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Abstract

The notion of Loschmidt echo (also called “quantum fidelity”) has been
introduced in order to study the (in)-stability of the quantum dynamics under
perturbations of the Hamiltonian. It has been extensively studied in the
past few years in the physics literature, in connection with the problems of
“quantum chaos”, quantum computation and decoherence.
In this paper, we study this quantity semiclassically (as ~ → 0), taking as
reference quantum states the usual coherent states. The latter are known
to be well adapted to a semiclassical analysis, in particular with respect to
semiclassical estimates of their time evolution. For times not larger than the
so-called “Ehrenfest time” C| log ~|, we are able to estimate semiclassically
the Loschmidt Echo as a function of t (time), ~ (Planck constant), and δ (the
size of the perturbation). The way two classical trajectories merging from the
same point in classical phase-space, fly apart or come close together along the
evolutions governed by the perturbed and unperturbed Hamiltonians play a
major role in this estimate.
We also give estimates of the “return probability” (again on reference states
being the coherent states) by the same method, as a function of t and ~.
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1 Introduction

The semiclassical time behaviour of quantum wavepackets has been the subject

of intense interest in the last decades, in particular in situations where there is some

hyperbolicity in the corresponding classical dynamics (Lyapunov exponents) [8], [15],

[28]. Moreover the response of a quantum system to an external perturbation when

the size δ of the perturbation increases can manifest intriguing properties such as

recurrences or decay in time of the so-called Loschmidt Echo (or “quantum fidelity”)

[6], [7]. By Loschmidt Echo we mean the following:

starting from a quantum Hamiltonian Ĥ whose classical counterpart has a chaotic

dynamics, and adding to it a “ perturbation” Ĥδ = Ĥ + δV̂ , then we compare

the evolutions in time U(t) := e−itĤ/~ , Uδ(t) := e−itĤδ/~ of initial quantum

wavepackets ϕ sufficiently well localized around some point z in phase-space; more

precisely the overlap between the two evolutions, or rather its square absolute value,

is:

F~,δ(t) := |〈Uδ(t)ϕ , U(t)ϕ〉|2

For example for quantum dynamics in Hilbert space H = L2(Rd), d being the

space dimension, ϕ can be chosen as the usual coherent states, since they are the

quantum wavepackets “as most localized as possible” in phase-space R
2d.

Since for δ = 0, we obviously have F~,0(t) ≡ 1, and for any δ , F~,δ(0) = 1,

the type of decay in t of F~,δ(t) so to say measures the (in)fidelity of the quantum

evolution with respect to a perturbation of size δ for generic initial wavepackets ϕ.

The notion of Loschmidt Echo seems to have been first introduced by Peres

([22]), in the following spirit: since the sensitivity to initial data which characterizes

classical chaos has no quantum counterpart because of unitarity of the quantum

evolution, at least the “sensitivity to perturbations” of the Hamiltonian could replace

it as a characterization of chaoticity in the “quantum world”.

A big amount of recent work appeared on the subject, studying in an essen-

tially heuristic way the decay in time of F~,δ(t) as t increases from zero to infinity;

some of them also study this point in relationship with the important question of

decoherence. (See [1], [4], [12-14], [18], [22-26], [30-32]).
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In this “jungle” of sometimes contradictory results, it is hard to see the various

arguments involved, in particular the precise behaviour of F~,δ(t) as δ (the size of

the perturbation), t (the time), and of course ~ (the Planck constant) are varied,

in particular in which sense and order the various limts δ → 0, ~ → 0, t → ∞ are

taken.

Also an important point to consider is how F~,δ(t) depends on the location of the

phase-space point z around which the initial wavepacket ϕ is peaked (since classical

chaoticity distinguishes various zones in phase-space with “more or less regularity

properties”).

