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Abstract

When considering hyperbolicity in multi-dimensional Hamiltonian sytems, es-
pecially in higher dimensional billiards, the literature usually distinguishes between
dispersing and defocusing mechanisms. In this paper we give a unified treatment of
these two phenomena, which also covers the important case when the two mecha-
nisms mix. Two theorems on the hyperbolicity (i.e. non-vanishing of the Lyapunov
exponents) are proven that are hoped to be applicable to a variety of situations.

As an application we investigate soft billiards, that is, replace the hard core
collision in dispersing billiards with disjoint spherical scatterers by motion in some
spherically symmetric potential. Analogous systems in two dimensions have been
widely investigated in the literature, however, we are not aware of any mathemat-
ical result in this multi-dimensional case. Hyperbolicity is proven under suitable
conditions on the potential. This way we give a natural generalization of the hy-
perbolicity results obtained before in two dimensions for a large class of potentials.



Introduction

In this paper we give a method for proving hyperbolicity in multi-dimensional Hamil-
tonian systems. On the one hand, our motivation comes from multi-dimensional soft
billiard systems, a situation to which our method is readily applied in Section 5. On the
other hand, our work is in a great part inspired by the description of many-dimensional
stadia given by Bunimovich and Rehdcek ([BR1] and [BR2]). As it has been observed
even much earlier, a focusing phenomenon — which causes initially parallel trajectories
being diverted towards each-other — can result in expansion in certain directions of the
phase space, and thus ensure that the system is hyperbolic. The key to this effect is a
suitably long free flight after such a focusing, which allows the trajctories to “meet at
the focus point” and than diverge again. This phenomenon of “defocusing” has been
well understood in 2 dimensions since the discovery of the Bunimovich stadium ([B]).
Figure 1 shows (on a planar soft billiard example) how dispersing and focusing can cause
trajectories to diverge.
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Figure 1: mechanisms of hyperbolicity

However, in higher dimensions the picture is more complicated due to the phenomenon
of “astigmatism”, that is “different strength of focusing in different directions”. Here a
“direction” means that we perturb our reference trajectory in a well chosen — not arbitrary
— way. Probably the most remarkable feature of Bunimovich-Rehacek treatment of high-
dimensional stadia is that it proves, despite of the above mentioned complications, the
presence of hyperbolicity in many dimensions by understanding the phenomenon in the
different directions separately.

In this paper we fight essentially the same difficulty — that is, different kinds of
behaviour in different directions. In the context of dispersing vs. focusing, this can even
mean dispersing in one direction and focusing in the other. We formulate the main results
in a general context of Hamiltonian systems. We will require the first return map from
some set to itself to have a decomposability property, that is, it should leave certain (lower
dimensional) “directions” of perturbations invariant. Then we claim that understanding
hyperbolicity in these directions separately gives hyperbolicity for the multi-dimensional
system.



Our proof uses the elegant and transparent method of Wojtkowski using “Lagrangian
sectors” in symplectic space. Throughout the paper, our main reference will be [LW],
where this method is described excellently.

The paper is organized as follows. In the first section we repeat some notions and
statements from [LW] concerning Lagrangian sectors in a symplectic space. Then in
Section 2 we recall and compare two important ways of looking at hyperbolicity: the
notions of cones and fronts. In Section 3 we give the definition of decomposability of
the dymanics and state our main results in two theorems. Theorem 3.1 describes how
Wojtkowski‘s approach to invariant cones can be translated to the language of fronts in a
general multi-dimensional setting. Theorem 3.4 shows how it is possible to prove hyper-
bolicity for multi-dimensional systems by solving lower dimensional problems. We prove
these two theorems in Section 4, where the technique of [LW], as recalled in Section 1, is
applied.

As an application, in Section 5 we prove hyperbolicity of a large class of “soft” bil-
liards in high dimensions. This means that we take a dispersing billiard with disjoint
spherical scatterers, and than replace hard-core collisions by Hamiltonian motion in some
spherically symmetric potential. In many of these examples it is indeed the case that the
phenomena of dispersing and focusing/defocusing coexist.

1 Sectors in symplectic space

In this section we repeat notions and statements from [LW]. We will use these to prove
Theorem 3.4 in Section 4.

Lagrangian subspaces in a symplectic linear space W are the maximal dimensional
linear spaces on which the symplectic form identically vanishes. They always have half
the dimension of the symplectic space. Given two transversal Lagrangian subspaces F;
and Fs there is a unique decomposition for any w € W:

W = MW + MW = Wy + Wo, w; € B,

where 7, and 75 denote the appropriate linear projections.
If Fy and E, are two transversal Lagrangian subspaces, then the cone above E; and
below E5 is defined as

C(El,EQ):{w:w1+w2 ‘ W; EEZ‘, w(wl,wQ) >0 } (1)

Equivalently, given the ordered pair of Lagrangian spaces (E7, Es) a quadratic form @
can be defined on W as

Q(w) = w(wy, wy) = w(mw, mw).

Then C(E1, Es) = {w | Q(w) > 0} and int(C(Ey, Ey)) = {w | Q(w) > 0}.



The simplest example is the sector defined in R? x R by
E; = R?x {0}
E, = {0} xR? (2)
C = C(Ey, Es) ={(dgq,dv) | (dq,dv) > 0}.
This is called the standard sector. Since any two sectors are symplectically equivalent,
one is always allowed to prove statements for the standard sector only.
A symplectic map L : W — W is called monotone (strictly monotone) with respect
to the cone C = C(E, E,) if LC C C (LC C int(C) U {0}).
The set of Lagrangian subspaces contained in the cone C is denoted by Lag(C): for

a Lagrangian subspace F' we have F' € Lag(C) iff I’ C int(C) U {0}. There is a partial
order on Lag(C):

Definition 1.1. For two Lagrangian subspaces F, Fy € Lag(C) let
Fy < Fy whenever Qo (my|p) "t < Qo (mi|m) "
The following theorem is Theorem 5.2 from [LW].

Theorem 1.2.

a.) For two transversal Lagrangian subspaces Fy, Ey € Lag(C)

Ey < Ey if and only if C(Ey, Ey) C C(Vi, Vs)

b.) Furthermore if Ey < Es, then for a Lagrangian subspace E € Lag(C)

E C C(E1, Ey) if and only if By < E < Ej.

This allows us to check invariance of a cone field (monotonicity of a symplectic map)
by looking at the defining Lagrangian subspaces only: since a symplecticmap L : W — W
satisfies

L(C(E, E)) = C(L(E1), L(E»)),

we have that L(C(E,, Es)) is strictly contained in C if and only if L(E;), L(E>) € Lag(C)
and L(E;) < L(Ey).

2 Hyperbolicity, cones and fronts

In what follows we will consider a discrete time Hamiltonian dynamical system (M, T ).
In the simplest case M is a smooth compact symplectic manifold, T': M — M is a
symplectomorphism, and p is the symplectic volume element. However, we may allow



the presence of singularities, which will not affect our considerations in any way. For a
precise definition of the dynamical system in this case, see [LW].

