
On the Semigroup Decomposition of the Time

Evolution of Quantum Mechanical Resonances

Y. Strauss
Einstein Institute of Mathematics

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

Abstract

A way of utilizing Lax-Phillips type semigroups for the descrip-
tion of time evolution of resonances for scattering problems involving
Hamiltonians with a semibounded spectrum was recently introduced
by Y. Strauss. In the proposed framework the evolution is decomposed
into a background term and an exponentially decaying resonance term
evolving according to a semigroup law given by a Lax-Phillips type
semigroup; this is called the semigroup decomposition. However, the
proposed framework assumes that the S-matrix in the energy repre-
sentation is the boundary value on the positive real axis of a bounded
analytic function in the upper half-plane. This condition puts strong
restrictions on possible applications of this formalism. In this paper it
is shown that there is a simple way of weakening the assumptions on
the S-matrix analyticity while still obtaining the semigroup decompo-
sition of the evolution of a resonance.

1 Introduction

There has been a recent effort to adapt the formalism of the scattering
theory developed by P.D. Lax and R.S. Phillips1 into the framework of
quantum mechanics. An initial effort in this direction2,3,4 was followed by
the introduction of a more general formalism by Y. Strauss, E. Eisenberg
and L.P. Horwitz5 which was subsequently applied to certain Lee-Friedrichs
type models in relativistic quantum field theory6,7 and, more recently, to
the analysis of the Stark effect8. In a parallel work H. Baumgartel9 has used
a modification of the Lax-Phillips scattering theory in order to deal with
quantum mechanical resonances. In particular, he has shown the relevancy
of this modified structure for the construction of appropriate Gamow vectors
for resonances of certain scattering problems.

It is readily observed that the class of problems which can be analyzed
within the framework introduced in reference [5] is limited by the very fact
that it essentially maintains the original structure of the Lax-Phillips theory.
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In this formalism the generator of evolution is required to have an unbounded
spectrum from below as well as from above, thus a large class of quantum
mechanical scattering problems is excluded from its range of applicability. A
way of overcoming this difficulty, when dealing with scattering problems for
which the generator of evolution has a semibounded absolutely continuous
spectrum, was recently proposed in reference [10].

The basic setting analyzed in reference [10] is a scattering problem involv-
ing a ”free” unperturbed Hamiltonian H0 and a perturbed Hamiltonian H
defined on a Hilbert spaceH where we assume that the absolutely continuous
spectrum of both H0 and H satisfies ess Suppσac(H0) = ess Suppσac(H) =
R+ and that the Møller wave operators Ω±(H0,H) exist and are complete.
In order to obtain the desired result, described below, it is assumed further
that the S-matrix in the energy representation, denoted by S̃, is a boundary
value on R+ of an H∞(Π) function where, denoting by Π the upper half
of the complex plane, H∞(Π) is the class of functions which are bounded
analytic in Π.

Suppose that under the assumptions mentioned above S̃, as an analytic
function in Π, has a simple zero in the upper half-plane at a point µ with
Imµ < 0 and Reµ > 0. It is then easy to show that there exists an ana-
lytic continuation of S̃ across the positive real axis and that this analytic
continuation has a simple pole below the real axis at the point z = µ which
is considered to be associated with a scattering resonance (this is usually
referred to as a second sheet pole of the S-matrix). Denote by U(t) the
unitary evolution generated by the full scattering Hamiltonian H and by
Hac the subspace of H corresponding to the a.c. spectrum of H. It is shown
in reference [10] that the pole of S̃ at z = µ (or rather the zero at µ) induces
a decomposition of any matrix element (g,U(t)f)Hac , for t ≥ 0 and f and g
belonging to a certain dense set in Hac, into a term evolving according to a
semigroup law and a background term. In a sense to be made precise in the
next section the semigroup term is of Lax-Phillips type and the eigenvalue
of the generator of the semigroup is exactly µ i.e., the location of the pole
of the S-matrix S̃. One may say that the semigroup part of the evolution
is driven by the pole of the S-matrix. The identification of the eigenvalue
of the generator of the semigroup with the location of the S-matrix pole is
made through a mechanism originating from the Sz.-Nagy-Foias theory of
contractions on Hilbert space11. The decomposition of the matrix element
(g,U(t)f)Hac in the form

(g,U(t)f)Hac = Rsg(g, f ; t) + α(g, f)e−iµt, t ≥ 0 (1)

induced via the Sz.-Nagy-Foias mechanism by a pole of the scattering matrix
S̃ at z = µ will be called the semigroup decomposition of the time evolution
of a resonance. The second term in Eq. (1) is the semigroup contribution
and the first term is the background term.
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One important drawback of the framework developed in reference [10] is
the strong assumption made on the analyticity properties of the S-matrix.
While the assumption that S̃ is the boundary value of an H∞(Π) function
allows for the application of the proposed framework in certain situations
including, for example, certain Friedrichs type models or compactly sup-
ported perturbations of the Laplacian, it excludes large classes of quantum
mechanical scattering problems for which the scattering matrix does not
have the necessary analyticity properties. The main focus of the present
paper is on an attempt to overcome this obstacle.

the rest of the paper is organized as follows: A short summary of the
framework for the description of the time evolution of resoances developed
in reference [10] is given in Section 2 below. As mentioned above this frame-
work assumes certain strong analyticity properties for the S-matrix in the
upper half-plane. The weakening of these strong assumptions is dealt with
in Section 3. Section 4 contains a few comments which are included in or-
der to elucidate some important points in the formalism introduced in the
previous two sections. Final remarks are made in Section 5.

