2

z . This implies that

‖V (−∂2
z + T )−1 ‖L2(IR)→L2(IR) ≤ ‖V ‖L∞(IR)→L2(IR) ‖ (−∂2

z + T )−1 ‖L2(IR)→L∞(IR)

≤ c(T ) ‖V ‖2,

for some finite c(T ). This proves the claim.

In our case, this yields

‖ (ET (w, · ) − T ) (−∂2
z/2 + T )−1 ‖ ≤ c(T ) ‖ (ET (w, · ) − T ) ‖2,

where c(T ) is independent of w.

Under the assumption that R ≥ √
T/a1, we have

‖ (ET (w, · ) − T ) ‖2
2 ≤

∫
|w−z2a3/(2a1)|≤

√
T/a1

T 2 dz

= 2 T 2

√
2a1

a3

( √
w +

√
T/a1 −

√
w −

√
T/a1

)

≤ T 2

√
2T

a3

1√
w − √

T/a1

' c̃(T )
1√
w

, as w → ∞.

Thus by the resolvent formula and Theorem VIII.19 of [10], hT (w) converges in norm resol-

vent sense to (−∂2
z/2 + T ).
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We let P∆(H) be the spectral projector on the interval ∆ ∈ IR for a self-adjoint operator

H. Then Theorem VIII.23 of [10] implies that for any positive a < b < T ,

lim
w→∞

‖P(a,b)(hT (w)) − P(a,b)(−∂2
z/2 + T ) ‖ = lim

w→∞
‖P(a,b)(hT (w))‖ = 0,

since σ(−∂2
z/2 + T ) = [T,∞). Therefore, the bottom of the spectrum of hT (w) satisfies

T ≥ bT (w) ≡ inf σ(hT (w)) → T as w → ∞.

Using this in (3.2), we obtain∫
{w≥R, z∈IR}

ϕ(w, z) (−∂2
w/2 − ∂2

z/2 + ET (w, z)) ϕ(w, z) dw dz

≥ inf
v≥R

bT (v)

∫
{w≥R,z∈IR}

|ϕ(w, z)|2 dw dz.

Combining all the estimates, we see that for any ϕ ∈ C∞
0 (IRn \ K(R))

〈ϕ, HT ϕ 〉 ≥ inf
v≥R

bT (v) ‖ϕ ‖2,

provided a1 R2 ≥ T . Thus,

inf σess(HT ) ≥ sup
R≥

√
T
a1

inf
v≥R

bT (v) = T.

Since T is arbitrarily large, this implies the proposition.

In the usual Born–Oppenheimer approximation, the semiclassical expansion for the nuclei

is based on Harmonic oscillator eigenfunctions. They have many well-known properties.

Our expansion relies on the analogous properties for eigenfunctions of HNF . The following

proposition establishes some of the properties we need in an even more general setting.

Proposition 3.2 Let V be a non-negative polynomial, such that H = −∆ + V has purely

discrete spectrum. Let ϕ(x) be an eigenvector of H, i.e., an L2(Rn) solution of Hϕ = Eϕ,

where E > 0. Then, ϕ ∈ C∞(IRn) and ∇ϕ ∈ L2(IRn). Moreover, for any a > 0,

ϕ ∈ D(ea〈x〉), ∇ϕ ∈ D(ea〈x〉), and ∆ϕ ∈ D(ea〈x〉),

where 〈x〉 =

√√√√1 +
n∑

j=1

x2
j , and D(ea〈x〉) denotes the domain of multiplication by ea〈x〉.
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Proof Since V ∈ C∞, elliptic regularity arguments (see e.g., [7], Thm 7.4.1) show that all

eigenfunctions are C∞.

We first show that the ∇ϕ is L2. Since V ≥ 0, the quadratic form defined by

h(ϕ, ψ) = 〈∇ϕ, ∇ψ 〉 + 〈
√

V ϕ,
√

V ψ 〉

on Q(h) = Q(−∆) ∩ Q(V ), is closed and positive. Here Q(A) means the quadratic form

domain of the operator A. Since D(H) ⊂ Q(h), any eigenvector of H belongs to

Q(−∆) = {ϕ ∈ L2(IRn) : ‖∇ϕ ‖ < ∞}.

Thus, ∇ϕ ∈ L2.

Next, we prove ϕ ∈ D(ea〈x〉), for any a > 0 by a Combes–Thomas argument, as presented

in Theorem XII.39 of [12]. We describe the details for completeness. Let α ∈ IR, and let v

denote xj for any j ∈ {1, · · · , n}. We consider the unitary group W (α) = eiαv for α ∈ IR,

and compute

H(α) = W (α) (−∆ + V ) W (α)−1 = H + i α ∂v + α2.

The operator i∂v is H-bounded, with arbitrary small relative bound, since V ≥ 0. Thus

{H(α)} extends a self-adjoint, entire analytic family of type A, defined on D(H). We note

that since H(0) = H has purely discrete spectrum, its resolvent, R0(λ) is compact, for any

λ ∈ ρ(H) ≡ IC \ σ(H). Hence, Rα(λ) = (H(α) − λ)−1 is compact for any α ∈ IR, and

hence, for all α ∈ IC, if λ ∈ ρ(H(α)). It is jointly analytic in α and λ. The eigenvalues

of H(α) are thus analytic in α, except at crossing points, where they may have algebraic

singularities. Since for α real, W (α) is unitary, the eigenvalues are actually independent of

α, and σ(H(α)) = σ(H), for any α.

Let P be the finite rank spectral projector corresponding to an eigenvalue E of HNF .

Then, for α ∈ IR, P (α) = W (α)PW (α)−1 is the spectral projector corresponding to the

eigenvalue E of H(α). By Riesz’s formula and the properties of the resolvent, P (α) extends

to an entire analytic function that satisfies

W (α0)P (α)W (α0)
−1 = P (α0 + α).

for any α0 ∈ IR.