The aim of the present paper is to start a rigorous approach of the question of

semiclassical estimate of F~,δ(t), in terms of classical characteristics of the (perturbed

and unperturbed classical flows), for initial wavepackets ϕ = ϕz being the coherent

state at phase-space point z. These estimates are non-perturbative, and are carefully

calculated in terms of parameters (z, δ, t, ~). The main tools we have used and

developed in this respect are

1) semiclassical coherent states propagation estimates ([8])

2) a beautiful formula inspired by B. Mehlig and M. Wilkinson ([21]) about the Weyl

symbol of a metaplectic operator, and thus of its expectation value in coherent states

as a simple Gaussian phase-space integral ( see [9] where we have completed the

proof of Mehlig-Wilkinson, and treated in particular the case where the monodromy

operator has eigenvalue 1).

Note that very recently, J. Bolte and T. Schwaibold have independently obtained a

similar result about semiclassical estimates of the Quantum Fidelity ([2]).

The plan of this paper is as follows. In section 2 we give some preliminaries

about the Echo for suitable quantum observables, and give the semiclassics of it.

In Section 3, we consider the (integrable) d = 1 case, and consider the “return

probability” in the semiclassical limit. We give a sketchy presentation of a beautiful

result on “quantum revivals” (see [29], [19]). In Section 4 we consider the general

d-dimensional case and give a semiclassical calculus of the “return probability” and

of the quantum fidelity, with precise error estimates.
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2 Preliminaries

Let us consider the Hamiltonian Ĥδ = Ĥ0 + δV̂ , depending on a real parameter δ.

Uδ(t) is the time evolution unitary operator in Hilbert space H = L2(Rd)

Uδ(t) = exp

(
−it

~
Ĥδ

)

The quantum echo is the unitary operator defined by

E
(q)
δ (t) = U0(−t)Uδ(t) (2.1)

and the quantum fidelity is defined, for a state ψ0, ‖ψ0‖ = 1, by

f
(q)
δ (t) =

∣∣∣〈ψ0|E(q)
δ (t)ψ0〉

∣∣∣
2

(2.2)

This was introduced first in classical mechanics by Loschmidt (in discussions with

Boltzmann) then adapted in quantum mechanics by Peres [22].

Let us denote by Φδ(t) the classical flow defined in the phase space R2d by the clas-

sical Hamiltonian Hδ. That means zδ,t := Φδ(t, z0) is the solution of the differential

equation żt = J∇Hδ(zt), zt=0 = z0. So that the classical echo is

E
(cl)
δ (t, z0) = Φ0 (−t,Φδ(t, z0)) . (2.3)

We can see easily that in the semiclassical limit, ~ → 0, the quantum echo converges

to the classical echo. In more mathematical terms, the quantum echo is a ~ -

Fourier Integral Operator whose canonical relation is the classical echo. This is a

consequence of the semiclassical Egorov theorem as we shall see now, at least when

the reference quantum state is a “coherent state”. Let us recall the definition of a

coherent state:

Given ϕ0(x) := (π~)−d/4 exp(−x2/2~), we define, for z := (q, p) ∈ R
2d:

ϕz := T̂ (z)ϕ0

where

T̂ (z) := exp

(
i(p.Q̂− q.P̂ )

~

)

Proposition 2.1 Let be A a classical observable C∞-smooth, with compact support

for simplicity. Let be ϕz the coherent state living at z. Then we have:

lim
~→0

〈E(q)
δ (t)ϕz0

|ÂE(q)
δ (t)ϕz0

〉 = A(E
(cl)
δ (t, z0)) (2.4)
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A more comprehensible formulation is to define the fidelity for observables by the

equality f
(q)
δ,A(t) = |C(q)(Âδ(t), Â0(t))|2 where C(q)(B̂, Â) is the quantum correlation

for a pair (A,B) of observables:

C(q)(B̂, Â) = Tr
(
B̂Â
)
,

and Âδ(t) = Uδ(t)ÂU0(−t). Then the semiclassical Egorov theorem gives:

