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Abstract. We present a survey of recent results concerning a remarkable

class of unitary matrices, the CMV matrices. We are particularly interested

in the role they play in the theory of random matrices and integrable systems.
Throughout the paper we also emphasize the analogies and connections to

Jacobi matrices.

1. Introduction

From many points of view, Jacobi matrices play a central role among all Her-
mitian matrices. We wish to discuss a class of unitary matrices recently introduced
by Cantero, Moral, and Velázquez, [CanMorVel1], which play a similar role among
unitary matrices. While this analogy may be extended in many directions, we in-
vestigate here their occurrence in the theory of random matrices and integrable
systems.

By Jacobi matrix we mean an n× n tri-diagonal matrix

(1.1) J =


b1 a1

a1 b2
. . .

. . . . . . an−1

an−1 bn


with aj > 0, bj ∈ R.

Given coefficients α0, . . . , αn−2 ∈ D, the unit disk in C, and αn−1 ∈ S1, let
ρk =

√
1− |αk|2, and define 2× 2 matrices

Ξk =
[
ᾱk ρk

ρk −αk

]
for 0 ≤ k ≤ n − 2, while Ξ−1 = [1] and Ξn−1 = [ᾱn−1] are 1 × 1 matrices. From
these, form the n× n block-diagonal matrices

L = diag
(
Ξ0,Ξ2,Ξ4, . . .

)
and M = diag

(
Ξ−1,Ξ1,Ξ3, . . .

)
.

The CMV matrix associated to the coefficients α0, . . . , αn−1 is C = LM. It is a
5-diagonal unitary matrix, given by:

(1.2) C =



ᾱ0 ρ0ᾱ1 ρ0ρ1 0 0 0 . . .
ρ0 −α0ᾱ1 −α0ρ1 0 0 0 . . .
0 ρ1ᾱ2 −α1ᾱ2 ρ2ᾱ3 ρ2ρ3 0 . . .
0 ρ1ρ2 −α1ρ2 −α2ᾱ3 −α2ρ3 0 . . .
0 0 0 ρ3ᾱ4 −α3ᾱ4 ρ4ᾱ5 . . .
0 0 0 ρ3ρ4 −α3ρ4 −α4ᾱ5 . . .

. . . . . . . . . . . . . . . . . . . . .


.
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Following [Sim1], we will refer to the numbers αk as Verblunsky coefficients.
A related system of matrices was discovered independently by Tao and Thiele,
[TaoThi], in connection with the non-linear Fourier transform. Their matrices are
bi-infinite and correspond to setting odd-indexed Verblunsky coefficients to zero.
(This has the effect of doubling the spectrum; cf. [Sim1, p. 84].)

Both Jacobi and CMV matrices arose in the study of orthogonal polynomials, so
it is natural that we begin there. We will first describe the relation of orthogonal
polynomials to Jacobi matrices and then explain the connection to CMV matrices.

Given a probability measure dν supported on a finite subset of R, say of car-
dinality n, we can apply the Gram–Schmidt procedure to {1, x, x2, . . . , xn−1} and
so obtain an orthonormal basis for L2(dν) consisting of polynomials, {pj(x) : j =
0, . . . , n− 1}, with positive leading coefficient. In this basis, the linear transforma-
tion f(x) 7→ xf(x) is represented by a Jacobi matrix. An equivalent statement is
that the orthonormal polynomials obey a three-term recurrence:

xpj(x) = ajpj+1(x) + bjpj(x) + aj−1pj−1(x)

where a−1 = 0 and pn ≡ 0.
We have just shown how measures on R lead to Jacobi matrices; in fact, there

is a one-to-one correspondence between them. Given a Jacobi matrix, J , let dν be
the spectral measure associated to J and the vector e1 = [1, 0, . . . , 0]T . Then J
represents f(x) 7→ xf(x) in the basis of orthonormal polynomials associated to dν.

To explain the origin of CMV matrices, it is necessary to delve a little into the
theory of orthogonal polynomials on the unit circle. For a more complete description
of what follows, the reader should turn to [Sim1].

