
Constraints on hyperon couplings from
neutron star equations of state¤

K. Miyazaki

Abstract

Based on the constituent quark picture of baryons and taking into account the
contributions of isovector and strange mesons, we have developed the extended
Zimanyi-Moszkowski model of dense baryon matter for studying neutron star (NS)
equations of state (EOSs). Four sets of meson-hyperons coupling constants are
investigated. The �rst is characterized by strong attractive § interaction while
the others have repulsive § interactions. The second is characterized by strong
attractive ¤¤ interaction. The third has weak ¤¤ but strong attractive §§ in-
teractions. The last one has much weaker §§ interaction than the third one. By
systematic analyses of the EOSs and mass sequences of NSs, it has been found
that the strong attractive §, ¤¤ and §§ interactions are ruled out. The re-
sult is consistent to the most recent information on hyperon interactions from the
experimental and theoretical investigations of hypernuclei.

1 Introduction

Through the equation of state (EOS) [1,2] the studying the properties of NSs becomes
an important subject of nuclear physics. The recent re�ned nonrelativistic Brueckner-

Hartree-Fock (NRBHF) calculations [3,4] however predicted the maximum masses of neu-

tron stars which are lower than the famous canonical value 144¯ [5] obtained from
the relativistic binary pulsar B1913+16. This has revealed the uncertainties in the mod-

els of baryonic matter at high densities and the models of baryon�baryon, especially

hyperon-hyperon (YY) interactions. On the other hand, the renewed interests on the YY
interactions [6-11] have been raised by the recent discovery of 6

¤¤He in the KEK-E373

experiment [12]. Those works however provided the results being inconsistent to each

other. This has also revealed the theoretical uncertainties in the YY interactions and the
model describing 6-body system.

As seen above the problem of the fundamental baryon-baryon interactions is insep-

arable from the problem of the models of many-body nuclear system or dense baryon
matter. It is necessary to treat both the problems simultaneously in a realistic way as

¤This paper is the revised version of CDS ext-2004-134 in which there has been found a bug in
numerical code. Although the conclusion is not altered, the EOSs become sti¤er. As the results the
analyses in section 3 have been re�ned to some extent. I have also corrected several unclear contexts
and mistypes.
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possible. Inversely speaking, the physically realistic description of nuclear system is able

to constrain the YY interactions to their realistic values. In this respect the relativistic
theories are more suitable for dense medium than nonrelativistic ones. However the rela-

tivistic Brueckner-Hartree-Fock (RBHF) [13] calculations including all the baryon octets

are not feasible at present. Therefore many studies of NS matter [2] have been done by
the relativistic mean-�eld (RMF) theories based or inspired by the Walecka model [14].

The most widely used nonlinear extensions [15] of the Walecka model however are

not realistic because they do not take into account the medium dependences of meson-
baryon coupling constants, which are realized in the RBHF theory and are essentially

important to dense baryon matter. In the RMF models including hyperons, the (hidden)

strange mesons ¤ and  [16] are necessary to realistic description of the YY interactions.
In this respect the so-called DDRH model [17] is not suitable because of the di¢culty

to include the explicitly density-dependent   ¤() coupling constants. Consequently,

there remain only two possibilities of the realistic RMF models for NS matter. They are
the Zimanyi-Moszkowski (ZM) model [18] and the quark-meson coupling (QMC) model

[19]. In contrast to the DDRH model, these take into account the density dependences of

the meson-baryon coupling constants implicitly through the e¤ective masses of baryons
in the medium.

The investigations of NSs by the ZM and QMC models including the strange mesons

were performed in Refs. [20] and [21]. Although they predicted reasonable maximum
NS masses  ¼ 15¯ that are close to the canonical value  = 144¯, they are

never physically realistic. The QMC model [21] adopted the baryon-baryon interactions

deduced purely from SU(6) symmetry of baryon octet. It is believed that the realistic
values of the interactions deviate from those values. On the other hand, the original

ZM model is not a realistic model of nuclear matter because it cannot reproduce strong

spin-orbit potentials of normal nuclei. The straightforward extension of the ZM model in
Ref. [20] is therefore not physically reasonable.

The defect of the ZM model has been eliminated in Refs. [22,23] by modifying it based

on the constituent quark picture of nucleons. This modi�ed ZM (MZM) model can be
extended to hyperons unambiguously in contrast to the original ZM model [24,25]. Then

the MZM model was applied to NS matter in Refs. [26,27], but the strange mesons were

not considered. The extended ZM (EZM) model taking into account strange mesons has
been �rst developed in Ref. [28] to investigate the isoscalar strange hadronic matter.

In the present work we apply the EZM model to NS matter by further extending it

to introduce the isovector mesons  and . In the next section we derive the e¤ective
renormalized meson-baryon coupling constants in the medium, which are the essential

ingredients of the EZM model. Then the RMF theory of the NS matter is developed. In

section 3 the properties of NS matter are calculated. We investigate several possibilities
of the YY interactions and compare the EZM model with the other RMF models. We

summarize our investigation and draw conclusions in section 4.
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2 Formalism

In this work we consider the contributions of the isoscalar mesons  and , their strange

counterparts ¤ and  mesons and the isovector mesons  and . Their masses are taken

to be  = 550MeV,  = 783MeV, ¤ = 975MeV,  = 1020MeV,  = 769MeV
and  = 983MeV.The masses of baryons are assumed to be  = 9389MeV, ¤ =

11156MeV, § = 119305MeV and ¥ = 13181MeV. The essential concept of the

present version of the EZM model is the same as the previous works [22,23,26-28].

