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Abstract

We have developed a new relativistic mean-�eld model of asymmetric nuclear
matter. It is an extension of the Zimanyi-Moszkowski model based on the con-
stituent quark picture of nucleons. The e¤ects of the scalar mean-�elds on all the
three constituent quarks in medium have been taken into account. They produce the
renormalized e¤ective coupling constants to be dependent on the e¤ective masses of
nucleons. Including the isovector scalar mean-�eld by [0(980)] meson, the masses
of protons and neutrons are di¤erent from each other. Consequently, we have
charge-asymmetric e¤ective interactions to be determined self-consistently as well
as the e¤ective masses. We have numerically investigated the charge-asymmetric
nature of our model in detail. Then it is applied to the cold -stable neutron stars.
The results exhibit the general feature of a sti¤ equation-of-state.

1 Introduction

There are growing interests on asymmetric hadronic matter at high density in the rela-

tion to high-energy heavy-ion collisions and astrophysics. Theoretically, the high-density
matter should be described within a relativistic framework. A lot of investigations have

been performed based on the relativistic mean-�eld theory as the so-called Walecka model

[1] or its nonlinear extension (NLW). However they are not consistent in the following
respect.

The nucleon in the relativistic mean-�elds is not a physically observed nucleon but

a quasi-particle or dressed nucleon. Therefore the interactions between two nucleons
mediated by various mesons are the e¤ective ones. In asymmetric matter, the e¤ective

interactions are not necessary to be charge symmetric or invariant. This is theoretically

realized in the Dirac-Brueckner-Hartree-Fock (DBHF) model [2-4]. (Precisely, this is also
realized in the nonrelativistic Brueckner-Hartree-Fock model.) The three -matrices

describing proton-proton, neutron-neutron and proton-neutron scattering are di¤erent

from each other in asymmetric medium. However, neither the Walecka nor the NLW
model can take into account the charge asymmetry of the e¤ective interactions. Moreover,

the phenomenological e¤ective mean-�eld models [4-6] of the DBHF theory do not treat

¤This paper is the revised version of CDS ext-2003-077. A few mistakes as well as some texts and
mistypes have been corrected.
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the asymmetry explicitly since their meson-nucleon coupling constants are determined

from numerical results of the nucleon self-energies by the DBHF calculation [7].
We have seen that the fully self-consistent theory of asymmetric matter should deal

with the charge asymmetry of the densities, e¤ective masses and e¤ective interactions of

protons and neutrons, simultaneously. Until now there have been no relativistic mean-
�eld models to satisfy such a condition. We can however �nd a promising candidate, that

is, the derivative scalar-coupling model developed by Zimanyi and Moszkowski (ZM)

[8]. This model gives the renormalized  coupling constant ¤ = (
¤
) 

where  is the phenomenological  coupling constant determined to reproduce

the nuclear matter saturation.  is the free mass of a nucleon and ¤
 is its e¤ective

mass in the medium. If the e¤ective masses of protons¤
 and neutrons¤

 are di¤erent
in asymmetric matter [9,10], we have the charge asymmetry of the coupling constant

¤ 6= ¤. Of course, this simple discussion is not su¢cient. We have to consider

the isoscalar mesons  and  as well as isovector mesons [0(980)] and  in a fully
self-consistent method.

However the straightforward extensions of the ZM model to asymmetric matter in

Refs. [11,12] are not suitable to our purpose. They applied the renormalization factor
¤ = (1 +  hi)

¡1 to all the meson-nucleon couplings, where hi is the

mean �eld of the  meson. In this case, the renormalized (or e¤ective) coupling constants

are determined by only the isoscalar mean �eld. Therefore the charge asymmetry of the
e¤ective interactions cannot be realized.