Proposition 2.2 With the above notations we have:

lim
~→0

(2π~)2df
(q)
δ,A(t) = f

(cl)
δ,A (t) (2.5)

where

f
(cl)
δ,A (t) =

∣∣∣∣
∫

R2d

A(Φδ(t, z))A(Φ0(t, z))dz

∣∣∣∣
2

Remark 2.3 An important question is to control the time of validity of the semi-

classical approximation. Rigorous mathematical results are far from numerical and

theoretical expected physical results. Without assumptions on classical flows this

time is the Ehrenfest time (of order log(~−1)). If we assume that Φ0 is completely

integrable and δ = O(~) then this time is of order O(~−1/3+ε), for every ε > 0.(for

details see [3]).

3 Revivals for 1-D systems

In this section we give a flavor of results due to Robinett and Leichtle-Averbukh-

Schleich ( [29],[19] and more references therein contained) and show how to put

them in a more rigorous mathematical framework. Let us consider a classical 1-D

Hamiltonian H . One assumes H smooth, confining, with one well. Let en be an

orthonormal basis of eigenstates, with eigenvalues En, n ∈ N.

Let ψ0 =
∑

n∈N

cnen an initial normalized state, and ψt = U(t)ψ0. Then the autocor-

relation fonction is :

a(t) := 〈ψ0|ψt〉 =
∑

n∈N

|cn|2e−
it
~

En (3.6)

and the return probability is defined by:

ρ(t) = |a(t)|2 (3.7)
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Let us remark here that a is an almost periodic function (in the sense of H. Bohr) in

time t on R so it was remarked a long time ago that the return Theorem of Poincaré

is true in quantum mechanics.

For 1-D systems much more accurate results are available because for these systems

the spectrum can be computed with error O(~∞). Recall here this result.

We take the presentation from the paper by Helffer-Robert ([16]) and we refer to

this paper for more details (see also the thesis of Bily for a proof with coherent

states).

Let us consider a non critical energy interval [E−, E+]. The action integral is

J(E) =
∫

H(z)≤E
dz and the period along the energy curve H−1(E) is TE = J ′(E),

E ∈ [E−, E+] (the one well assumption means that H−1(E) has only one compo-

nent).

Let us denote F± = J(E±). We can determine the eigenvalues of Ĥ in [E−, E+]

by the following Bohr-Sommerfeld rule : there exist F 7→ b(F, ~) and C∞ functions

bj defined on [F−, F+] such that b(F, ~) =
∑

j∈N

bj(F )~j + O(~∞) and the spectrum

En of Ĥ is given by

En = b((n +
1

2
)~, ~) + O(~∞), for n such that (n+

1

2
)~ ∈ [F−, F+] (3.8)

where b0(F ) = J−1(F ), and b1 = 0. (3.9)

In a recent paper Colin de Verdière gives a method to compute explicitly the other

corrections [5] .

Let us now choose an initial wave packet tightly spread around En̄ ≡ J−1((n̄+ 1
2
)~).

For that we take cn = Kτ,~χ

(
En − En̄

τ

)
, where χ has a bounded support and Kτ,~

is defined such that
∑

n∈N

|cn|2 = 1.

Up to a small error it is possible to change the definitions of χ and Kτ,~ such that

cn = Kτ,~χ
(

n−n̄
σ

)
, with σ = τ

~
. Kτ,~ is of order ~τ−1 = σ−1. Pratically, we shall

choose τ = ~θ ( σ = ~θ−1) with 0 < θ < 1 but it is more suggestive to keep the

notation τ or σ.

For each ~ let us now fix an integer n̄ (depending on ~) such that (n̄+ 1
2
)~ ∈ [F−, F+]

and let us apply the Taylor formula :

En −En̄ = ~b′0(n− n̄)+
~2

2
b′′0(n− n̄)2 +

~3

6
b′′′0 (n− n̄)3 +~

2b′2(n− n̄)~+O(τ 4) (3.10)
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where the derivatives of bj in F are computed at F̄ = (n̄ + 1
2
)~.

