
SOLVABILITY p−LAPLACE EQUATION WITH DILATIONS
AND COMPRESSIONS

OLEG ZUBELEVICH

DEPARTMENT OF DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

ORDZHONIKIDZE ST., 3, 117198, MOSCOW, RUSSIA

E-MAIL: OZUBEL@YANDEX.RU

Abstract. We consider p−Laplace, p > 1 boundary value problem
with certain functional operator situated in major terms and prove weak
existence theorem.

1. Introduction

The p−Laplacian appears in the study of flow through porus media (p =
3/2), nonlinear elasticity (p ≥ 2) and glaciology (p ∈ (1, 4/3]). We refer to
[6] for more background material.

For p−Laplace equation with right hand side homogeneous in u, existence
and nonexistence results were obtained by many authors, see for example
[4], [9], [6], [7]. Variational methods were employed in [10] and others when
trying to find positive solutions.

Functional differential operators placed in the Laplacian including dila-
tion/compression operators were studied in [3], [5].

We consider elliptic problem with nonlocal linear operators situated inside
the Laplacian:

∆pAu = f(x) ∈ H−1,p∗(M), u |∂M= 0,
1
p

+
1
p∗

= 1, (1.1)

here A is a certain bounded linear operator. If operator A is a small pertur-
bation of the identity then, as it is not hard to show, the problem remains
coercive, as for monotonicity, this property is much delicate to check, and
possibly it is destroyed even under the small perturbation. It should be
noted that in the linear case (p = 2) the monotonicity property is steady
under the small perturbation.

On the other hand, using standard variational technique we have to con-
sider weak convergent sequences but the operator A has not necessarily to
be continuous with respect to weak convergence.

2000 Mathematics Subject Classification. 35J60.
Key words and phrases. Boundary value problems, p-Laplacian, nonlocal problems.
Partially supported by grants RFBR 05-01-01119.

1



2 OLEG ZUBELEVICH

Our version of variational method allows to prove the existence theorem
avoiding of using the monotonicity or weak convergence.

Linear case of equation (1.1) with nonlocal operator of the argument’s
dilation/compression

Au =
k∑

i=−k

aiu(qix), q > 1, aj ∈ R

was studied in [12], [13]. The case of coefficients ak dependent on x was
considered in [14] in the linear setup.

Boundary value problems for elliptic functional-differential equations have
been studied in the articles [2], [11] and others.

Boundary value problems for elliptic equations with shifts in the space
variables were considered in [8], [17].

A theory of boundary value problems for elliptic differential-difference
equation in a bounded domain was constructed in [15].

2. Main theorem

Let M be a bounded domain in Rm with smooth boundary ∂M and
x = (x1, . . . , xm) be coordinates in Rm. Denote by ∂i the partial derivative
in the variable xi.

For any v ∈ Lr(M), r ≥ 1 and w ∈ Lr∗(M), 1/r + 1/r∗ = 1 we put

(v, w) =
∫

M
v(x)w(x) dx.

Denote by W a space of bounded linear operators G : H1,p
0 (M) →

H1,p(M), p > 1 with the following properties.
For any operator G ∈ W there exists a bounded operator G+ : Lp(M) →

Lp(M) such that:

∂iG = G+∂i, ‖G+w‖Lp(M) ≥ c0‖w‖Lp(M). (2.1)

Positive constant c0 depends only on G. Let

G+∗ : Lp∗(M) → Lp∗(M),
1
p

+
1
p∗

= 1

be conjugated operator, then there is a bounded operator G+∗+ : H−1,p∗(M) →
H−1,p∗(M) satisfying the equation:

∂iG
+∗ = G+∗+∂i. (2.2)

It is clear, the space W is an associative algebra with unit.
Denote by L(H1,p

0 (M)) the space of bounded linear operators of H1,p
0 (M)

to itself, and if T ∈ L(H1,p
0 (M)) then

‖Tv‖
H1,p

0 (M)
≥ c5‖v‖H1,p

0 (M)
, (2.3)

here c5 is another positive constant dependent only on T .
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Introduce an operator A : H1,p
0 (M) → H1,p(M) by the formula:

A = GT, G ∈ W, T ∈ L(H1,p
0 (M)). (2.4)

Another operator to regard is B = T ∗G+∗+ : H−1,p∗(M) → H−1,p∗(M).
Consider the p-Laplace operator:

∆pv =
m∑

i=1

∂i(|∂iv|p−2∂iv).

The main object of our study is the following elliptic problem:

∆pAu = f(x) ∈ Lp∗(M), u |∂M= 0. (2.5)

Theorem 1. If Bf ∈ Lp∗(M) and kerB = 0 then problem (2.5) has a weak
solution u ∈ H1,p

0 (M) i.e. for any h ∈ H1,p
0 (M) one has

−
m∑

i=1

(|∂iAu|p−2∂iAu, ∂ih) = (f, h).