By O’Connor’s Lemma (Sect. XIII.11 of [12]), this yields information about the eigenvec-

tors. If ϕ = Pϕ, the vector ϕα = W (α)ϕ, defined for α ∈ IR has an analytic extension to the
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whole complex plane, and is an analytic vector for the operator v. Therefore, ϕ ∈ D(ea|v|),

for any a > 0. By taking all possible xj’s for v, and noting that D(ea〈x〉) = D(ea(
∑

j |xj |)), we

see that ϕ ∈ D(ea〈x〉).

From this, it follows that ∆ϕ ∈ D(ea〈x〉) for any a > 0 as well, since for any δ > 0,∫
IRn

e2a〈x〉 |∆ϕ(x)|2 dx

=

∫
IRn

e2a〈x〉 | (V (x) − E) ϕ(x) |2 dx

≤ ‖ (V − E)2 e−δ〈·〉 ‖∞ ‖ e(a+δ/2)〈·〉 ϕ(·) ‖2

< ∞.

Finally, Lemma 3.3 below shows that ∇ϕ ∈ D(ea〈x〉). To apply this Lemma in our

situation, we let p(x) = ea〈x〉 and note that for any a > 0,

(∇ea〈x〉)/ea〈x〉 = a∇〈x〉 = ax/〈x〉

is uniformly bounded.

Lemma 3.3 requires some notation. Letting p(x) be a positive weight function, we intro-

duce the space

F 2
w =

{
f : ‖f‖2

F 2
w

=

∫
Rn

(|f(x)|2 + |∆f(x)|2) p(x) dx < ∞
}

.

We write ‖f‖2
w =

∫
Rn |f(x)|2 p(x) dx, for any f ∈ L2(Rn, p(x)dx), and ‖f‖2 =

∫
Rn |f(x)|2 dx

when the weight is one.

Lemma 3.3 Let p ∈ C1 be positive, and assume that there exists a constant C < ∞, such

that |(∇p(x))/p(x)| ≤ 2 C for all x ∈ Rn. Then, for any f ∈ F 2
w

‖∇f‖w ≤ C ‖f‖w +
√

‖f‖w ‖∆f‖w + C2 ‖f‖2
w. (3.3)

We present the proof of this technical lemma in Section 4.

We now state and prove the following Corollary to Proposition 3.2:
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Corollary 3.4 Assume the hypotheses of Proposition 3.2. Let R(λ) be the resolvent of

H = −∆ + V for λ /∈ σ(H), and let PE be the finite dimensional spectral projector of H on

E. Let r(E) =
(
(H − E)|(I−PE)L2

)−1
be the reduced resolvent at E. Then, ea〈x〉 R(λ) e−a〈x〉

and ea〈x〉 r(E) e−a〈x〉 are bounded on L2(IRn).

Proof We use the notation of the proof of Proposition 3.2. We know that Rα(λ) is compact

and analytic in α ∈ C, if λ 6∈ σ(H). Hence, for any ψ1, ψ2 ∈ C∞
0 , the map from IR × ρ(H)

to IC given by

(a, λ) 7→ 〈ψ1, eav R0(λ) e−av ψ2 〉
is uniformly bounded by C ‖ψ1‖ ‖ψ2‖ on any given compact set of IR × ρ(H) for some C.

From this we infer that for any a > 0, ea〈x〉 R(λ) e−a〈x〉 is bounded in L2(IRn), uniformly for

λ in compact sets of ρ(H). Since the reduced resolvent r(E) can be represented as

r(E) =
1

2πi

∫
CE

R0(λ)
1

λ − E dλ, (3.4)

where CE is a loop in the resolvent set encircling only E , the boundedness of ea〈x〉 r(E) e−a〈x〉

follows.

To show that the terms of our formal expansion all belong to L2, we use the following

generalization of Proposition 3.2. We present its proof in Section 4.

Proposition 3.5 Assume the hypotheses of Proposition 3.2 and let ϕ be an L2 solution of

(−∆ + V −E) ϕ = 0. Then, for any a > 0, and any multi-index α ∈ Nn, Dαϕ ∈ D(ea〈x〉),

where Dα = ∂α1
x1

∂α2
x2

· · · ∂αn
xn

.

We now prove that our formal expansion leads to rigorous quasimodes for the Hamilto-

nian H1(ε) given by (2.1). Theorem 3.6 summarizes this result for the leading order, while

Theorem 3.7 handles the arbitrary order results.

Theorem 3.6 Let h(ε, W, Z) be defined as in Section 2 with W shifted so that W0 = 0. We

assume h(ε, W, Z) on Hel is C2 in the strong resolvent sense for (W, Z) near the origin.

We assume its non-degenerate ground state is given by

E1(ε, W, Z) = E0 + a1 W 2 +
(

a2 ε − a3 W
)

Z2 + a4 Z4 + S(ε, W, Z)

≡ E0 + Ẽ(ε, W, Z) + S(ε, W, Z), (3.5)
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under hypothesis (2.3) or (2.4), and we denote the corresponding normalized eigenstate by

Φ(W, Z). Suppose the remainder term S is uniformly bounded below by some r > −∞ and

that |S| satisfies a bound of the form

|S(ε, W, Z) | ≤ C
∑

α+β≥3

|W α Z2β | (3.6)

for (W, Z) in a neighborhood of the origin. Here C is independent of ε, the sum is finite, and

α and β are non-negative integers. Let f0(w, z) be a normalized non-degenerate eigenvector

of HNF , i.e.,

(−∂2
w/2 − ∂2

z/2 + ENF (w, z)) f0 = E2 f0,

with

ENF (w, z) = a1 w2 +
(

a2 − a3 w
)

z2 + a4 z4.

Then, for small enough ε, there exists an eigenvalue E(ε) of H1(ε) which satisfies

E(ε) = E0 + ε2 E2 + O(εξ),

for some ξ > 2 as ε → 0.