Let us denote by ai(t) the approximation for a(t) obtained by plugging in (3.6)

the i-first terms of the Taylor expansion of En−En̄

~
resulting from (3.10), denoted by

κi(n) (1 ≤ i ≤ 3). So we get the following preliminary result:

Proposition 3.1 There exists θ as above, such that we have

|a(t)|2 = |ai(t)|2 + O(|t|~−1τ i+1) (3.11)

In particular we see that for any ε > 0, |ai(t)|2 is a semiclassical approximation for

|a(t)|2 valid for large time, |t| less than ~1+ετ−1−i, with a reminder term O(~ε).

From this proposition we can give a rough idea about the collapses and revivals

phenomenon for the return probability ρ(t).

Let us remark first that κ1(n) = b′0(n− n̄) so |a1(t)|2 is periodic with period

Tcl =
2π

b′0

(classical period along the orbit of energy En̄). So the return probability ρ(t) is close

to 1 for t = NTcl as far as |t| is less than τ−2~1+ε.

For larger times, we have to consider κ2(n) = b′0(n − n̄) + ~

2
b′′0(n − n̄)2 and a

second time scale dependent on ~, the revival time defined as

Trev =
4π

~b′′0

We shall see now that for large time intervals

J~ = [Trevσ
−δ−2, Trevσ

−1−δ′ ],

where δ > 0, δ′ > 0 are any small fixed real numbers, we have

lim
~→0,t∈J~

ρ(t) = 0 (3.12)

It is simpler to prove the collapse property (3.12) for a Gaussian cut-off, χ(x) =

e−x2/4. Even if it is not the real problem we want to consider here, it is enough to

give the intuition of the collapse phenomenon. The real problem with a smooth χ
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with compact support is more technical to check.

The trick here is to apply the Poisson formula in the time variable to

a2(t) = Kτ,~

∑

m∈Z

exp

(
−m2

2σ2
+ 2iπt

m2

Trev

)
exp

(
2iπt

m

Tcl

)
(3.13)

So, applying the classical formula for the Fourier transform of a Gaussian we get

a2(t) = Kτ,~

√
2π

γt,~

∑

ℓ∈Z

exp

(
−4π2

(ℓ− t
Tcl

)2

2γt,~

)
(3.14)

where γt,~ =
(

1
σ2 − 4iπt

Trev

)
.

We have

γt,~ = γ0,~

(
1 − 4iπt

Trev

σ2

)

and each Gaussian term in the sum in (3.14) has width δt, given by

δt =
(
ℜ(γt,~

−1)
)
)−1/2 =

(
1

σ2
+ 16π2 t

2σ2

Trev
2

)1/2

From formula (3.14), we can see that a sufficient condition for t to be a collapse

time for ρ(t) is that |γ0,~

γt,~
| and δt tend to 0 with ~. So we get (3.12).

For example if τ = ~3/4 we have:

ρ(NTcl) = 1 +O(~ε)

as long as NTcl < ~ε−1/2, and

ρ(t) = O(~ε)

provided t ∈ J~,τ = [~−1/2−δ, ~−3/4−δ′ ]. So we have a large collapse interval. But

for larger time, ρ(t) can again be close to 1. This is the revival phenomenon. For

example we have a revival if the resonant condition : Trev

Tcl
∈ Z is satisfied; in this

case

ρ(Trev) = 1 +O(~ε)

as follows easily from Proposition 3.1, and equ. (3.13) (recall that Trev = O(~−1))

As it is shown in [29], it is also possible to observe fractional revivals.

Remark 3.2 The above analysis could be extended to completely integrable systems

in d degrees of freedom
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Remark 3.3 In the next section, for d-multidimensional sytems, we shall start with

a Gaussian coherent ϕz of classical energy E = H(z). Let us consider χ as above

and such that χ = 1 in a small neighborhood of E. Then, modulo an error term

O(~∞), we have easily

〈ϕz|U(t)ϕz〉 =
∑

n∈N

χ

(
En −E

τ

)
|〈ϕz|en〉|2e−

it
~

En (3.15)

We get something similar to the definition of a(t) but with coefficients cn not neces-

sary smooth in the variable n, so application of the Poisson formula seems difficult.