2.1 E¤ective renormalized coupling constants

Because the nucleons have no strange contents, the renormalized meson (¦)-nucleon ()

coupling constants ¤¦ of the EZM model in isospin-asymmetric medium are the same

as those of the MZM model derived in Ref. [23]. Here we show only the results for
convenience:

¤ () =
£
(1¡  ) + ¤



¤
() (1)

¤() = [(1¡ ) + ¤
] () (2)

¤ () =
£
(1¡ ) + 

¡
2¤

 ¡ ¤


¢¤
() (3)

¤ () =
£
(1¡ ) + 

¡
2¤

 ¡ ¤


¢¤
() (4)

where ¦ is the free coupling constant and the renormalization constant  is

 = 13 (5)

The quantities ¤
 () are the ratios of the e¤ective nucleon masses ¤

 () in medium

to the free mass:

¤
 () = ¤

 () =
¡
 +  ()

¢
  (6)

where () are the scalar potentials of protons (neutrons). ¤
 and  ¤

 are di¤erent from
each other owing to the isovector scalar mean-�eld by  meson. Because the renormalized

coupling constants depend on the e¤ective masses, they are determined self-consistently

in nuclear medium.
Next, using the intuitive schematic methods, we consider the renormalized meson-

hyperons coupling constants of the EZM model that are the extensions of those derived

in Ref. [28] to take into account the isovector mesons. First the ¤ hyperon is considered.
In the constituent quark model (QCM) of baryons, the free ¤¤ or ¤¤ coupling is

schematically written by
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s

+

u d u ds

or expressed by
¤¤() = 2¤() (7)

The wavy lines denote  or  mesons and  is  or  quark. Although the other two

quarks disconnected from the wavy lines are the spectators, they are also embedded in

mean-�elds if the ¤ hyperons compose baryon matter. In the RMF model of baryon
matter, the mass of ¤ hyperon in the medium must be reduced by the scalar mean-�elds

as the e¤ective masses of nucleons in Eq. (6). In the QCM this means that the masses of

,  and  quarks are also reduced by their scalar potentials. Therefore we can consider

the following medium correction to ¤¤():

1
2

×

u d s

u d s

+

+

+

u d s

u d s

S d
Λ S u

Λ

S s
Λ S s

Λ

The dashed lines are the e¤ects of the mean-�elds on quarks de�ned by

¹
 = 

  (8)

where  
 , 

 and 
 are the scalar potentials of ,  and  quarks in the hyperon  .

Adding the above correction to Eq. (7), we have the renormalized (or e¤ective) ¤¤()

coupling constant ¤¤¤() in the medium,

¤¤¤() = ¤¤()+
1

2

¡
¹¤ + ¹¤ + 2 ¹

¤


¢
¤() =

·
1 +

1

4

¡
¹¤ + ¹¤

¢
+
1

2
¹¤

¸
¤¤() (9)

Similarly, the medium correction to ¤¤¤() coupling constant in the EZM model is

depicted by
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+

ud s d su

S u
Λ S d

Λ

1
2

×

Thus the renormalized coupling constant is given by

¤¤¤¤() = ¤¤¤()+
1

2

¡
¹¤ + ¹¤

¢
¤ ¤() =

·
1 +

1

2

¡
¹¤ + ¹¤

¢¸
¤¤¤() (10)

where ¤¤¤() =  ¤¤() is used. Because the ¤ is charge neutral,

¤¤¤() = 0 (11)

The renormalized meson-§0 coupling constants have the same form as those of ¤:

¤§0§0() =

·
1 +

1

4

³
¹§

0

 + ¹§
0



´
+
1

2
§

0



¸
§§() (12)

¤§0§0¤() =

·
1 +

1

2

³
¹§

0

 + ¹§
0



´¸
§§¤() (13)

¤§0§0() = 0 (14)

Clearly, for the charged §�s we have

¤§+§+() =

·
1 +

1

2

³
¹§

+

 + ¹§
+



´¸
§§() (15)

¤§+§+¤() =
³
1 + ¹ §+



´
§§¤() (16)

¤§¡§¡() =

·
1 +

1

2

³
¹§

¡
 + ¹§

¡


´¸
§§() (17)

¤§¡§¡¤() =
³
1 + ¹§

¡


´
§§¤() (18)

Next, the medium correction to §+§+() coupling constant in the EZM model is

depicted by
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su usu u

S u
+Σ

+
S s

+Σ

Thus the renormalized coupling constant becomes

¤§+§+() = §§()+
³
¹§

+

 + ¹§
+



´
§() =

·
1 +

1

2

³
¹§

+

 + ¹§
+



´¸
§§() (19)

where §§() = 2§() is used. Clearly, for §¡ we have

¤§¡§¡() = §§() +
³
¹§

¡
 + ¹§

¡


´
§() =

·
1 +

1

2

³
¹§

¡
 + ¹§

¡


´¸
§§() (20)

Then we consider the ¥ hyperons. In the EZM model the renormalized ¥0¥0(  )

coupling in the mean-�elds is depicted by

ss

+

ssu

0

S s
Ξ

u

or expressed by

¤¥0¥0 = ¥¥ + ¹
¥0

 ¥ =
³
1 + ¹¥

0



´
¥¥ (21)

where ¥¥ = ¥ is used.
The medium correction to ¥0¥0¤() coupling in the EZM model is depicted by

ss

+

ssu u

0

S u
Ξ 0

S s
Ξ

Thus the renormalized coupling constant is

¤¥0¥0¤() = ¥¥¤() +
³
¹ ¥0

 + ¹ ¥0



´
¥¤() =

·
1 +

1

2

³
¹ ¥0

 + ¹ ¥0



´¸
¥¥¤() (22)

where ¥¥¤() = 2 ¥¤() is used.

6



Clearly, for ¥¡ we have

¤¥¡¥¡ =
³
1 + ¹¥

¡


´
¥¥ (23)

¤¥¡¥¡¤() =

·
1 +

1

2

³
¹¥

¡
 + ¹¥

¡


´¸
¥¥¤() (24)

In Appendix the e¤ective meson-baryon couplings will be derived again by more strin-

gent method using the relativistic SU(6) model of baryon octet.

