
Applications of the Galton-Watson process to

human DNA evolution and demography

Armando G. M. Neves and Carlos H. C. Moreira

UFMG, Departamento de Matematica, Caixa Postal 702, 30123-970, B. Horizonte
- MG, Brazil

Abstract

We show that the problem of existence of a mitochondrial Eve can be understood
as an application of the Galton–Watson process and presents interesting analogies
with critical phenomena in Statistical Mechanics. In the approximation of small
survival probability, and assuming limited progeny, we are able to find for a ge-
nealogic tree the maximum and minimum survival probabilities over all probability
distributions for the number of children per woman constrained to a given mean.
As a consequence, we can relate existence of a mitochondrial Eve to quantitative
demographic data of early mankind. In particular, we show that a mitochondrial
Eve may exist even in an exponentially growing population, provided that the mean
number of children per woman N is constrained to a small range depending on the
probability p that a child is a female. Assuming that the value p ≈ 0.488 valid
nowadays has remained fixed for thousands of generations, the range where a mi-
tochondrial Eve occurs with sizeable probability is 2.0492 < N < 2.0510. We also
consider the problem of joint existence of a mitochondrial Eve and a Y chromo-
some Adam. We remark why this problem may not be treated by two independent
Galton–Watson processes and present some simulation results suggesting that joint
existence of Eve and Adam occurs with sizeable probability in the same N range.
Finally, we show that the Galton–Watson process may be a useful approximation
in treating biparental population models, allowing us to reproduce some results
previously obtained by Chang and Derrida et al..
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1 Introduction

Francis Galton and the reverend H. W. Watson formulated and solved in 1874
the model named after them to explain the phenomenon of disappearance
of family names. They considered that family names are passed by men to
further generations only by their male children. Also, the number of sons
of each man is considered as a random variable taking value r ∈ {0, 1, 2, . . .}
with probabilities q0, q1, q2, . . . respectively. The number of sons of two men are
considered as independent random variables and the values of the qr identical
for any man at any time.

With these hypotheses, a probability of occurrence can be assigned to each
genealogic tree. The basic result of Galton and Watson, reviewed in section
2, is that if

∑∞
r=1 rqr > 1, the probability of the genealogic tree being infinite

is positive. In other words, if the mean number of sons is greater than 1, a
positive fraction of all family names existing at some time will survive after
any finite number of generations.

The Galton–Watson (GW) process has been exhaustively studied since then,
together with some of its generalizations. The field came to be known in Math-
ematics as the theory of branching processes [1]. Applications of the GW pro-
cess in Evolutionary Genetics date at least back to the 1920’s in a work by
Haldane [2] on the survival of mutant genes.

In section 4 we shall introduce the basics on mitochondrial DNA inheritance
and the mitochondrial Eve. The idea of applying the GW model to study
these issues seems to have appeared for the first time in [3]. That paper has
the importance of having shown that a strict population bottleneck is not
necessary for the existence of a mitochondrial Eve. On the other hand, it
explicitly claims that the existence of a mitochondrial Eve in an exponentially
increasing population is impossible.

Our main result is the possibility of existence of a mitochondrial Eve in an
exponentially growing population. Using realistic data on the number of hu-
mans living at the time of the mitochondrial Eve and the time elapsed since
then, we show that a mitochondrial Eve occurs with sizeable probability, up
to 37%, if the mean number of children per woman lies between 2.0492 and
2.0510 and the maximum number of children per woman is 10. These figures
are obtained without any further knowledge on the probability distribution for
the number of children per woman by using an optimization argument over
all possible probability distributions.

Despite the simplicity of the arguments and the idea of using a well-known
model, as far as we know these results have never been explicitly stated before.
We have seen no improvements on the results in [3] in the Biology literature. A
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different path is to produce Monte Carlo simulations of interesting and more
complicated population models and see that these models exhibit a mitochon-
drial Eve [4–7]. Although much can be learned from these simulations, results
are restricted to a finite number of probability distributions for the number
of children and run into serious problems for quickly growing populations.
As a simple exactly solvable model for mitochondrial DNA inheritance, the
GW process may be useful in better understanding such simulations, its role
being analogous to the one of the two-dimensional Ising model in Statistical
Mechanics.

An important consequence of our results is that the existence of a mitochon-
drial Eve in an increasing population shows that the Multiregional Evolution
hypothesis in Anthropology cannot be discarded.

Although the same GW model might be used to study existence of the male
analogue of the mitochondrial Eve - the Y chromosome Adam - we will explain
why the question of joint existence of a mitochondrial Eve and a Y Adam is
more difficult. We present two results of small simulations of reasonable models
and see that the numbers of surviving mitochondrial DNA and Y chromosome
lineages are correlated and joint existence of a mitochondrial Eve and a Y
Adam occurs with a non-negligible probability if demographic parameters are
chosen consistently.

Finally, we further analyze a model of a biparental population. In the GW
model, individuals receive the relevant information from a single parent. In the
family name problem, the information is the family name and the parent which
transmits it is the father. In the mitochondrial DNA inheritance problem, it is
the mother who transmits the information. Chang [8] and Derrida, Manrubia
and Zanette [9–11] independently presented results on the generalization of
the GW model to the biparental case. Both groups consider a population of
fixed size N with the number of children per individual obeying a Poisson
distribution with mean 2. They show that after a small number of generations
of order log N and with large probability, a fraction of about 20% of the
initial population will have no descendants at all. More surprisingly, with large
probability, the remaining 80% of the initial population will be ancestors to
the whole population also after a number of generations of order log N . We
will reproduce the above results in a much simpler way by using again the
GW model and a reasonable approximation.