2 The semigroup decomposition for resonance
evolution

This section provides a short summary of the formalism introduced in refer-
ence [10]. As mentioned in Section 1 above, the result, Eq. (1), is obtained
under the assumption that S̃, the S-matrix in the energy representation, is
the boundary value on R+ of a function in H∞(Π). In the next section it is
shown that it is possible to obtain the same results with a weaker assumption
on the analyticity of the S-matrix.

We start the discussion in this section with the definition of a Lax-
Phillips type semigroup. Consider a Hilbert space H and an evolution group
of unitary operators {U(t)}t∈R onH. The starting point for the Lax-Phillips
scattering theory is the assumption that there exist in H two distinguished
subspaces D− and D+ with the properties

D− ⊥ D+

U(t)D− ⊂ D−, t ≤ 0
U(t)D+ ⊂ D+, t ≥ 0

∩tU(t)D± = {0}
∪tU(t)D± = H .

(2)

The subspaces D− and D+ are called respectively the incoming subspace and
outgoing subspace for the evolution U(t). The main object investigated in
the Lax-Phillips theory is the Lax-Phillips semigroup which is defined to be
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the family {Z(t)}t≥0 of operators on H given by

Z(t) = P+U(t)P−, t ≥ 0 . (3)

Here P− is the orthogonal projection of H onto the orthogonal comple-
ment of D− and P+ is the orthogonal projection of H onto the orthogonal
complement of D+. The family {Z(t)}t≥0 forms a strongly continuous con-
tractive semigroup on K = H 	 (D− ⊕ D+) with s − limt→∞ Z(t)x = 0 for
every x ∈ K.

Under the assumptions in Eq. (2) Lax and Phillips prove the existence
of two translation representations for H. In the incoming translation rep-
resentation H is mapped onto the Hilbert space L2

N (R) of functions taking
their values in a Hilbert space N (called auxiliary space), D− is mapped
onto L2

N (R−) and the evolution U(t) is represented as translation to the
right by t units. Analogously, in the outgoing translation representation H
is mapped onto L2

N (R), D+ is mapped onto L2
N (R+) and the evolution U(t)

is again represented by translation to the right. The mapping SLP of the
incoming translation representation onto the outgoing translation represen-
tation is the Lax-Phillips S-matrix. One usually does not work with the
translation representations but rather with their Fourier transforms called
respectively the incoming spectral representation and outgoing spectral rep-
resentation. According to the Paley-Wiener theorem12 in the incoming spec-
tral representation D− is represented by H+

N (R) where H+
N (R) is the space

of boundary values on R of functions in H2
N (Π), the space of (vector valued)

Hardy class functions on the upper half-plane. By the same theorem D+

is represented in the outgoing spectral representation by the function space
H−N (R) containing boundary values of functions in H2

N (Π) where Π is the
lower half-plane. The Lax-Phillips S-matrix in the spectral representation,
i.e. the Fourier transform of the Lax-Phillips S-matrix, will be denoted by
SLP . The operator SLP : L2

N (R) 7→ L2
N (R) is realized as a multiplicative,

operator valued function Θ(·), such that Θ(σ) maps N onto N for each
σ ∈ R. The operator valued function Θ(·) is characterized by its action on
H+
N (R) as being an inner function13,14,15 (the notation in this paper does

not distinguish between an operator defined on the space H2
N (Π) and the

corresponding operator defined on the space of boundary value functions
H+
N (R); since the two spaces are isomorphic the same notation is being used

for both).
As mentioned above the main object of interest in the Lax-Phillips theory

is the Lax-Phillips semigroup. In the outgoing spectral representation an
element Z(t) : K 7→ K of the Lax-Phillips semigroup is represented by
Ẑ(t) : K̂ 7→ K̂ defined by

Ẑ(t) = Tu(t)|K̂, t ≥ 0 (4)

4



where

K̂ = L2
N (R)	 (H−N (R)⊕ SLPH+

N (R)) =

= L2
N (R)	 (H−N (R)⊕Θ(·)H+

N (R))
(5)

and where Tu(t) : H+
N (R) 7→ H+

N (R) is a Toeplitz operator13,16,17 with symbol
u(t) define by

[u(t)f ](σ) = e−iσtf(σ), f ∈ L2
N (R), σ ∈ R . (6)