4 Fidelity on coherent states

Let us recall the time dependent propagation theorem for coherent states proved in

[8] and revisited in [28].

Theorem 4.1 Under the assumptions (4.17), there exists a family of polynomials

{bj(t, x)}j∈N in d real variables x = (x1, · · · , xd), with time dependent coefficients,

such that for all ~ ∈]0, 1], we have
∥∥∥∥∥U(t)ϕz − exp

(
iγt

~

)
T̂ (zt)Λ~R̂1(Ft)

(
∑

0≤j≤N

~
j/2bj(t)g

)∥∥∥∥∥
L2(Rd)

≤ C(N, t, ~)~(N+1)/2

(4.16)

such that for every N ∈ N, and every T < +∞ we have sup
0<~≤1,|t|≤T

C(N, t, z, ~) < +∞

with the following notations and assumptions :

1. H is a smooth Hamiltonian such that for every multiindex α there exist Cα > 0

and Mα ∈ R such that

|∂α
XH(X)| ≤ Cα(1 + |X|)Mα, for X ∈ R

2d. (4.17)

2. Ĥ is self-adjoint on L2(Rd).

3. t 7→ zt is the classical path (z0 = z) and Ft is the stability matrix along this

path.

4.

γt(z) =
1

2

∫ t

0

zs · ∇H(zs)ds− tH(z)
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5.

Λ~ψ(x) = ~
−d/4ψ

(
x~

−1/2
)

and

g(x) = π−d/4 exp
(
−|x|2/2

)
. (4.18)

6. R̂1(F ) is the usual metaplectic representation (for ~ = 1) associated to F (see

[9]). In particular if

F =

(
A B
C D

)

is the 4 d × d block-matrix form of the symplectic matrix F , the action of

R̂1(F ) on the state g is given by:

R̂1(F )g = π−d/4(det(A + iB))−1/2 exp

(
i

2
Γx · x

)

with Γ := (C + iD)(A+ iB)−1

Let us denote by ψ
(N)
z,t the approximation of U(t)ϕz given by (4.16).

Let us recall some more accurate estimate obtained in [8] and [28].

(i) Let be N fixed and R > 0 such that |zt| ≤ R, ∀t ∈ R. Then there exist cN > 0,

kR > 0 such that

~
(N+1)/2C(N, t, z, ~) ≤ cNkR

(√
~|Ft|3

)N+1

(1 + |t|)N+1 (4.19)

In particular, in the generic case, we have a positive Lyapunov exponent γ

such that |Ft| ≤ eγ|t|, so that the semiclassical approximation is valid for

|t| ≤ 1−ε
6γ

| log ~|.

In the integrable case we have |Ft| ≤ c|t| and the semiclassical approximation

is valid for |t| ≤ ~−1/6+ε, for any ε > 0.

(ii) If H satisfies the following analyticity assumption in the set

Ωρ = {X ∈ C
2n, |ℑX| < ρ} (4.20)

where ℑX = (ℑX1, · · · ,ℑX2d) and | · | is the Euclidean norm in R
2d for the

Hermitean norm in C2d. So we assume there exist ρ > 0, C > 0, ν ≥ 0, such

that H is holomorphic in Ωρ and for all X ∈ Ωρ, we have

|H(X)| ≤ Ceν|X|. (4.21)
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Then the N -dependent constant cN in (4.19) can be estimated by

cN ≤ CN+1(N + 1)
N+1

2 (4.22)

From this estimate we get an approximation for U(t)ϕz modulo an exponen-

tially small error (see also [15])

(iii) There exist τ > 0, a > 0, k > 0 such that for N = {a
~
} (the nearest integer to

a
~
), we have

‖U(t)ϕz − ψ
(N)
z,t ‖ ≤ ke−

τ
~ , ∀~ ∈]0, 1]. (4.23)

Now we apply the above estimates and the results already proven [9] concerning the

action of metaplectic transformations on Gaussians. Our aim is to study the fidelity

fδ,z(t) = |〈U0(t)ϕz|Uδ(t)ϕz〉|2 (4.24)

We shall add the index δ to keep track of the dependence on the Hamiltonian Hδ.

z is fixed so we shall omit index z.