Given a finitely-supported probability measure dµ on S1, the unit circle in C, we
can construct an orthonormal system of polynomials, φk, by applying the Gram–
Schmidt procedure to {1, z, . . . }. These obey a recurrence relation; however, to
simplify the formulae, we will present the relation for the monic orthogonal poly-
nomials Φk(z)

Φk+1(z) = zΦk(z)− ᾱkΦ∗
k(z).(1.3)

Here Φ∗
k denotes the reversed polynomial:

(1.4) Φk(z) =
k∑

l=0

clz
l ⇒ Φ∗

k(z) =
k∑

l=0

c̄k−lz
l = zkΦk

(
1
z̄

)
,

and αk are recurrence coefficients. They are in fact the same as the Verblunsky
coefficients which appeared above, in the definition of the CMV matrix. When
dµ is supported at exactly n points, αk ∈ D for 0 ≤ k ≤ n− 2, while αn−1 is a
unimodular complex number.

The Verblunsky coefficients completely describe the measure dµ: There is a 1-
to-1 correspondence between probability measures on the unit circle supported at
n points and Verblunsky coefficients (α0, . . . , αn−1) with αk ∈ D for 0 ≤ k ≤ n− 2
and αn−1 ∈ S1.

From the discussion of Jacobi matrices, it would be natural to consider the matrix
representation of f(z) 7→ zf(z) in L2(dµ) with respect to the basis of orthonormal
polynomials. This is not a CMV matrix; rather it is a Hessenberg matrix which
Simon, [Sim1], has dubbed a GGT matrix, from the initials of Geronimus, Gragg,
and Teplyaev. Perhaps the most striking difference from a CMV (or Jacobi) matrix
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is that a GGT matrix is very far from sparse—generically, all entries above and
including the sub-diagonal are non-zero.

Cantero, Moral, and Velázquez had the simple and ingenious idea of applying
the Gram–Schmidt procedure to {1, z, z−1, z2, z−2, . . . } rather than {1, z, . . . }. The
resulting functions, χk(z) (0 ≤ k ≤ n − 1), form a basis and are easily expressible
in terms of the orthonormal polynomials. In this basis, the map f(z) 7→ zf(z) is
represented in an especially simple form:

Theorem 1 (Cantero, Moral, Velázquez, 2003). In the orthonormal basis {χk(z)}
of L2(dµ), the operator f(z) 7→ zf(z) is represented by the CMV matrix C associated
to the Verblunsky coefficients of the measure dµ.

The C = LM factorization presented above originates as follows: Let us write
xk, 0 ≤ k ≤ n − 1, for the orthonormal basis constructed by applying the Gram–
Schmidt procedure to {1, z−1, z, z−2, z2, . . . }. Then the matrix elements of L and
M are given by

Lj+1,k+1 = 〈χj(z)|zxk(z)〉, Mj+1,k+1 = 〈xj(z)|χk(z)〉.

See [Sim1] for further discussion.
The measure dµ can be reconstructed from C in a manner analogous to the

Jacobi case. Let dµ be the spectral measure associated to a CMV matrix, C, and
the vector e1. Then C is the CMV matrix associated to the measure dµ.

Proofs of these statements can be found in [CanMorVel1] or [Sim1].
An interesting special case is when the measure dµ is symmetric with respect

to complex conjugation. This occurs if and only if all Verblunsky coefficients are
real. It is a famous observation of Szegő (see [Sze, §11.5]) that the polynomials
orthogonal with respect to this measure are intimately related to the polynomials
orthogonal with respect to the measure dν on [−2, 2] defined by

(1.5)
∫

S1
f(z + z−1) dµ(z) =

∫ 2

−2

f(x) dν(x).

Moreover, the recurrence coefficients for these measures are related by the Geron-
imus relations:

(1.6)
bk+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2

ak+1 =
{
(1− α2k−1)(1− α2

2k)(1 + α2k+1)
}1/2

.

The classical proof of (1.6) relies on the relation between the orthogonal polynomials
associated to the two measures. An alternate proof was given by Rowan Killip and
the author, [KilNen1, Proposition B.3], who derive (1.6) from an explicit relation
between the CMV and Jacobi matrices of the two measures dµ and dν, respectively.