2.2 The RMF model of NS matter

The Lagrangian of NS matter in the RMF model has the common form:

L =
X

=¤§+
§0§¡¥0 ¥¡

¹

¡
 ¡ ¤

 ¡ 0 
¢

 +
X

=¡¡

¹

¡
 ¡ 

¢


¡ 1

2
2
 hi2 + 1

2
2
 h0i2 ¡ 1

2
2

 h3i2 +
1

2
2

 h03i2 ¡ 1

2
2
¤ h¤i2 + 1

2
2

 h0i2 

(25)

where  and  are the Dirac �elds of baryons and leptons, hi, h0i, h3i, h03i, h¤i
and h0i are the mean-�elds,  is the mass of each lepton. The energy density is

E =
X



(h¤
i + )  +

X



hi  +
1

2
2

 hi2 + 1
2

2
 h3i2

+
1

2
2

¤ h¤i2 ¡ 1

2
2

 h0i2 ¡ 1

2
2

 h03i2 ¡ 1

2
2

 h0i2  (26)

where h¤
i and hi are the average kinetic energies of baryons and leptons, and 

and   are their vector densities.
The e¤ective masses ¤

 of the baryons are

¤
 =  +   (27)

Using the renormalized meson-baryon coupling constants, the scalar potentials  are

given by

 = ¡¤ hi ¡ ¤ h3i 3 ¡ ¤¤ h¤i  (28)

where 3 = f 1, ¡1, 0, 1, 0, ¡1, 1, ¡1g for  = f , , ¤, §+, §0, §¡, ¥0, ¥¡g. On the

other hand, the vector potentials  are given by

 = ¤ h0i + ¤ h03i 3 + ¤ h0i  (29)
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Etremizing Eq. (26) by the vector mean-�elds, we have

h0i =
X



¤
2



  (30)

h03i =
X



3
¤
2


  (31)

h0i =
X



¤  
2


  (32)

Thus the energy density becomes

E =
1

4

X



( 3¤
 +¤

) +
1

4

X



( 3 +) +
1

2
2
 hi2 + 1

2
2

 h0i2

+
1

2
2
 h3i2 +

1

2
2
 h03i2 +

1

2
2

¤ h¤i2 + 1
2

2
 h0i2  (33)

where  and  are the scalar densities of baryons and leptons. The pressure becomes

 =
1

4

X



(¤
  ¡  ¤

) +
1

4

X



( ¡ )¡
1

2
2
 hi2 + 1

2
2
 h0i2

¡ 1

2
2

 h3i2 +
1

2
2

 h03i2 ¡ 1

2
2

¤ h¤i2 + 1
2

2
 h0i2  (34)

Equation (33) is a function of three independent fundamental quantities ¤
, ¤

 and

¤
¤, the e¤ective masses of proton, neutron and ¤. The scalar mean-�elds, the scalar

potentials and the e¤ective masses of the other hyperons are expressed by them. The
expressions of hi and h3i have been derived in Ref. [23]. The results are

hi =
¡
1¡ ¤



¢
¤ + (1¡ ¤

) ¤


  (35)

h3i =
(¤

 ¡ 1) ¤ ¡
¡
¤

 ¡ 1
¢

¤


  (36)

where

 = ¤ ¤ + ¤ ¤ (37)

The e¤ective mass of ¤ is de�ned by

¤
¤ = 1 + ¹¤ (38)

¹¤ = ¹ ¤
 + ¹

¤
 + ¹¤  (39)

where from Eqs. (9) and (10)
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¹¤ + ¹
¤
 = ¡ ¤¤¤ hi

¤
= ¡

·
1 +

1

4

¡
¹¤ + ¹

¤


¢
+
1

2
¹¤

¸
¹¤ (40)

¹¤ = ¡ ¤¤¤¤ h¤i
¤

= ¡
·
1 +

1

2

¡
¹¤ + ¹

¤


¢¸
¹¤¤ (41)

We have introduced

¹ ´   


hi , ¹¤ ´   ¤


h¤i  (42)

Solving Eqs. (40) and (41),

1

2

¡
¹¤ + ¹

¤


¢
= ¡ 1¡ (12) ¹¤¤

¤
¹¤ (43)

¹¤ = ¡ 2¡ (12) ¹¤
¤

¹¤¤ (44)

where

¤ = 2 +
1

2
(1¡ ¹¤¤) ¹¤ (45)

Substituting Eqs. (43) and (44) into (39),

¹¤¤ =
2 (1¡ ¤

¤)¡
£
2¡ 1

2 (1¡ ¤
¤)

¤
¹¤

2¡ 1
2
(2 +¤

¤) ¹¤
 (46)

Because ¹¤ or the mean-�eld hi is a function of ¤
 and ¤

, the ¹¤¤ or the mean-�eld

h¤i is a function of ¤
, ¤

 and ¤
¤. The renormalized coupling constants of ¤ are also

expressed by ¤
, ¤

 and ¤
¤ through

1 +
1

4

¡
¹ ¤
 + ¹¤

¢
+
1

2
¹¤ =

2¡ ¹¤¤
¤

 (47)

1 +
1

2

¡
¹¤ + ¹

¤


¢
=
2¡ (12) ¹¤

¤
 (48)

Because the similar expressions to Eqs. (40) and (41) hold for §0, its e¤ective mass

is expressed by ¤
, ¤

 and ¤
¤ through

¤
§0 = 1 + ¹§0 = 1 + ¹

§0

 + ¹
§0

 + ¹§
0

 =
2¡ (32) ¹§ ¡ 2 ¹¤§ + ¹§¹¤§

§0
 (49)

where

§0 = 2 +
1

2
(1¡ ¹¤§) ¹§ (50)

The renormalized coupling constants of §0 are also expressed by ¤
, ¤

 and ¤
¤ through

9



1 +
1

4

³
¹§

0

 + ¹§
0



´
+
1

2
¹§

0

 =
2¡ ¹¤§

§0
 (51)

1 +
1

2

³
¹§

0

 + ¹§
0



´
=
2¡ (12) ¹§

§0
 (52)

The results for §+ can be obtained by replacing ¹§ in Eqs. (49)-(52) with ¹§ + ¹§,

where

¹ ´   


h3i  (53)