Our results can naturally be applied to Hamiltonian flows by taking some Poincaré
section, or — as usual in billiard theory — orthogonal sections. An example will be shown
in Section 5.

As the systems discussed througout the paper are Hamiltonian, the tangent planes
are symplectic linear spaces, and the statements of Section 1 are relevant. In particular,
when talking about a cone (in the tangent plane, or sometimes in a symplectic subspace
of it) we think of a cone defined by an ordered pair of transversal Lagrangian subspaces,
cf. formula (1).

One standard way of proving hyperbolicity is to show the existence of an invariant
(and eventually strictly invariant) cone field C(z) on M. That is, we place a cone at -
almost every point = € M into the tangent space of M at z: C(x) C 7,(M). We call the
cone field C(x) invariant if for p-almost every point « € M, DT(C(z)) C C(Tx). (Here
DT denotes the derivative of T.) A field C(z) of (closed) cones is said to be eventually
strictly invariant if for p-almost every point x € M there exists an n € N such that
DT™(C(x)) C int(C(T"x)) U {0}. Tt is standard (see e.g. [LW]) that the existence of an
eventually strictly invariant cone field implies the non-vanishing of Lyapunov exponents
(hyperbolicity). We may refer to these observations as the symplectic interpretation of
hyperbolicity.

Another common way of understanding the phenomena that result in hyperbolicity,
which we will refer to as the geometric interpretation, is by considering fronts. Fronts
are sometimes called “local orthogonal manifolds”, or simply “control surfaces” (e.g. in
[BR2]). The name is related to a picture about billiard flows where a front is defined
as a smooth 1-codim. submanifold E of the configuration space, every point of which is
equipped (continuously) with a unit velocity orthogonal to that submanifold:

W =A{(¢gv(q) | ¢ € E,v(q) LT(E),[v] =1},

Then the front is sometimes thought of as the submanifold F of the configuration space,
and sometimes as the submanifold W of the phase space.

Although the concept of a front was born in the context of flows, we will see that in
a construction of an invariant cone field, only the evolution of an infinitesimally small
piece of a front is needed. More precisely, let us denote by B, the derivative (matrix) of
the function v(q) at ¢. This is a linear map from the tangent space 7,(E) of E at ¢ to
the tangent space of the unit sphere at v(q). However, these two can be identified, and
thus B, can be considered as a symmetric linear operator B, : T,(E) — T,(E). B, is
exactly the curvature operator of E at q. We will see that the construction of invariant
cones is related only to the evolution of the operator B under the dynamics.

In this infinitesimal sense we may very well speak of fronts in the context of a general
discrete time Hamiltonian system (i.e. a symplectic map) 7' : M — M as well. At some
point x € M we may view the tangent space T, (M) as T, (M) = R¢xR? equipped with the
natural symplectic form w((dqy, dvy), (dgs, dvs)) = (dq1, dve) — (dga, dvy). Corresponding
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to any given symmetric linear operator B : R? — R? there is a canonically defined
d-dimensional subspace of 7,.(M):

gB = {(dq, Bdgq) | dq € Rd}. (3)

We may view B as a map from the “configurational” part of 7,(M) to the “velocity”
part. Then the graph of B, i.e. the subspace (3) is understood as the “local, infinitesimal
part” or as the “tangent space of the front”. As a consequence of the symmetricity of B,
subspaces of the type (3) are the typical examples of Lagrangian subspaces of R? x R

The above observations show that the notion of fronts, the basic tools in the geometric
interpretation of hyperbolicity, can be directly translated into the symplectic language
of [LW].

In view of these two parallel interpretations one may consider cones as collections of
vectors tangent to fronts the curvatures of which satisfy some inequalities. In order to
do so we introduce some notations: B > 0 (B > 0) means that the symmetric operator
B is positive (semi-)definite while B; > By (B; > Bs) means the same for the difference
By — B,. By slightly abusing notation, given a real number ¢ we simply refer to the
operator cld as c.

The simplest and most common example of cones is the “cone of convex fronts”:

Cpzo = {(dg, Bdg) | dg e R, B> 0} = | | ¢B.

B>0

However, in describing focusing-defocusing phenomena, one often has to use the more
general “c, < B < ¢*” cone:

Ce.<p<e = {(dg,Bdg) | dg e R',c. < B <"} = | ¢B. (4)

cx<B<c*

Here ¢, and ¢* are typically finite real numbers, but one can allow symmetric matrices
or +oo as well.

At first sight it may seem that we are abusing notation when we define cones both in
the symplectic sense of Formula (1) and in the geometric sense of Formula (4). However,
in Proposition 4.3 we will see that (4) is a special case of (1).

3 Statement of the theorems

In this section we state our main results about hyperbolicity of Hamiltonian systems.
The first result can be stated without any further preparation. It states that for cones
defined in terms of curvatures of fronts, invariance can be checked by looking only at the
“boundaries” of the cones — that is, the fronts with extremal curvatures. This statement is
a direct translation of the Theorem 5.2 from [LW] (repeated in this paper as Theorem 1.2)
to the language of fronts. We use the notation introduced in (4).



Theorem 3.1. Let the symmetric operators By and By describe fronts at the point x € M
that evolve into fronts described by the operators By and B at the point ' = Txz. That
is, DT'(gB1) = gB}] and DT (gBs) = gB). Let B, and B* also be operators of fronts at
x'. Suppose that By < By and B, < B*. Use the notation C = Cpg,<p<p, C T,(M) and
Cc* = CB*SB/gB* C %/(M) Then,

DT(C) c C* if and only if B, < B} < B, < B*

and
DT(C) is sctrictly contained in C* if and only if B, < B} < By < B*.

In both cases, DT(C) = Cpi<p<p,. One can also replace By and/or By and/or B, by
—o0 or By and/or Bl and/or B* by +00.

This theorem will be proven in Section 4.

To state our second, more specific theorem, we first need a notion of decomposability.

Suppose that there is a subset U of the phase space M such that the trajectory of
almost any point in M hits U in finite time. We plan to define our cones at points of
U and than extend their definition to almost all of M via the dynamics. We wish to
understand hyperbolicity of the dynamics through the first return map from U to U,
thus U has to be chosen in such a way that this return map is simple enough to describe,
but already shows hyperbolic features. With slight abuse of notation, we denote the first
return map by T (just like the dynamics above). In billiard-like systems U typically
consists of phase points that are just before or just after collision. We deal with the case
when investigation of the first return map can be “decomposed” into several problems
of lower dimension. We will prove that whenever such a decomposition is possible, it
is sufficient to construct invariant cones for these lower dimensional problems in order
to obtain the existence of invariant cones in the multi-dimensional system, and thus to
prove hyperbolicity.

We will denote by J, the “configurational part” of the tangent space of M at x, which
we indentify with the “velocity part” as well. That is, 7, (M) = J, X J,.

