Normal heat conductivity in a periodic chain of anharmonic oscillators.
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We consider a periodic chain of coupled and pinned anharmonic oscillators subject to a non-
equilibrium random forcing. Assuming that the six-point correlation functions of the stationary
state factorize in terms of the two-point correlation functions, we show that the heat current going

through the system is consistent with Fourier law and that the conductivity behaves as k ~

where ) is the anharmonic coupling strength.
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The analytical derivation of the Fourier’s law of heat con-
duction in extended Hamiltonian systems remains to this
day a challenging question. See [2, 5] for a review of
various aspects of the problem. A qualitative explana-
tion for Fourier law has been provided by Peierls for the
case of crystalline solids. Peierls idea essentially con-
sists in considering the lattice excitations of the crystal,
the phonons, as particles interacting weakly through the
nonlinear forces acting between the atoms. By analogy
with the case of dilute gases, a Boltzmann equation for
phonons has been derived and refined over the years, see
[8] and references therein. Our aim is to provide, along
Peierls ideas, a simple computational argument for the fi-
nite conductivity of periodic one-dimensional pinned an-
harmonic crystals. In order to do so, we derive a sta-
tionary Boltzmann-type equation for the correlations of
the variables corresponding to the heat current flowing
through the chain.

Crystalline solids submitted to a heat flow are often
modelized by a chain of oscillators where each oscillator
move around some equilibrium position located on a reg-
ular lattice. Each oscillator interact with its nearest neig-
bours and also possibly with some substrate. The chain is
coupled to heat baths at different temperatures by some
random forcing and friction acting only on the particles
at the boundaries of the chain. Although mathematical
properties of such systems have been extensively stud-
ied, see [6] for a review, very little is known analytically
about their physical properties, except in cases where
the interactions are quadratic or almost quadratic, [4, 7].
Numerous numerical simulations have been performed,
see [5] and references therein, strongly supporting that
Fourier law is verified in pinned anharmonic chains. The
effect of the nonlinearity on the behavior of the current
with respect to the size of the system is difficult to tackle
in part because of the lack of translation invariance of
the equations of motions. This lack of translation invari-
ance, which has its source in the absorption and injection
of energy at the boundaries of the chain, is an essen-
tial element of such non-equilibrium situations. Here, we
single out the effect of the nonlinearity on the conduc-
tivity properties by considering a periodic chain submit-
ted to a random forcing which creates, in the stationary
state, a net current of heat. This drive out of equilibrium

is achieved by applying a random forcing which excites
more the waves traveling in one direction than the ones
traveling in the opposite direction. In the same spirit as
in Evans heat flow algorithm [3], we believe that, by sep-
arating the difficulties arising from the lack of translation
invariance and the ones coming from the nonlinearities,
our model could prove to be useful to understand the
non-equilibrium properties of chains of oscillators.

We now describe our result. The equation for the evo-
lution of the average energy current J carried by the
mode of wavenumber k of the chain will have the form,
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The first term on the RHS of this equation is a damp-
ing term coming from the coupling of the chain to an
external friction represented by the coefficient . The
second term comes from the Hamiltonian evolution and
vanishes when the anharmonic part of the interaction is
zero, i.e., when A = 0. The third term represents an
external ”creation” of current at constant rate. It mod-
elizes the local temperature gradient in the non-periodic
chain. Equation (1) will therefore yield a balance equa-
tion for the current carried by the mode & in the station-
ary state. We will show that under some assumptions
on the stationary state (the ”closure” assumption), N
is analogous to a friction term, yielding in the end a con-
ductivity x ~ ﬁ From a mathematical point of view,
there is an important difference between the part coming
from the external friction and the part coming from N.
Whereas the friction acts as a diagonal operator on the
vector J, we will see that Ny ~ A(J), where A is a non-
diagonal linear operator. The properties of this operator
are essentially governed by resonances in the four-body
interactions between phonons, which we analyze in the
limit of a large harmonic pinning strength p. In par-
ticular, we show explicitly that the origin of the finite
conductivity is to be found in p-dependent resonances
corresponding to umklapp processes. In this paper, we
concentrate only on the effect of the term coming from
the nonlinearity A. In particular, the source term Sy, is
put by hand. However, in the non-periodic case, it should
come naturally from the structure of the equations.