2. Circular β-ensembles

In 1962, Dyson [Dys] introduced three ensembles of random unitary matrices
with a view to simplifying the study of energy level behavior in complex quantum
systems. Earlier work in this direction, pioneered by Wigner, focused on ensem-
bles of Hermitian matrices. In both of these situations, the eigenvalue distributions
coincide with the Gibbs distribution for particles of Coulomb gas at inverse temper-
ature β = 1, 2, 4 on the circle or the real line, respectively. Dumitriu and Edelman,
[DumEde], constructed tri-diagonal matrix models for two of the three standard
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examples of the Coulomb gas on the real line for any inverse temperature: the β-
Hermite and the β-Laguerre. Rowan Killip and the author obtained the analogous
result on the circle, using CMV matrices.

One of the main features of all of these models is that they are defined in terms of
O(n) independent random variables which appear in matrix entries via very simple
combinations. Moreover, the matrices are all sparse, having O(n) non-zero entries.
Finally, these are not asymptotic models (see [ForRai1] and [Lip]), but exact ones.
(Throughout this section, n denotes the number of particles.)

Let us elaborate: The easiest way to obtain a normalizable Gibbs measure on
the real line is to add an external harmonic potential V (x) = 1

2x2. This gives rise
to the probability measure

(2.1) E(f) ∝
∫
· · ·

∫
f(x1, . . . , xn)

∣∣∆(x1, . . . , xn)
∣∣β ∏

j

e−V (xj) dx1 · · · dxn

on Rn, where, as usual, ∆ denotes the Vandermonde determinant. This is known
as the Hermite ensemble, because of its intimate connection to the orthogonal
polynomials of the same name, and when β = 1, 2, or 4, arises as the eigenvalue
distribution in the classical Gaussian ensembles of random matrix theory. Dumitriu
and Edelman showed that (2.1) is the distribution of eigenvalues for a symmetric tri-
diagonal matrix with independent entries (modulo symmetry). The diagonal entries
have standard Gaussian distribution and the lower diagonal entries are 2−1/2 times
a χ-distributed random variable with the number of degrees of freedom equal to β
times the number of the row.

The second example treated by Dumitriu and Edelman is the Laguerre ensemble.
In statistical circles, this is known as the Wishart ensemble, special cases of which
arise in the empirical determination of the covariance matrix of a multivariate
Gaussian distribution. For this ensemble, one needs to modify the distribution given
in (2.1) in two ways: each particle xj is confined to lie in [0,∞) and is subject to the
external potential V (x) = −a log(x)+x, where a > −1 is a parameter. In [DumEde]
it is shown that if B is a certain n×n matrix with independent χ-distributed entries
on the main and sub-diagonal (the number of degrees of freedom depends on a, β,
and the element in question) and zeros everywhere else, then the eigenvalues of
L = BBT follow this distribution.

The third standard ensemble on the real line is the Jacobi ensemble. The dis-
tribution is as in (2.1), but now the particles are confined to lie within [−2, 2] and
are subject to the external potential V (x) = −a log(2 − x) − b log(2 + x), where
a, b > −1 are parameters. This corresponds to the probability measure on [−2, 2]n

that is proportional to

(2.2)
∣∣∆(x1, . . . , xn)

∣∣β ∏
j

(2− xj)a(2 + xj)b dx1 · · · dxn.

Dumitriu and Edelman did not give a matrix model for this ensemble, listing it as
an open problem.

On the unit circle, one does not need a confining potential in order to define the
Gibbs distribution for n particles of the Coulomb gas at inverse temperature β; it
is given by

(2.3) Eβ
n(f) ∝

∫
· · ·

∫
f(eiθ1 , . . . , eiθn)|∆(eiθ1 , . . . , eiθn)|β dθ1

2π
· · · dθn

2π
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for any symmetric function f . CMV matrices realize a random matrix model with
this eigenvalue distribution.

We say that a complex random variable, X, with values in the unit disk, D, is
Θν-distributed (for ν > 1) if

(2.4) E{f(X)} = ν−1
2π

∫∫
D

f(z)(1− |z|2)(ν−3)/2 d2z.