Remark 3.2. We note that in applications to flows, J, x J, will be only a subspace of the
tangent space. That is, the flow direction is ignored, and J, is tangent to the orthogonal
section of the flow at x.

In the definition to come, we denote the image (by the derivative of the dynamics) of
a tangent vector (dq, dv) by (dq’,dv’). That is,

(dq',dv") :== DT((dg, dv)).

Definition 3.3. Let U C M. We say that the first return map T from U to U can
be decomposed into lower dimensional maps if for every x € U there exist subspaces
Ji, Joy ooy I C Jpand Ji, Jb, 0 T C Jpy so that J, = 1D Dy, Jre = J1 BB
and for every i € {1,...,m} if both dq € J; and dv € J; then dq’ € J! and dv' € J!. That
is, DT(J; x J;) C J! x J..



Recall from Section 2 that as long as the differential aspects of the dynamics like
hyperbolicity is concerned, when talking about a front, only its tangent space, i.e. the
operator B is relevant. Thus, if such a decomposition exists, then we can talk about a
“front” which is entirely in .J; and evolves into a “front” which is entirely in J/. This only
means that a tangent vector (dq,dv) € J; x J; evolves into a tangent vector (dq’,dv’) €
Jx J!.

Now we are able to state our main theorem. The essence of the theorem roughly is
that if the cone ¢, < B < ¢* is invariant in all of the components, then it is also invariant
for the multi-dimensional dynamics.

Theorem 3.4. Suppose that U C M and the first return map from U to U can be
decomposed into lower dimensional maps as in Definiton 3.3. If there exist constants
—0 < ¢, < ¢ < 0 (¢, = —00 and ¢& = 0o are also allowed, but not at the same
time) such that the cone C; = {(dq, Bdq) | dq € Ji,c. < B < ¢*} is mapped into the
cone C; = {(dq',B'dq') | dq’ € J!,c. < B' < ¢*} for everyi € {1,...,m}, then the cone
C ={(dq,Bdq) | dq € J,c. < B < c¢*} is mapped into the cone C' = {(dq', B'dq’) | dq’ €
J' e < B < c¢*}. So the cone field defined by ¢, < B < ¢* is invariant. The equivalent
statement holds with strict inequalities and strict invariance.

4 Proof of the theorems

In this section we prove Theorems 3.1 and 3.4. In order to do so we use the notions and
facts recalled in Section 1. Note furthermore that the (strict) invariance of a cone field is
exactly the (strict) monotonicity of the derivative of the dynamics (which is a symplectic
linear map).

We start the proof with a small remark.

Remark 4.1. For any sector C,
C= U {E | E is a Lagrangian subspace and E C C} .

This is obvious for the standard sector (see (2)), and all sectors are symplectically
equivalent.

The following lemma states that if a cone is part of another, then the partial order
in the subcone coincides with the restriction (to the subcone) of the partial order in the
containing cone.

Lemma 4.2. Let C, = C(Ey, E2) C C. Denote the partial order on Lag(C) by <¢ and
the partial order on Lag(Cy) by <¢,. Let Es, E4 € Lag(Cy) [C Lag(C)]. Then

Es <¢ By if and only if E5 <¢, Fy.

Proof.



1.) First suppose that C; C intC U {0}. Then E;, F» € Lag(C), and Theorem 1.2 a.)

implies E) <¢ FE3. Furthermore, Theorem 1.2 b.) implies F; <¢ E3 <¢ Fy and
Ey <¢ By <¢ F».

a.) If By <¢ FE3 <¢ E4; <¢ F5, then Theorem 1.2 b.) and Remark 4.1 imply

C(Es, Ey) = U{E|E3 <c E <¢ E,;}
Ci = U{E|E1SCESCE2},

so C(E3, Ey) C C;. Now Theorem 1.2 a.) implies F3 <¢, Ej.
b.) If E3 <¢, E4 then Theorem 1.2 a.) implies C(E3, Ey) C C; C C. Applying
Theorem 1.2 a.) again gives F3 <¢ Ej.

So we see that the two partial orders coincide if C; C intCU{0} (that is, C; is strictly
contained in C).

In the general case, let us choose a sector Cy which strictly contains C. This is clearly
possible if C is the standard sector: C(V4,V3) will do if V; = {(a, —a) | a € R?} and
Vo = {(a, —2a) | a € Rd}. For any other C, any symplectic linear map which takes
the standard sector into C will take the above C(V1, V3) into some Cy which strictly
contains C.

Having chosen such a Cy, 1.) gives that on Lag(C;), both <¢ and <¢, coincide with
the partial order on Lag(Cy). This completes the proof.

O

The following proposition is an easy corollary of this lemma. It states that sectors

defined in terms of curvatures of fronts are exactly the Lagrangian sectors defined by the
tangents of the extremal fronts (graphs of the extremal curvature operators). Further-
more, the partial order on Lagrangian subspaces is exactly the usual partial order on
symmetric matrices.

Proposition 4.3. Let B, and B* be d x d symmetric (not necessarily positively defined)
matrices, and let B, < B*. Also allow B, = —o0 or B* = oo (but not both at the same
time). Let C = {(dq, Bdg) | dg € R?, B, < B < B*}.

we

Then C = C(gB., gB*), Lag(C) = {¢gB | B. < B < B*} and for gBy,gBs € Lag(C)
have
gB1 < gBs if and only if By < Bs.

When B, = —oo or B* = oo, we mean gB, = {0} x R or gB* = {0} x RY,

respectively.



Proof. First choose B, = ¢, > —o0 (a scalar) and B* = co. Then Lagrangian subspaces
transversal to gB* = {0} x R? are exactly the graphs gB of symmetric matrices B. An
easy calculation shows that the quadratic form (used in the definition of the partial order
on Lag(C), Definition 1.1) associated to a Lagrangian subspace ¢gB has the simple form

(Q o (mlgn)~")((dg, c.dq)) = Q((dg, Bdg)) = (dq, (B — c.)dq),
which immediately implies all the statements of the proposition. An analogous calculation
works for B, = —oo and B* = ¢* < oo (a scalar). In particular, on both of these sectors,
the partial order coincides with the usual partial order on symmetric matrices.
So, by Theorem 1.2, for general —oo < B, < B* < 0o or —o0 < B, < B* < o0,
C(gB., gB*) is contained in a sector of the above type, and by Lemma 4.2 it inherits the
partial order. The rest of the statement follows from Theorem 1.2 and Remark 4.1. O

Remark 4.4. Note that it would be possible to slightly extend the notion of such cones
and define, for By < Bs, beside Cp,<p<p,, also

Cpy,<p<p, = {(dg, Bdg) | dg € R, B, < B or B < B} .

This would correspond to “closing” the space of matrices through infinity. With such
a definition, Cp,<p<p, = C(9Ba, gB1) would still hold, and the ordering of Lagrangian
subspaces within the two “halves” of this cone would still coincide with the usual ordering
of symmetric matrices.