Therefore the e¤ective mass of §+ becomes

¤
§+ = 1 + ¹§+ = 1+ 2 ¹

§+

 + ¹§
+

 =
2¡ (32)

¡
¹§ + ¹§

¢
¡ 2 ¹¤§ +

¡
¹§ + ¹§

¢
¹¤§

§+
 (54)

and the renormalized coupling constants are determined through

1 +
1

2

³
¹ §+

 + ¹ §+



´
=
2¡ ¹¤§
§+

 (55)

1 + ¹§
+

 =
2¡ (12)

¡
¹§ + ¹§

¢

§+
 (56)

where

§+ = 2 +
1

2
(1¡ ¹¤§)

¡
¹§ + ¹§

¢
 (57)

For §¡ the contributions of ¹§ are negative. Thus the e¤ective mass of §¡ is

¤
§¡ = 1 + ¹§¡ = 1 + 2 ¹

§¡
 + ¹§

¡
 =

2¡ (32)
¡
¹§ ¡ ¹§

¢
¡ 2 ¹¤§ +

¡
¹§ ¡ ¹§

¢
¹¤§

§¡
 (58)

and the renormalized coupling constants are determined through

1 +
1

2

³
¹§

¡
 + ¹§

¡


´
=
2¡ ¹¤§
§¡

 (59)

1 + ¹§
¡
 =

2¡ (12)
¡
¹§ ¡ ¹§

¢

§¡
 (60)

where

§¡ = 2 +
1

2
(1¡ ¹¤§)

¡
¹§ ¡ ¹§

¢
 (61)

Next, the e¤ective mass of ¥0 is de�ned by

¤
¥0 = 1 + ¹¥0 (62)

10



¹¥0 = ¹ ¥0

 + 2 ¹ ¥0

  (63)

where from Eqs.(21) and (22)

¹ ¥0

 = ¡ ¤¥0¥0 hi
¥

¡ ¤¥0¥0 h3i
¥

= ¡
³
1 + ¹¥

0



´ ¡
¹¥ + ¹¥

¢
 (64)

2 ¹ ¥0

 = ¡ ¤¥0¥0¤ h¤i
¥

= ¡
·
1 +

1

2

³
¹¥

0

 + ¹¥
0



´¸
¹¤¥ (65)

Solving Eqs. (64) and (65),

¹ ¥0

 = ¡ 2¡ (12) ¹¤¥
¥0

¡
¹¥ +

¹¥
¢

 (66)

¹¥
0

 = ¡ 1¡ 1
2

¡
¹¥ + ¹¥

¢

¥0
¹¤¥ (67)

where

¥0 = 2 +
1

2

£
1¡

¡
¹¥ +

¹¥
¢¤
¹¤¥ (68)

Substituting Eqs. (64) and (65) into (63), the e¤ective mass of ¥0 becomes

¤
¥0 =

2¡ 2
¡
¹¥ +

¹¥
¢

¡ (32) ¹¤¥ +
¡
¹¥ +

¹¥
¢
¹¤¥

¥0
 (69)

The renormalized coupling constants are determined through

1 + ¹¥
0

 =
2¡ (12) ¹¤¥

¥0
 (70)

1 +
1

2

³
¹¥

0

 + ¹¥
0



´
=
2¡

¡
¹¥ +

¹¥
¢

¥0
 (71)

For ¥¡ the contributions of ¹¥ are negative. Thus the e¤ective mass of ¥¡ is

¤
¥¡ = 1 + ¹¥¡ = 1 + ¹¥

¡
 + 2 ¹¥

¡
 =

2 ¡ 2
¡
¹¥ ¡ ¹¥

¢
¡ (32) ¹¤¥ +

¡
¹¥ ¡ ¹¥

¢
¹¤¥

¥¡
 (72)

and the renormalized coupling constants are determined through

1 + ¹ ¥¡
 =

2¡ (12) ¹¤¥
¥¡

 (73)

1 +
1

2

³
¹¥

¡
 + ¹¥

¡


´
=
2¡

¡
¹¥ ¡ ¹¥

¢

¥¡
 (74)

where
¥¡ = 2 +

1

2

£
1¡

¡
¹¥ ¡ ¹¥

¢¤
¹¤¥ (75)
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Consequently, we can express all the relevant quantities by the three e¤ective masses

¤
, ¤

 and ¤
¤. Their values are determined by extremizing Eq. (33) by them;



 ¤


µ E


¶
=

X



  ¤


 ¤





+
2
 hi

 

 hi
 ¤



+
2
 h3i

 

 h3i
 ¤



+
2

¤ h¤i
 

 h¤i
 ¤



+


 2


Ã
X



 ¤

!Ã
X




 ¤
 ¤



!

+


 2


ÃX



3 ¤

!ÃX



3
 ¤
 ¤



!

+


 2


ÃX



 ¤  

!ÃX




 ¤  
 ¤



!
= 0 (76)



 ¤
¤

µ E


¶
=

X



 ¤


 ¤
¤




+
2

¤ h¤i
¤ 

 h¤i
 ¤

¤

+


¤ 2


ÃX



 ¤

!ÃX




 ¤  
 ¤

¤

!

+


¤ 2


ÃX



3 ¤

!ÃX



3
 ¤  
 ¤

¤

!

+


¤ 2


ÃX



 ¤  

!ÃX




 ¤  
 ¤

¤

!
= 0 (77)

where ¤
 = ¤

 or ¤
 in Eq. (76). The  is the total baryon density,  = 

is the fraction of each baryon. The solutions of Eqs. (76) and (77) must satisfy the

energy minimization conditions. It is tedious but straightforward task to calculate the

derivatives in Eqs. (76) and (77) and so we will not present their expressions explicitly.