Remarks 1. At this level of approximation, it is not necessary to require the eigenvector

Φ to satisfy condition (2.11) or to require h(ε, W, Z) be real symmetric.

2. We have stated our results for the electronic ground state, but the analogous results

would be true for any non-degenerate state that had the same type of dependence on ε.

Proof: In the course of the proof, we denote all generic non-negative constants by the same

symbol c.

Our candidate for the construction of a quasimode is

ΨQ(ε, W, Z) = F (W/εδ1) F (Z/εδ2) f0(W/ε, Z/
√

ε) Φ(W, Z), (3.7)

where F : IR → [0, 1] is a smooth, even cutoff function supported on [−2, 2] which is equal to

1 on [−1, 1]. One should expect the introduction of these cutoffs not to affect the expansion

at any finite order because the eigenvectors of H1(ε) are localized near the minimum of

E1(ε, W, Z). Thus, the properties of the electronic Hamiltonian for large values (W, Z)

should not matter. The choice of a different cutoff for each variable is required because
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these variables have different scalings in ε. We determine the precise values of the positive

exponents δ1 and δ2 in the course of the proof. We also use the notation

F(ε,W,Z) = F (W/εδ1) F (Z/εδ2). (3.8)

We first estimate the norm of ΨQ.

‖ΨQ‖2 =

∫
IR2

|F(ε,W,Z) f0(W/ε, Z/
√

ε)|2 ‖Φ(W,Z)‖2
Hel

=

∫
IR2

|f0(W/ε, Z/
√

ε)|2 dW dZ

−
∫

IR2

(1 −F2(ε,W,Z)) |f0(W/ε, Z/
√

ε)|2 dW dZ.

The first term of the last expression equals ε3/2, by scaling, since f0 is normalized. If δ1 < 1

and δ2 < 1/2, the negative of the second term is bounded above by∫
|W |≥εδ1

|Z|≥εδ2

|f0(W/ε, Z/
√

ε)|2 dW dZ

= ε3/2

∫
|w|≥ε1−δ1

|z|≥ε1/2−δ2

e−2a(|w|+|z|) e2a(|w|+|z|) |f0(w, z)|2 dw dz

≤ ε3/2 e−2a(1/ε(1−δ1)+1/ε(1−δ2)) ‖ea(|·|+|·|)f0‖2

= O(ε∞),

since f0 ∈ D(ea〈(W,Z)〉). Hence,

‖ΨQ‖ = ε3/4 (1 + O(ε∞)), where the O(ε∞) correction is non-positive. (3.9)

Next we compute

(H1(ε) − (E0 + ε2E2)) ΨQ(ε, W, Z) (3.10)

= S(ε, W, Z) f0(w, z)|W,Z F(ε,W,Z) Φ(W,Z)

−
((

ε4

2
∂2

W +
ε3

2
∂2

Z

)
F(ε,W,Z) Φ(W,Z)

)
f0(w, z)|W,Z ,

− ε3 (∂wf0(w, z)|W,Z) ∂W (F(ε,W,Z)Φ(W,Z))

− ε5/2 (∂zf0(w, z)|W,Z) ∂Z(F(ε,W,Z)Φ(W,Z)),
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where we have introduced the shorthand f0(w, z)|W,Z = f0(W/ε, Z/
√

ε) and used the iden-

tity

Ẽ(ε, W, Z) − ε2 ENF (W/ε, Z/
√

ε) ≡ 0.

Also

∂WF(ε,W,Z) =
1

εδ1
F ′(W/εδ1) F (Z/εδ2)

∂ZF(ε,W,Z) =
1

εδ2
F (W/εδ1) F ′(Z/εδ2)

and, by assumption, ‖∂µ
W ∂ν

ZΦ(W,Z)‖Hel
is continuous and of order ε0 in a neigborhood of

the origin, for µ + ν ≤ 2. Therefore,

sup
IR2

‖ ∂W (F(ε,W,Z)Φ(W,Z)) ‖Hel
≤ c

εδ1

sup
IR2

‖ ∂Z (F(ε,W,Z)Φ(W,Z)) ‖Hel
≤ c

εδ2
(3.11)

sup
IR2

‖ ∂2
W (F(ε,W,Z)Φ(W,Z)) ‖Hel

≤ c

ε2δ1

sup
IR2

‖ ∂2
Z (F(ε,W,Z)Φ(W,Z)) ‖Hel

≤ c

ε2δ2
,

where all vectors are supported in { (W,Z) : |W | ≤ 2/εδ1 , |Z| ≤ 2/εδ2}. Each of these vectors

appears in (3.10), multiplied by one of the scalar functions f0(w, z)|W,Z , (∂wf0(w, z)) |W,Z ,

or (∂zf0(w, z)) |W,Z . In turn, each of these functions belongs to L2(IR2) by Proposition 3.2,

and each one has norm of order ε3/4 because of scaling, e.g.,( ∫
IR2

| (∂wf0)(W/ε, Z/
√

ε) |2 dW dZ

)1/2

= ε3/4 ‖ ∂wf0 ‖L2(IR2).

Therefore, the norms of the last three vectors in (3.10) are of order ε3/4 times the corre-

sponding power of ε stemming from (3.11).

We now estimate the norm of the term that arises from the error term S. From our

hypothesis on the behavior of S, we have

‖S F f0 Φ ‖2 =

∫
|W |≤2/εδ1

|Z|≤2/εδ2

|f0(W/ε, Z/
√

ε) S(W,Z)|2 dW dZ

≤ c
∑

α+β≥3

∫
|W |≤2/εδ1

|Z|≤2/εδ2

|f0(W/ε, Z/
√

ε)|2 ∣∣ W αZ2β
∣∣2 dW dZ
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≤ c
∑

α+β≥3

ε2(αδ1+2βδ2)

∫
IR2

|f0(W/ε, Z/
√

ε)|2 dW dZ

= c
∑

α+β≥3

ε2(αδ1+2βδ2) ε3/2,

where the sums are finite.