Remark 4.5. Note however, that (even with Remark 4.4 in mind) not all Lagrangian
sectors can be defined in this way. For two symmetric matrices By and Bs it may very well
happen that gBy and gBs are transversal, and so C(gB1, gBs) is well defined, although
neither By < By nor By < Bj.

Now we can turn to the proof of the main theorems.

Proof of Theorem 3.1. We use the notations of the theorem. Proposition 4.3 implies that
C =C(gBy,gBs) and C* = C(gB., gB*). Suppose first that the operators are finite.

1. Suppose that DT(C) C C*. Then obviously ¢Bj, gB; C C*, so B, < By, By < B
holds. Choose a sector C' which strictly contains C*, and still has the form C' =

~

Cp.<p<p-- This ensures that gBj, gB;, gB.,gB* € Lag(C) and the partial order

A

on Lag(C) is still the partial order on matrices. Now by Theorem 1.2, DT(C) C
C' implies B} < B). Now Proposition 4.3 implies that DT(C) = C(By, BS) =
CBiSBISBé .

2. Suppose that B, < B} < B} < B*. Then Proposition 4.3 immediately implies
DT(C) = C(By, By) = Cp<pr<py, which implies DT(C) C C*.

The statement with strict inequalities can be shown analogously, just there is no need to
introduce C'. The cases when some of the operators are replaced by infinity can also be
checked easily. O
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The second main theorem is verified by checking the conditions of Theorem 3.1:

Proof of Theorem 3.4. We prove the statement about strict invariance — the non-strict
version is completely analogous. We translate the theorem to the symplectic language.
We use the notations

By = {(dg,c.dg) | dg € Ji} = ge. C Ji x Jj,

By ={(dg,c"dq) | dg € J;} = gc" C Jy < Ji (i =1,...,m),
Ci=C(E!, EL) C J; x J.

Here ¢gB is the graph of the operator B as defined in (3). Subspaces and cones in 77, i.e.
the objects with ’-es (see the notation used in Definition 3.3 and in Theorem 3.4), and
the higher dimensional cones and their boundary subspaces, i.e. the objects without i-s
as indices are defined similarly. We also introduce B! and Bi as the defining symmetric
matrices for the image subspaces:

DTE; = {(dg, Bidq) | dq € Ji} = 9B} C J; x Jj,

DTE} = {(dq, Bidq) |dg € J[} =gBy C J x J (i=1,...,m).

The reason why these operators B! and B are well-defined is is exactly the decompos-
ability required among the conditions of the theorem.

Furthermore, the conditions of the theorem say that DT'(C;) is strictly contained in
C!. By Theorem 3.1 this is equivalent to ¢, < Bl < Bi < ¢*.

The statement of the theorem is that DT'(C) is strictly contained in C'. To prove
this we only need to see — by Theorem 1.2 — that DT(FE), DT(FE,) € Lag(C’) and
DT(Ey) < DT(E,).

Now the DT(E?) are orthogonal subspaces of DT(E;) which span DT(E}), and the
DT(E}) are orthogonal subspaces of DT(Fs) which span DT(E,). This means that
DT(E;) and DT (E,) are also graphs of symmetric operators: DT(E;) = gBj, DT (Es) =
g B}, where (in the appropriate base) B} and B} are block diagonal with blocks B{, ..., B
and Bj,..., BJ respectively:

Bi B;
By B3
B, = '
By By
This obviously implies ¢, < B} < By < ¢*. By Theorem 3.1 the proof of Theorem 3.4 is
complete. O
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5 Soft billiards in high dimensions

In this section we apply Theorem 3.4 to prove hyperbolicity for soft billiards in higher
dimensions. We first give a definition of the dynamical system, than prove hyperbolicity
under appropriate conditions. Finally, we discuss our conditions. We will see that for
some classes of potentials (e.g. “high” repelling potentials) they are not much stronger
than the “old” conditions necessary for the hyperbolicity of the 2D system. For other
classes (e.g. continuous attracting potentials) they may be impossible to satisfy. We
also show some specific examples of potentials that satisfy our conditions, and which
demonstrate different combinations of dispersing and focusing/defocusing phenomena in
the mechanism of hyperbolicity.

5.1 The soft billiard dynamical system

Consider finitely many disjoint spheres of radius R on the unit d-dimensional flat torus
T¢. The dynamical system of a point particle which processes uniform motion and in-
teracts via elastic collisions with the scatterers, the hard dispersing billiard (with no
corner points) is a paradigm of strongly chaotic motion, for all values of d (see [SCh], [Y],
[BChSzT] and references therein). By a soft billiard we mean the following natural mod-
ification. The scatterers are no longer hard spheres, the point particle may enter them.
The particle moves according to some spherically symmetric potential which vanishes
identically outside the spheres.

In this paper we study the case d > 3. In contrast to this multi-dimensional situation,
the planar system has been studied extensively in the literature. As to d = 2, results point
into two different directions. On the one hand, for quite general softening of the potential,
the chaotic behaviour is no longer present — stable orbits and islands appear in the phase
space (see [RT], [D2], [D1] and references therein). However, when suitable conditions
are satisfied (see Definition 5.3 below) the chaotic behaviour of the two dimensional hard
billiard persists. The investigation of such planar soft billiards dates back to the pioneer
works of Sinai ([S]) and Kubo ([K] and [KM]). A series of works (eg. [Knl], [Kn2] and [M])
have resulted in [DL] which essentially identified property H1 (see Definition 5.3 below)
as the one that ensures hyperbolicity in 2D. In [BT] even finer statistical properties have
been proven for these planar soft billiards, however, in this paper we are only interested
in the issue of hyperbolicity. In particular, we investigate what properties (in addition
to property H1 from Definition 5.3) the potential should possess in order to extend the
results of [DL] to the multi-dimensional case.

Let the Hamiltonian motion of the point particle be described by a potential which
is identically zero outside and is some spherically symmetric function V' (r) inside the
spherical scatterers (here r is the distance from the center of the scatterer). For simplicity
we fix the mass and the full energy of our point particle as
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This way the free flight velocity has unit length, |v| = 1 (in other words v € S¢ where S¢
is the unit sphere in R9).

To specify the state of our particle we should determine its location on T¢ and its
velocity (in S outside the scatterers). We denote the resulting flow phase space by M.
The flow dynamics S* on M is, on the one hand, free flight outside and, on the other
hand, the Hamiltonian motion determined by the potential V' (r) inside the spherical
scatterers. By the Hamiltonian nature of S* the Liouville measure, to be denoted by g,
is a natural invariant measure for the flow. Outside the scatterers p coincides with the
product of the (normalized) Lebesgue measures on T¢ and on S¢.

Remark 5.1. The Hamiltonian flow — even when restricted to the constant energy surface
— naturally has one zero Lyapunov exponent: this corresponds to configurational pertur-
bations in wvelocity direction. Hyperbolicity for the flow means that all other Lyapunov
exponents are nonzero.