=k (t) + AN(t) + Sk. (1)

The Model. We consider particles located on a periodic



lattice described by their positions and momenta coordi-
nates (¢g;, p;) withé € 1,..., N. For the sake of notational
simplicity, we assume that N is divisible by 4. The dy-
namics of the particles is governed by the Hamilton equa-
tions and an external random forcing. The Hamiltonian
that we consider is of the form

N

H(q,p) =
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The anharmonic interaction is only in the on-site part
of the Hamiltonian. The same analysis as found below
may be carried out when the interaction between nearest
neighbours contains also a quartic part. The fact that
there is an on-site (large) harmonic interaction makes
the distinction between the two cases irrelevant. We first
consider the harmonic case A = 0. We introduce the
Fourier coordinates for the periodic linear chain by Qx =
S YL e F Mgy with —N/2+ 1 < k < N/2. The P
coordinates are defined in a similar fashion. We recall for
further purposes that @ = Q_, and P} = P_j;. In the
complex coordinates,
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with w? = w?(p? + 4sin?(ZE)), the Hamilton equations
for the linear periodic chain read

dAE = Fiwy A dt. (4)

Af = (P + iwpQp), (3)

Those equations give the temporal evolution of the ampli-
tudes of the waves with wave number k traveling through
the chain in the positive or negative direction. Our (non-
equilibrium) model is defined in the linear case by the
system of stochastic equations

dAE = Liw, AEdt — %(A; +AD)dE+dWE, (5)
where the Wiener processes Wki satisfy the relations

AWLWE) = I;:Zl,dt = 2[£+(s—s')7a(%k) S(k+K")dt.

Wk
(6)
In (5), the term in + is the usual friction term acting only
on the momenta P;. The Wiener processes represent the
random injection of energy in the system. In (6), « is
an odd, dimensionless function of period m whose prop-
erties will be discussed below. The first term in (6) is the
usual term giving the equilibrium dynamics. In terms of
the original variables ¢, p, the second term amounts to
excite also the ¢ variables. We interpret 7 as the non-
equilibrium parameter of our model. When 7 is zero,
the periodic chain is in thermal equilibrium at tempera-
ture 7. When 7 # 0, a stationary heat (energy) current
proportional to 7 is created in the chain.
In order to see those points, we recall first that the
energy current in the periodic chain reads
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sin 27k /N) S (Q -k Py) , (7)

where §(z) denotes the imaginary part of a complex z.
We define the two-point correlation functions in the sta-
tionary state,

oy = (4347 (8)

where (.) denotes the average w.r.t. the stationary
measure. Since S((Q_pPy)) = (O -, — ¢, 7,) =

S({AL1) = (1AL %)), we get

2 N/2
(=g > sin(@rk/N) [(147P) - (141%)].
k=—N/2+1

(9)
This identity expresses the fact that the energy current is
the difference of the current carried by waves traveling in
the positive and negative directions. From (5), we derive
the equation for the two-point correlation functions,
Tigp—ss 5,—s'\ 1 s,s’
@y ) -
(10)
with I}y, given in (6). In the case where 7 = 0, (10) is
readily solved to yield, using (6),
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This is of course equivalent to <|Pk|2> +w? <|Qk|2> =2T
and <P]€Ql> = 0, ij,l.