Collecting these estimates and inserting the allowed values of α and β, we obtain

‖ (H1(ε) − (E0 + ε2E2)) ΨQ ‖

≤ c ε3/4
(
ε3δ1 + ε2(δ1+δ2) + εδ1+4δ2 + ε6δ2 + ε4−2δ1 + ε3−2δ2 + ε3−δ1 + ε5/2−δ2

)
.

We further note that δ1 < 1 and δ2 < 1/2 imply ε4−2δ1 ¿ ε3−δ1 and ε3−2δ2 ¿ ε5/2−δ2 . This,

together with (3.9), shows that for small enough ε,

‖ (H1(ε) − (E0 + ε2E2)) ΨQ ‖
‖ΨQ ‖ ≤ c

(
ε3δ1 + ε2(δ1+δ2) + εδ1+4δ2 + ε6δ2 + ε3−δ1 + ε5/2−δ2

)
We still must show that all terms in the parenthesis above can be made asymptotically

smaller than ε2. This can be done if there exist choices of δ1 and δ2 such that all exponents

in the parenthesis above are strictly larger than 2. The inequalities to be satisfied are

0 < δ1 < 1, δ1 > 2/3, δ1 + δ2 > 1, 0 < δ2 < 1/2, δ2 > 1/3, δ1 + 4δ2 > 2.

Satisfying these is equivalent to satisfying{
2/3 < δ1 < 1

1/3 < δ2 < 1/2

which defines the set of allowed values. The best value,

ξ = max
0<δ1<1

0<δ2<1/2

min { 3δ1, 2(δ1 + δ2), δ1 + 4δ2, 6δ2, 3 − δ1, 5/2 − δ2 } > 0,

is obtained by straighforward optimization and is given by ξ = 15/7, obtained for 5/7 <

δ1 < 6/7 and δ2 = 5/14. With such a choice, there exists an eigenvalue E(ε) of H1(ε) that

satisfies

E(ε) = E0 + ε2 E2(ε) + O(εξ),

with ξ = 2 + 1/7.

We now turn to the construction of a complete asymptotic expansion for the energy level

E(ε) of H1(ε), as ε → 0.
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Theorem 3.7 Assume the hypotheses of Theorem 3.6 with the additional condition that

h(ε, W, Z) on Hel is C∞ in the strong resolvent sense in the variables (ε, W, Z). Then the

energy level E(ε) of H1(ε) admits a complete asymptotic expansion in powers of ε1/2. The

same conclusion is true for the corresponding quasimode eigenvector.

Proof Our candidate for the quasimode is again the formal expansion (2.9) truncated at

order εN/2 and multiplied by the cutoff function (3.8), i.e.,

ΨQ(ε, W, Z) = F(ε, W, Z)
N∑

j=0

εj/2 ψj/2(W, Z, W/ε, Z/
√

ε).

We shall determine ψj/2 and Tj/2 in (2.8) explicitly, but first we introduce some notation

for certain Taylor series. Expanding in powers of ε1/2, we write

Tj/2(W, Z) − Tj/2(εw, ε1/2z)

= Tj/2(W,Z) − Tj/2(0, 0) − ε1/2∂ZTj/2(0, 0) + ε
(
∂W Tj/2(0, 0)w + ∂Z2Tj/2(0, 0)w2/2

)
+ · · ·

≡ Tj/2(W, Z) − Tj/2(0, 0) +
∞∑

k=1

τ
(k/2)
j/2 (w, z) εk/2.

Next, our hypotheses imply that the function S(ε,W,Z) in (3.5)

E1(ε,W,Z) = E0 + Ẽ(ε, W, , Z) + S(ε, W, Z)

is C∞ in (ε,W,Z). Using (3.6), we write

E1(ε, εw, ε1/2z) = E0 + ε2 ENF (w, z) +
∞∑

m≥6

εm/2 Sm/2(w, z).

Note Because we have assumed E1(ε, W, Z) is even in Z, Sm/2(w, z) = 0 when m is odd,

but the notation is somewhat simpler if we include these terms.

We use this notation and substitute the formal series (2.9) and (2.10) into the eigenvalue

equation (2.7), with H2 given by (2.8). For orders n/2 with n ≤ 4, we find exactly what we

obtained in Section 2. When n ≥ 5, we have to solve

[h(ε, W, Z) − E1(ε, W, Z)] ψn/2 (3.12)

+ ENF (w, z)ψ(n−4)/2 + S6/2(w, z)ψ(n−6)/2 + S7/2(w, z)ψ(n−7)/2 + · · · + Sn/2(w, z)ψ0

22



+ (Tn
2
(W,Z) − Tn

2
(0, 0))ψ0 − τ

( 1
2
)

n−1
2

(w, z)ψ0 − τ
( 2
2
)

n−2
2

(w, z)ψ0 − · · · − τ
(n−6

2
)

6
2

(w, z)ψ0

+ (Tn−1
2

(W,Z) − Tn−1
2

(0, 0))ψ1/2 − τ
(1/2)
(n−2)/2(w, z)ψ1/2 − · · · − τ

(n−7
2

)
6
2

(w, z)ψ1/2

...

+ (T 7
2
(W,Z) − T 7

2
(0, 0))ψn−7

2
− τ

( 1
2
)

6
2

(w, z)ψ(n−7)/2

+ (T 6
2
(W,Z) − T 6

2
(0, 0))ψ(n−6)/2

− 1

2
∆w,zψ(n−4)/2 − ∂2

Z,zψ(n−5)/2 − ∂2
W,wψ(n−6)/2 − 1

2
∂2

Z,Zψ(n−6)/2 − 1

2
∂2

W,W ψ(n−8)/2

= E2 ψ(n−4)/2 + E5/2 ψ(n−5)/2 + · · · + En/2ψ0,

with the understanding that the quantities S, T and τ that appear with indices lower than

those allowed in their definitions are equal to zero.