3 Numerical analyses

The present work treats the cold non-rotating -equilibrated NS. The properties of NS
matter in our EZM model are essentially determined by ¤

, ¤
 and ¤

¤ that are the

solutions of Eqs. (76) and (77). To solve these equations, the densities of every baryon

are needed at �xed total baryon density  . They are determined from the chemical
potential as

 =
¡
2 + ¤


2
¢12

+  (78)
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The -equilibrium condition requires

  =    ¡   (79)

where   is the chemical potential of all the baryons and leptons (¡ and ¡), and   and
  are the corresponding baryon number and charge. There exist only two independent

chemical potentials of neutron and electron. They are determined to satisfy

 =
X

=¤§+ 
§0§¡ ¥0¥+

  (80)

and the charge neutral condition,

X

=

  = 0 (81)

Since the right hand side of Eq. (78) includes ¤
, Eqs. (76)-(81) have to be solved

self-consistently.

For numerical calculations of the NS matter, we determine the free meson-baryon
coupling constants. The  and  coupling constants are �xed to reproduce the

nuclear matter saturation. We assume the saturation energy of ¡1575MeV at the satu-

ration density 016 fm¡3. The values ()
2 = 169 fm2 and ()

2 = 125 fm2

are obtained. The e¤ective nucleon mass and the incompressibility of saturated nuclear

matter are ¤
 = 0605 and  = 302MeV. The  and  coupling constants are

�xed to the values by the Bonn A potential in Ref. [13]. The detailed explanations of
these meson-nucleon coupling constants have been given in Refs. [22] and [23].

Next, the meson-hyperon coupling constants have to be determined. Unfortunately,

at present there is little reliable information on the nucleon-hyperon (NY) and hyperon-
hyperon (YY) interactions. In this work we investigate four sets of the coupling constants.

First, all the meson-hyperon coupling constants are related to the meson-nucleon coupling

constants by the SU(6) symmetry. Hereafter this choice will be referred to as the coupling

set 1. Because the QMC model in Ref. [21] has employed this coupling set, the comparison
between our EZM and the QMC model is interesting.

The other three coupling sets are determined by using both empirical method and

the SU(6) symmetry. Namely, the   ,   ,    and    coupling constants are
determined by the SU(6) symmetry. The    coupling constants are determined to give

the hyperon potentials in saturated nuclear matter  ()
 () [29,30],

 ()
¤ () = ¡28MeV,  ()

§ () = 30MeV and  ()
¥ () = ¡18MeV. (82)

In our model they are given by
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
()
 () = ¡ ¤   hi + ¤   h0i  (83)

where hi and h0i are the mean-�elds in saturated nuclear matter. These choices
of the coupling constants are the most plausible at present and so are common to the

coupling sets 2, 3 and 4.

One of the di¤erences between the three sets is in the choices of   ¤ coupling
constants. In the set 2 they are adjusted [16] so that the potential of a single hyperon,

embedded in a bath of ¥ matter at , becomes


(¥)
¥ () = 

(¥)
¤ () = ¡40MeV (84)

and §§¤ = ¤¤¤ is assumed. The resulting coupling constants predict the following

potential of a single hyperon embedded in a bath of ¤ matter:

 (¤)
¥ (2) ¼  (¤)

¤ (2) ¼ ¡20MeV (85)

It is noted that this rather strong attractive ¤¤ interaction is based on the old data of

double ¤ hypernuclei.

However the recent discovery of 6
¤¤He in the KEK-E373 experiment [12] has pre-

sented a question on such strong ¤¤ attraction. This new result was reproduced by the

calculation [7] based on the three-body Faddeev equation and the most recent Nijmegen

soft-core potential NSC97 [31,32]. In fact the NRBHF calculation [33] using NSC97
model predicted no binding of pure ¤ matter. Thus, in the coupling set 3, we implement

the NSC97f potential in our EZM model by adjusting the   ¤ coupling constants to

reproduce the hyperon binding energy curves in Fig. 2 of Ref. [33]. This implementation
is according to Ref. [34] but we have reduced  ()

§ () in Eq. (82) to 20 MeV, so that

the binding energy of pure § matter agrees with the result of Ref. [33] more precisely

than Ref. [34]. Although the calculation of Ref. [7] used the NSC97e potential, we have
adopted the model f because the deep binding of pure ¥ matter by the model e predicted

in Ref. [33] cannot be reproduced by the RMF model using the reasonable coupling

constant.
The NRBHF calculation using NSC97 potential in Ref. [33] predicted relatively deep

binding of pure § matter. Because the  ()
§ () is taken to be repulsive, this means

that the above implementation of the NSC97 potential leads to much stronger §§¤

coupling constant than the value derived from SU(6) symmetry. It is not clear whether

such a strong coupling is physically rational or not. Therefore, in the coupling set 4, we

take the same coupling constant for §§¤ as ¤¤¤ according to the SU(6) symmetry.
The values of coupling constants of each set are summarized in Table 1.

Figure 1 calculates the EOSs of -equilibrated NS matter. The dashed, dashed-dotted,

solid and dotted curves are the results using the meson-hyperon coupling sets 1, 2, 3
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and 4 respectively. Taking these EOSs as inputs, we integrate the so-called Tolman-

Oppenheimer-Volkov (TOV) equation [35]. For the outer region of NS, we use the
EOSs by Feynman-Metropolis-Teller, Baym-Pethick-Sutherland and Negele-Vautherin

from Ref. [36]. Figures 2 and 3 show the gravitational masses of neutron stars in unit

of the solar mass as functions of the central energy density E and the radius . The
curves are the same as those in Fig. 1, but the coupling set 2 is excluded because it is

unphysical as discussed below. Figures 4 to 7 show the fraction of baryons and leptons

in -equilibrated NS matter using the coupling sets 1 to 4 respectively.
Now we are going to discuss the results. It is �rst noted that there are the critical den-

sities above which we cannot �nd -equilibrium state. Their values are  = 0887 fm¡3,

0867 fm¡3, 0691 fm¡3 and 0998 fm¡3 for the coupling sets 1 to 4. This is not surprising
because in our EZM model the vector potential  in the chemical potential (78) depends

directly on the e¤ective mass ¤
 while in the other RMF models it depends only on the

each baryon density  . (See Eq. (29).) The constraint of the -equilibrium condition on
the self-consistency equations of the e¤ective masses or the meson mean-�elds are much

severer in the EZM model than the other models.

