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The Kolmogorov scaling law1,2 of turbulences has been considered the most 

important theoretical breakthrough in the last century. It is an essential approach 

to analyze turbulence data present in meteorological, physical, chemical, biological 

and mechanical phenomena3,4. One of its very fundamental assumptions is that 

turbulence is a stochastic Gaussian process in small scales5. However, experiment 

data at finite Reynolds numbers have observed a clear departure from the 

Gaussian5-9. In this study, by replacing the standard Laplacian representation of 

dissipation in the Navier-Stokes (NS) equation with the fractional Laplacian10,11, 

we obtain the fractional NS equation underlying the Lévy stable distribution which 

exhibits a non-Gaussian heavy trail and fractional frequency power law 

dissipation12. The dimensional analysis of this equation turns out a new scaling of 

turbulences, called the Lévy-Kolmogorov scaling, whose scaling exponent ranges 

from -3 to -5/3 corresponding to different Lévy processes and reduces to the 

limiting Kolmogorov scaling -5/3 underlying a Gaussian process. The truncated 

Lévy process and multi-scaling due to the boundary effect is also discussed. 

Finally, we further extend our model to reflecting the history-dependent fractional 

Brownian motion. 
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Turbulence occurs all over nature from the atmosphere to the oceans to 

electronics to inside stars and internal combustion chambers. Scaling methods are used 

to explore hidden structures in the random behavior of turbulent fluid flow even without 

a detailed solution of the equations of motion. In the limit of vanishing viscosity (i.e., 

infinite Reynolds number), Kolmogorov’s celebrated scaling of turbulence 
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 is established1,2, where E(k) is the energy spectrum, C denotes a 

absolute constant, and ε represents the kinetic energy dissipation rate and is considered 

scale-independent13. In essence, the Kolmogorov -5/3 scaling characterizes the 

statistical similarity of turbulent motion at small scales based on the argument of local 

homogeneous isotropy 14. To some extent, the scaling law has been validated by 

numerous experimental and numerical data of sufficiently high Reynolds number 

turbulence3,4,15. However, recent experiments6,7 using high speed optical techniques 

reveal that the statistics of the Lagrangian acceleration manifests distribution profiles 

with long heavy tails, indicative of strong non-Gaussian process. This contradicts the 

very fundamental foundation of the Kolmogorov theory that turbulence obeys Gaussian 

distribution5. Therefore, the -5/3 scaling does not fit real-world turbulences at finite 

Reynolds numbers. 

It has be suggested that the Lévy β-stable distribution is a proper statistical 

approach to accommodate heavy tails widely observed in the probability density 

function (PDF) of turbulence quantities5,16, where β is the Lévy stability index and 

ranges from 0 to 2. And the Gaussian distribution is its limiting β=2 case17. On the other 

hand, the fractional Laplacian is a non-local (integro-differential) and positive definite 

operator11,18 underlying the Lévy process in a variety of physical master equations such 

as the Fokker-Planck equation17 and the anomalous diffusion equation18-20. By replacing 

the Laplacian representation of dissipation process with the fractional Laplacian in the 

standard NS equation, this study introduces a fractional NS equation  
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where u represents velocity vector,  is the scaled Reynolds number, and the 

fractional Laplacian 

~
Re

( ) 2β∆−  serves as a stochastic driver and guarantees the positive 

definiteness of energy dissipation. The essence of fractional NS equation (1) is that the 

constitutive equation in turbulence may not obey the classical Newtonian gradient law.  

Using a Kolmogorov-like argument, the dimensional analysis of equation (1) leads 

to the energy spectrum  
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where and C~ ε~  are respectively the scaled C and ε by parameter β. The 

corresponding exponent of decay power law ranges from -3 to -5/3, in which the upper 

limiting β=2 leads to the Kolmogorov -5/3 scaling corresponding to the Gaussian 

distribution and the standard NS equation, while the lower limiting β→0 coincides with 

-3 power scaling which has been observed in experiments21. Mandelbrot22 pointed out 

that the intermittent (non-Gaussian) property of turbulence calls for a power law of 

energy spectrum having exponent -5/3-c (c≥0). But he did not quantitatively clarify his 

correction as this study did. Since the scaling (2) generalizes the Kolmogorov scaling 

and underlies Lévy statistics, we call it the Lévy–Kolmogorov scaling, which reflects 

anomalous transportation of kinetic energy, as evidenced in plasma turbulence23. For 

example, the turbulent fluids having viscosity β =2 correspond to the Kolmogorov 

scaling, but the boundary layer turbulence is known to have β=1/2, a strong non-

Gaussian Lévy process12, leading to -8/3 scaling.  

Unlike Gaussian process, Lévy process does not have finite moments of second 

or higher order. And the truncated Lévy distribution was thus proposed in turbulence 

modeling24, in which the long fat tails of algebraic decay of the original Lévy 

distribution is truncated and replaced by the corresponding Gaussian distribution of 
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exponential decay, and then the divergent second moments are cured. However, this 

truncation is somewhat arbitrary and the truncated Lévy distribution can no longer 

underlie the fractional Laplacian in the governing equation. It is noted that the standard 

Lévy distribution and fractional Laplacian are defined under infinite domain. However, 

the real-world turbulences all have finite Reynolds numbers, namely, the finite size of 

turbulence region. From this view, we have to take account of boundary effect into 

consideration. The standard definition of the fractional Laplacian under infinite domain 

encounters hypersingularity10, which corresponds to the infinite moment of the second 

and higher orders of Lévy distribution19,20. Chen11 recently introduced a new definition 

of fractional Laplacian under finite domain (equation 17 in ref. 11) which naturally 

includes boundary conditions and eliminates hypersingularity. Accordingly, the Lévy 

distribution corresponding to the fractional Laplacian of finite domain in the NS 

equation (1) is truncated in terms of boundary conditions and has the finite square 

moment. It is known that the truncated Lévy distribution gives rise to the intermittency 

(finite scaling range) and multifractality (multi-scaling) of turbulence phenomena, 

which has long been observed as a rule rather than exception in turbulence8,9. 