Our paper is organized as follows. In section 2 we shall review the basic results
on the GW model. In section 3 we shall deal with the time scales related to
two events: the convergence to the infinite generations limit and the extinction
of trees. Although the results in this section are probably not original, we feel
that scarce interest has been devoted in the applications literature to these
important issues. In section 4, we briefly introduce the relevant genetic and
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anthropologic background and proceed to apply the GW results to the prob-
lems of the mitochondrial Eve and Y Adam. In section 5 we study applications
to a biparental model similar to the ones studied by Chang and Derrida et al..
Some concluding remarks are presented in section 6.

2 The Galton–Watson model

Consider the set T of all rooted tree graphs, finite and infinite. The root of
each tree will be referred to as generation 0. The vertices immediately linked
to the root are vertices at generation 1 and, in general, vertices linked to the
vertices at generation k are at generation k − 1 if one is going towards the
root and at generation k + 1 if one is going away from it. Let also numbers
q0, q1, . . . be given such that qr ≥ 0, r = 0, 1, 2, . . . and

∑∞
r=0 qr = 1.

The GW process may be thought of as the assignment of a probability measure
P to subsets of T according to the following rule. If T ∈ T is a tree with a
vertex v at generation k, we define c(v) as the number of vertices at generation
k + 1 stemming from v. In other words, c(v) is the number of “children” of v.
The probability of a tree is

P (T ) =
∏

v∈T

qc(v) . (1)

In the family name problem of Galton and Watson, the root of a tree is a man
bearing some family name and each tree is some possible male genealogy of
his, i.e. his sons, the sons of his sons and so on, each son being linked to his
father. The numbers qr mean the probability that a man has r sons, P (T )
is the probability of genealogy T and the way P was constructed reflects the
properties of statistical independence of men and time independence of the
progeny distribution built in the model.

Let En ⊂ T be the set of all trees which come to an end, but not after
generation n, and E = ∪∞n=0En. In the family name problem, E means of
course the set of all genealogies which lead to extinction of the family name of
the man in the root. Define also the generating function S(x) of the probability
distribution defined by the qr as

S(x) =
∞∑

r=0

qrx
r (2)

and let θn = P (En) be the probability of extinction in at most n generations.
We also denote θn = 1 − θn. As any tree in En can be thought of as formed
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by its root, its first generation, if present, and, attached to each vertex in the
first generation, a tree in En−1, then

θn = P (En) =
∞∑

r=0

qr P (En−1)
r = S(θn−1) , (3)

where the rth term in the sum corresponds to the possibility that the root has
r children. Taking limits at both sides,

θ = S(θ) , (4)

where θ = limn→∞ θn is the extinction probability, a fixed point of S according
to (4). The initial condition to be used in conjunction with (3) in order to
determine θn is θ0 = q0.

The normalization of the qr’s implies by (2) that 1 is a fixed point of S. Since
S is non-decreasing with all derivatives non-decreasing in [0, 1], it will have a
second fixed point in [0, 1) if and only if S ′(1) > 1. There may be no other
fixed points of S in [0, 1]. Regarding number and attractiveness [12] of the
fixed points of S in [0, 1], we may have three different regimes:

(i) If S ′(1) < 1, then 1 is the only fixed point and it is attractive.
(ii) If S ′(1) > 1, then 1 is a repulsive fixed point, whereas the other fixed point

is attractive.
(iii) If S ′(1) = 1, then 1 is again the only fixed point in [0, 1] and it is weakly

attractive.

These results imply that θ = 1− θ is 0 if S ′(1) ≤ 1 and positive otherwise. As

S ′(1) =
∞∑

r=1

rqr = m ,

where m is the mean number of children of the vertices, we have recovered
the classical result [1] that the probability θ that a family name survives is
positive only if m > 1 and zero otherwise.

The survival probability may be obtained by finding the solution for (4) in
[0, 1). If m > 1 and m close enough to 1, then θ ≈ 1. Replacing S by its Taylor
polynomial of degree 2 around 1 we find

θ ≈ θa =
2(m− 1)∑∞

r=2 r(r − 1) qr

=
2(m− 1)

v + m(m− 1)
, (5)

where v =
∑∞

r=0(r − m)2qr is the variance of the number of children of the
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vertices. From the non-negativity of S ′′′, it follows that θa is actually a lower
bound for θ. We shall refer to the above approximation for θ as the small
survival probability approximation.

A last fact we quote without proof regards the typical number Zn of branches
of a tree at generation n. Of course, as trees are regarded as genealogical
histories to which we assign probabilities, Zn is a random variable. When
trees do not terminate at a finite number of generations, it is expected that
Zn+1 is approximately mZn because in the average each vertex at generation
n should produce m children. If this simple reasoning is indeed true, we should
have Zn ∼ mn. This fact is rigorously proved in [1], chapter I, section 8.1. In
simple words, populations in the GW process grow in the average exponentially
according to the Malthus law.

3 Time scales

In the applications to follow, we shall need to consider two time scales related
to the GW process. The first is the number of generations it takes for the θn

in (3) to approach θ in (4). The second is the typical number of generations
in a finite tree.

By subtracting (3) from (4) and using the mean value theorem of Calculus,
there must then exist α ∈ (θn−1, θ) such that θ − θn = S ′(α) (θ − θn−1).
Iterating this argument, we obtain θ − θn0+k =

∏k
j=1 S ′(αj) (θ − θn0). For

large enough n0, we may approximate each αj by θ, from which it follows, if
S ′(θ) 6= 1, that

θn − θ ∼ e−n/ξ (6)

with the correlation time being

ξ = −1/ ln[S ′(1− θ)] . (7)

In the critical regime S ′(1) = 1, the correlation time diverges. In this case,
instead of the exponential decay in (6), the convergence of θn to θ = 0 is
polynomial if S ′′′(1) < ∞:

θn ∼ 2

S ′′(1) n
. (8)

A proof of this is given in [1], chapter 1, section 10.2.
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...