The critical density will be no trouble if it is higher than the central baryon density 
in NS with maximum mass. The meson-hyperon coupling set 1 however cannot satisfy this

condition. The maximum mass appears at the end point of the dashed curve in Fig. 2 or

3, that is, at the critical density  = 0887 fm¡3. Furthermore its value  = 1402¯
is lower than the canonical value 144¯. This is because the coupling set 1 produces

the softer EOS than the other sets in the region of 250MeV¢fm¡3  E  500MeV¢fm¡3.

The softness is due to the abundance of §¡ above  = 026 fm¡3 as seen in Fig. 4. In the
other coupling sets the hyperons appear at higher densities  ¼ 04 fm¡3 as seen in Figs.

5, 6 and 7 and there are no §�s in the sets 2 and 4. The early abundance of §¡ and the

appearance of§0 and §+ in the set 1 are due to its stronger §§ coupling constant, which
produces relatively deep attractive potential  ()

§ () while in the other coupling sets

the repulsive potentials are assumed. It also leads to the delayed appearance and scarcity

of ¥ hyperons and so the abundance of ¤ hyperons. At present the fact that there are
no observations of § hypernuclei strongly supports the positive value of  ()

§ (). In

addition the detailed theoretical analysis of §¡ atomic data [37] and (¡ +) inclusive

spectra [38] predict a repulsive §-nucleus optical potential in the nuclear interior.
Consequently, the possibility of the coupling set 1 with strong attractive § inter-

action has been denied in our EZM model. On the contrary, the nonlinear Walecka and

QMC models [21] predicted the consistent results of NSs with observations even if all the
meson-hyperon coupling constants are derived from the SU(6) symmetry. Furthermore

both the models work well at much higher density, where the RMF model of baryon

matter cannot be expected to be valid, than our critical density. In this respect we can
expect that the EZM model is much sensitive to the choice of the meson-hyperon cou-

pling constants and so selects reasonable values of them. This expectation will be further
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examined in the other coupling sets.

The outstanding feature of the meson-hyperon coupling set 2 is much stronger ¤¤¤

coupling constant than the other sets as seen in Table I. It leads to strong ¤¤ attraction,

which is revealed as much abundance of ¤ in Fig. 5 compared with Figs. 6 and 7.

The EOSs by the coupling sets 2, 3 and 4 in Fig. 1 are almost the same below E =

400MeV¢fm¡3. However the pressure of the set 2 depletes above  = 0424 fm¡3. This

is accompanied by the abundance of ¥¡ hyperons above  = 04 fm¡3. They appear

immediately after the abundance of ¤ hyperons because of the stronger ¥¥¤ coupling
than the other hyperons. We further �nd a kink around E = 700MeV¢fm¡3. It is

accompanied by the abundance of ¥0 hyperons above  = 065 fm¡3. These features of

the EOS by the set 2 are essentially due to the strong ¤¤ attraction. For the coupling
sets 3 and 4 with weak ¤¤ interaction, we can see in Figs. 6 and 7 that the abundance

of ¤ is restrained after appearances of the other hyperons and so the ¥¡ is the most rich

hyperon at high densities. On the contrary, the strong ¤¤ attraction allows the ¤ to be
the most rich hyperon even after the appearances of ¥�s. Therefore the abundances of ¥�s

in Fig. 5 lead to the rapid increase of ¤ mean-�eld owing to the strong ¤¥ interactions.

Consequently, the pressure depletes or the EOS is softened according to Eq. (34).
Although the pressure  of the set 2 depletes above  = 0424 fm¡3, the Gibbs

free energy per baryon ¹, which is given by only the baryochemical potential as ¹ =

(E+ ) =  owing to the Gibbs-Duhem relation and the charge neutrality, remains
increasing. As the result we cannot �nd an evidence of the �rst-order phase transition

or a point of intersection in the correlation between  and ¹. It is therefore concluded

that the EOS by the meson-hyperon coupling set 2 is unphysical and so the strong ¤¤
attraction is ruled out in our EZM model. (For this reason, the calculations using the

set 2 are not shown in Figs. 2 and 3.) If the strong ¤¤ attraction suggested by the old

data of double ¤ hypernuclei is true, our result requires the transition to a new phase
as the de-con�ned quark matter below  = 0424 fm¡3. On the contrary, the nonlinear

Walecka model [39] and the straightforward extension of the original ZM model [20] work

well until much higher densities than our critical density even if the strong ¤¤ attraction
is employed. It has been again found that the EZM model selects the meson-hyperon

coupling constants.

Because the EZM model has denied the possibility of strong ¤¤ attraction, its con-
sistency with new 6

¤¤He data by the KEK-E373 experiment [12] has to be examined.

The meson-hyperon coupling sets 3 and 4 are appropriate for this purpose. Their ¤¤¤

coupling constant is much weaker than the set 2 and is consistent to the NSC97 potential,
which was found [7] to be able to reproduce new 6

¤¤He data. The di¤erence between the

set 3 and 4 is in their §§¤ coupling constants. (Although their §§ coupling constants

in Table I are di¤erent from each other, the results of the set 4 are not altered if its §§

coupling constant is the same as the set 3.) The set 3 has much stronger §§¤ coupling

than the other sets. Within the mean-�eld theory the §§ interaction has no e¤ect on
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the ¤¤ channel. Thus both the set 3 and 4 are consistent to new 6
¤¤He data.

The EOSs by the sets 3 and 4, the solid and dotted curves in Fig. 1, are almost the
same below E = 700MeV¢fm¡3. They have two kinks around E = 400MeV¢fm¡3 and E =
700MeV¢fm¡3. The �rst is due to the abundance of ¥¡ hyperons above  = 041 fm¡3

while the second is due to the appearance of ¥0 hyperons above  = 0661 fm¡3 in the
set 3 and  = 0678 fm¡3 in the set 4. Because the ¥ hyperons have the strangeness

 = ¡2, their abundances mean the increase of ¤ mean-�eld and so soften the EOS. In

Fig. 6 the §¡ hyperons appear immediately after ¥¡. As the result of §¡ abundance,
the EOS by the set 3 is slightly softer than the set 4 above E = 400MeV¢fm¡3. We have

also seen the abundance of §¡ hyperons in the coupling set 1 (Fig. 4). It was due to

the strong attractive § interactions. Thus the §¡ appears �rst rather than ¤ On the
other hand, the abundance of §¡ in the coupling set 3 is due to the strong attractive ¤§

and §¥ interactions. It therefore occurs after the abundances of ¤ and ¥ hyperons.