We will prove hyperbolicity of the system by applying Theorem 3.4. In order to do
so we need to specify the subset U C M on which the dynamics is decomposable. Thus
we will look at trajectory segments that start at a phase point just before collision, cross
the potential, and than proceed by free flight until the next scatterer. This will be “one
step” of the dynamics. We consider the orthogonal section to the flow at the pre-collision
phase points both at the beginning and at the end of this step. This way the dynamics
may be regarded as T': U — U, a map from one such orthogonal section to the other.

By symmetry reasons a trajectory segment that crosses only one scatterer will be
entirely contained in the plane defined by the initial trajectory line and the center of the
scatterer. Within that plane, the collision angle ¢ (the angle of the initial velocity and
the normal vector of the scatterer at the collision point) identifies the trajectory.

As long as T : U — U is concerned, the role played by the potential is completely
described by the function A©(p) which gives the angle, within the plane of the trajectory,
made by the two radii pointing to the points of entering and leaving the potential, as
a function of the collision angle. Figure 2 shows the meaning of this function and the
convention on signs.

Definition 5.2. From here on we will refer to this function AO(yp) as the rotation
function.

Being mainly interested in the differential aspects of T" we introduce one more nota-
tion:

_ dAB(p)

k() i

5.2 Hyperbolicity of multi-dimensional soft billiards

Below two properties are defined in terms of which our theorem on hyperbolicity is
formulated.
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Figure 2: meaning of the rotation function

Definition 5.3. The rotation function AO(p) satisfies property H1 if there exists 6 > 0
such that for all ¢ € [0, 51, |2+ r(@)| > 0.

Definition 5.4. The rotation function A©(p) satisfies property H2 if there exists K < 0o

such that a(p) = % and B(p) = % satisfy —K < a(p) and —K <
Be)-

Theorem 5.5. Suppose that the rotation function satisfies conditions H1 and H2. Sup-
pose also that the least distance between scatterers is at least T, where Ty, is large
enough: Tmin > T«(0, K, R). Then, the multi-dimensional soft billiard system is hyper-
bolic.

Remark 5.6. Property H1 (and suitably long free flight) is actually the condition used
in [DL] and [BT] to prove (uniform) hyperbolicity in the 2-dimensional case. In higher
dimensions, a new mechanism of scattering appears in the “new directions”. Property
H2 ensures exactly that we can handle this new phenomenon.

Remark 5.7. The minimum free flight we need depends on the parameters 6, K and R
(the radius of the scatterer). We will not work out the explicit dependence, but it could
be done by following the proof of the theorem.

Remark 5.8. The required minimum free flight 7.(0, K, R) may be zero. This happens
exactly when the potential causes immediate dispersing (no defocusing needed) in every
direction. There are examples with this property (namely those for which the potential
takes an arbitrary positive constant value inside the sphere), however, such a mechnanism
is impossible for potentials that are continuous on T¢. On details see Section 5.4.

5.3 Proof of Theorem 5.5

We prove hyperbolicity by constructing an (eventually) strictly invariant cone field. As
usual in billiard theory, we first define cones in the orthogonal section for a certain subset
U of phase points — in this case, pre-collision points, — and then push these cones forward
by the flow — either to the Poincaré section (discrete time case) or to every point of
the trajectory until the next hitting of U (continuous time case). It is clear that since
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p-almost every phase point hits U in finite time, strict invariance of the cone (sub)field
defined on U implies eventually strict invariance of the whole cone field (defined also
p-almost everywhere).

Consider a moment of free flight. Since the Lyapunov exponent (of the flow) corre-
sponding to configurational perturbations in velocity direction is always zero, and veloc-
ity perturbations must be orthogonal to the velocity (in order to remain on the constant
energy surface), the invariant cone field will be constructed in the orthogonal section.

JIx J) ={(dg,dv) € T,(M) | dg L v,dv L v}.

(Actually, dv L v is automatic from the restriction on energy.) The configurational and
velocity subspaces J¢ and J! can be naturally identified, and we denote both by J,.
When we apply Definition 3.3 and Theorem 3.4 to the flow, this is the J, that appears
there. Geometrically, J, x J, C T,(M) consists of tangent vectors of fronts.

It is important to note that time evolution of tangent vectors of fronts (vectors in J, x
J,;) is described by not exactly the derivative of the dynamics. If both z and S’z are phase
points of free flight, but the particle has crossed some scattering potential inbetween,
then typically D(S%),.(J, X J.) & Jgtz X Jstz, so fronts don’t remain fronts under time
evolution. To handle this situation, an extra projection of the configuration part in the
flow direction may be necessary. This can also be thought of as a local reparametrization
of trajectories in time - the perturbed orbit may need (positive or negative) extra time to
“catch up”. However, this kind of mapping from J, x J, to Jgt, X Jgt, is still symplectic.
Keeping these observations in mind the proof of hyperbolicity goes along the following
lines.

Proof of Theorem 5.5. In Subsection 5.3.1 we show that the natural mapping (induced by
the dynamics) from one orthogonal section to the other is symplectic (Proposition 5.10).
In Subsections 5.3.2 and 5.3.3 we show that this map can indeed be decomposed into lower
dimensional problems in the sense of Definiton 3.3. (Actually, it can be fully decomposed
— the subspaces J; appearing are one-dimensional.) At the same time, the validity of the
conditions of Theorem 3.4 are checked (Propositions 5.11 and 5.12). Then, Theorem 3.4
gives the existence of a strictly invariant cone field on the set U of pre-collision phase
points. With the usual extension method (see above) this implies the existence of an
eventually strictly invariant cone field p-almost everywhere on the flow phase space (and
almost everywhere on the usual Poincaré section, w.r.t the natural invariant measure).
This proves hyperbolicity of both the soft billiard flow and the soft billiard map. O

5.3.1 Symplecticity of the orthogonal section mapping

Consider a phase point x = (¢,v) and its image along the flow, S'z = 2’ = (¢/,v’) with
both time moments 0 and ¢ corresponding to free flight, i.e.

o] = o] = 1. (5)
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The tangent planes of the phase space at the points x and 2/, 7,M and 7,,M, can be
both identified with R??® = R? x R¢. The d — 1 dimensional planes in R¢, perpendicular
to v and v, will be denoted by J and .J’, respectively. Tangent planes to fronts at z are
d — 1 dimensional subspaces of the 2(d — 1) dimensional linear space J x J given as

F ={(dg,Bdq) | dg e J}

where B : J — J is a symmetric operator. Our main concern is to investigate the
evolution of fronts up to linear level which we describe by a linear map

D:JxJ—JxJ, (dq', dv") = D(dgq, dv).
To calculate D we need to consider another linear map,
DS': T,M — T, M; (dq,dv) = DS*(dq, dv),

the tangent map of the flow. Now consider (dq, dv) = DS*(dq, dv) with (dg,dv) € J x J.
On the one hand, dv € J' by the conservation of energy (5). Thus we may put dv’ = dv.
On the other hand, dg may have components pointing out of the plane J’. To get a
suitable front at z’, we need to cut the neighbouring trajectories orthogonally, that is,
should modify dg along the flow direction. Thus we have

dq' = dq — (dg,v')v'

where we use the notation (w, z) for the Euclidean inner product of two vectors w, z € R%.
All in all we have

(d¢',dv') = D(dq,dv) = (dqg — (dg,v')v", dv) € J x .J'.