Fig. 1. Trees with exactly one generation.

A curious fact which will be useful later is that in the small survival probability
approximation, although θ in (5) depends on the variance v of the probability
distribution for the number of children of the vertices, ξ does not. Indeed, the
reader may check that if m is close to 1, either larger or smaller,

ξ ≈ 1

|m− 1| . (9)

Let us now consider the typical number of generations in a finite tree. In order
to calculate that, define pn as the probability that a tree terminates exactly
at the nth generation. Then p0 = q0 and for n ≥ 1

pn = P (En \ En−1) . (10)

The trees in E1 \ E0 are shown in figure 1 and their probabilities add up to
p1. By using (1) we see that

p1 = q1q0 + q2q
2
0 + q3q

3
0 + . . . = S(q0) − q0 = S(p0) − p0 .

If we want now to calculate pn, n ≥ 2, we may consider similar trees, but
instead of terminating at generation 1, we think that appended to each vertex
at generation 1 there is a tree with at most n − 1 generations rooted at that
vertex, i.e. a tree in En−1. If the number of vertices at generation 1 is k,
then at least one of the k trees appended to these vertices must not be in
En−2 ⊂ En−1. Otherwise, the tree would terminate in less than n generations.
Thus we calculate the contribution of the trees with k vertices at generation
1 to pn by allowing trees in En−1 appended to all vertices and subtracting the
case of all such those trees being in En−2. We mean that for n ≥ 2,

pn =
∞∑

k=1

qk

[
P (En−1)

k − P (En−2)
k
]

= S(P (En−1)) − S(P (En−2)) .

Using now that P (En) =
∑n

r=0 pr, we obtain

pn = S(
n−1∑

r=0

pr) − S(
n−2∑

r=0

pr) . (11)
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Of course, θ =
∑∞

r=0 pr. Then the probability pn that a finite tree has exactly
n generations must tend to 0 as n → ∞. We may calculate the speed of this
convergence by using again the mean value theorem trick in (11). For large
enough n, we get pn ∼ e−n/ξ with ξ being given by (7). It turns out that the
two time scales we wanted to consider are equal.

4 Mitochondrial Eve and Y Adam

4.1 Mitochondrial DNA and human evolution

Although most of the genetic information in higher animals is located at cells’
nuclei, some DNA may be found in the subcellular organelles called mitochon-
dria. These structures are present in large numbers in nearly every cell and
play a key role in metabolism. Mitochondrial DNA (mtDNA) is very short;
in humans it consists in only 16,569 base pairs carrying the information for
only 37 genes. Despite that, mtDNA of humans and many other species has
been the object of recent intensive research [13], both for its availability (be-
cause mitochondria are so numerous) and peculiar inheritance. Unlike nuclear
DNA, which is inherited in equal parts from mother and father, mtDNA is
inherited only from the mother. So, in the absence of mutations, the mtDNA
of an individual would be identical to the mtDNA of a single ancestor out of
his or her up to [10] 2n ancestors n generations before, namely the mother of
the mother . . . of his or her mother. Nuclear and mitochondrial DNAs also
differ because most biologists believe [13] that the latter is neutral from the
natural selection point of view.

This simple feature allows one to use mtDNA comparisons among living in-
dividuals to look far back in time and draw conclusions about the separation
of subpopulations in one species or the speciation process, in which several
extant species may descend from one extinct species [13].

An experiment performed in the late 80’s brought press popularity to mtDNA.
By examining mtDNA of 147 living humans, Cann, Stoneking and Wilson
asserted in [14] that mtDNA of all living humans could be described as arising
from mutations in the mtDNA of a single woman. As we would all be her
descendants, this woman was called the mitochondrial Eve. By using known
mutation rates and exploiting geographical correlations, it could be inferred
that the mitochondrial Eve has lived in Africa more or less 200,000 years ago.

The mitochondrial Eve should not be confused with the biblical Eve. Unlike
the latter, the mitochondrial Eve is not supposed to be the only woman living
at her time. As we will see in section 5, most men and women contemporary
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to her with large probability have left traces of their nuclear DNA in modern
humans, but not of their mtDNA.

The time and the place in which the mitochondrial Eve would have lived are
considered a strong evidence for the Out of Africa model for the origin of our
own species [15]. This model proposes that modern humans, Homo sapiens,
evolved once in Africa and subsequently colonized the rest of the world replac-
ing, without mixing with them, earlier forms such as Homo neanderthalensis
and Homo erectus, which had already colonized all the other continents, except
for America.

The competing Multiregional evolution model [16] suggests instead that mod-
ern humans evolved from earlier forms concurrently in different regions of
the world, with occasional genetic flow among regions, necessary to preserve
uniqueness of our species. According to this view, neanderthals, for example,
would not be a species different from ours, but the group of modern humans
which inhabited Europe and West Asia.

Defenders of the Out of Africa Model claim that if we had been descendants
of the neanderthals or of other early hominids, then some of us would have to
carry mtDNA very different from the existing types reported in [14]. In other
words, a mitochondrial Eve would not exist. Controversy was stirred by fossil
child bones found in Portugal in 1998 [17] and dated of 25,000 years ago, 5,000
years after extinction of the neanderthals. This finding suggests there might
have been mixing among neanderthals and modern humans which came from
Africa and arrived in Europe around 40,000 years ago. Despite some dispute,
the majority of contemporary paleoanthropologists believe in the Out of Africa
model, having decided for the genetic evidence in favour of the morphologic
one.