The assumptions on the family of Hamiltonians Hδ are always supposed to be

satisfied uniformly in the parameter δ ∈ [0, 1].

From now on we denote by Fδ,t the stability matrix for Hδ on the trajectory zδ,t.

With the same notations as in Section 2 we thus have:

Fδ,t =
∂

∂z
Φδ(t, z)

Let us denote

Ft = F−1
0,t · Fδ,t

For any symplectic matrix F , we define

ΓF = (1l+ iJ)KF (1l− iJ)−1l, KF := (1l+F )(2V )−1 and VF = 1
2
(1l+F + iJ(1l−F )).

VF can be shown to be invertible, and moreover has determinant greater than or

equal to 1 (see Lemma 4.4 below).

Theorem 4.2 Let us assumme (4.17) satisfied. Then we have for the fidelity, the

asymptotic formula as ~ → 0,

fδ(t) = |det(VFt
)|−1e

2ℜ△t
~ + O(

√
~) (4.25)
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where

△t =
1

4
ΓFt

F−1
0,t (z0,t − zδ,t) · F−1

0,t (z0,t − zδ,t)

Moreover we have

ℜ△t ≤ −(2 + 2|Ft|2)−1|F−1
0,t (z0,t − zδ,t)|2, (4.26)

where |Ft| is the norm of the symplectic matrix Ft in the Euclidean space R
2d.

In particular fδ(t) = 1 + O(
√

~) if and only if zδ,t = z0,t and Ft = F−1
0,t Fδ,t is a

unitary matrix.

Moreover if the analyticity assumption (4.21) is satisfied then we have for the

matrix elements of the echo operator, the following full asymptotic expansion

∣∣∣〈ϕz|E(q)
δ (t)ϕz〉

∣∣∣ =
(
∑

0≤j≤N

αj(t)~
j/2

)
e

ℜ△t
~ + O(e−

c
~ ) (4.27)

where N = {a
~
} (for some a > 0 and for some c > 0). There exists C > 0 such that,

for all j ∈ N,

|αj(t)| ≤ Cj+1(j + 1)(j+1)/2

and α0(t) = |det(Vt)|−1/2.

Proof

Let us first consider the first order approximation. Using the propagation theorem

4.1, we get

〈ϕz|E(q)
δ (t)ϕz〉 = e

i
~
βt〈ϕF−1

0,t (z0,t−zδ,t)
|R̂(F−1

0,t Fδ,t)ϕ0〉 + O(
√

~),

where

βt = γδ,t − γ0,t −
1

2
σ(zδ,t, z0,t)

We have established in [9] the following result for expectation values of a metaplectic

operator in the coherent states:

Lemma 4.3 The matrix elements of R̂(F ) on coherent states ϕz are given by the

following formula:

〈ϕz+X |R̂(F )ϕz〉 =

(detVt)
−1/2 exp

{
−1

~
|z +

X

2
|2 +

i

2~
σ(X, z) +

1

~
KF (z +

X − iJX

2
) · (z +

X − iJX

2
)

}

(4.28)
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Moreover we have:

Lemma 4.4 For any symplectic matrix F , | detVF | ≥ 1, and | detVF | = 1 if and

only if F is unitary.