For ν ≥ 2 an integer, this has the following geometric interpretation: If v is chosen
from the unit sphere Sν in Rν+1 at random according to the usual surface measure,
then v1 + iv2 is Θν-distributed. As a continuation of this geometric picture, we
shall say that X is Θ1-distributed if it is uniformly distributed on the unit circle in
C. With this definition, we have the following family of matrix models:

Theorem 2 (Killip, Nenciu, 2004). Given β > 0, let αk ∼ Θβ(n−k−1)+1 be indepen-
dent random variables for 0 ≤ k ≤ n− 1. Then the CMV matrix C = LM defined
by these Verblunsky coefficients gives a (sparse) matrix model for the Coulomb gas
at inverse temperature β. That is, its eigenvalues are distributed according to the
Gibbs distribution (2.3).

Finally, we present a tri-diagonal matrix model for the Jacobi ensemble (2.2).
The independent parameters follow a beta distribution: A real-valued random vari-
able X is said to be beta-distributed with parameters s, t > 0, which we denote by
X ∼ B(s, t), if

(2.5) E{f(X)} =
21−s−tΓ(s + t)

Γ(s)Γ(t)

∫ 1

−1

f(x)(1− x)s−1(1 + x)t−1 dx.

Note that B(ν
2 , ν

2 ) is the distribution of the first component of a random vector
from the ν-sphere.

Theorem 3 (Killip, Nenciu, 2004). Given β > 0, let αk, 0 ≤ k ≤ 2n − 2, be
distributed as follows

(2.6) αk ∼

{
B( 2n−k−2

4 β + a + 1, 2n−k−2
4 β + b + 1) k even,

B( 2n−k−3
4 β + a + b + 2, 2n−k−1

4 β) k odd.

Let α2n−1 = α−1 = −1 and define

bk+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2(2.7)

ak+1 =
{
(1− α2k−1)(1− α2

2k)(1 + α2k+1)
}1/2(2.8)

for 0 ≤ k ≤ n− 1; then the eigenvalues of the tri-diagonal matrix

J =


b1 a1

a1 b2
. . .

. . . . . . an−1

an−1 bn


are distributed according to the the Jacobi ensemble (2.2).

Let us note that one of the essential ideas behind the proof of this theorem is
to construct the distributions on Verblunsky coefficients and use the Geronimus
relations (1.6) to transfer them to the Jacobi setting.
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3. The Ablowitz-Ladik system: Structure

By analogy with the connection between the Toda lattice and Jacobi matrices,
we investigate the existence and properties of an integrable system related to or-
thogonal polynomials on the unit circle and CMV matrices. The main evolution of
the system is defocusing Ablowitz-Ladik (also known as the integrable discrete non-
linear Schrödinger equation). An excellent elementary introduction into integrable
systems is given in [Dei]; [BabBerTal] is a detailed presentation of many aspects of
the subject. For the more advanced notions that we shall use (especially regarding
Lie and Poisson-Lie structures) we refer to [OlsPerReySem].

The celebrated Toda lattice is the central example of a discrete integrable Hamil-
tonian system. It models a 1-dimensional chain of particles with exponential nearest
neighbor interactions and it was introduced by Morikazu Toda, [Tod], to explain the
findings of the famous 1955 Los Alamos computer experiment of Fermi, Pasta, and
Ulam, [FerPasUla]. Complete integrability of the system was proved by Flaschka in
1974, [Fla], by introducing a change of variables that allowed him to set the system
in Lax pair form. Indeed, if Flaschka’s variables ak and bk are set to be the entries
of a Jacobi matrix, J , then the evolution of the system is given by the equation

J̇ = [J, P ],

with

P = J+ − J− =


0 a1

−a1 0 a2

−a2 0
. . .

. . . . . .

 .

Thus the Toda lattice is intrinsically connected to Jacobi matrices and orthogonal
polynomials on the real line R.