The structure of the semigroup Ẑ(t), representing Z(t) in the outgoing
spectral representation, can be undrestood in the context of the construc-
tion of functional models for continuous contractive semigroups on Hilbert
space, a part of the Sz.-Nagy-Foias theory of contraction operators on Hilbert
space11. We call an operator a model operator for a class of operators if ev-
ery operator in that class is similar to a multiple of a part of it (a part
of an operator is defined to be the restriction of the operator to one of its
invariant subspaces). By a functional model we mean that the model op-
erator is defined on sutible function spaces. In fact, Eq. (4) provides a
functional model for a Lax-Phillips type semigroup. From this point of view
the semigroup is a fundamental object, the Lax-Phillips Hilbert space and
incoming and outgoing subspaces are obtained in the process of a unitary di-
lation of the semigroup and there always exits a similarity, in fact a unitary,
transformation of Z(t) into its functional model representation in terms of
Ẑ(t).

We notice that Eq. (5) can be written in the form

K̂ = H+
N (R)	Θ(·)H+

N (R) . (7)

In fact, Eq. (4) together with Eq. (7) are considered to be the canonical
functional model for a Lax-Phillips type semigroup. Here we consider an
isometric dilation of the semigroup and we end up with a functional model
defined on the Hardy space H+

N (R) 10,11. We are interested in this canonical
functional model for the Lax-Phillips semigroup and accordingly, for Θ(·)
an inner function, we call a semigroup of the form

Ẑ(t) = Tu(t)|(H+
N (R)	Θ(·)H+

N (R)), t ≥ 0 (8)

a semigroup of Lax-Phillips type (in the mathematical literature a functional
model for Z(t) in the form of Eq. (8) follows from the observation that the
contractive semigroup {Z∗(t)}t≥0 belongs to the class C·0).

A semigroup of the form given in Eq. (8) is one ingredient entering into
the formalism developed in reference [10]. Another important ingredient is
the notion of Hilbert space nesting introduced into the study of quantum
mechanical resonances by A. Grossman18. A nesting map of a Hilbert space
H1 into a Hilbert space H0 is a linear mapping θ : H1 7→ H0 such that:
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1. The domain of θ is H1 and θ is continuous on H1.

2. The range θH1 ⊂ H0 is dense in H0.

3. θ is injective.

A map with the properties 1.-3. is also known as a quasi-affine map (for
interesting properties of such maps see for example reference [11]). The
adjoint of a nesting map θ, defined by

(f, θg)H0 = (θ∗f, g)H1 ,

is a nesting of H0 into H1. A slightly more extended version of the following
theorem was proved in reference [10]:

Theorem 1 (outgoing\incoming contractive nesting) Let H0 and H
be selfadjoint operators on a Hilbert space H. Let {U(t)}t∈R be the unitary
evolution group on H generated by H (i.e., U(t) = exp(−iHt)). Denote by
H0

ac and Hac, respectively, the absolutely continuous subspaces of H0 and
H. Assume that the absolutely continuous spectrum of H0 and H has mul-
tiplicity one and that ess Suppσac(H0) = ess Suppσac(H) = R+. Assume
furthermore that the Møller wave operators Ω±(H0,H) : H0

ac 7→ Hac exist
and are complete. Then there are mappings Ω̂± : Hac 7→ H+(R) such that:

(α) (Hac,H+(R), Ω̂±) are contractive Hilbert space nestings of Hac into
H+(R).

(β) For every t ≥ 0 and every f ∈ Hac we have

Ω̂±U(t)f = Tu(t)Ω̂±f (9)

where Tu(t) is the Toeplitz operator with symbol u(t). �

The nesting (Hac,H+(R), Ω̂−) is called below the incoming contractive
nesting of Hac and we denote fin = Ω̂−f . Similarly (Hac,H+(R), Ω̂+) is
called the outgoing contractive nesting and we denote fout = Ω̂+f . The
natural definition of the nested S-matrix is then Snest ≡ Ω̂+Ω̂−1

− and we
have

fout = Ω̂+Ω̂−1
− fin = Snestfin .

Let U : H0
ac 7→ L2(R+) be the unitary transformation of H0

ac into the
spectral representation for H0 (the energy representation). If S = (Ω−)∗Ω+

is the scattring operator associated with H0 and H then S̃ : L2(R+) 7→
L2(R+) defined by

S̃ ≡ USU∗

is the energy representation of the S-matrix. Define a map θ : H+(R) 7→
L2(R+) by taking, for each function f ∈ H2(Π) the restriction on R+ of the
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boundary value of f on R. Then, by a theorem of C. Van Winter19, θ is
a nesting of H+(R) into L2(R+). The map θ∗ : L2(R+) 7→ H+(R) is well
defined and is a nesting of L2(R+) into H+(R). It is shown in reference [10]
that

Snest = θ∗S̃(θ∗)−1 (10)