Remark 5.9. We could have altered the configurational part of the perturbation along
the flow direction of the perturbed trajectory and define dq' as dq — {dq,v' + dv) (v' 4 dv).
However, this would only differ from the previously defined dq’ in a second order term,
thus at the linear level the two definitions coincide.

The even dimensional linear space 7, M has a natural symplectic structure:
&((dqy, dvy), (dga, dvs)) = (dq1, dvy) — (dga,dv,)  for dg;, dv; € R®.
Similarly, the natural symplectic structure for J x J is
w((dqy, dvy), (dga, dvs)) = (dqr, dva) — (dqo, dvy) for dg;, dv; € J.

With slight abuse of notation the natural symplectic structures of 7,,M and J' x J' will
also be referred to as @ and w, respectively.

Proposition 5.10. The map D : J x J — J x J is symplectic (i.e. preserves the
symplectic form w).
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Proof. Consider dx; = (dg;, dv;), i = 1,2 and their images:
dx; = (dg;, dv;) = DS'(dg;, dv;) and dz} = (dq.,dv)) = D(dg;, dv;).
By the Hamiltonian nature of the flow
(dzy, dry) = @(dxy, das). (6)

Furthermore

w(dxy,dxy) = (dqy, dvy) — (dgs, dvi) = &(dxy, dxs), (7)

while

wlday, day) = {dgy, dvy) — (dgs, dvi) = (dg, — (dgy, ')V, dva) — (dgy — (dgz, '), dvn)
= (dqy, dvz) — (dgy, dv1) = &(dz1, dxs) (8)

as dv; = dv, € J' for i = 1,2. Putting Formulas (6), (7) and (8) together gives the
Proposition. 0

Now we can turn to the decomposability of the map D in the sense of Definition 3.3
and to the construction of invariant cones in the resulting components.

Recall that we would like to prove hyperbolicity by applying Theorem 3.4 to the
(orthogonal section of) the first return map to U, where U is the set of precollision
phase points. In order to do so throughout the next two subsections we will consider the
situation sketched on Figure 3 and use the notations indicated on this figure.

5.3.2 in-plane scattering

Let s be the plane parallel to n (the normal vector of the scatterer at the considered
point of collision) and v (the velocity), which contains O (the center of the scatterer). s
is actually the plane of the (reference) trajectory.

Suppose first that a tangent vector of a front just before collision has the form (dr, dv)
where both dr and dv are parallel to s. This means that dr || dv, and that both the
reference trajectory and the perturbed trajectory are in s. That is, the scattering is
reduced to the 2-dimensional case, which has been discussed already in [DL], [BT], and
references therein.

In this case, in the relation dv = Bdr, B is a scalar multiplier.

Let o/, dr’, dv’, B’ be the corresponding quantities just before the next collision. Note
that dr’ || dv’, even though they are not (necessarily) “in-plane” for the next collision
— the trajectory segments for two consecutive collisions typically don’t lie in the same
plane.

It is known (e.g. from [BT]) that if condition H1 holds and the free flight is long
enough, then there exists a C; > 0 such that the “0 < B < C}” cone is strictly invariant
— the precise formulation of this statement will be given in Proposition 5.11 below. The
construction of the invariant cone field in the 2D case is based on this fact.
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Furthermore, if the free flight is long enough, then C' can be chosen to be small —
actually, even the same B gives a smaller B’ if the free flight is longer.
We have just proven the following

Proposition 5.11. Let J; = {dq | dq € s,dq L v}, J, = {dq | d¢’ € s,dq’ L v'}. If
(dg,dv) € Jy x Jy, then (dq',dv’) € J| x Jj. If the free flight is long enough, then there
exists a C; > 0 such that

zf0§B§01 thenO<B'<Cl.

Also, if the free flight is long enough, then Cy can be chosen to be small.

5.3.3 orthogonal scattering

Suppose now that a tangent vector of the front (just before collision) has the form (dr, dv)
where dr || dv L s. Also suppose that n and v are not parallel, that is, the collision is not
central (in other words, the particle is not heading towards the center of the scatterer,
or the collision angle ¢ is nonzero) ! .

Let e denote the line parallel to v which crosses the center of the scatterer (see
Figure 3). We may think of e as the ‘optical axis’ since the dynamics is invariant under
rotations around this line.

Figure 3: notation for the scattering

Notice that the perturbation (dr,dv) described above leaves the shape of the trajec-
tory invariant, because the collision angle (and the distance of the incoming path-line

'If the collision is central, the discussion of the previous subsection applies. Actually, in this case
there is no difference between in-plane and orthogonal scattering. The reader may also check that the
two discussions give the same conditions in the limit as ¢ — 0.
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from O) are (up to linear terms) unchanged: dy = 0. Moreover, every configuration
point of the trajectory is displaced orthogonally to the plane s. We will see that actually
dr' || dv" || dr || dv L s.

To simplify considerations, we first discuss two special cases.

(a) If dv = 0 (the perturbation has the form dz, = (dr,0) where dr L s), then the

perturbation is equivalent (up to linear terms) to a small rotation “around” e by the
angle #;so' 2 Consequently, the whole trajectory is rotated around e by the same
angle. The resulting perturbations of " and v" can then be read from Figure 3. Basic
geometry gives

d
dr' = (Rsin(p + AO) + rsin(2p + AO)) RS; .
dr
dv, = sin(2 A :
v, sin(2p + @>Rsing0

(b) If dr = 0 (the perturbation has the form dx, = (0,dv) where dv L s), then the

perturbation is equivalent (up to linear terms) to a small rotation around f by the
angle |v|sz = Sglvsa. Consequently, the whole trajectory is rotated around f by
the same angle. The resulting perturbations of ' and v’ can, again, be read from

Figure 3. Basic geometry gives

dr, = (Rsin A© + 7sin(p + AO)) dv

sin @

dv

dv, = sin(p+ AO)

sin
Now we consider a general perturbation with dr || dv L s and to investigate the

evolution of fronts we put B = 2. By (dr,dv) = (dr,0) + (0,dv) = dz, + dz;, we

have da' = (dr',dv") = (drl,, dv.,) + (dry, dv,) = dx!, + dz} where dz/, and dzj, have been

calculated above. We see that dr’ || dv" || dr || dv L s. We may obtain the “curvature”
of the perturbation at the next point of income as B’ = fil—:f;. To decrease the number

of symbols used, it is convenient to “scale out” the radius of the scatterer. That is, we
introduce A := RB and [ := £. All in all, we get