In [Sim2, Section 11.11], Barry Simon and the author found that the integrable
system naturally related to the theory of orthogonal polynomials on the unit circle is
the defocusing Ablowitz-Ladik system. It was introduced in 1975–76 by Ablowitz
and Ladik, [AblLad1, AblLad2], as a space-discretization of the cubic nonlinear
Schrödinger equation (NLS). It reads

(3.1) −iβ̇n = ρ2
n(βn+1 + βn−1)− 2βn,

where β = {βn} ⊂ D is a sequence of complex numbers inside the unit disk and

ρ2
n = 1− |βn|2.

The analogy with the continuous NLS becomes transparent if we rewrite (3.1) as

−iβ̇n = βn+1 − 2βn + βn−1 − |βn|2(βn+1 + βn−1).

From this point onwards, ḟ denotes the time derivative of the function f .
If we change variables to αk(t) = e2itβk(t), this system becomes

(3.2) −iα̇k = ρ2
k(αk+1 + αk−1),

which is a little simpler. If we then choose α−1 and αn−1 to lie on the unit circle,
then they do not move and we obtain a finite system of ODEs for αk, 0 ≤ k ≤ n−2,
which is the specific case we treat.

Nenciu and Simon, [Sim2, Section11.11], found that if periodic Verblunsky co-
efficients are allowed to evolve according to Hamiltonians in the Ablowitz-Ladik
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hierarchy, then their movement takes place on tori which are isospectral with re-
spect to the CMV matrix. The symplectic form they introduced extends naturally
to the case of finite Verblunsky coefficients, which we present here. In this setting
it is given by:

{f, g}AL =
n−2∑
j=0

ρ2
j

[
∂f

∂uj

∂g

∂vj
− ∂f

∂vj

∂g

∂uj

]
(3.3)

= 2i
n−2∑
j=0

ρ2
j

[
∂f

∂ᾱj

∂g

∂αj
− ∂f

∂αj

∂g

∂ᾱj

]
(3.4)

for any smooth functions f, g : Dn−1 → R, where αj = uj +ivj for all 0 ≤ j ≤ n−2,
and, as usual,

∂

∂α
=

1
2

(
∂

∂u
− i

∂

∂v

)
and

∂

∂ᾱ
=

1
2

(
∂

∂u
+ i

∂

∂v

)
.

For clarity, we will call this bracket the Ablowitz-Ladik bracket. Note that this
differs by a factor of two from that used in [Sim2] and [Nen]; we will adjust the
results accordingly.

On the set of Verblunsky coefficients (α0, . . . , αn−2) ∈ Dn−1 (with fixed αn−1 ∈
S1) we consider the Hamiltonians Re(Km) and Im(Km), where

Km = 1
m tr(Cm)

for m ≥ 1. These form the Ablowitz-Ladik hierarchy. Indeed, the evolution of the
Verblunsky coefficients under the flow generated by Re(K1) is the Ablowitz-Ladik
evolution:

{αj ,Re(K1)}AL = α̇j = iρ2
j (αj−1 + αj+1).

The evolution equations for the CMV matrices under these flows in the Ablowitz-
Ladik bracket were found by Nenciu [Nen]:

Theorem 4 (Nenciu, 2005). The Lax pairs for the mth Hamiltonian of the finite
defocusing Ablowitz-Ladik system are given by

(3.5) {C,Re(Km)}AL = [C, iCm
+ + i(Cm

+ )∗]

and

(3.6) {C, Im(Km)}AL = [C, Cm
+ − (Cm

+ )∗]

for all m ≥ 1, where for a matrix A we set A+ as the matrix with entries

(A+)jk =

 Ajk, if j < k;
1
2Ajj , if j = k;
0, if j > k.

The system of nonlinear differential-difference equations

(3.7) α̇n = (1− α2
n)(αn+1 − αn−1), {αj} ⊂ (−1, 1),

is known as the discrete modified KdV equation (see [AblLad1] and [Gek]) or the
equation of the Schur flows (see [FayGek]). This system’s main interest lies in
its connection to the Toda and Volterra (or Kac-van Moerbeke) lattices. More
precisely, the Schur flows appear in the work of Ammar and Gragg [AmmGra] as
an evolution equation on Verblunsky coefficients obtained by transferring the Toda
equation via the Geronimus relations from the a’s and b’s. As such, it is an evolution
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on real α’s. One can then relax this condition and think of it as an evolution on
complex coefficients, which preserves reality (that is, if the α’s are real at time 0,
then they remain real for all times).