(in fact Eq. (10) is taken in reference [10] to be the definition of Snest).
In Section 3 below we will need an explicit form for the map θ∗. The

following Lemma provides the needed expression10:

Lemma 1 Define the inclusion map I : L2(R+) 7→ L2(R) by

(If)(σ) =

{
f(σ) σ ≥ 0
0 σ < 0

(11)

Let P+ be the orthogonal projection of L2(R) onto H+(R). Then for any
f ∈ L2(R+) we have

θ∗f = P+If . (12)

�

We are now able to state the semigroup decomposition result following
from the H∞(Π) assumption on the S-matrix mentioned in Section 1. As-
sume therefore that S̃, the S-matrix in the energy representation, is the
boundary value on R+ of an H∞(Π) function which will be denoted by S.
If S has only a simple zero in the upper half-plane then, according to the
canonical factorization theorems for Hp functions14,15, we can write S in the
form

S(z) = Bµ(z)G(z) (13)

where Bµ is a simple Blaschke factor of the form (for the definition of
Blaschke products see, for example, references [14,15])

Bµ(z) =
z − µ

z − µ
(14)

and G ∈ H∞(Π) has no zeros in Π. Under the above assumptions we have
the following result on the semigroup decomposition for the H∞ case10:

Proposition 1 (H∞ case) Assume that the S-matrix S̃ : L2(R+) 7→ L2(R+)
is the boundary value on R+ of some function S ∈ H∞(Π). Suppose, fur-
thermore that S has a single, simple zero at the point z = µ, Imµ < 0 in Π.
For any f ∈ Hac let fin = Ω̂−f and fout = Ω̂+f . We have

fout = Snestfin = Bµθ
∗G̃(θ∗)−1fin − i2Imµ[P−Gf−in](µ)xµ (15)

where P− is the orthogonal projection of L2(R) on H−(R), f−in ∈ H−(R) is
such that PR−(fin + f−in) = 0, G̃ is the boundary value on R+ of a function
G ∈ H∞(Π) and G has no zeros in Π. The vector xµ ∈ H+(R) is given by
xµ(σ) = (σ − µ)−1 ( [P−Gf−in](µ) is the value of the function [P−Gf−in] ∈
H−(R) at µ ∈ Π ). �
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Define
K̂µ ≡ H+(R)	 BµH+(R) . (16)

then K̂µ is a one dimensional subspace of H+(R) and xµ ∈ K̂µ. Since Bµ is
an inner function for H+(R) we can define the Lax-Phillips type semigroup
{Ẑ(t)}t≥0 by

Ẑ(t) ≡ Tu(t)|K̂µ, t ≥ 0 . (17)

Then xµ is an eigenvector of the generator of {Ẑ(t)}t≥0 and

Ẑ(t)xµ = e−iµtxµ, t ≥ 0 .

Thus, for any f ∈ Hac we find that

Ω̂+U(t)f = Tu(t)fout =

= Tu(t)Bµθ
∗G̃(θ∗)−1fin − i(2Imµ[P−Gf−in](µ))Ẑ(t)xµ =

= Tu(t)Bµθ
∗G̃(θ∗)−1fin − i(2Imµ[P−Gf−in](µ))e−iµtxµ, t ≥ 0 . (18)

Define
ΛΩ̂+

= Ω̂∗
+Ω̂+Hac . (19)

The linear space ΛΩ̂+
⊂ Hac is dense in Hac. By the injective property of

both Ω̂+ and Ω̂∗
+, for any element g ∈ ΛΩ̂+

we can find a unique hg ∈ Hac

such that g = Ω̂∗
+Ω̂+hg. For any g ∈ ΛΩ̂+

, f ∈ Hac and for t ≥ 0 we have

(g,U(t)f)Hac = (Ω̂∗
+Ω̂+hg,U(t)f)Hac = (Ω̂+hg, Ω̂+U(t)f)H+(R) =

= (hg,out, Tu(t)fout)H+(R) =

= (hg,out, u(t)Bµθ
∗G̃(θ∗)−1fin)H+(R)

− i(2Imµ[P−Gf−in](µ))e−iµt(hg,out, xµ)H+(R) .

(20)

Eq. (20) is of the form given in Eq. (1) and its r.h.s. provides (for t ≥ 0)
the semigroup decomposition of the matrix element (g,U(t)f)Hac . The zero
of the S-matrix at z = µ in Π is related, via the Sz.-Nagy-Foias mechanism
described in reference [10], to the Lax-Phillips type semigroup structure
leading to the exponential decay of the second term on the r.h.s. of Eq.
(20).