In order to explain why all mtDNA lineages stemming from women contem-
porary to the mitochondrial Eve were extinct, Brown proposed in [18] that
a severe bottleneck, in which human population dropped to only a few indi-
viduals, must have existed after the mitochondrial Eve. This is a very strong
hypothesis, considering that human population, at least in historical times,
has been steadily growing, and that achievement of important technological
developments in prehistory made it possible for humans to spread all over
the world. In [3] Avise, Neigel and Arnold argued that a prehistorical popu-
lation bottleneck is not strictly necessary by showing that stochastic mtDNA
lineage extinction can be sufficiently rapid even in stable-sized populations.
In the next subsection we shall quantitatively show that a mitochondrial Eve
may exist even if the population grows exponentially.
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4.2 The mitochondrial Eve in a growing population

The assumptions in our model for mtDNA inheritance are the following:

(A1) Generations are nonoverlapping.
(A2) The numbers of children for each woman are statistically independent and

identically distributed random variables assuming value r ∈ {0, 1, 2, . . .}
with probability Qr. The values for the Qr’s are time- and population size-
independent.

(A3) A newborn child is a female with probability p and a male with probability
1− p. The value for p is also time- and population size-independent.

(A4) There always exist males enough to mate with all females.

Assumption (A1) grants some formal simplicity to the model. (A2) disregards
interactions that might come from a number of different sources such as fer-
tility correlations among members of a family, competition (for food supplies,
mating partners, etc), cooperation and geographical aspects. One natural at-
tempt to improve the model would be to make the Qr’s dependent on the
total population, thus accounting for saturation effects. Although feasible in
computer simulations, that would ruin the linearity on which our theoretical
analysis relies. The time independence of the Qr’s is also questionable because
it disregards the effects for example of climate changes. However this assump-
tion may be adequate over an initial period of time long enough to produce
most of the lineage extinctions. (A3) adds some generality to the model with
respect to the one in [3], in which p = 1/2. Usually p varies from species to
species and for modern humans p ≈ 0.488, strictly less that 1/2 [19]. This fact
will be of quantitative relevance in our results. (A4) is assumed, since we do
not keep track of the male population. It is a reasonable assumption because
males from all concurrent mitochondrial lineages may participate in any sin-
gle one, without interfering in the mitochondrial inheritance. Also, even for p
only slightly less than 1/2, the results in subsection 4.3 will show that male
extinction is much less probable than female extinction for humans.

Consider now the genealogic tree of an ancestral woman constructed according
to the above assumptions. By genealogic tree we mean the rooted tree graph
obtained by considering as vertices the ancestral herself, located at the root,
and all her descendants after an infinite number of generations, drawing edges
joining each father or mother to their children of either sex. Define as open
any edge linking a mother to her children and closed all other edges. It is clear
that the mtDNA lineage of the woman at the root will survive if and only if
there is an infinite path of open edges beginning at the root. In other words, if
the configuration of open edges starting at the root percolates [20]. Therefore
it is instructive to view mtDNA inheritance as a problem of edge percolation
in a tree graph, in which edges are open with probability p and closed with
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male
femaleHaL HbL

Fig. 2. (a) Example of four generations in a genealogic tree of the type considered
in this paper. The individuals enclosed in the rectangle have both their father and
mother in the tree, exemplifying the possibility of statistically dependent edges.
(b) The female genealogic tree corresponding to the complete tree in (a).

probability 1 − p. Unfortunately, unlike most percolation models, edges may
not be statistically independent because any child with both parents in a tree
will appear twice, separately linked to each of the parents. An example is
shown in figure 2(a).

In order to overcome the dependence problem, we define the female genealogic
tree (FGT) as the tree obtained after stripping the genealogic tree of all male
individuals, see figure 2(b). As every woman has a single mother, in the FGT
all edges are open and statistically independent. Percolation in the complete
genealogic tree is equivalent to the corresponding FGT being infinite. It should
be also clear by our assumptions that FGTs have probabilities assigned by a
GW process with

qr =
∞∑

k=r

Qk




k

r


 pr (1− p)k−r , (12)

where qr, r = 0, 1, 2, . . ., is the probability that an individual has r children of
female sex.

By using (12) and the results in section 2, we may express the survival prob-
ability θ of a mtDNA lineage in terms of the demographic parameters Qr.
If

N =
∞∑

r=1

r Qr (13)

is the mean number of children of either sex per woman, we see that there
exists a percolation threshold or critical probability

pc =
1

N
, (14)

11



such that the survival probability is positive only if p > pc.

If we take p = 1/2, the critical case p = pc corresponds to N = 2, i.e. a
population on the average with a fixed size. We may then use (8) to find that
the expected number of surviving mtDNA lineages decays with the number of
generations exactly as n−1. In our model, such a power law is thus a character-
istic of constant population and absence of any mechanism of genetic selection
for mtDNA, which could possibly speed up the lineage extinction process. In
[4] authors consider a constant on average population in a variation of the
Penna model for biological ageing. They observe that a mitochondrial Eve ap-
pears in their model and claim that the number of surviving lineages decays
as n−z with z roughly equal to 1, in accordance with our results. On the other
hand, a more recent work [7] on the standard asexual Penna model displayed
an initial n−1 behavior gradually changing to n−2 in very long simulations.
According to the authors, the initial behavior is a consequence of the popula-
tion being limited in their model, whereas the n−2 follows from accumulated
genetic selection associated to an ageing mechanism not present in our model.