As it turns out, this description applies to “half” of the Ablowitz-Ladik flows, the
ones generated by Im(Km) for all n ≥ 1. Indeed, the evolution on the Verblunsky
coefficients under these Hamiltonians is equivalent to the Lax pairs

{C, Im(Km)}AL = [C, (Cm)+ − ((Cm)+)∗],

which preserve reality of the α’s. So it is natural to ask ourselves what are the
corresponding evolutions of the a’s and b’s. Moreover, we recover (3.7) as the
evolution generated by − Im(K1) under the Ablowitz-Ladik bracket (3.3), (3.4).
In fact, in the finite case, all the evolutions induced by Im(Kn) become, via the
Geronimus relations, simple combinations of the evolutions in the Toda hierarchy
(this can be deduced from the evolution of the corresponding spectral measures
from [KilNen2]).

There exists an abstract way of defining Poisson brackets on Lie algebras. In
particular, if g denotes the (associative) algebra of n × n complex matrices, then
the algebra structure gives rise to a natural Lie algebra structure:

[B,C] = BC − CB.

Of course, this also results from viewing g as the Lie algebra of GL(n; C). As a
vector space, g = l⊕ a, where

a = {A : A = −A†},
which is the Lie algebra of the group U(n) of n× n unitary matrices, and

l = {A ∈ g : Li,j = 0 for i > j and Li,i ∈ R}
which is the Lie algebra of the group L(n) of n× n lower triangular matrices with
positive diagonal entries. We will write πa and πl for the projections into these
summands.

This vector-space splitting of g permits us to give it a second Lie algebra struc-
ture. First we define the classical R-matrix R : g → g by R = πl − πa. The second
Lie bracket can then be written as either

(3.8)
[X, Y ]

R
= 1

2 [R(X), Y ] + 1
2 [X, R(Y )] ∀ X, Y ∈ g, or

[L + A,L′ + A′]
R

= [L,L′]− [A,A′] ∀ L, L′ ∈ l, and A,A′ ∈ a.

Using this R-matrix, one can define several Poisson brackets on the Lie algebra
g. The Lie-Poisson (or Kirillov) bracket associated to the Lie algebra (g, [ , ]

R
) is

linear, and it is relevant to Jacobi matrices: under the embedding J 7→ iJ , the
manifolds of Jacobi matrices with fixed trace are symplectic leaves. In our case, we
focus on the Gelfand-Dikij (or quadratic) bracket, denoted here by {·, ·}GD. We
refer to [OlsPerReySem] for the definitions and proofs of the general results of the
theory.

Theorem 5 (Killip, Nenciu, 2005). The manifold of CMV matrices with fixed
determinant form a symplectic leaf in the Poisson manifold (g, {·, ·}GD).

The proof of this theorem relies on the fact a unitary matrix having the same
shape as a CMV matrix is exactly a CMV matrix. Moreover, one can show that
the set of CMV matrices with fixed determinant is an orbit under the action of
a certain group of dressing transformations (see Theorem 4.7 of [KilNen2]). In a
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concurrent paper, [Li], Luen-Chau Li has independently derived this result. In a
sense, his approach is the reverse of ours: he begins by investigating the action
of certain dressing transformations, while we arrive at their existence only after
studying the problem by other means.

As is natural in the theory of Poisson-Lie algebras, we focus on Hamiltonians
given by φ(B) = Im tr f(B), where f is a polynomial. The general theory guar-
antees that the evolution equations they generate will be expressible as Lax pairs.
In our case these Lax pairs at a CMV matrix are the same as those obtained from
Theorem 4 by taking the appropriate linear combinations. Given this result, the
following is not surprising:

Theorem 6 (Killip, Nenciu, 2005). For any 0 ≤ k, l ≤ n − 2 the Gelfand-Dikij
brackets of the Verblunsky coefficients are given by

(3.9) {αk, αl}GD = 0 and {αk, ᾱl}GD = −2iδklρ
2
k.