As discussed in detail in reference [10], Eq. (20) is a direct result of
the assumption on the analyticity properties of the S-matrix. In particular,
this result is a consequence of the fact that the H∞ assumption imply the
canonical factorization in Eq. (13). As mentioned in Section 1 above, the
assumption that the S-matrix S̃ is a boundary value of a bounded analytic
function in the upper half-plane is stronger than what one would consider as
desirable. Large classes of models for quantum mechanical scattering phe-
nomena do not posses the assumed analyticity properties and hence cannot
be analyzed within the framework developed in reference [10]. A way of
resolving this difficulty is suggested in the next section.
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3 Modified assumptions on S-matrix analyticity

In this section it is shown that weaker assumptions on the analyticity of the
S-matrix lead to a result very similar to the semigroup decomposition of
Eq. (20). Thus, we assume that the S-matrix is analytic in a certain region
above the real axis, that it can be analytically continued across R+ and that
the resulting function is meromorphic in an open region Σ containing R+

with a single, simple pole at z = µ, Imµ < 0 inside Σ as depicted in Fig. 1.
We have the following theorem:

Theorem 2 Under the assumptions of Theorem 1, let S be the scattering
operator associated with H0 and H and let S̃ : L2(R+) 7→ L2(R+) be the
S-matrix in the energy representation (i.e. S̃ ≡ USU∗ as above). Assume
that S̃ has an extension to a meromorphic function S defined in the region
Σ with a single, simple, pole at z = µ, Imµ < 0, and no other pole in Σ,
the closure of Σ, as in Fig. 1.

For any f ∈ Hac use the nesting maps Ω̂± to define fout = Ω̂+f and
fin = Ω̂−f . Then there exists a unique element ψµ ∈ Hac, such that

fout = Snestfin = Bµθ
∗G̃(θ∗)−1fin + i2 Imµ (ψµ, f)Hacxµ . (21)

where θ∗ is the map given in Lemma 1, xµ ∈ H+(R) is given by xµ(σ) =
(σ − µ)−1, Bµ is the Blaschke factor defined in Eq. (14) and the complex
valued function G̃ is defined on R+ and is the restriction to R+ of a function
G holomorphic in Σ and having no zeros on Σ. �

Proof:
Let S̃ be the S-matrix in the energy representation and assume that it

has a meromorphic extension S in Σ with a simple pole at µ. Then S has
in Σ the representation

S(z) = (z − µ)−1G′(z) (22)

where G′ is analytic in Σ and has no zero at z = µ. Now, if S is expressed
by Eq. (22) below the real axis then, by the unitarity of S̃, the restriction
of S to R+, we find that in the region Σ ∩Π we can write S in the form

S(z) = (S(z))−1 = (z − µ)(G′(z))−1, Im z > 0

Since G′ has no zero at z = µ then (G′(z))−1 does not have a pole at z = µ
and we conclude that S has a representation in Σ expressed by

S(z) =
z − µ

z − µ
G(z) = Bµ(z)G(z), z ∈ Σ (23)

where G(z) has no zeros or poles in Σ. We see that S has in Σ a repre-
sentation similar to Eq. (13) with the difference being in the fact that this
representation is limited to the region Σ.
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Figure 1: S-matrix analyticity properties. We assume that S̃ has a
meromorphic extension to the region Σ with a simple pole at z = µ.

The S-matrix S̃ is given by the restriction of S in Eq. (23) to R+ i.e.,
S̃(λ) = Bµ(λ)G̃(λ), λ ∈ R+. Plugging this form of the S-matrix into the
expression of the nested S-matrix Snest in Eq. (10), we cannot use the
methods of reference [10] to obtain the desired results since we no longer
assume that S is an H∞(Π) function. However, we can avoid the need for
this assumption by writing

fout = Snestfin = θ∗S̃(θ∗)−1fin = θ∗BµG̃(θ∗)−1fin =

= P+IBµG̃(θ∗)−1fin = P+Bµ(P+ + P−)IG̃(θ∗)−1fin =

= Bµθ
∗G̃(θ∗)−1fin + P+BµP−θ

∗G̃(θ∗)−1fin

(24)

where θ∗ = P−I. We see that the first term on the r.h.s. of Eq. (24) is
identical in form to the first term on the r.h.s. of Eq. (15). In the second
term on the r.h.s of Eq. (24) the operator P+BµP− : H−(R) 7→ H+(R) is a
Hankel operator with a one dimensional range. In fact, for any g ∈ H+(R)
and f ∈ H−(R) we have

(Bµg, P+BµP−f)H+(R) = (Bµg,Bµf)L2(R) = 0 .