If we take p as analogous to the inverse temperature, pc as the critical value
for the inverse temperature and θ as an order parameter, then our model
for mtDNA inheritance behaves as a critical system in Statistical Mechanics.
If p > pc, there is a non-zero probability that trees are infinite. This fact
resembles long range order, such as spontaneous magnetization arising in a
magnet at the ferromagnetic phase. Trees being infinite does not mean that
populations are infinite - they tend to infinity as the number of generations
tends to infinity, but are finite at any finite time.

Up to now we have studied survival probability for a single mtDNA lineage.
We may now proceed to the study of the number of surviving mtDNA lineages.
Let W be the number of women contemporaneous to the mitochondrial Eve.
As in our assumptions, different lineages may be considered as independent.
Then the number r of lineages remaining after n generations is a binomially
distributed random variable with

Prob{r = l} =




W

l


 θ l

n−1(1− θn−1)
W−l , (15)

where θn−1 = 1 − θn−1 is the probability that a tree does not terminate in
n− 1 or less generations.

This same approach for calculating the number of mtDNA lineages surviving
after n generations was used in [3], although authors considered only proba-
bility distributions for which they were able to sum explicitly series (2). They
concentrated on the probability Πn for the survival of two or more lineages
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after n generations.

They found out that in the supercritical regime p > pc, Πn tends to a positive
value as n → ∞, which agrees with our results. As this means that there
is a finite probability that a mitochondrial Eve does not exist, in case more
than one lineage survives, they discarded this solution as incompatible with a
mitochondrial Eve. The subcritical regime p < pc was also discarded because
it of course leads to exponential extinction. Instead, the critical regime p = pc

was selected because it is the only regime in which Πn → 0 slowly. With
W = 1, 000 ∼ 10, 000 they showed it leads to Πn approaching zero in n ≈ 104

generations. Such values for W and n are well within the range expected
by geneticists and paleontologists. For p = 1/2, as used in [3], the critical
regime yields N = 2 and can only account for a stable-sized population. In
other words, although showing the possibility of existence of a mitochondrial
Eve in a stable-sized population, authors in [3] missed the possibility of a
mitochondrial Eve in a growing population.

We shall now argue that for a range of values of N , the supercritical regime
also provides a biologically plausible solution for the existence of a mitochon-
drial Eve in a growing population. The human population at the time of the
mitochondrial Eve may be estimated by using data from variability in the
nuclear DNA of living people [21]. A reasonable estimate is W = 5, 000. As-
suming 20 years per generation, mtDNA [14], and fossil findings [22] agree in
estimating the number of generations from the mitochondrial Eve to nowadays
as n ≈ 104. We also use p = 0.488, obtained from the standard figure of 105
male births per 100 female births, the modern human sex ratio at birth [19],
assuming that this ratio can be extrapolated to the times of early mankind.

From (15) we get that the expected number of surviving lineages after n
generations is Wθn. To be consistent with the existence of a mitochondrial Eve
as an event with a not too small probability, this number must not be much
smaller nor much larger than 1. For illustration purpose, we take it between
1/2 and 2, implying θn between 1/(2W ) and 2/W . In order to estimate the
range of values for N consistent with that, we first approximate θn by

θa =
2(p− pc)

pc p2
∑∞

r=2 r(r − 1) Qr

, (16)

which may be deduced from (5) and (12). This approximation is valid as long
as two conditions are fulfilled. First, the number of generations n must be so
large that θn is close to θ. Finally, the small survival probability approximation
must hold in order that θ is close to θa. The latter is true, because θ is of order
W−1, a small number if W = 5, 000. The former, θn ≈ θ, will be justified soon.
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Fig. 3. Continuous lines correspond to the maximum and minimum values for θa as
functions of the mean number of children per woman N with M = 10. The dotted
line is the value of θ as a function of N for a Poisson distribution for the progeny.
Horizontal lines correspond to the values 1/(2W ) and 2/W for θa.

Also, for practical purposes we may truncate the series in the right-hand side
of (16) at some order M (limited progeny assumption). The problem of esti-
mating the maximum and minimum of θa for given N then becomes a linear
optimization problem, exactly solvable by standard methods: we must respec-
tively minimize or maximize the linear function

∑M
r=2 r(r−1) Qr under the con-

straints
∑M

r=1 r Qr = N ,
∑M

r=1 Qr = 1 and 0 ≤ Qr ≤ 1 for r = 0, 1, . . . , M .

In figure 3 we show a plot of the maximum and minimum values for θa as
functions of N , taking M = 10. The values for N consistent with existence of
a mitochondrial Eve as a not very rare event must thus obey two conditions.
The first is that the maximum θa lies over 1/(2W ), which yields N > 2.0492.
Otherwise, the expected number of surviving mtDNA lineages is much smaller
than 1. The second condition is, analogously, that the minimum θa lies below
2/W , which yields N < 2.0510. Otherwise, the expected number of surviving
mtDNA lineages is much larger than 2.

The value M = 10 for the maximum number of children is of course arbitrary.
However it turns out that the maximum values for θa become independent
of M for M ≥ 3 and are obtained with Qr 6= 0 only for r = 2 and 3. On
the other hand, the minimum values for θa do depend on M and tend to 0
as M → ∞ This is why we must impose a maximum value for the number
of children. Nonetheless, the minimum value for θa is attained when Qr = 0,
r = 0, 1, 2, . . . , M−1 and QM = N/M , which is quite an unrealistic probability
distribution for the number of children. Imposing realistic conditions on the
Qr’s would constrain the average number of children consistent with existence
of a mitochondrial Eve more than the use of M = 10. This is also illustrated
in figure 3, where the dotted line corresponds to the survival probability in
case the distribution probability for the progeny is the Poisson distribution, a
reasonably realistic distribution.
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Fig. 4. Probability of survival for l mtDNA lineages as a function of the mean
number of children per woman N , for l = 0, l = 1 and l > 1. We considered here
that the progeny distribution is a Poisson distribution.