That is, the restriction of the Gelfand-Dikij bracket to CMV matrices agrees
with the Ablowitz-Ladik bracket when written in the coordinates given by the
Verblunsky coefficients. From now on we denote both brackets by {·, ·}.

4. The Ablowitz-Ladik system: Asymptotics

Shortly after the discovery of the Lax pair representation for the Toda lattice,
Moser, [Mos], gave a complete solution for the finite system. Specifically, he discov-
ered the angle variables associated to the actions of Hénon [Hen] and Flaschka [Fla].
In addition, he studied the long-time asymptotics of the system and determined the
scattering map.

The identification of the Ablowitz-Ladik bracket as an abstract Poisson-Lie
bracket allows one to follow the same path in the unitary setting. More precisely,
we begin by investigating the evolution under a Hamiltonian of the Ablowitz-Ladik
hierarchy of the spectral measure µ =

∑
µjδzj

associated to a CMV matrix C and
the vector e1 = [1, 0, . . . , 0]T :

Theorem 7 (Killip, Nenciu, 2005). Under the flow generated by φ(B) = Im tr{f(B)},

(4.1) ∂t (log[µj(t)]) = {φ, log[µj ]} = F (eiθj )−
n∑

l=1

F (eiθl)µl(t),

where F (z) = 2 Re zf ′(z). Consequently,

(4.2) µj(t) =
exp[F (eiθj ) t]µj(0)∑

exp[F (eiθl) t]µl(0)

and for any j, l ∈ {1, . . . , n− 1},
(4.3) {θl,

1
2 log[µj/µn]} = δjl.

A special case of this result (for Schur flows) has already appeared, [MukNak].
The approach used there was to begin with a special case of (4.2) and determine
the induced evolution on the Verblunsky coefficients.

In defining µk and zk, we can choose any ordering we please; however, there is a
particular condition on this choice that simplifies the formulae below. Namely, we
require that

(4.4) λ1 ≥ λ2 ≥ · · · ≥ λn,
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where we use the shorthand λk = F (zk) = 2 Re[zkf ′(zk)]. Of course generically, the
ordering will be strict. Note that by the continuity of F this labeling is well-defined
on an open set which is invariant under the flow of φ.

In what follows we will assume that we are indeed in a situation where the
ordering described above is strict. This simplifies the formulae, but is not necessary;
the interested reader can find the full results in [KilNen2].

Under the flow generated by the Hamiltonian φ, the masses have the following
asymptotics

(4.5) log[µk(t)] = −(λ1 − λk)t + log
[
µk

µ1

]
+ O(e−at)

as t →∞. (The quantities for which we do not specify time dependence are assumed
to be evaluated to t = 0.) In particular µ1(t) → 1 and, if k > 1, then µk(t) → 0
exponentially fast. We now turn to the asymptotics of the Verblunsky coefficients:
Fix 1 ≤ k ≤ n− 1. As all λj are distinct,

(4.6) αk−1(t) = (−1)k−1z̄1 · · · z̄k

[
1 + ξk−1e

−(λk−λk+1)t + O(e−γt)
]

where

(4.7) ξk−1 = (zkz̄k+1 − 1)
µk+1

µk

k−1∏
l=1

∣∣∣∣zk+1 − zl

zk − zl

∣∣∣∣2
and γ > (λk − λk+1) > 0.

In other words, if all λj are distinct, then viewed as a curve in the disk, αk−1(t)
approaches the boundary in a fixed non-tangential direction. This simply amounts
to the statement that ξk−1 is non-zero and arg(ξk−1) = arg(zkz̄k+1 − 1) belongs to
(−π/2, π/2). Let us also note that the asymptotics of ρk−1 are easily deduced from
(4.6):

ρ2
k−1(t) = −2 Re(ξk−1)e−(λk−λk+1)t + O(e−γt)

= |zk+1 − zk|2
µk+1

µk

k−1∏
l=1

∣∣∣∣zk+1 − zl

zk − zl

∣∣∣∣2 e−(λk−λk+1)t + O(e−γt).