It is seen that the results by the sets 3 and 4 in Figs. 2 and 3 are almost the same.
It therefore seems that the maximum NS mass cannot resolve the uncertainty in the

§¡ coupling. The same fact has been also found [40] in the nonlinear Walecka model.

We can however see that the result by the set 3 reaches the critical density just before
maximum NS mass. In this respect the strong §§¤ coupling constant in the set 3

cannot be regarded to be reasonable and so the existence of §¡ hyperons in NSs is ruled

out. Consequently, the EZM model allows only the meson-hyperon coupling set 4 with
weak ¤¤ and §§ interactions. Its maximum mass is  = 1615¯ with the radius

 = 1298 km at the central density just above  = 0691 fm¡3. There exist only ¤ and

¥¡ as hyperons in NSs.
At present all the con�rmed masses of NSs [5,41-44] lie in a narrow range  =

135 § 01¯. The X-ray pulsar Vela X-1 is often referred to [45] as one exception

with  ¼ 18¯. However its value has been claimed to be close to 14¯ in Ref.
[46]. Even if the larger mass of Vela will be con�rmed, the e¤ect of NS rotation raises

[47] the masses of Fig. 2 considerably. The maximum mass by the set 4 is therefore

reasonable. Although the corresponding radius is much larger than the values from the
other EOSs [2], it satis�es both the upper and lower limits derived by the analyses of

quasi-periodic oscillations [2] and glitches [48] from X-ray pulsars. The central baryon

density of maximum NS is merely  ' 07 fm¡3 being much smaller than the nonlinear
Walecka and QMC models [21], and the neutrons are dominant to the other baryons.

Nevertheless the proton fraction can exceed the critical value  ' 0148 for the rapid

cooling by direct URCA process in the core of neutron stars  ¸ 0465 fm¡3. The result
is common to all the RMF models. In summary we can see that the NSs predicted by

the EZM model using the coupling set 4 have rather unique properties as compared with

the other models.
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4 Conclusions

We have extended the modi�ed ZM model of dense baryon matter, which was previously

developed in terms of a constituent quark picture of baryons, to take into account the

contributions of isovector and strange mesons for studying NS equations-of-state. The
resulting EZM model contains the renormalized meson-baryon coupling constants in the

mean-�elds. They are e¤ectively density dependent through the e¤ective masses of each

baryon.
For calculating the EOS of NS matter, we consider four sets of meson-hyperons cou-

pling constants. The �rst set is based on pure SU(6) symmetry of baryon octet. The

second is derived in terms of empirical hyperon potential in nuclear matter and ¥ bath.
It is based on old data of double hypernuclei. The third set mimics the NSC97f YY po-

tential. The forth set is obtained by reducing the §§¤ coupling constant in the third set

to the same value of the ¤¤¤ coupling constant according to the SU(6) symmetry. The
set 1 is characterized by strong attractive § interaction while the others have repulsive

§ interactions. The set 2 is characterized by strong attractive ¤¤ interaction. The set

3 has weak ¤¤ but strong attractive §§ interactions while the set 4 has much weaker
§§ interaction than the set 3.

There have been found the critical densities above which the -equilibrium cannot be

arrived. Using the coupling set 1, we have a maximum NS mass at the critical density.
Furthermore the mass is lower than the canonical value 144¯. This is because that the

EOS is softened by the abundance of §¡ hyperons owing to the strong § attraction.

The EOS by the set 2 has been found to be unphysical because of outstanding depletion
of pressure accompanied with no �rst-order phase transitions. It has been attributed to

the abundance of ¤ hyperons arising from the strong ¤¤ attraction. The results of the

NS mass sequences by the sets 3 and 4 are almost the same. However the EOS by the
set 3 also has a maximum NS mass at the critical density as in the set 1. Because only

the di¤erence between the sets 3 and 4 is in §§ interaction, the result means that the

strong §§ attraction is not reasonable.
In conclusion the strong attractive §, ¤¤ and §§ interactions have been ruled out.

The result is consistent to the most recent information on hyperon interactions from the

experimental and theoretical investigations of hypernuclei. It is found that the EZM
model is sensitive to the choice of meson-hyperon coupling constants. In this respect

the EZM model is contrasted to the other RMF models. We believe that the physically

reasonable model of dense baryon matter favors only the physically reasonable values of
meson-baryon coupling constants.
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Appendix: derivation of the renormalized coupling
constants from relativistic SU(6) model of baryons

In section 2 we derived the renormalized meson-baryon coupling constants in the EZM

model using intuitive schematic methods. Here they are derived again more rigorously
using the relativistic SU(6) model of baryons.

In the relativistic SU(6) model [49-52], the wave function of baryon octet ª()()()
has three Dirac indices (  ) and three SU(3)-spin (or �avor) indices (  ), and is
fully symmetric in both these indices. (Anti-symmetric tensor representing color singlet

state is omitted because the present model does not take into account the color degrees

of freedom explicitly.) It is presented by

ª()()() () =
1

2
p
6

©
B[] () + B[] () + B[] ()

ª
 (A1)

where  is the four-momentum of the baryon and  is a totally asymmetric tensor of

rank 3. ~ 
 is the 3£ 3 matrix representing the octet:

B
 =

0
B@
§0

p
2 + ¤

p
6 §+ 

§¡ ¡§0
p
2 + ¤

p
6 

¥¡ ¥0 ¡2¤
p
6

1
CA  (A2)

Each wave function of these octet members is expressed by the third-rank Bargmann-
Wigner wave function  [] [53]:

B[] =
¡
[ ]

¢


 (A3)

[] () = (1) [( +) 5 ]  ()  (A4)

where  is the charge conjugate operator and  is the Dirac spinor. We have assumed

that all the octets have the same mass  At the �nal stage of calculation, it is replaced by
each mass of baryons. This prescription phenomenologically breaks the SU(3) invariance.