For each progeny distribution, the number of surviving mtDNA lineages is
random with probability given by (15). In the range of values we consider for
θ and W , in which W À 1 and θ ¿ 1, this binomial distribution may be
very well approximated by a Poisson distribution with mean Wθ. This means
that the probability of only one lineage surviving is of the form xe−x with
x = Wθ. So, the maximum probability for the existence of a mitochondrial Eve
is approximately equal to e−1 ≈ 0.37 for any progeny distribution, provided
W À 1 and θ ¿ 1. This is illustrated at figure 4, where we considered that
the progeny distribution is also Poisson and we also showed graphs for the
probability of no lineages surviving and more than one lineage surviving.

Results plotted in figure 3 assume, as already mentioned, that θn can be ap-
proximated by its limit θ when n → ∞. In other words, the results will be
valid provided n À ξ, where the correlation time ξ is given by (7). We already
know by (9) that for fixed N , in the small survival probability approximation
ξ does not depend on the variance of the progeny distribution. In figure 5
we show the plot of ξ as a function of N for a Poisson distribution for the
progeny, but, as a consequence of the independence of the variance, the graph
is indistinguishable from the analogous ones for binomial distributions or the
maximum and minimum survival probability distributions. In particular, for
the largest value N = 2.0510 compatible with the existence of the mitochon-
drial Eve, it can be seen that ξ is of the order of 1,100 generations almost
independently of the progeny distribution. As geneticists assume that the mi-
tochondrial Eve lived more or less 10,000 generations ago, the approximation
θn ≈ θ is well justified for N = 2.0510. On the other hand ξ diverges when N
approaches 1/p. This means that the range of values for N compatible with
the Eve should be extended down to 1/p.

15



2.0492 2.0502 2.0512

N
���

2000

4000

6000

8000

10000

Ξ
Hgener

at
io

ns
L

Fig. 5. Correlation time ξ as a function of the mean number of children per woman
N . The curve shown is for a Poisson distribution, but the corresponding curve for
other distributions is indistinguishable from this.

Finally, although our data do not directly support the Multiregional Evolution
model, they show that it cannot be discarded. In fact, if there had been some
genetic mixing among modern humans coming from Africa and other humans
living in other continents, our results show that this mixing probably would
have completely disappeared from mtDNAs.

4.3 The Y Adam

The Y chromosome is transmitted from fathers to sons and not to daughters.
Furthermore, there is a portion in the Y chromosome that seems not to be
subject to recombination. Most geneticists also believe that there is no natural
selection acting on this portion of the Y chromosome - it is sort of genetic
trash which does not code any protein or has some other visible function. In
this sense, the non-recombining portion of the Y chromosome would be the
male analogue of mtDNA. But experiments sampling worldwide variation in
Y chromosomes of living people seem to be much more difficult than their
mtDNA analogues, such as the one in [14]. In the experiment reported in [23],
authors are still cautious about having discovered the majority of human Y
chromosome polymorphisms. Despite that, they affirm the existence of a most
recent common ancestor to the Y chromosomes of their sample, and even
calculate that he would have lived between 162,000 to 186,00 years ago, about
the same period of the mitochondrial Eve.

Let us now try to understand the question of existence of a Y Adam in terms
of our previous results on Eve. Of course, all calculations for survival of female
trees must hold for male trees if we exchange p by 1−p and take N as the mean
number of children per man, provided that the male analogues of assumptions
(A2) and (A4) at the beginning of subsection 4.2 still apply.
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If we assume these hypotheses, a first naive guess would be to consider that
the mean numbers of children per man and per woman are the same and
simply exchange p by 1 − p = 0.512. As survival probabilities increase very
rapidly with p when p is slightly larger than pc, the effect of that exchange
is dramatic. Starting with a male population of 5,000 and using the smallest
value N ≈ 2.0492 in the allowed range for existence of a mitochondrial Eve in
figure 3, we find that the expected number of Y chromosome lineages surviving
is 101.7. Accordingly, the probability of only one such lineage surviving is of
order 10−44, rendering existence of a Y Adam virtually impossible.

A serious problem with this simplistic scenario is that the rate of exponential
growth for populations of each sex would be different. Whereas women pop-
ulation would grow as (Np)n, where n is the number of generations after the
beginning, male population would grow as (N(1−p))n. With N = 2.0510 and
p = 0.488, male population would be 10208 times larger than female population
after 10,000 generations, which would violate the male analogue of hypothesis
(A4). We thus abandon the simplistic assumption of equal mean numbers of
children per woman and per man.

Still dealing with mean numbers, a necessary condition for the tuning of male
and female populations is that the growth rate be the same for both genders.
As there would be more men than women living at each generation, it is also
necessary that men have in the average less children than women. Quantita-
tively, if we define NW as the mean number of children per woman and NM

as the mean number of children per man, then we must have

NW p = NM (1− p) , (17)

which gives us NM < NW if p = 0.488. In this scenario, if the initial population
of women is W = 5, 000, then the total population (men and women) Tn at
the nth generation is

Tn =
W

p
(NWp)n .

By using NW = 2.0510, p = 0.488 and n = 10, 000, we would have a human
population nowadays of 73 million people, which is not too far from the actual
value of 6.4 billion, considering roughness of the model and uncertainties in
W and n.