When 7 # 0 and for [ = —Fk, one obtains from (10) and
(6),

_ _ _ 7k
Jip = (I);:,_k - q’kik =41y 1a(ﬁ)> (12)

which is the balance equation (1) in the stationary state
for the harmonic case. We note that by definition,
Jr, = —J_j. Using (9) and the fact that « is an odd func-
tion, we get (J) = 2wy~ 17 foﬂ/g a(x) sin(2z)dx for large
N. We observe that, at this stage, we have a large free-
dom of choice for the function «. Indeed, as long as the
above integral is non-zero, there will be a non-zero heat
current flowing through the system. However, we will see
at the end of the paper that the choice of physically rele-
vant a’s is somewhat constrained by the presence of the
nonlinear terms. We also remark that, as we interpret
7 as a local non-equilibrium parameter, the conductivity
in the harmonic case, k = (J) /7 ~ vy~ 1w?, behaves as in
the harmonic chain coupled to self-consistent reservoirs
[1]. It reflects the fact that when A = 0 in the balance
equation (1), the only term damping the current carried
by each mode comes from the external friction. We will
see below that the anharmonic interactions modify that
behaviour of the conductivity. Finally, we note that there

are many choices for I ;Z’/ that would give a current pro-
portional to 7 as in (12). However, there is basically only
one which is a linear function of 7, gives the equilibrium
correlation when 7 = 0, and does not introduce higher-
order corrections (72) in the correlation functions of the

. s,s’
stationary state fI)k,k, .



Let us now consider the anharmonic case A # 0. The
equations of motion (5) become

i
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4z = [iwn AF - J(AL+AD)
where
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and Lk, koks = (16 wkwklwhwks)*l/z. Here and below,
unless otherwise specified, the sums are over the k; such
that —N/2+1 < k; < N/2 and s; = £1.

From (13), the equations for the n-point correlation
functions in the stationary state,

(@C))piien = (AR AR, (15)

read
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where @™ is the combination of frequencies,
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I gathers the effects of the random forcing, the special
case I®) being given in (6). The explicit expression of
M) will be given below in the relevant cases. For n = 2
and k1 = —kg = k, one gets from (16) the balance equa-
tion in the stationary state, proceeding as to obtain (12),
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where Jj, has been defined in (12) and

Uy = (MP(@W)F—, — (M@ (@W)) T,
=22 Z Z 5(]<i+k‘1 +k2+k3) S18283

k1,k2,k3 s1,52,83

Lk oy S[(@UH) 525258 1. (19)
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The remainder of this paper is devoted to solving equa-
tion (18) for Jj.

Closure and Linearization. In this section, we derive
an explicit expression for ¥ in terms of J. The first step
is to approximate the n-point correlation functions (15)
by products of ®?), turning (18) into a close but non-
linear equation. This ”closure” assumption on the non-
equilibrium stationary measure is widely used in various
forms in weak turbulence theory or in the study of di-
lute gases via the BBGKY hierarchy of equations. The
second step is to linearize the resulting equation around
the equilibrium solution (11). This is done in the spirit
of taking a small temperature gradient or, in our case, a
small parameter 7.

Closing as described above the expression (19) for ¥
yields zero after linearization, so that equation (18) is
identical to equation (12) for the harmonic case. We
thus first express @@ in (19) in terms of ®(©). Inverting
(16) for @™, one can show that at lowest order in
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In (21), we have dropped a term containing I[®61)] as
well as the contribution from the Ité term I since they
vanish later in the computation. We next plug (21) into
(19) and use the Wick formula to express ®©) in terms
of ®®). Linearizing around the equilibrium solution (11)
results in an expression for ¥ which depends solely on
J and contains terms which may be represented graph-
ically by 12 topologically distinct diagrams. Those dia-
grams are structurally similar to the usual diagrams of
the equilibrium A¢* theory. The main difference comes
from the presence of the quantity which is the unknown
of the problem, i.e., the vector J.