Recently, another interpretation and extension of the ZM model [13] has been de-

veloped to describe charge-symmetric strange hadronic matter based on the constituent
quark picture of baryons. This model remedies the de�ciency of the original ZM model

that cannot reproduce the strong spin-orbit potential, and produces the similar properties

of symmetric nuclear matter to the DBHF calculation. The purpose of the present work
is a generalization of the model in Ref. [13] to asymmetric nuclear matter. We will �nd

that it can describe the charge asymmetry in a fully consistent manner. The detailed for-

mulation of the model is given in the next section. The numerical results of asymmetric
matter are shown in section 3. Especially, the charge asymmetries of the e¤ective inter-

actions or the meson-nucleon coupling constants are investigated in detail. Furthermore

the model will be applied to neutron stars. Finally, we summarize our investigations and
draw conclusions in section 4.

2 Generalization of the ZM model to asymmetric
matter

Here the renormalized e¤ective coupling constants in asymmetric matter are derived based

on the method developed in Ref. [13]. Then they are used to construct the mean-�eld
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model. We consider the contributions by the isoscalar scalar meson , isoscalar vector

meson  and isovector vector meson . Furthermore the isovector scalar meson [0(980)]
is introduced to produce the di¤erent e¤ective masses of protons and neutrons [9,10]. In

this work, the same free masses for proton and neutron,  = =  , are assumed,

and the electro-magnetic interactions are not considered.

2.1 Renormalized coupling constants

We �rst consider  and  couplings. In the constituent quark picture of a proton

(), unrenormalized free coupling constant () is schematically written as

+ +

u u d u u d u u d

or expressed by

 () = 3() (1)

where  denotes  or  quark. Equation (1) is also valid for a neutron (). Thus

() = () = () = 3  () (2)

Here the two quarks in a nucleon are the spectators or free constituents. However all the
three quarks in a nuclear nucleon are embedded in the medium. This fact should produce

the medium correction to (). It was investigated in Ref. [13] for symmetric matter

and the e¤ective coupling constants being similar to but more reasonable than those in
the ZM model were obtained.

Extension of the model in Ref. [13] to asymmetric matter is straightforward. It is

only noted that the scalar mean-�elds of  and  quarks are di¤erent from each other.
Then we have the following medium correction term to ().

u u d

+
uS

u u d u u d

+
uSdS

where the wavy lines are  or  mesons. The dashed lines are the e¤ects of the mean-�elds

of quarks de�ned by
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¹() ´ ()  (3)

where  and  are the scalar potentials of  and  quarks. Adding the above correction
to Eq. (1), we have the renormalized e¤ective () coupling constant ¤(),

¤() = () +
¡
2 ¹ + ¹

¢
() =

·
1 +

1

3

¡
2 ¹ + ¹

¢¸
()

=

µ
1 +

1

3
¹

¶
() =

£
(1¡ ) + ¤



¤
() (4)

where  is the scalar potential of protons

¹ ´  = 2 ¹ + ¹ (5)

and

¤
 ´¤

 = ( + )   (6)

 = 13 (7)

Similarly, the renormalized e¤ective () coupling constant ¤() is

¤() = ()+
¡
¹ + 2 ¹

¢
() =

·
1 +

1

3

¡
¹ + 2 ¹

¢¸
()

=

µ
1 +

1

3
¹

¶
() = [(1¡ ) + ¤

 ] () (8)

where  is the scalar potential of neutrons

¹ ´  = ¹ + 2 ¹  (9)

and

¤
 ´¤

 = ( + )   (10)

Essential di¤erence between the present results and Ref. [13] is that the values of ¹
and ¹ or ¤

 and ¤
 are di¤erent;

¹ 6= ¹  (11)

¤
 6= ¤

 (12)

As a result the () coupling becomes charge asymmetric,

¤() 6= ¤() (13)

If ¤
 = 

¤
 = 

¤
 , we have the same results as Ref. [13]. Furthermore, in the case of
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 = 1, the ZM model is recovered.