Multifractality suggests that the Lévy-Kolmogorov scaling exponent is not universal 

over all scales. It is noted that the standard dimensional analysis of the NS equation 

leading to the scaling power law does not consider the effect of boundary conditions. 

Turbulence is observed experimentally and numerically to have anomalous 

diffusion23,25,26. The above fractional NS equation (1) can be reduced to the well known 

anomalous diffusion equation underlying a time-dependent β-stable Lévy process 

( βη 2= , 0<β<2)16,17. Alternatively, by replacing the fractional Laplacian dissipation 

in equation (1) with a mixed operator of the fractional time derivative and the Laplacian 

- u∆
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, 0≤µ<1, we have a new fractional NS equation underlying the fractional 

Brownian motion. The dimensional analysis of this equation leads to a scaling,  
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whose lower and upper limiting exponents are the Kolmogorov scaling -5/3 and -1, 

respectively. Furthermore, the combination of the fractional Laplacian and the fractional 

time derivative can be used in the NS equation to represent anomalous dissipation 

underlying the statistic paradigms of the fractional Brownian and the Lévy processes,  
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where ]2,0(∈β  when µ=0; [ )1,0∈µ  when β=2; and Re represents the time-space 

scaled Reynolds number. The above NS equation (4) reflects spatial and temporal 

fractal irregularity and memory effect of turbulent motions. The energy transfer scaling 

of turbulence is thus split into three phases: sub-transport (subdiffusion, fractional 

Brownian motion) before Kolmogorov scaling range, normal-transport (Kolmogorov 

scaling), and super-transport (Lévy-Kolmogorov scaling, e.g., ballistic transport with 

β=1, µ=0 and -7/3 scaling). The orders β and µ of the fractional derivative are 

considered time and space fractal dimensions22. Serving as an example, we consider the 

elastic turbulence of polymer solutions27, whose equation for motion differs from the 

standard NS equation and has to reflect the history-dependent motion. The above NS 

equation (4) reflects the constitutive relationship between stress and the fractional time 

derivative representation of the deformation rate in a polymer flow and is a competitive 

alternative11,12 to the conventional nonlinear constitutive model27. For the case β=2 and 

µ≠0, the scaling exponent of polymer fluid turbulence is not the Kolmogorov index -5/3 

even in the limit of infinite Reynolds number. 

For a further analysis, the NS equation (4) is reduced to the well-known 

anomalous diffusion equation18,19  
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whose corresponding discrete Lagrangian stochastic model is defined by the time 

evolution of the mean square displacement of diffusing particle movements 
ηtx ∆∝∆ 2 , where η=2(1-µ)/β, x∆ represents distance, t∆ denotes time interval, the 

brackets represent the mean value of random variables (e.g., a collection of particles). 

Accordingly we can compare our theoretical predictions with experimental data, where 

the motion of tracer particles in turbulent flows is measured. For instance, the well-
known 32 tx ∆∝∆  in turbulence is first obtained by Richardson28 to explain 

experimental measurements and results in µ=0, β=2/3 in the NS equation (4) and -23/9 

scaling. It is stressed that the corresponding anomalous diffusion equation (5) of 

fractional time-space derivatives is physically more reasonable than the Richardson’s 

diffusion equation with a space- and time-dependent diffusion coefficient for deriving 
32 tx ∆∝∆ , since integer-order differentiability in the latter may not exist in turbulent 

velocity flow fields.  

It is known that Gaussian process corresponds to the normal diffusion ( 1=η ), 

while Lévy process reflects the superdiffusion (long-range spatial correlation, 1fη ) 

and the fractional Brownian motion underlies the subdiffusion ( 1pη ) which manifests 

history-dependent (long-range temporal correlation) motion. Once the signature η of 

anomalous diffusion is known in turbulence, it is straightforward to derive the order of 

fractional derivatives of our NS equation model and then the scaling exponent. For a 
subdiffusion case, 5.02 tx ∆∝∆  is found in magnetic field turbulence and cosmic-ray 

transport in the interstellar medium23,26,29. By using the previous formulas, it is simple 

to find µ=0.5, β=2 in NS equation (4) and the corresponding scaling exponent -7/5.  

In summary, this study introduced the fractional Laplacian NS equation and then 

presented a new Lévy-Kolmogorov -3 to -5/3 scaling of turbulence. The fractional time 
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derivative was also used in the representation of dissipation in the NS equation 

underlying the history-dependent fractional Brownian motion and leads to the scaling 

law -5/3 to -1. Warhaft30 pointed out “Apart from noting the presence of non-Gaussian 

tails, no deeper analysis of the shape of the pdfs has been made. Because the connection 

of these models to the Navier-Stokes equations is tenuous,...”. In this study, the first 

attempt was made to explicitly connect non-Gaussian statistics of turbulence and the NS 

equation, where the fractional derivative representations reflect the strong influence of 

the viscose property of fluids on turbulence and vice versa. It is also worth noting that 

the direct numerical simulation of the fractional NS equation will be more challenging 

than that of the standard NS equation, since the fractional derivatives are a non-local 

operator and will result in the full matrix of numerical discretization which is usually 

computationally very costly.   
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