This shows that the factors L(t) and M(t) of the CMV matrix C(t) diagonalize
as t → ∞ and hence so does C(t). Moreover, the eigenvalues are ordered by the
corresponding value of F (z). This is a well known phenomenon for the Toda lattice.

Let us note here that when the λj are not all distinct, C(t) converges to a direct
sum of CMV matrices and their adjoints. Specifically, if

λk−1 > λk = · · · = λk+m > λk+m+1,

then αk−1, . . . , αk+m−2 do not approach the boundary and C(∞) has a non-trivial
block of size m beginning at row/column k. If k is odd, this will be a CMV matrix;
if k is even, it will the adjoint of a CMV matrix. While this phenomenon cannot
occur for the Toda lattice, it can occur for Hamiltonians in the same hierarchy.
Some examples of non-diagonalization are discussed on page 389 of [DeiLiTom].

Finally, our understanding of the asymptotic behaviour of the relevant quantities
allows us to find canonical coordinates for the system. We know from the Lax pairs
that the eigenvalues Poisson commute: {θj , θk} = 0, for all 1 ≤ j, k ≤ n, where θj is
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the argument of the eigenvalue zj . Moreover, the evolution of the spectral measure
given in Theorem 7 implies that

{θl,
1
2 log[µj/µn]} = δjl.

It would be natural to imagine that

θ1, . . . , θn−1,
1
2 log[µ1/µn], . . . , 1

2 log[µn−1/µn]

are canonical coordinates. This is the case for the Toda lattice (as can be concluded
from [DeiLiNanTom]). The same does not happen here; instead, the following holds:

Theorem 8 (Killip, Nenciu, 2005). For any labelling of the eigenvalues,

(4.8)
{
log[µ2/µ1], log[µ3/µ1]

}
= 2 cot

(
θ1−θ2

2

)
+ 2 cot

(
θ2−θ3

2

)
+ 2 cot

(
θ3−θ1

2

)
in the Gelfand–Dikij (or Ablowitz–Ladik) bracket.

While the previous results concerning asymptotics for the Ablowitz-Ladik system
are proved using the abstract (Gelfand-Dikij) form of the bracket, we were unable
to do the same here. Instead note that {log[µj/µl], log[µk/µl]} is constant under
the flow generated by a Hamiltonian φ defined as above, and so one can work
in a regime where the masses are already exponentially ordered. We then use
perturbation theory to obtain more precise asymptotics for log[µj/µ1] for j = 2, 3
in this regime, and plug these into the explicit (Ablowitz-Ladik) bracket to obtain
the result. It would be interesting to find a proof using only the Gelfand-Dikij
bracket, and to better understand the appearance of the cotangent function in
formula (4.8).

In an earlier paper, [KilNen1], Rowan Killip and the author considered the map

(4.9) (θ1, µ1, . . . , θn−1, µn−1, θn) 7→ (u0, v0, . . . , un−1, vn−2, φ)

where αk = uk + ivk and αn−1 = eiφ. We found that:

Proposition 9. The Jacobian of the change of variables (4.9) is given by

det
[

∂(u0, v0, . . . , φ)
∂(θ1, µ1, . . . , θn)

]
= −21−n ρ2

0 · · · ρ2
n−2

µ1 · · ·µn
.

The analogous result for Jacobi matrices is due to Dumitriu and Edelman,
[DumEde], which served as our guide. Both of these proofs are probabilistic in
nature.

We also asked for a simpler, more direct derivation of the Jacobian. A recent
preprint of Forrester and Rains, [ForRai2], gives a very direct, computational so-
lution. Percy Deift showed us a derivation of the Jacobi matrix result using the
symplectic structure naturally associated to the Toda lattice. The same can be
done in the circular case (see [KilNen2, Corollary 8.6]). The key idea is the fol-
lowing: As we can write the underlying symplectic form in either set of variables,
we can view (4.9) as a symplectomorphism between two concrete symplectic man-
ifolds. In particular, it must preserve the Liouville volume, which allows one to
prove Proposition 9.
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