We solve (3.12 by induction on n. We assume that{ Ej/2, ψ⊥
j/2(W,Z,w, z), Tj/2(W,Z) for j ≤ n − 1, and

fj/2(W,Z,w, z) for j ≤ n − 5

have already been determined, with f
‖
j/2(W,Z,w, z) = 0, for j ≥ 1.

We project (3.12) into the Φ(W, Z) direction and the orthogonal direction in the elec-

tronic Hilbert space to obtain two equations that must each be solved.

First, we take the scalar product of (3.12) with Φ(W,Z) in the electronic Hilbert space

to obtain

ENF (w, z)f(n−4)/2 + S6/2(w, z)f(n−6)/2 + S7/2(w, z)f(n−7)/2 + · · · + Sn/2(w, z)f0

+ (Tn
2
(W, Z) − Tn

2
(0, 0))f0 − τ

( 1
2
)

n−1
2

(w, z)f0 − τ
( 2
2
)

n−2
2

(w, z)f0 − · · · − τ
(n−6

2
)

6
2

(w, z)f0

+ (Tn−1
2

(W, Z) − Tn−1
2

(0, 0))f1/2 − τ
(1/2)
(n−2)/2(w, z)f1/2 − · · · − τ

(n−7
2

)
6
2

(w, z)f1/2

...

+ (T 7
2
(W, Z) − T 7

2
(0, 0)) fn−7

2
− τ

( 1
2
)

6
2

(w, z) f(n−7)/2

+ (T 6
2
(W, Z) − T 6

2
(0, 0)) f(n−6)/2
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− 1

2
∆w,zf(n−4)/2 − 〈Φ(W, Z), ∂2

Z,zψ(n−5)/2〉Hel
− 〈Φ(W, Z), ∂2

W,wψ(n−6)/2〉Hel

− 1

2
〈Φ(W, Z), ∂2

Z,Zψ(n−6)/2〉Hel
− 1

2
〈Φ(W, Z), ∂2

W,W ψ(n−8)/2〉Hel

= E2 f(n−4)/2 + E5/2 f(n−5)/2 + · · · + En/2 f0. (3.13)

We further project (3.13) into the f0 direction and the orthogonal direction in L2(IR2) to

obtain two equations that must each be solved.

We take the scalar product of (3.13) with f0 in L2(R2). Using f
‖
j/2 = 0 for j ≥ 1 and

(−1
2
∆w,z + ENF (w, z)) f0 = E2 f0, we obtain

En/2 = Tn
2
(W, Z) − Tn

2
(0, 0) (3.14)

+
n∑

j=6

〈 f0, Sj/2 f(j−6)/2 〉L2(R2) −
n−7∑
k=0

n−6−k∑
j=1

〈 f0, τ
(n−(j+k))/2)
j/2 fk/2 〉L2(R2)

−
〈

f0,
{
〈Φ(W, Z), ∂2

Z,zψ(n−5)/2〉Hel
+ 〈Φ(W,Z), ∂2

W,wψ(n−6)/2〉Hel

+
1

2
〈Φ(W,Z), ∂2

Z,Zψ(n−6)/2〉Hel
+

1

2
〈Φ(W,Z), ∂2

W,W ψ(n−8)/2〉Hel

}〉
L2(R2)

.

We can solve this equation for En/2 if the right hand side is independent of (W, Z). This will

be true, if we choose

Tn
2
(W, Z) = −

n∑
j=6

〈 f0, Sj/2 f(j−6)/2 〉L2(R2) +
n−7∑
k=0

n−6−k∑
j=1

〈 f0, τ
(n−(j+k))/2)
j/2 fk/2 〉L2(R2)

+
〈
f0,

{
〈Φ(W,Z), ∂2

Z,zψ(n−5)/2〉Hel
+ 〈Φ(W,Z), ∂2

W,wψ(n−6)/2〉Hel

+
1

2
〈Φ(W,Z), ∂2

Z,Zψ(n−6)/2〉Hel
+

1

2
〈Φ(W,Z), ∂2

W,W ψ(n−8)/2〉Hel

}〉
L2(R2)

We then are forced to take

En/2 = − Tn
2
(0, 0).

The first non-zero Tj/2(W,Z) is

T6/2(W, Z) =
1

2
〈Φ(W, Z), ∂2

Z Φ(W, Z) 〉Hel
− 〈 f0, S3 f0 〉L2(IR2). (3.15)

So,

E3 = 〈 f0, S3 f0 〉L2(IR2) − 1

2
〈Φ(0, 0), (∂2

Z Φ)(0, 0) 〉Hel
.
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We next equate the components on the two sides of (3.13) that are orthogonal to f0 in

L2(IR2). The resulting equation can be solved by applying the reduced resolvent rNF (E2),

which is the inverse of the restriction of (−1
2
∆w,z + ENF −E2) to the subspace orthogonal to

f0. We thus obtain

f(n−4)/2 = rNF (E2)

[
n−5∑
j=1

E(n−j)/2 f⊥
j/2 −

n∑
j=6

(Sj/2(w, z) f(j−6)/2)
⊥

+
n−7∑
k=0

n−6−k∑
j=1

(τ
(n−(j+k))/2)
j/2 (w, z)fk/2)

⊥ +
n−6∑
j=1

(T(n−j)/2(0, 0) − T(n−j)/2(W,Z))f⊥
j/2

+ 〈Φ(W, Z), ∂2
Z,z Ψ(n−5)/2 〉⊥Hel

+ 〈Φ(W, Z), ∂2
W,w Ψ(n−6)/2 〉⊥Hel

+ 〈Φ(W, Z), ∂2
Z,Z Ψ(n−6)/2 〉⊥Hel

+ 〈Φ(W, Z), ∂2
W,W Ψ(n−8)/2 〉⊥Hel

]
,

This solution has f(n−4)/2 = f⊥
(n−4)/2 orthogonal to f0, as claimed in Section 2. The first

non-trivial fj/2, for j ≥ 1 is

f⊥
1 (W, Z, w, z) = − rNF (E2) (S3(w, z) f0(w, z))⊥. (3.16)