,_ sin(2¢ + AO) +sin(p + AO) A (9)
sin(p + ABO) +sin(2¢p + AO) I +sin AO A + sin(p + AO) IA’
We introduce the notation
B sin A©
“ sin(2¢p + AO)
_ sin(p+ AO)
~ sin(2p + A©)°

2By rotation around e we mean a rotation leaving e invariant. If d > 3, then there are many such
rotations — just like there are many directions for dr such that dr L s,v. Given dr there is a unique way
to choose the appropriate rotation.
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With these, (9) can be rewritten as

;o 1+ BA
CaA+BA+IA) + T

Looking at this formula, it is clear that if both o and (§ are bounded from below by
—K (which is exactly Condition H2) then 0 < A < 5 implies that 1 + 84 > 1, so the
numerator is positive and the denominator is at least

1 1 1 1
“K— —K+4-l=-—K—-
ok TRt 2’

which is positive if [ is large enough. Furthermore, A’ < % can be guaranteed by an
even larger [. (Notice that the numerator can be arbitrarily large if A > 0 and [ is large,
but in this case, the coefficient of [ in the denominator is large as well.)

Putting this together, we get that for a suitable C' > 0 and {* < oo, [ > [* implies
if0<A<Cthen0< A <C.

(10)

It is not hard to see that (even if different scatterers have different radii), the same
implication hold with B instead of A.

Again, as in the case of “in plane” scattering, if the free flight is long enough, then C
can be chosen to be small.

We have just proven the following

Proposition 5.12. Let Jy, Js, ..., Jq_1 be pairwise orthogonal 1-dimensional subspaces
such that J; L s,v (i = 2,...,d—1). Let J. = J; (i = 2,...,d —1). For every
i€{2,...,d—1} if (dr,dv) € J; x J; then (dr',dv") € J! x J!. If the free flight is long
enough, then there exists a Cy > 0 such that with dr € J;, dv = Bdr, dv' = B'dr’

ZfO§B§C2 thenO<B'<Cg.
Also, if the free flight is long enough, then Cy can be chosen to be small.

Looking at Propositions 5.11 and 5.12, we see that if the free flight is long enough,
we can choose C7 = (5. So, the conditions of Theorem 3.4 are satisfied with ¢, = 0 and
¢t =C, = Cs.

This completes the proof of Theorem 5.5.

5.4 Discussion, specific potentials

In this section we give some examples to which Theorem 5.5 applies. Note that, as the
trajectory stays within a plane inside the potential, the calculation of AG(p) from V (r)
is a two dimensional problem. For the examples we consider below this has been carried
out in [DL] and in [BT]. The validity of property H1 will also follow from the results of
these works. Thus we only need to check Property H2 (see Definition 5.4). In all our
examples, AO is a continuous function of . In this case, Property H2 can be guaranteed
if for any ¢ at least one of the three conditions below holds:
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1. sin(A© + 2¢p) # 0;

2. sin(A® + 2¢) becomes zero at some g, however, sin A© and/or sin(A© + ¢) have
the same sign as sin(A© + 2¢) in a neighbourhood of ¢y, so o and/or 3 can be
seen to be positive;

3. sin(A®+2¢p) becomes zero at some g, however, sin A© and/or sin(AO+y) are/is
zero simultaneously: in this case property H2 can be checked by L’Hospital’s rule
as a condition on k: @ — 5%~ and/or 3 — 2 both of which are bounded if only

24K 24k’
Property H1 holds. *

Before turning to the specific examples we make several more remarks. Let us consider
the formula (10) in case 7 = 0 (and thus [ = 0), i.e. the relation of the curvatures just
before (A) and just after (A’) crossing the potential in the orthogonal scattering:

1484

A=
0+ aA

Then A’ is a (locally) strictly increasing function of A. This can be seen by calculating
the derivative and using that 3? > «, which comes from the definitions of o and 3,
and the concavity of the function f(x) = log(sinz)). See Figure 4 for the sketch of this
function for the different values that o and [ can take. See also Figure 5 to see where
these possible values occur.

A, A/ A/
s 11
A e A 5L A
~a /ﬁ—f_ﬁ """"""" Bl
(a) a>0,8>0 (b)) a<0,3<0 (¢c)a<0,8>0

Figure 4: The graph of A" = éig i for the possible values of o and (3

In case 8 > 0 and a > 0, we have A’ > 0 whenever A > 0. In other words, incoming
convex perturbations turn into outgoing convex perturbations and there is no need on

3Note in these cases the two required conditions, Hl1 and H2, are equivalent. This happens, for
example, when ¢ = 0 — in this particular case the reference plane is not well defined, any incoming front
gives rise to the same type of perturbation and it makes no sense to distinguish between in-plane and
orthogonal scattering.
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a lower bound on 7 to obtain the invariance of the cone field. We will refer to this as
the dispersing mechanism in the othogonal scattering. On the other hand, if § < 0 or
even if § > 0 but o < 0 it may happen that A" < 0 for A > 0, thus we need a positive
lower bound on 7. We will refer to this as the defocusing mechanism in the orthogonal
scattering.

Figure 5: values of o and /3 in the different regions

On the other hand, a similar analysis for the in-plane scattering can be given based
on k (see e.g. [DL]): in case K > 0 or K < —2, we have dispresing mechanism and thus
no lower bound on 7 is needed, while —2 < k < 0 results in defocusing mechanism and
there is a need for a lower bound on 7 to obtain the invariance of cones.

5.4.1 Repelling versus attracting potentials

In this subsection we consider potentials for which V(R) = 0, which implies A©(5) = 0
as the Hamiltonian flow is continuous in this case.

First we give a negative result. Assume x(p) < —2 for all p. Note that this happens
for attracting potentials, e.g. for potentials with Coulomb type singularities (cf. [DL]
and references therein). Our assumptions imply 7 — 2¢p < AO < 7 — ¢ for ¢ close to
5 and thus § — —oo as ¢ — 5. This means Property H2 can not be satisfied. We
have infinitely weak focusing in the orthogonal scattering, even though the dispersing
mechanism works for the in-plane scattering. It is hard to tell what the dynamical
behaviour of such multi-dimensional soft billiards can be: the different directions may
mix up and result in an asymptotic expansion on a long term. Nonetheless, it is possible
one can construct examples with arbitrary long free flights for which periodic orbits with
zero Lyapunov exponents arise. This is an interesting area of further research.

Assume now, on the contrary, that the potential is repelling: V'(r) < 0 for all r.

Assume also that A©O(y) is continuously differentiable, and that Property H1 is satisfied.
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Then, by repulsion, the potential naturally satisfies 0 < A©(p) < 7 and, by property H1,
AO(p) # m—2p for 0 < ¢ < 7 (see Remark 5.15). This would contradict an assumption
that r(¢) < —2 for all ¢, so we must have k(p) > —2 for all . (2+ k(p) cannot change
signs, because it is continuous and never zero.)