Another interesting consequence of this second scenario is that the condition
p > pc of survival for female trees may be written as NW p > 1 by using (14).
By (17), we have that the probability of survival for male trees is also posi-
tive. The expected number of surviving Y chromosome lineages will depend
however not only on the value of the parameter NM (1− p), but rather on the
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progeny distribution for men, still to be specified. If we further suppose that
this progeny distribution is some reasonable one, such as a Poisson distribu-
tion, then the probability of existence of a Y Adam will be not negligible.

A more realistic treatment for the problem of joint existence of a mitochon-
drial Eve and a Y Adam would require a model where (17) holds and some
assumption on the progeny distribution for men. Such a model is at present
beyond our possibilities. In fact, as it is not possible that only one gender be-
comes extinct, the number of surviving male and female lineages are of course
correlated random variables. Although we have no exact result on this real-
istic scenario, in order to stimulate further research, we shall present some
simulation results, in which the previously considered demographic aspects
are implemented.

We simulated two situations. In both cases, we supposed that hypothesis (A4)
holds, so that the number of children at generation n + 1 is determined by
the number of females at generation n. Equation (17) is incorporated in both
cases because, after we generate a random number of children for each woman
at generation n according to some progeny distribution, we choose the sex
of each child by independent Bernoulli trials with probability p = 0.488 for
females.

Our two simulations differ in how we choose the progeny distribution for the
male parents. In one case, each child at generation n+1 “chooses” at random
with equal probability its father in generation n. We will call this the panmictic
case. In the other case, which we will call monogamous case, each woman at
generation n chooses at random with equal probability one man at the same
generation to be the father of all her children.

Results are presented in table 1. For simplicity, the progeny distribution for
women was assumed to be Poisson in both simulations. In order that the
correlation time ξ is not too large, we chose the mean of this distribution
to be 2.07, so that ξ ≈ 40 generations. We took initial populations of 49
women and 51 men, each with a different label meaning his/her Y chromo-
some/mtDNA lineage and counted the number of surviving lineages after 80
generations. The expected number of surviving mtDNA lineages at this time
for the given progeny distribution and initial population was 1.12. For each
initial population as described we ran the simulation process 100 times. If m
denotes the number of surviving male lineages and f the number of surviving
female lineages, in table 1 we present for each pair (m, f) the frequency of its
occurrence.

In both cases, we see that complete extinction is the most frequent outcome,
followed by joint existence of a mitochondrial Eve and a Y Adam. As the max-
imum value for the probability that only one lineage (Y or mtDNA) survives
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Table 1
Frequencies of possible outcomes for the numbers f of surviving mtDNA lineages

and m of surviving Y chromosome lineages in a run of 100 simulations for an ini-
tial population of 49 women and 51 men along 80 generations and two different
assumptions on the male progeny distribution. Details given in the main text.

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

f = 0 panmictic 36 0 0 0 0 0

monogamous 35 0 0 0 0 0

f = 1 panmictic 0 24 4 0 0 0

monogamous 0 24 2 0 0 0

f = 2 panmictic 0 11 10 5 0 0

monogamous 0 21 2 0 0 0

f = 3 panmictic 0 2 2 2 0 0

monogamous 0 6 8 0 0 0

f = 4 panmictic 0 0 2 0 0 1

monogamous 0 1 0 0 0 0

f = 5 panmictic 0 0 0 0 1 0

monogamous 0 0 1 0 0 0

is e−1, see figure 4, if m and f were independent, then joint existence of Eve
and Adam would occur with probability not greater than e−2 ≈ 0.14. Data at
table 1 clearly contradict this, showing that m and f are correlated. We also
see that with large probability m is not much larger or much smaller than f .

5 Biparental model results

Let us now consider a population model with biparental reproduction, i.e.
each individual at generation k +1 has two parents at generation k. Of course
human reproduction is biparental, but in the models considered so far for
mtDNA, family name and Y chromosome inheritance, it works as if it were
asexual, because individuals inherit the relevant character from a single parent.
Consider also that the initial population is N and the mean number of children
for any individual at any generation is 2, so that population is on average
constant. In order to compare our results with others, we shall suppose that
the probability distribution for the number of children is Poisson, i.e. the
probability that an individual has r children, r = 0, 1, 2, . . ., is qr = e−2 2r/r!.
Chang proved rigorously some interesting results [8] on a similar model and
Derrida et al. [9–11] also studied variants of this model. Of course, as the
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number of ancestors of any individual doubles as we proceed one generation
to the past and population is of a fixed size, then some ancestors must appear
repeatedly as we ascend genealogic trees.

The first interesting result obtained by both groups is that approximately 20%
of the individuals in the initial population will have no descendants after some
generations. The second is that the remaining 80% of the initial population
not only will have descendants at any generation in the future, but after a
very small number of generations of order log N , with large probability, these
individuals will be ancestors to any individual at future generations. In this
section we shall derive again these results in a simpler way.

Before proceeding, we should say that these results do not contradict the
ones at the preceding section, because biparental genealogic trees will have
roughly twice the number of branches of the corresponding monoparental ones
of section 4. As a consequence, survival probabilities are much larger and
correlation times much smaller. Another remark is that although individuals
have two parents, in the models considered by ourselves in this section and by
Derrida et al. and by Chang, gender questions are not addressed. For example,
the difficult question, as we mentioned before, of calculating the probability
for joint existence of a mitochondrial Eve and Y chromosome Adam is not
answered. Notice that the results are related to questions of ancestorship, but
do not deal with the gender of ancestors.

We have already touched on the difficulty of applying the GW process to such
a biparental model when referring to figure 2. The fact is that whenever repe-
titions start to occur at the trees, the assumption of statistical independence
of the vertices will not hold anymore. In the cases considered so far, we elimi-
nated the problem by considering trees of individuals of a single sex. For such
trees, statistical independence is restored as already commented.