Proof of Lemma 4.4: Let

F =

(
A B
C D

)

be the 4-block decomposition of the 2d × 2d symplectic matrix F . We have the

following diagonalization property of the hermitian matrix iJ :

iJ = U

(
−1l 0
0 1l

)
U∗

where U is the unitary matrix

U =
1√
2

(
1l 1l
i1l −i1l

)

Thus we have:

VF =
1

2
U

((
2 0
0 0

)
U∗FU +

(
0 0
0 2

))
U∗

and therefore

detVF = det
1

2

{(
A+D + i(B − C) A−D − i(B + C)

0 0

)
+

(
0 0
0 2

)}

= det
1

2

(
A +D + i(B − C) A−D − i(B + C)

0 2

)
= det

1

2
(A+D + i(B − C))

We conclude that:

| detVF |2 = det
1

4
[Ã+ D̃ − i(B̃ − C̃)][A +D + i(B − C)] = det[1l + L∗L]

with

L =
1

2
[A−D + i(B + C)]

where we have used the symplecticity of F , namely that

ÃC − C̃A = D̃B − B̃D = 0

ÃD − D̃A = 1l

(Note that Ã denotes the transpose of matrix A.) ⊓⊔
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End of Proof of Theorem 4.2: Putting z = 0, X = F−1
0,t (z0,t − zδ,t) in (4.28), we get

(4.27).

Now the estimate (4.26) easily follows from the following:

Lemma 4.5 Let

γF (X) =
1

4
X · ΓFX

Then for any X ∈ R2d we have:

ℜ(γF (X)) ≤ − |X|2
2(1 + sF )

where sF is the largest value of FF̃ (F̃ being the transpose of the matrix F ).

Proof: let us begin to assume that det(1l + F ) 6= 0. Then we have:

KF = (1l + iN)−1 where N = J(1l − F )(1l + F )−1 is real symmetric

so we can compute

ℜ(KF ) = (1l +N2)−1 = KFK
∗
F and ℑ(KF ) = −N(1l +N2)−1

So we get:

γF (X) =
1

4

(
(1l + JN)KFK

∗
F (1l −NJ)X ·X − 2|X|2

)

By definition of KF , we have:

(1l + JN)KF = 2
(
(1l + iJ)F−1 + 1l − iJ

)−1
:= 2TF

We have, using that F is symplectic

(T ∗
F )−1T−1

F = 2(F̃−1F−1 + 1l)

Hence we get:

TFT
∗
F − 1l

2
=
(
2(F̃−1F−1 + 1l)

)−1

− 1l

2
= − 1l

2(1l + F̃F )

TFT
∗
FX ·X − |X|2

2
= −1

2
(1l + F̃F )−1X ·X ≤ − 1

2(1 + sF )
|X|2

and the conclusion follows for det(1l + F ) 6= 0, hence for every symplectic matrix F

by continuity.
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⊓⊔

We could also give an asymptotic expansion modulo O(~+∞).

The exponentially small estimates, in the analytic case, are obtained using estimates

stated in [28]. In both cases we could get estimates for large times, smaller that the

Ehrenfest time.

We obtain a very similar result for the semiclassical behavior of the “return proba-

bility” in the coherent states:

Theorem 4.6 Let us assume (4.17). Then we have for the return probability r(t, z) :=

|〈U(t)ϕz|ϕz〉| the asymptotic formula as ~ → 0,

r(t, z) = |det(Vt)|−1/2e
ℜ△t

~ + O(
√

~) (4.29)

where now

Vt =
1

2
(1l + F (t) + iJ(1l − F (t)))

F (t) being the stability matrix for the flow, and

△t =
1

4
ΓF (t)(zt − z) · (zt − z)

and ΓF (t) = (1l + iJ)(1l + F (t))(2Vt)
−1(1l − iJ) − 1l

In particular if z lies on a periodic orbit γ of the classical flow, with period Tγ, and

if F (Tγ) is unitary, we get:

r(Tγ, z) = 1 +O(~1/2)

namely we have almost “quantum revival” when ~ → 0.

Acknowledgements We thank Jens Bolte for communicating ref. [2] before

publication.
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