Our last assumption is V(0) > E(= %) — this ensures A©(0) = 0. This means that
the potential is “high”: impossible for the particle to climb to the top (and reach the
center).

Remark 5.13. Actually, V(0) < E = 5 would imply A©(0) = m which would also con-
tradict Property H1 for a repelling continuous potential with continuously differentiable
AO(p). So, V(0) > FE is needed for nice repelling potentials to be hyperbolic, already
in 2D. Note however, that the literature discusses several hyperbolic potentials for which
AB(0) = 7, and, simultaneously, AO(yp) is not continuously differentiable.

So, Property H2 holds (see Figure 6 (a))
e for 0 < ¢ < 7 because 0 < A® < 7 — 2¢p, condition 1. above is satisfied;

e in the limit as ¢ — 0, by either condition 2 or 3 above;

™

e in the limit as ¢ — 7, a is bounded by condition 3 and # > 0 (actually § — +o0)
by condition 2.

That is, in this case, the high dimensional study brings no new condition. We have just
proven the following corollary of Theorem 5.5:

Corollary 5.14. Assume that the scatterers of a multi-dimensional soft billiard system

are described by a high repelling potential: V'(r) < 0 for all r and V(R) = 0, V(0) >
%. Assume also that the rotation function AO(p) is continuously differentiable and it

satisfies Property H1. Then, if the free flight is long enough, the system is hyperbolic.

AB(p)
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(a) typical ‘high’ repelling potential (b) V(r)=Vo >0 (c) V(r)=Vo <0

Figure 6: rotation function for three examples
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Note furthermore that we have dispersing mechanism for the orthogonal scattering
(since a > 0, # > 0) and defocusing mechanism for the in-plane scattering, at least for
large collision angles (since —2 < k < 0).

By [DL}], an important family for which the rotation function has the above properties
is Kubo’s class of repelling potentials, i.e. potentials with

%(TV’(T)) <0, V'(r) <0

forall 0 <r < R.

Remark 5.15. The range of the function AO(yp) is (topologically) a circle, so it is in
principle possible to have A© continuously differentiable with A©(p1) = a, AO(py) = b
but k(p) # ﬁ for any v € [p1, pa] (the graph of AO(p) can “go around” the circle). In
particular, it is possible that AG (%) = 0 and AO(pg) = T —2¢q (s0sin(2pg+AB(¢g)) =
0) for some @y € (0, 5) although k() # =2 for any ¢.

However, that never happens for a repelling potential: It’s easy to see that if V'(r) < 0
for all r, then 0 < AO(p) < 7 in the sense that the graph of A©(p) is contained in the
semicircle {y | v € [0,7](mod 1)}. So, if AO(p) is continuously differentiable and
V(R) = 0 (so AG(5) = 0), then Property H1 automatically implies Property H2 for
0 < ¢ < 5 via condition 1. See Figure 7.

AB(p)

Figure 7: what never happens for a repelling potential
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5.4.2 Constant potentials

Now let us consider constant potentials, i.e. the case when V(r) =V} for some constant
value Vy < E where E is the full energy of the particle (Vy > E corresponds to hard
billiards). The rotation function can be explicitely calculated (see [BT]). It is worth
introducing v = 2FE — 2V,. We distinguish between the cases Vy > 0 (v < 1) and
Vo <0 (v>1).

Let us consider the case of positive Vj first and introduce furthermore the angle ¢q
for which:

v = sin .

We have _
2arccos (2£) if ¢ < ¢y

v

0 if o > g

AB(p) = {

From this Formula (see also Figure 6 (b))

o if 0 <y < 7, then 0 < AO < 7 — 2¢, condition 1. above is satisfied;

™

5, @ = 0 and 8 becomes +o00 as condition 2. above applies
(actually, for ¢ > ¢q the scattering is an elastic reflection like in hard billiards),

e in the limit as ¢ —

e in the limit as ¢ — 0, both a and § are bounded (and positive) by condition 3
above.

Note furthemore that we have dispersing mechanism in both scattering problems:
by @ > 0 and # > 0 on the one hand (orthogonal scattering) and by x = 0 or K <
—2 (in-plane scattering). In particular, the lower bound on 7 can be arbitrarily small
(independently of the potential) to obtain hyperbolicity.

Now let us turn to the case of V5 < 0 (i.e. v > 1). We have (see also Figure 6 (c))

AB(p) = 2arccos (smgp)

v
for all ¢. Property H1 is satisfied by 0 > k > —% where the minimum is obtained at
¢ =0.

e Note that the flow is not continuous at ¢ = 7 as AG(5) # 0. This makes it possible
that condition 1. applies for all ¢ # 0.

v—2

2v-2"

e When ¢ — 0, conidition 3. applies as o = y__—11 and (=

Thus Property H2 is satisfied. It is worth noting —K < a < 0 for all ¢ while § may
change its sign depending on the value of v.

Nonetheless, in both one-dimensional scattering problems we have defocusing mech-
anism.

We have just proven the following corollary of Theorem 5.5:
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Corollary 5.16. Assume that the scatterers of a multi-dimensional soft billiard system
are described by a (nonzero) constant potential: V(r) = Vi for all r. Then, if the free
flight is long enough, the system is hyperbolic. If Vo > 0, any positive lower bound on the
free flight is enough. *

6 Concluding remarks

In this paper we have presented a method for proving hyperbolicity in multi-dimensional
Hamiltonian systems (Theorem 3.4) and have applied it to the case of soft billiards in
high dimensions (Theorem 5.5). Two directions of further research closely related to our
results are as follows.

On the one hand we hope that our method could be applied to discuss the issue of
hyperbolicity in other multi-dimensional Hamiltonian systems. Possible candidates are,
for example, multi-dimensional (hard) billiards with focusing and possibly also dispersing
boundary components.

On the other hand, having proven the non-vanishing of Lyapunov exponents for cer-
tain classes of multi-dimensional soft billiards, questions that naturally arise are on the
ergodic and statistical properties of these systems. Properties to be proven are, in increas-
ing order of difficulty, uniform hyperbolicity, ergodicity (that, via hyperbolicity, would
automatically imply K-mixing and Bernoulli property) and finally exponential decay of
correlations. However, in order to prove ergodicity, or even more, exponential mixing,
one needs to have fine estimates on the singularities of the system, objects highly non-
trivial in multi-dimensional billiards — both hard and soft (see [BChSzT]). Nonetheless,
as already mentioned in [BT], it seems possible that property H1 can be slightly relaxed
and thus allow for a broader class of potentials in which the singularities are easier to
handle. We will turn back to this question in a separate paper.
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4When both mechanisms are dispersing (as in the Vj > 0 case) usually no lower bound on the free
flight is needed at all — scatterers can be allowed to touch. However, we don’t discuss such systems now.
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