3. Application: Dilation and Compression Operators

Assume the domain M to be star-shaped with respect to the origin.
Define an operator σ : Lr(M) → Lr(Rm), r ≥ 1 as follows:

σv =

{
v(x) if x ∈ M,

0 if x ∈ Rm\M.

Construct an operator: Rav = (σv)(ax), a > 0. This operator di-
lates/compresses the graph of the function v(x) in a times, here a is a
constant.

One can show that the operator Ra is bounded as an operator of the
space H1,r

0 (M), r ≥ 1 to H1,r(M) and as an operator of Lr(M) to itself.
Changing the variable in the integral one obtains that

‖Ra‖Lp(M)→Lp(M) ≤ a
−m

p . (3.1)

The operator Ra commutes with the partial derivatives in the following
fashion:

∂iRa = R+
a ∂i, R+

a = aRa.

The operator R∗
a can also be written in the explicit form: letting R∗

a =
a−mRa−1 and by the change of variable x 7→ a−1x in the integral we make
sure that (Rav, w) = (v, R∗

aw). So, one has: R+∗
a = a1−mRa−1 and R+∗+

a =
a−mRa−1 = R∗

a.
To define operator R+∗+

a on H−1,p∗(M) recall a theorem.

Theorem 2 ([1]). Any element g ∈ H−1,p∗(M) presents as follows

g = g0 +
m∑

i=1

∂igi, gj ∈ Lp∗(M), j = 0, . . . ,m. (3.2)
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Moreover,

‖g‖p∗

H−1,p∗ (M)
= min

m∑

i=0

‖gi‖p∗

Lp∗ (M)
.

The minimum being taken over, and attained on the set of all functions
gi i = 0, . . . , m for which (3.2) holds.

Now we put:

(R+∗+
a g, h) = (g0, Rah)−

m∑

i=1

(gi, ∂iRah), h ∈ H1,p
0 (M).

With the help of Theorem 2 one finds:

‖R+∗+
a ‖H−1,p∗ (M)→H−1,p∗ (M) ≤ max{a−m

p , a
1−m

p }. (3.3)

Introduce an operator

G = G1 . . . Gn, Gi = id
H1,p

0 (M)
+ λiRai , λi ∈ C, i = 1, . . . , n.

We claim that under certain assumptions on constants λi the operators
Gi belong to the space W and thus the operator G also belongs to W.
Moreover, if the operator B is taken with such G and

T = id
H1,p

0 (M)
,

then the conditions of Theorem 1 hold and thus, problem (2.5) being con-
sidered with the operator A = G, has the weak solution.

We take constants λi such that if a function u is real-valued then the
function Gu is also real-valued.

Evidently, if the operators G+
i , G+∗+

i , i = 1, . . . , n are invertible, then
all the specified conditions are fulfilled.

Consider operators G+
i = idLp(M) + λiaiRai . By formula (3.1), for invert-

ibility of these operators it is sufficient to have

|λi|ai‖Rai‖Lp(M) ≤ |λi|a
1−m

p

i < 1, i = 1, . . . , m.

By the same arguments and formula (3.3) for invertibility of operators G+∗+
i

we put

|λi|max{a−
m
p

i , a
1−m

p

i } < 1, i = 1, . . . , m.

As a result of these observations formulate the following proposition.

Proposition 1. If

|λi|max{a−
m
p

i , a
1−m

p

i } < 1, i = 1, . . . , m. (3.4)

and the operator G takes any real-valued function to the real-valued one,
then problem (2.5) being considered with the operator A = GT , has the weak
solution.



SOLVABILITY p−LAPLACE EQUATION WITH DILATIONS AND COMPRESSIONS 5

4. Proof of Theorem 1

Consider a linear function

J : H1,p
0 (M) → R, J(v) = (Bf, v).

We are going to minimize this function on the level set of a function

F : H1,p
0 (M) → R, F (v) =

∫

M

m∑

i=1

|∂iAv|p dx.

Such a variational scheme is not quite standard: problems with homogeneous
right hand side are usually treated in the opposite way: it is the function
F (v) whose conditional extremum is looked for.

Lemma 1. There are positive constants c2, c4 such that for any v ∈ H1,p
0 (M)

one has
c4‖v‖p

H1,p
0 (M)

≥ F (v) ≥ c2‖v‖p

H1,p
0 (M)

.

Proof. The estimate from above immediately follows from the boundedness
of the operator A:

F (v) ≤ ‖Av‖p
H1,p(M)

≤ c4‖v‖p

H1,p
0 (M)

.

Using formulas (2.1), (2.3) we derive
m∑

j=1

∫

M
|∂jGTu|p dx =

m∑

j=1

∫

M
|G+∂jTu|p dx ≥ cp

0‖Tu‖p

H1,p
0 (M)

≥ cp
0c

p
5‖u‖p

H1,p
0 (M)

.

¤
The following Corollary is the main of importance.

Corollary 1. A function

ν(v) = (F (v))
1
p

is an equivalent norm of H1,p
0 (M) and thus, the set

S = {v ∈ H1,p
0 (M) | F (v) = 1}

is a unit sphere of H1,p
0 (M) with respect to the norm ν.