We may then suppose that the GW process is approximately accurate to de-
scribe our biparental model as long as the number of generations is small
enough so that repetitions occur seldom at genealogic trees. In case the qr

are given by the Poisson distribution, we may exactly sum the series for the
generating function obtaining S(x) = e2x−2.

The survival probability for one such tree may be found by numerically solving
(4) with the above expression for S. The result is θ ≈ 0.7968, which means
that approximately 20.32% of the trees will not survive. Of course, we may
only trust this number if the time it takes for a tree to be extinct is small
enough so that repetitions do not occur.

By the argument in section 3 we already know that trees which will eventually
be extinct live a number of generations of order ξ. By using the result for θ
in (7), we get ξ ≈ 1.11, a very small number of generations. So, as long as
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N À 1, the above GW approximation is valid.

In order to obtain the second result, consider pn defined before (10). Let Ak

be the number of individuals at generation 0 whose genealogic trees are not
extinct at generation k and Bk be the number of individuals at generation
0 whose genealogic trees are not extinct at generation k but will be extinct
sometime. The probability that Ak = n is given by the binomial distribution




N

n


 (1− (p0 + p1 + . . . pk−1))

n(p0 + p1 + . . . pk−1)
N−n .

The expected value of Ak is then E(Ak) = N (1 − (p0 + p1 + . . . pk−1)). By
subtracting Nθ from this number we get

E(Bk) = N (1− (p0 + p1 + . . . pk−1)) − N θ = N
∞∑

i=k

pi

≈N pk (1 + S ′(θ) + S ′(θ)2 + . . .) =
Npk

1− S ′(θ)
.

By the reasoning at the end of section 3 and the smallness of ξ, we have, even
for n close to 1, pn ≈ c e−n/ξ, where c is some constant. Using this expression,
we obtain

E(Bk) ≈ N c e−k/ξ

1− S ′(θ)
. (18)

As E(B0) is O(N), then for N À 1 the number of generations τ such that
E(Bτ ) = 1 is given by

τ = ξ (ln N + ln c) ≈ ξ ln N . (19)

This is the typical time it takes for extinguishing all trees that will be extinct
at some time. At this time, each non-extinct tree will have grown to a number
of branches of order 2τ = O(N). Thus, at time τ , with large probability,
all individuals at the initial population whose trees were not extinct will be
ancestors to the whole population. As the trees which will be extinct sometime
never grow too large, then the approximation of using GW to calculate τ is
justified.
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6 Conclusions and perspectives

We have shown that the GW process is useful in understanding phenomena
in human evolution in a setting very similar to the Statistical Mechanics of
critical phenomena, with the advantage of being exactly solvable. Within this
model we found out that a mitochondrial Eve may exist even in an exponen-
tially growing population and her existence constrains the mean number of
children per woman to a narrow range. We also showed that independent GW
processes are not a good model for joint existence of a mitochondrial Eve and
a Y chromosome Adam. We provided some simulation results in this case,
showing that with a correct choice of parameters, joint existence of Eve and
Adam may occur with a sizeable probability.

One tacit assumption in our analysis, supported by biologists, is that all W
original mtDNA lineages are equally fit, i.e. there is no natural selection acting
on lineage sorting. It also follows from our results that within the range of
values for N in which a mitochondrial Eve is likely, there is a probability of
at least 63% that the number of surviving mtDNA lineages is different from
1. As the probability that this number is 0 is not negligible, see figure 4, we
may explain extinction of other hominid species which have existed for some
periods, if they had demography similar to our own.

Returning to the two competing models on human origins, we should say that
the existence of an African mitochondrial Eve only proves that a sizeable part
of early mankind did originate in that continent, but not the whole of it.
mtDNA lineages originated somewhere else may have simply become sponta-
neously extinct, which in our analysis appears as a highly probable event even
in a growing population.

While preparing this paper, we discovered another application for our meth-
ods. Unlike most other animals, in which the sex of the offspring is genetically
determined (X and Y chromosomes in mammals, for example), the sex of the
offspring in some living reptile species depends on the temperature during egg
incubation. Although a definitive proof still lacks, Miller, Summers and Silber
[24] conjecture that the same sex determination by temperature might hold for
dinosaurs. Should that be true, a predominance of males could have arisen as
a consequence of worldwide climate change after the impact of a large meteor.
By numerically solving a mathematical model based on differential equations,
they show that in this case dinosaur populations would decrease with time. If
the sex skew were not too severe or lasted only for a short time, populations
would start growing again.

We notice here that the GW model can also easily account for this phe-
nomenon. In fact, an increase in male proportion is equivalent to lowering the
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value of p, while pc is held constant. On the other hand, the analysis carried
out in [24] seems to disregard the fact that even in the worst cases, their model
foresees population increase some time after an initial decrease. Here we see
an important difference between their population modelling with differential
equations and our “discrete” model. Differential equations are deterministic
because they use the mean behavior for all individuals in the population. Ex-
tinction occurs in their model because of decrease in population to less than
one individual. On the other hand, our model accounts for statistical fluctu-
ations. If p = 1/2 and 2 < N < 1/p, population will increase in average, but
extinction will still happen with positive probability due to statistical fluc-
tuations. In other words, modelling populations with differential equations is
analogous to mean-field theories in Statistical Mechanics, which we know can
lead to wrong results.

We finally note that as Monte Carlo simulations are being increasingly used
in Genetics, it is important to use the methods from the Physics of critical
phenomena to better understand results derived from these simulations.
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