The free meson-baryon vertex function ¡ in the SU(6) model is given by [52]

(¡) ¡ =
8X

=0

 

¹ª

³
̂

´
0


ª0 ©


 (A5)

where  = () etc.,  is the Gell-Mann matrix and ̂ is 1 or  for the scalar ( = )

or vector ( =  ) meson. Under the SU(3) invariance the coupling constant  
 is given

by  0
 = 1 for meson singlet ©0 and  

 = 8 ( = 1¡ 8) for meson octet § 8
=1©


.

The medium correction to Eq. (A5) in the EZM model is de�ned by

(¡)¢¡ =
8X

=0

 

¹ª

³
̂

´0


()

0

 ª00 ©

 (A6)
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where

 =
1



0
B@

 0 0

0  0

0 0 

1
CA ´

0
B@
¹ 0 0

0 ¹ 0

0 0 ¹

1
CA  (A7)

 are the scalar potentials of ,  and -quarks. As for the mass  we have assumed
the same values for all the octet members and will replace them by each value for baryons

at the �nal stage of calculation. Substituting Eq. (A1) into (A6) and using the Bianchi

identity

B 
 + B 

 + B 
 = 0 (A8)

after some manipulations we obtain

(¡)¢¡ = (124)
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where ¹ ´ ¹ + ¹ + ¹ and [©] = §8=0

©


 .

Then we calculate the traces of the SU(3)-spin matrices for the vector mesons by

assuming the  ¡  ideal mixing,

[© ] = 8

0
B@

 + 3 0 0

0  ¡ 3 0

0 0 ¡
p
2

1
CA ´ 8 [© ]  (A10)

For brevity we omit ̂ =  and the relevant indices of the Dirac spinors. The results
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are
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where the ¤¤3 and §0§03 couplings and the ¤§0 ( 3) couplings have been sup-

pressed.
Noting 0 = ¡8 and ©0 =

p
13  ¡

p
23, the medium correction to 

coupling is
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Using the Bianchi identity

[ ] +[ ] +[ ] = 0 (A18)

and after some manipulations, Eq. (A17) becomes
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Here we note
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where  () is the Dirac spinor for each baryon and  = 0 ¡ . Therefore, at the limit of

 ! 0 being equivalent to the mean-�eld approximation, Eq. (A19) becomes
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Utilizing the above-mentioned prescription ¹() ! ¹
() and noting  = 38 , we

have

(¡)¢¡ = ¡ (13) ¹ 
¹    (A23)

where  is the scalar potential of proton:

2 ¹
 + ¹

 = ¹ =  (A24)

Therefore the e¤ective  coupling becomes

¡¤ = ¡ +¢¡ = (¡ ) ¤ ¹    (A25)
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This is exactly Eq. (1). Similarly, the e¤ective  coupling (2) is derived. As the result

of the  ¡  ideal mixing, we naturally have ¢¡ = 0.

Next, the medium correction to ¤¤ coupling is
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Using the prescription ¹ ! ¹¤ and noting ¤¤ = 28 , the e¤ective ¤¤ coupling

becomes

¡¤¤¤ = (¡) ¤¤¤ ¹¤  ¤ (A30)
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This is nothing but Eq. (9).
Then the medium correction to ¤¤ coupling is
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Using the prescription ¹() ! ¹¤() and noting ¤¤ = ¡
p
28 , the e¤ective ¤¤

coupling becomes
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This is none other than Eq. (10).

The medium correction to  coupling is
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Using the prescription ¹ ! ¹
 and noting  = 8 , the e¤ective  coupling

becomes
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This is just equivalent to Eq. (15) in Ref. [25] or Eq. (3).

The medium correction to §+§+ coupling is
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Using the prescription ¹() ! ¹§
+

() and noting §§ = 28 , the e¤ective §+§+

coupling becomes

¡¤§+§+ = (¡) ¤§+§+ ¹§+  §+ 3 (A45)
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This is no less than Eq. (19).
The other couplings can be derived similarly. The scalar meson couplings are derived

by analogies with the corresponding vector mesons.
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Table 1: The four sets of meson-hyperon coupling constants used in the calculations of
NS matter. The derivations of each value are discussed in section 3.

Coupling constants Set 1 Set 2 Set 3 Set 4

¤¤ (23) 

§§ (23) 

¥¥ (13) 

¤¤ (23)  0604

§§ (23)  0461 0485 0461

¥¥ (13)  0309

¤¤ ¡ (
p
23) 

§§ ¡ (
p
23) 

¥¥ ¡ (2
p
23) 

¤¤¤ (
p
23)  0690 052

§§¤ (
p
23)  0690 096 052

¥¥¤ (2
p
23)  1221 128

§§ 2

¥¥ 

§§ 2 

¥¥ 
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Figure 1: The EOSs of -equilibrated NS matter. The dashed, dashed-dotted, solid and
dotted curves are the results using the coupling sets 1, 2, 3 and 4 respectively.
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Figure 2: The mass sequences of non-rotating cold -equilibrated NS using the meson-
hyperon coupling sets 1, 3 and 4.
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Figure 3: The mass-radius relations of non-rotating cold -equilibrated NS using the
meson-hyperon coupling sets 1, 3 and 4.
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Figure 4: The fractions of baryons and leptons in the -equilibrated NS matter using the
meson-hyperon coupling set 1.
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Figure 5: The same as Fig. 4 but using the meson-hyperon coupling set 2.
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Figure 6: The same as Fig. 4 but using the meson-hyperon coupling set 3.
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Figure 7: The same as Fig. 4 but using the meson-hyperon coupling set 4.

36