Hence Ran (P+BµP−) = K̂µ, where K̂µ is given in Eq. (16). Define the
subspace K̂µ ⊂ H−(R) by

K̂µ ≡ H−(R)	 BµH−(R)

with Bµ(z) = (z − µ)/(z − µ) (Bµ is an inner function for H−(R)) and
denote by PK̂µ

the orthogonal projection on this subspace. Then we also
have P+BµP− = P+BµP−PK̂µ

since

P+BµP−(BµH−(R)) = 0 .
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We conclude that
P+BµP− = PK̂µ

P+BµP−PK̂µ
. (25)

Using Eq. (25) in Eq. (24) we obtain

fout = Bµθ
∗G̃(θ∗)−1fin + PK̂µ

P+BµP−PK̂µ
θ
∗G̃(θ∗)−1fin . (26)

According to Eq. (16) and Eq. (26) we expect that the second term on the
r.h.s. of Eq. (26) is proportional to the vector xµ ∈ H+(R). Indeed this is
verified by explicit calculation. For the projection operators P± we have the
standard expressions

[P±f ](σ′) =
1

2πi

∫
R

1
σ′ ± iε− σ

f(σ) dσ, f ∈ L2(R)

Hence, for f ∈ H−(R) we have

[P+BµP−f ](σ) = [P+Bµf ](σ) =
1

2πi

∫
R

1
σ + iε− σ′

σ′ − µ

σ′ − µ
f(σ′) =

=
1

σ − µ
i2Imµf(µ) . (27)

If the S-matrix S̃ has a meromorphic extension S in Σ with a simple pole
at z = µ then the holomorphic factor of S in Σ can be found from Eq. (23)
and is given by G = BµS. Hence we have

[θ∗G(θ∗)−1fin](µ) = [P−IBµS̃(θ∗)−1fin](µ) =

=
1

2πi

∫
R+

1
λ− µ

(BµS̃(θ∗)−1fin)(λ) =

=
1

2πi

∫
R+

1
λ− µ

(S̃(θ∗)−1fin)(λ) = [θ∗S̃(θ∗)−1fin](µ) = fout(µ) .

(28)

Furthermore, it was shown in reference [10] that the nesting maps Ω̂± are
given by Ω̂± = θ∗U(Ω∓)∗ (where, as above, U : H0

ac 7→ L2(R+) is the
mapping onto the H0 spectral representation) so that, for every f ∈ Hac,
we have

fout(µ) =
1

2πi

∫
R+

1
λ− µ

(U(Ω−)∗f)(λ) = (ψµ, f)Hac (29)

where we define ψµ = Ω−U∗ψ̃µ with ψ̃µ ∈ L2(R+), ψ̃µ(λ) = (2πi)−1(λ −
µ)−1. Combining Eq. (26), Eq. (27), Eq. (28) and Eq. (29) we obtain the
result Eq. (21). �
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In order to see how Theorem 2 is used we go back to Eq. (20). From
this equation, together with Eq. (26) and Eq. (21) we find, for any f ∈ Hac

and any g ∈ ΛΩ̂+
,

(g,U(t)f)Hac =(hg,out, Tu(t)fout)H+(R) =

= (hg,out,u(t)Bµθ
∗G̃(θ∗)−1fin)H+(R)

+ (hg,out, Ẑ(t)PK̂µ
P+BµP−PK̂µ

θ
∗G̃(θ∗)−1fin)H+(R) =

= (hg,out,u(t)Bµθ
∗G̃(θ∗)−1fin)H+(R)

+ e−iµt(hg,out, xµ)H+(R)(ψµ, f)Hac .

(30)

Eq. (30) has the general form of Eq. (1) and provides the semigroup de-
composition in the case that the S-matrix S̃ has a meromorphic extension
to the region Σ in Fig. 1. It can be easily shown that Eq. (30) reduces to
Eq. (20) if S̃ is in fact the boundary value on R+ of a function belonging to
H∞(Π).

We observe that if in Eq. (30) the state f ∈ Hac is chosen to be orthog-
onal to ψµ then the exponentially decaying term on the r.h.s. of Eq. (30),
originating from the Lax-Phillips type semigroup evolution associated with
the pole of the S-matrix, does not appear. This enables us to make a direct
correspondence between the state ψµ and the resonance contribution to the
time evolution. Since, as is seen in Section 4 below, no state in Hac can be
mapped into an exact resonance state in the Hardy space H+(R) and there
always exists some nonzero background contribution, the vector ψµ ∈ Hac

will be called an approximate resonance state. Using Dirac’s notation, let us
denote by {|E−〉}E∈R+ the set of outgoing scattering states, i.e., outgoing
solutions of the Lipmann-Schwinger equation. It is then easy to see that for
f ∈ Hac we have

(U(Ω−)∗f)(E) = 〈E−|f〉, E ∈ R+

and the definition of the state ψµ (see Eq. (29)) implies that it is given by
the simple expression

|ψµ〉 =
1

2πi

∫
R+

dE
1

E − µ
|E−〉 . (31)

4 Comments

This section contains some comments on the framework described in Section
2 and further extended in Section 3. The discussion below is presented in a
slightly more general form than is strictly necessary in order to relate it to
the formalism of Sections 2 and 3. The more general form of the statements
made below places the remarks at the end of the present section, on the

12



Bohm-Gadella rigged Hardy space formalism for the resonance problem20,
into their natural context.