Next, we equate the components of (3.12) that are orthogonal to Φ(W, Z) in Hel. We

solve the resulting equation for ψ⊥
n/2by applying the reduced resolvent r(W, Z) of h(ε, W, Z)

at E1(ε,W,Z). This yields

ψ⊥
n/2 = r(W,Z)

[
n−5∑
j=1

E(n−j)/2 ψ⊥
j/2 −

n∑
j=6

Sj/2(w, z) ψ⊥
(j−6)/2 (3.17)

+
n−7∑
k=0

n−6−k∑
j=1

τ
(n−(j+k))/2)
j/2 (w, z)ψ⊥

k/2 +
n−6∑
j=1

(T(n−j)/2(0, 0) − T(n−j)/2(W,Z))ψ⊥
j/2

+ (∂2
Z,z ψ(n−5)/2)

⊥ + ((∂2
W,w + ∂2

Z,Z) ψ(n−6)/2)
⊥

+ (∂2
W,W ψ(n−8)/2)

⊥ − (
1

2
∆w,z + ENF (w, z) − E2) ψ⊥

(n−4)/2

]
.

The first non-zero component ψ⊥
j/2 with j ≥ 0, is

ψ⊥
5/2(W, Z, w, z) = (∂zf0)(w, z) r(W, Z) (∂ZΦ)(W, Z). (3.18)

Finally, Proposition 3.9 below shows that each ψj/2 in this expansion belongs to D(ea(|W |/ε+|Z|/√ε)).

As a result, whenever a derivative acts on the cutoff, it yields a contribution whose L2 norm
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is exponentially small. This way, we can neglect such terms. For example

(∂WF(ε, W, Z)) ψj/2(W, Z, W/ε, Z/
√

ε) = ε−δ1 F ′(W/εδ1) F (Z/εδ2) ψj/2(W, Z, W/ε, Z/
√

ε).

The square of the L2 norm of this term is bounded by a constant times

ε−2δ1

∫
|W |/εδ1≥1,|Z|/εδ2≤2

|ψj/2(W,Z,W/ε, Z/
√

ε)|2e2a(|W |/ε+|Z|/√ε)e−2a(1/ε1−δ1 )dWdZ = O(ε∞).

Thus, we have constructed the non-zero quasimode (3.7) that satisfies the eigenvalue

equation up to an arbitrary high power of ε1/2.

The proof of Proposition 3.9 relies on the following lemma.

Lemma 3.8 Let V be a polynomial that is bounded below, such that the spectrum of H =

−1
2
∆ + V purely discrete. Let ϕ ∈ C∞(IRn) satisfy Dαϕ ∈ D(ea〈x〉), for all α ∈ Nn and any

a > 0. If R(λ) denotes the resolvent of H, then DαR(λ)ϕ ∈ D(ea〈x〉) for all α ∈ Nn and all

λ in ρ(H). The same is true for Dαr(E)ϕ, where r(E) is the reduced resolvent at E.

Proof We first note that elliptic regularity implies that the resolvent R(λ) maps C∞ func-

tions to C∞ functions. Next, applied to smooth functions in L2, we have the identity

[ ∂xj
, R(λ) ] = R(λ) (∂xj

V ) R(λ).

We claim that the operators on the two sides of this equation have bounded extensions to all

of L2. To see this, note that DβV is relatively bounded with respect to V for any β ∈ Nn,

because V is a polynomial. Furthermore, since H ≥ V , we see that DβV is relatively

bounded with respect to H, which implies the claim. Hence, for ϕ as in the lemma, we have

∂xj
R(λ) ψ = R(λ) ∂xj

ϕ + R(λ) (∂xj
V ) R(λ) ϕ. (3.19)

The first term on the right hand side of this equation belongs to D(ea〈x〉) since R(λ) maps

exponentially decaying functions to exponentially decaying functions (see Corollary 3.4). The

same is true for the second term, with a possible arbitrarily small loss on the exponential

decay rate, due to the polynomial growth of ∂xj
V . This provides the starting point for an

induction on the order of the derivative that appears in the conclusion of the lemma.

We now assume that for some α ∈ Nn, DαR(z)ϕ is a linear combination of smooth

functions of the form R(z)(Dγ1V )R(z) · · ·R(z)(Dγj−1V )R(z)Dγjϕ all of which belong to
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D(ea〈x〉), for any a > 0. We assume every γ that occurs here has |γ| ≤ |α|. Then ∂xj
DαR(z)ϕ

is a linear combination of elements of the form

∂xj
(R(z)(Dγ1V )R(z) · · ·R(z)(Dγj−1V )R(z)Dγjϕ)

Applying (3.19) successively, we see that the structure is preserved. Since all DγkV are

polynomial, Corollary 3.4 implies the result.

The statement for the reduced resolvent follows from the representation (3.4).

Proposition 3.9 Assume the hyptheses of Theorem 3.7. Let ψj/2(W, Z, w, z) be determined

by the construction above, where (W, Z) belongs to a closed neighborhood Ω of the origin and

(w, z) ∈ IR2. Then ψj/2 is C∞, and the function G(w, z) = sup(W,Z)∈Ω |ψj/2(W,Z,w, z)|
belongs to D(ea〈(w,z)〉).

Proof The hypothesis on the Hamiltonian and the properties of the normal form HNF

proven above imply that Φ(W, Z) and r(W, Z) are smooth, and that rNF (E2) maps smooth

functions to smooth functions. We also know that the non-degenerate eigenstate f0 is smooth

and belongs to D(ea〈(w,z)〉). The smoothness of ψj/2(W, Z, w, z) follows trivially in Ω× IR2.