For large pinning interaction p, the result of the com-
putation is (here and below, ¢ denotes combinatorial pos-
itive factors),

cT? i\
vy = TSN Z(Qw)ﬁz;ﬂm [T+ Ti4 T —Tisi4n) -
ln
(22)
The RHS is essentially the linear operator A mentioned
in the introduction. We remark that, in quantum-
mechanical language, only the interactions conserving
the number of phonons contribute, as the other inter-
actions are free from resonances. We will estimate (22)
in the limit of large N and for small v, more precisely,
1> v/w > 1/N. We first observe that the main contri-
butions to the sum will arise from the resonances in €2,
i.e., for lattice points (I,n) near the zeros of the function
faf : [_1 E]Q - R7
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Foly,2) = V12 +4sin®(@) + \/ 2 + 4sin’(y)

- \//ﬂ + 4sin?(2) — \/,u2 +4sin®(z +y + 2).
(23)




A careful analysis reveals that for y? > 0, the zeros of
fz form three smooth curves. Two of these curves are
obvious and given by x + z = 0, and y 4+ z = 0. These
resonances do not contribute to the sum, however, since
the combination of J’s in (22) vanishes for k +n = 0
or [ +n = 0. This corresponds to the so-called normal
processes. The third curve, corresponding to the umk-
lapp processes, depends on p and is difficult to localize
explicitly. For large p, it is given by z+y = 5 +O(1/p?).
Performing the sum over [ in (22) in the above-mentioned
parameter regimes thus yields at lowest order in v and
1/p (resonances are at [ = —k + N/2),

L cT? Jy +J,
Uy = —iA—— - w(ktn) S INE (24)
Wi = | sin( S cos(F52 )|

where we have defined J; = $(Ji — Jryny2). Before
proceeding to solving equation (18), we note that any
vector J can be decomposed as J = JT + J~ where J~
as above and J,j = %(Jk + Ji4n/2) have the symmetry
properties Jk+N/2 = iJ,f. Tt then follows from (24) that
JT does not contribute to ¥, and that ¥ = ¥~

Solution to the Current Equation. Recall that J
is odd and periodic of period N. We first observe that
J* does not contribute to the average current (J) given
by (9). This follows from Y, sin(27k/N).J;F = 0. Since,
in addition, J is mapped by (24) into a vector ¥ with
¥ = ¥~ and since JT does not contribute to ¥, we need
only to consider in equation (18) odd forcingb a and odd
currents J satisfying o(ZE + ) = —a(ZE) and J = J.
We denote by S~ the subspace of such Vectors J, in which

equation (18) becomes
A2T? k
Wit Tas kD =aralR),(29)
where £ : S~ — S8~ is given by
1 Ji + Jir
L)k =~ : —. 26
Ve =N 7 | sin(TERY) cos(TETED)| (26)

We now proceed to analyze the linear operator £. The
subspace S~ has dimension N/4, and a basis for S~ is
given by J* =sin(2r(2n+1)£), n=0,..., N/4—1. We
let A" = L(J™). A direct computation shows that the
set of A", n =0,...,N/4—1, also forms a basis of S~
and that £ is uniformly invertible (in N). This implies
that the first term on the LHS of (25) is negligible for v
small. Furthermore, it follows from 3, sin(225) 7" = 0
for n # 0 that only J? contribute to the current (9).
Therefore, the only contribution of the noise a to the
current is the component of « along A%, say o, where

k

A% = £(T%) = 2sign(k:)<i ~ [sign(k) — i’) (27)

One thus finally obtains from (9),
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{J) ~ ez ¢ T (28)
together with a conductivity k = (J) /7 ~ W

Conclusions. Not surprisingly, in terms of the original
variables g, p, a forcing of the form (27) amounts to excite
the variables ¢; and p;y1 in a very correlated manner.
The correlations between the other components of the
external forcing corresponding to variables g;, p; decrease
from that maximal value like (i — j)~2.

Our computation makes precise the physical picture
that the mechanism responsible for the normal conduc-
tivity in anharmonic chains is the four-body interactions
between phonons. When N becomes large, the non-
equilibrium stationary measure is well approximated by
a system where the phonons evolve freely and interact
among themselves at an average time interval given by
the inverse of the conductivity found above. This in-
teraction is solely responsible for the degradation of the
current as y — 0.
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