Let S denote the Schwartz class of rapidly decreasing functions in C∞(R).
Let S ′ denote the space of tempered distributions on S. We shall need the
following definition21:

Definition 1 (The space Hp(C\R)) For any fixed p ∈ (0,∞) let Hp(C\R)
denote the space of analytic functions on C\R for which

‖f‖ ≡ sup
y 6=0

{∫
R
|f(x+ iy)|pdx

}1/p

<∞

It can be shown21 that every function F ∈ Hp(C\R) is associated with a
unique tempered distribution `F ∈ S ′ defined by

`F (ψ) = lim
y→0+

∫
{F (x+ iy)− F (x− iy)}ψ(x) dx, ψ ∈ S (32)

Denote the set of all distributions arising in this way by Hp(R). Then,
conversly, for any p ∈ (0,∞) and for any distribution ` ∈ Hp(R), one can find
the unique function F` ∈ Hp(C\R) that defines the distribution ` through
Eq. (32) via the formula21

F`(z) =
1

2πi
`(

1
· − z

) . (33)

Eq. (33) can be thought of as a generalization of the Cauchy integral formula
for the recovery of an Hp function from its boundary value on R.

Even though Eq. (32) and Eq. (33) are valid for any p ∈ (0,∞), for
p ∈ (1,∞) we have the further identification of the space Hp(R) with the
space Lp(R) in the sense that any function f ∈ Lp(R) defines a tempered
distribution on S by

`f (ψ) =
∫

R
f(x)ψ(x)dx, ψ ∈ S (34)

and that for any f ∈ Lp(R) there exists a unique Ff ∈ Hp(C\R) such that
`Ff

= `f i.e., Eq. (32) and Eq. (34) define the same tempered distribution
on S.

Finally, we will also need the following result21:

Proposition 2 A distribution ` ∈ Hp(R) has support which omits an open
interval I ∈ R if and only if the corresponding function F` ∈ Hp(C\R) given
by Eq. (33) has an analytic continuation across the interval I.

Consider now the map θ∗ : L2(R+) 7→ H+(R) and its inverse (θ∗)−1 :
θ∗L2(R+) 7→ L2(R+). An explicit expression for θ∗ is given in Eq. (12).
Breaking the action of θ∗ into two steps we first have, for any f ∈ L2(R+)

If = P+If + P−If = θ∗f + θ
∗
f = f+ + f−, f+ ∈ H+(R), f− ∈ H−(R)

(35)
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where f+ = P+If , f− = P−If . In the second step we take the H+(R) piece
i.e.,

θ∗f = P+If = f+ .

On the other hand the discussion preceeding Proposition 2 implies that if
we apply the inclusion map I : L2(R+) 7→ L2(R) then, for any element
f ∈ L2(R+), the element If ∈ L2(R) is associated with a unique function
Ff ∈ H2(C\R) such that

(If)(σ) = lim
ε→0+

{Ff (σ + iε)− Ff (σ − iε)} (36)

In fact, the function Ff ∈ H2(C\R) is easily found from Eq. (35). We
first use the isomorphism of H+(R) and H2(Π) to extend the map θ∗ to a
mapping θ∗π : L2(R+) 7→ H2(Π). Subsequently we simply define

Ff (z) =

{
f+(z) = (θ∗πf)(z), Im z > 0
−f−(z) = −(θ∗πf)(z), Im z < 0

(37)

Moreover, Proposition 2 shows that Ff defined in Eq. (37) is in fact analytic
on C\R+. Denoting the subspace of H2(C\R) of functions analytic on R−
by H2(C\R+) we conclude that there exists a surjective map A : L2(R+) 7→
H2(C\R+) with Af = Ff for f ∈ L2(R+), Ff ∈ H2(C\R+). Note that

(Af)(z) = Ff (z) = (θ∗πf)(z), Im z > 0 . (38)

In addition, we note that Eq. (36)-(38) provide us with a procedure for the
construction of the map (θ∗)−1. Given f+ ∈ θ∗L2(R+) ⊂ H+(R) we use the
Cauchy integral formula to obtain the function f+ ∈ H2(Π). We know from
Eq. (38) and Eq. (37) that there is a unique function f ∈ L2(R+) such that
f+ ∈ H2(Π) is the restriction to Π of a function Ff = Af ∈ H2(C\R+).
Hence we can analytically continue f+ across R− into the lower half-plane
and obtain the full function Ff . The reconstruction of the corresponding
function f ∈ L2(R+) is then obtained by using Eq. (36). The process of
analytically continuing f+ across R− is done in reference [10] essentially by
using the Van Winter theorem and explicit integral expressions for the map
(θ∗)−1 are obtained.

Next we turn to a discussion of the resonance states. Let

Rs ≡ {xµ | xµ ∈ H+(R), xµ(σ) = (σ − µ)−1, σ ∈ R, Imµ < 0} (39)

Obviously, it is not possible to analytically continue any element xµ ∈ Rs

across R− in order to obtain a function in H2(C\R+). By Eq. (38) we
obtain:

Lemma 2 Define the set Rs ⊂ H+(R) according to Eq. (39). Then Rs ⊂
H+(R)\Ω̂±Hac.