Lemma 2. The function J |S attains its minimum, say at v̂.

Proof. By the conditions of the Theorem, the function J can be extended
continuously to the space Lp(M), we do not introduce another notation for
this extension.

Theorem 3 ([16]). Let V, W be Banach spaces, and let the space V be
reflexive. If a linear operator Q : V → W is compact, then the image of the
closed unit ball B ⊂ V under Q is compact.
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Applying this theorem to the embedding H1,p
0 (M) ⊂ Lp(M) we see that

the ball
B = {v ∈ H1,p

0 (M) | ν(v) ≤ 1}
is a compact subset of Lp(M). Thus the function J attains its minimum
at B, denote this minimum by v̂. Since J is a linear function we have:
v̂ ∈ S = ∂B. ¤

Consider weak derivatives:

J ′h =
d

ds

∣∣∣
s=0

J(v̂ + sh) = (Bf, h) = J(h), h ∈ H1,p
0 (M), (4.1)

F ′(v̂)h =
d

ds

∣∣∣
s=0

F (v̂ + sh) = p
m∑

i=1

(|∂iAv̂|p−2∂iAv̂, ∂iAh). (4.2)

There is standard relation between these derivatives. This relation is de-
scribed as follows.

Lemma 3. The following inclusion holds:

kerF ′(v̂) ⊆ ker J ′. (4.3)

Proof. Let
h ∈ kerF ′(v̂). (4.4)

Define a function of two real arguments by the formula:

ϕ(y, t) = F (yv̂ + th).

We want to show that for some positive t0 there exists such a function
y(t) ∈ C1(−t0, t0), y(0) = 1 that satisfies an equation

ϕ(y(t), t) = 1. (4.5)

If it would be true, then the set {y(t)v̂ + th | |t| < t0} is a curve on the
manifold S. This curve passes across the point v̂ and has h as a tangent
vector at this point.

Observing that ϕ(1, 0) = F (v̂) = 1 and

ϕy(y, t) |(y,t)=(1,0) = F ′(yv̂ + th)v̂ |(y,t)=(1,0)

= F ′(v̂)v̂ = pF (v̂) = p 6= 0, (4.6)

we see that equation (4.5) satisfies to the conditions of the implicit function
theorem, thus we obtain desired function y(t).

Note that the derivative of the function y(t) vanishes at zero:

yt(0) = 0. (4.7)

Indeed, since F (y(t)v̂ + th) = 1 for |t| < t0, we have
d

dt

∣∣∣
t=0

F (y(t)v̂ + th) = F ′(y(0)v̂)(yt(0)v̂ + h)

= yt(0)F ′(v̂)v̂ + F ′(v̂)h = 0. (4.8)

Combining formula (4.8) with (4.4) and (4.6) we obtain (4.7).
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Since y(t)v̂ + th ∈ S for |t| < t0, and by Lemma 2 a function ρ(t) =
J(y(t)v̂ + th) attains its local minimum at t = 0 so we have:

ρt(0) = J ′(yt(0)v̂ + h) = 0.

This formula and formula (4.7) imply: J ′h = 0. ¤

According to the Lagrange multipliers theorem, formula (4.3) implies that
there exists such a constant λ that λF ′(v̂) = J ′. In other words for any
h ∈ H1,p

0 (M) formulas (4.1), (4.2) give:

pλ
m∑

i=1

(|∂iAv̂|p−2∂iAv̂, ∂iAh) = (Bf, h). (4.9)

Let us transform the left side of (4.9). Put wi = |∂iAv̂|p−2∂iAv̂, and write

(wi, ∂iAh) = (wi, ∂iGTh). (4.10)

Using formulas (2.1), (2.2) we calculate:

(wi, ∂iGTh) = (wi, G
+∂iTh) = (G+∗wi, ∂iTh)

= −(∂iG
+∗wi, Th) = −(G+∗+∂iw, Th) = −(T ∗G+∗+∂iwi, h).

By this formula and (4.10) it follows that

(wi, ∂iAh) = −(B∂iwi, h). (4.11)

Substituting (4.11) to (4.9) one has:

−pλ
m∑

i=1

B∂i(|∂iAv̂|p−2∂iAv̂) = Bf. (4.12)

By assumption of the Theorem kerB = 0, thus equation (4.12) is equivalent
to the following one:

−pλ
m∑

i=1

∂i(|∂iAv̂|p−2∂iAv̂) = f. (4.13)

Let a constant τ be a root of the equation −pλ|τ |p−2τ = 1. Then substi-
tuting in (4.13) the expression v̂ = τu, we see that the function u solves
(2.5).

The Theorem is proved.
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for setting up of the problem. The author also thanks Dr. L. E. Rossovskĭı
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linéaires. Dunod, Paris, 1969.

[7] A. Szulkin, Ljusternik-Schnirelmann theory on C1 manifolds. Ann. Inst. H. Poincaré.
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