Concerning the exponential decay, we observe that the (w, z) dependence of ψj/2 stems

from the successive actions of derivatives, reduced resolvents, and multiplications by polyno-

mials in (w, z), acting on the eigenstate f0. Lemma 3.8 applied in conjunction with Propo-

sition 3.5 shows that the exponential decay properties are preserved under such operations.

4 Technicalities

In this section, we present the proofs of Lemma 3.3 and Proposition 3.5.

Proof of Lemma 3.3 We first note that the hypothesis on p implies p(x) > 0 for any

x ∈ Rn, and that

e−2C|x−y| ≤ p(x)/p(y) ≤ e2C|x−y|. (4.1)

Let BR ∈ Rn be a ball of radius R > 0. We first show that f ∈ L2(BR+1) and ∆f ∈ L2(BR+1)

imply f ∈ H2(BR), where

H2(BR) = { f ∈ L2(BR), ∇f ∈ L2(BR), and ∆f ∈ L2(BR) }.
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We denote the usual H2(BR) norm by ‖ · ‖H2(BR). We now show the existence of a constant

K(R) > 0, which depends only on R, such that∫
BR

|∇f |2 ≤ K(R)

∫
BR+1

(|∆f |2 + |f |2) . (4.2)

Note This estimate does not hold in general if the balls over which one integrates have the

same radius.

We set g = ∆f on BR+1 and g(x) = 0 if |x| > R+1. We can then decompose f = f1 +f2

with f1 and f2 solutions to {
∆f1 = g, f1|∂BR+3

= 0

∆f2 = 0 |x| ≤ R + 1.

Thus, f1 ∈ H2(BR+3), and there exists a constant c1(R), which depends only on R, such

that

‖f1‖H2(BR+3) ≤ c1(R) ‖∆f1‖L2(BR+3) = c1(R) ‖∆f‖L2(BR+1), (4.3)

so that

‖∇f1‖L2(BR+1) ≤ ‖f1‖H2(BR+3) ≤ c1(R) ‖∆f‖L2(BR+1).

By the mean value property for harmonic functions, f2 also satisfies estimate (4.2), for some

constant K2(R) with ∆f2 = 0 (see e.g., Chapter 8 of [1]). Combining these arguments, we

see that for c2(R) = c1(R) + K2(R),∫
BR

|∇(f1 + f2)|2 ≤ c2(R)

∫
BR+1

(|∆f1|2 + |f2|2) ≤ c2(R)

∫
BR+1

(|∆f |2 + 2(|f |2 + |f1|2)).

But
∫

BR+1
|f1|2 ≤ ‖f1‖2

H2(BR+3), so (4.3) implies that (4.2) holds for some constant K(R).

Because of (4.1), we can insert the weight p into this estimate to establish the existence

of another constant K̃(R), which depends only on R, such that∫
BR

p |∇f |2 ≤ K̃(R)

∫
BR+1

p (|∆f |2 + |f |2). (4.4)

In other words, p1/2 ∇f ∈ L2
loc if f ∈ F 2

w.

A second step consists in showing that p1/2 ∇f is in L2(Rn) and satisfies (3.3). Let

χR ∈ C∞(Rn) be a truncation function such that 0 ≤ χR ≤ 1, with χR(x) = 1 if |x| ≤ R,

and χR(x) = 0 if |x| ≥ R + 1. We can take χR so that ‖∇χR‖∞ is independent of R. Let
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f ∈ F 2
w, and set fR = χRf . Since ∇fR = χR∇f + f∇χR, we see that ‖p1/2 ∇fR‖L2(BR) =

‖p1/2 ∇f‖L2(BR), and

lim
R→∞

‖p1/2 (fR − f)‖L2(Rn) → 0,

by Lebesgue dominated convergence. By the same argument with ∆fR = χR∆f + f∆χR +

2∇χR∇f ,

lim
R→∞

‖p1/2 (∆f − (χR∆f + f∆χR))‖L2(Rn) = 0.

We have the estimate ‖p1/2 ∇χR ∇f‖2
L2(BR+1) ≤ c2

∫
BR+1\BR

p1/2 |∇f |2, for some constant

c2, independent of R. We can cover the set BR+1\BR by a finite set of balls {B1(j)}j=1,···,N(R),

of radius 1, centered at points xj such that |xj| = R + 1/2. In each of these balls B1(j), we

can apply (4.4) (with a constant K̃1, independent of R), to see that∫
BR+1\BR

p |∇f |2 ≤ c2 K̃1

N(R)∑
j=1

∫
B2(j)

p (|∆f |2 + |f |2),

where B2(j) has radius 2 instead of 1. Using ∪N(R)
j=1 B2(j) ⊂ BR+3 \ BR−3, and taking into

account that certain points are counted (uniformly) finitely many times in the integral, we

eventually obtain

‖p1/2 ∇χR ∇f‖2
L2(Rn) ≤ c3

∫
BR+1\BR

p (|∆f |2 + |f |2),

where c3 is uniform in R. By the dominated convergence theorem again, this integral goes

to zero as R goes to infinity. So, we finally obtain

lim
R→∞

‖p1/2 (∆f − ∆fR))‖L2(Rn) = 0.

Since fR belongs to H2
c (Rn), the set of compactly supported functions in H2, we compute

∇ · (p f̄R ∇fR

)
= p f̄R ∆fR + |∇fR|2 p + f̄R ∇p ∇fR.

Since fR has compact support, Stokes Theorem and our hypotheses on ∇p show that∫
p |fR|2 =

∣∣∣∣∫ f̄R ∆fR p +

∫
f̄R ∇p ∇fR

∣∣∣∣
≤

(∫
|∆fR|2p

)1/2 (∫
|fR|2p

)1/2

+ 2 C

(∫
|fR|2p

)1/2 (∫
|∇fR|2p

)1/2

,

or, in other words,

‖∇fR‖2
p ≤ ‖∆fR‖w ‖fR‖w + 2 C ‖∇fR‖w ‖fR‖w.