14



Now, for any given S-matrix S̃ the eigenvector of the Lax-Phillips type
semigroup in the second term on the r.h.s. of Eq. (30) is proportional
to some xµ ∈ Rs. Identifying the Hardy space state xµ ∈ H+(R) as a
pure, exponentialy decaying, resonance state, Lemma 2 provides a formal
verification for the impossibility of the association of any unique state in the
original Hilbert space Hac with a pure resonance. For this reason the time
evolution (e.g. the survival amplitude) of any state in Hac always contains
some background contribution and is never purely exponentially decaying.

The final remark in this section is concerned with the Bohm-Gadella
rigged Hilbert space formalism for the problem of resonances20. The main
tool in this formalism is a Gelfand triplet ∆+ ⊂ H+(R) ⊂ ∆∗

+ constructed by
a rigging of the Hardy space H+(R). The smaller sector ∆+ of the Gelfand
triple is taken to be ∆+ ≡ H+(R) ∩ S where S again denotes the Schwartz
space. The larger sector ∆∗

+ contains all the continuous linear functionals on
∆+. One then uses a pullback procedure in order to obtain a rigged Hilbert
space Φ ⊂ L2(R+) ⊂ Φ∗ centered around the Hilbert space L2(R+). The
procedure of pull back uses the map θ. We first define Φ ≡ θ∆+ and then
the pull back procedure is used in order to define the set Φ∗ of functionals on
Φ. Denoting the evaluation of the functional F on a test function f in the
rigged Hilbert spaces Φ ⊂ L2(R+) ⊂ Φ∗ or ∆+ ⊂ H+(R) ⊂ ∆∗

+ by 〈f, F 〉L2

and 〈f, F 〉H+ respectively, the pull back of a functional F ∈ ∆∗
+ is defined

to be
〈f, (̂θ−1)∗F 〉L2 ≡ 〈θ−1f, F 〉H+ , f ∈ Φ, F ∈ ∆∗

+ (40)

The map (̂θ−1)∗ : ∆∗
+ 7→ Φ∗ on the l.h.s. of Eq. (40) is an extension to

∆∗
+ of the map (θ−1)∗. But on its domain of definition in H+(R) we have

(θ−1)∗ = (θ∗)−1. Hence Eq. (40) can serve just as well to define an extension
of the map (θ∗)−1 i.e., we have

〈f, (̂θ∗)−1F 〉L2 ≡ 〈θ−1f, F 〉H+ , f ∈ Φ, F ∈ ∆∗
+ (41)

For any function F ∈ θ∗L2(R+) ⊂ H+(R) ⊂ ∆∗
+ we have (f, (̂θ∗)−1F 〉L2 =

(f, (θ∗)−1F )L2(R+) and (̂θ∗)−1F is then identified with a function in L2(R+)
by the procedure for the construction of (θ∗)−1 described above. Here F ∈
θ∗L2(R+) is a function in H2(C\R+). However, the map (̂θ∗)−1, defined
on ∆∗

+, is certainly well defined for the whole Hardy space H+(R) and, in
particular, it is well defined in the distributional sense for any resonance
state xµ ∈ Rs ⊂ H+(R). Indeed, a resonance in the Bohm-Gadella theory
has the form (̂θ∗)−1xµ for some xµ ∈ Rs. Moreover, since the elements of Rs

cannot be analytically continued into functions in H2(C\R+), they belong
to ∆∗

+\θ∗L2(R+).
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5 Conclusions

A way of utilizing Lax-Phillips type semigroups for the description of the
time evolution of quantum mechanical resonances was suggested in reference
[10]. The present paper addresses the main difficulty with the framework
introduced in reference [10] and described in Section 2 above i.e., the as-
sumption that the S-matrix is the boundary value on R+ of a function in
H∞(Π). Such a requirment is not satisfied by large classes of quantum
mechanical scattering problems. It is shown in Section 3 above that this
condition can be weakened to the assumption that the given S-matrix is
analytic in a region Σ as in Fig. 1. In addition, it is shown in Section 4
that, if we regard a resonance as a quantum object and we look for a Hilbert
space state describing it, our expectation that no such state can be found in
the Hilbert space H for the scattering problem is valid. In fact a resonance,
identified as an eigenvector of the Lax-Phillips type semigroup responsible
for the exponential decay of the second term on the r.h.s. of the semigroup
decomposition in Eq. (30), exists as an element of the Hilbert space H+(R),
but cannot be associated with any element in Hac in the sense that it is out-
side of the range of the nesting map Ω̂+. This implies that the background
term, i.e., the first term on the r.h.s. of Eq. (30), exists for any choice of
the vectors g, f ∈ Hac and is never zero. However, the formalism developed
above does provide a clear identification of a well defined approximate res-
onance state ψµ ∈ Hac associated with the resonance contribution to the
time evolution (i.e. the semigroup term).
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