29



This estimate implies (3.3) for fR. The right hand side of that estimate has a finite limit as

R → ∞ with f in place of fR on the right hand side. Since∫
BR

p |∇f |2 ≤
∫

p |∇fR|2,

we deduce that p |∇f |2 ∈ L1(Rn) and satisfies (3.3).

Proof of Proposition 3.5 We use the following Paley–Wiener theorem, Theorem IX.13

of [11]:

Let f ∈ L2(IRn). Then ea|x|f ∈ L2(IRn) for all a < a′ if and only if f̂ has an analytic

continuation to the set {p : |Im p| < a′} with the property that for each t ∈ IRn with |t| < a′,

f̂(· + it) ∈ L2(IRn), and for any a < a′, sup|t|≤a′ ‖f̂(· + it)‖2 < ∞.

We refer to the conditions on f̂ in this theorem as “the Paley–Wiener conditions.”

Since ea|x| ϕ ∈ L2(IRn) is equivalent to ϕ ∈ D(ea〈x〉), Proposition 3.2 shows that ϕ̂ is

analytic everywhere and satisfies the Paley–Wiener conditions. The functions p 7→ pj ϕ̂(p)

and p 7→ ∑
j p2

j ϕ̂(p) also satisfy these conditions.

As a preliminary remark, we note that for any fixed t ∈ IRn, there exist K(t) > K̃(t) > 0

and R(t) > 0, such that if p ∈ IRn satisfies
∑

j p2
j ≥ R(t), then

K̃(t)
n∑

j=1

p2
j ≤

∣∣∣∣∣
n∑

j=1

(pj + itj)
2

∣∣∣∣∣ ≤ K(t)
n∑

j=1

p2
j . (4.5)

So, if BR is a ball of radius R with center at the origin, −∆̂ϕ satisfies∫
IRn\BR(t)

(
n∑

j=1

p2
j

)2

|ϕ̂(p + it)|2 dp < ∞, (4.6)

uniformly for t in compact sets of IRn.

We now start an induction on the length |α| of the multi-index α in Dαϕ. We first

show that p 7→ pj pk ϕ̂(p) satisfies the Paley–Wiener conditions for any j, k ∈ {1, · · · , n}.
Note that we only need to prove estimates for large values of the |pj|’s. Also, note that if∑n

j=1 p2
j ≥ R(t) > 1, there exists a constant C(t) > 0 such that

| (pj + itj) (pk + itk) | ≤ C(t)
n∑

j=0

p2
j , (4.7)
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Therefore, (4.6) implies that∫
IRn\BR(t)

| (pj + itj) (pk + itk) |2 |ϕ̂(p + it)|2 dp

≤ C2(t)

∫
IRn\BR(t)

(
n∑

j=1

p2
j

)2

|ϕ̂(p + it)|2 dp

< ∞,

uniformly for t in compact sets of IRn. Hence, ∂xj
∂xk

ϕ ∈ D(ea〈x〉) for any a > 0.

We next turn to third order derivatives. Consider the derivative of −∆ϕ+(V −E)ϕ = 0.

For any j ∈ { 1, · · · , n},

∂xj
∆ϕ = (∂xj

V )ϕ + (V − E) ∂xj
ϕ.

Since V is a polynomial, Proposition (3.2) shows that ∂xj
∆ϕ ∈ D(ea〈x〉), for any a > 0.

Thus, the function p 7→ pj (
∑n

j=0 p2
j) ϕ̂(p) satisfies the Paley–Wiener conditions.

Consider now any triple of indices j, k, l. For
∑n

j=0 p2
j ≥ R(t), we have

| (pj + itj) (pk + itk) (pl + itl) | ≤ C(t) |pj + itj|
n∑

j=0

p2
j .

Hence, using this estimate with (4.6), we deduce that∫
IRn\BR(t)

| (pj + itj) (pk + itk) (pl + itl) |2 |ϕ̂(p + it)|2 dp

≤ C2(t)

∫
IRn\BR(t)

|pj + itj|2
(

n∑
j=1

p2
j

)2

|ϕ̂(p + it)|2 dp

< ∞,

uniformly for t in compact sets of IRn. Therefore, the Paley–Wiener Theorem asserts that

∂xj
∂xk

∂xl
ϕ ∈ D(ea〈x〉), for any a > 0.

We now proceed by assuming Dβϕ ∈ D(ea〈x〉), for any a > 0 and any β, such that

|β| ≤ m. Let α have |α| = m + 1. Let α̃ be any multi-index of length m− 1. Differentiating

the eigenvalue equation again, Leibniz’s formula yields

Dα̃∆ϕ =
∑

0≤γ≤α̃

C α̃
γ

(
Dα̃−γ(V − E)

)
Dγϕ, (4.8)

where the C α̃
γ are multinomial coefficients. The induction hypothesis and the assumption

that V is a polynomial show that Dα̃ ∆ϕ ∈ L2(IRn). Therefore, p 7→ pα̃ (
∑n

j=1 p2
j) ϕ̂(p)
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satisfies the Paley–Wiener conditions. In α, there are two indices, αj and αk, not necessarily

distinct, which are larger or equal to one, such that we can write

(p + it)α (4.9)

= (p1 + it1)
α1 · · · (pj + itj)

αj−1 · · · (pk + itk)
αk−1 · · · (pn + itn)αn (pj + itj) (pk + itk).

Estimating the absolute value of the last two factors by (4.7) and using that

α̃ = (α1, · · · , αj − 1, · · · , αk − 1, · · · , αn) has length m − 1, we see that p 7→ pα ϕ̂(p) satisfies

the Paley–Wiener conditions. Hence, Dαϕ ∈ D(ea〈x〉) for any a > 0.
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