Equations (11) and (12) are due to the contribution by the isovector scalar mean-�led.
Then we consider the isovector mesons [0(980)] and . In the constituent quark picture

of a proton, unrenormalized free  or  coupling constant is expressed by

 () = () =  () = () (14)

According to the same procedure as the isoscalar mesons, the medium correction to ()
coupling constant is schematically written by

u u d

+
uS

u u d u u d

uSdS

where the wavy lines are  or  mesons. Thus, the renormalized e¤ective () coupling

constant ¤
()

is

¤ () = () + ¹ () =
¡
1 + ¹

¢
()

=
£
(1¡ ) + 

¡
2¤

 ¡¤


¢¤
() (15)

Similarly, the renormalized e¤ective () coupling constant ¤() is

¤() = () + ¹ () =
¡
1 + ¹

¢
()

=
£
(1¡ ) + 

¡
2¤

 ¡¤


¢¤
() (16)

We have also the charge asymmetry,

¤ () 6= ¤() (17)

Consequently, the model developed in Ref. [13] can be extended straightforwardly to

asymmetric matter and reproduce the charge-asymmetric e¤ective interactions between

two nucleons in medium as the DBHF theory does. Our intuitive method may arise some
suspicion about its theoretical foundation. However, in the symmetric case ¤

 = ¤
,

almost the same e¤ective coupling constant as Eq. (4) or (8) has been derived in the

renormalized Walecka model of Ref. [14], which takes into account the e¤ect of meson
cloud surrounding the nucleons in medium.
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2.2 The mean-�led model of asymmetric matter

Using the renormalized e¤ective meson-nucleon coupling constants obtained above, our

mean-�eld model Lagrangian for asymmetric nuclear matter becomes

L = ¹
¡
¡¤

 ¡ 0 
¢
 + ¹

¡
 ¡ ¤

 ¡ 0 
¢


¡ 1

2
2
 hi2 + 1

2
2
 h0i2 ¡ 1

2
2
 h3i2 +

1

2
2
 h03i2  (18)

where  and  are the Dirac �elds of protons and neutrons, hi, h0i, h3i and h03i
are the mean-�elds and , ,  and  are the masses of each meson. The scalar
and vector potentials are given by

 = ¡¤ hi ¡ ¤  h3i  (19)

 = ¡¤ hi + ¤ h3i  (20)

 = 
¤
 h0i+ ¤ h03i  (21)

 = 
¤
 h0i ¡ ¤ h03i  (22)

From Eqs. (19)-(22), the meson mean-�elds are inversely expressed by the potentials.

Therefore the energy density is written by

E =
³
h¤i + 

´
 + (h¤i + ) 

+
1

2
2


"
¤

¡
¤
 ¡

¢
+ ¤ (

¤
 ¡)

¤ 
¤
 + 

¤
 

¤


# 2

+
1

2
2


"
¤

¡
¤
 ¡

¢
¡ ¤ (¤

 ¡)

¤ 
¤
 + 

¤
 

¤


# 2

¡ 1

2
2


µ
¤  + 

¤
 

¤  
¤
 + 

¤
 

¤


¶2

¡ 1

2
2


µ
¤  ¡ ¤ 
¤ 

¤
 + 

¤
 

¤


¶2

 (23)

where h¤i() is the average kinetic energy and () is the baryon density of protons
(neutrons). The vector potentials are determined by E = 0 and E = 0. Then

we have

 =

µ
¤

2

2


+
¤

2

2


¶
 +

µ
¤  

¤


2


¡
¤ 

¤


2


¶
  (24)

 =

µ
¤

2

2


+
¤

2

2


¶
 +

µ
¤ 

¤


2


¡ ¤ 
¤


2


¶
  (25)
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Substituting Eqs. (24) and (25), the energy density becomes

E =  h¤i  +  h¤i  +
1

2
2


µ



¶2
"
¤

¡
¤
 ¡ 1

¢
+ ¤ (

¤
 ¡ 1)

¤
¤
 + 

¤


¤
 

# 2

+
1

2
2


µ



¶2
"
¤

¡
¤
 ¡ 1

¢
¡ ¤ (¤

 ¡ 1)
¤

¤
 + 

¤


¤
 

#2

+
1

2

µ



¶2 ¡
 

¤
  +  

¤


¢2
2 +

1

2

µ



¶2 ¡
 

¤
 ¡  ¤

¢2
2 

(26)

where we have used the total baryon density  =  +  and the proton (neutron)

fraction (), and Eqs. (4), (8), (15) and (16) are abbreviated as

¤() = 
¤
()  ( =    )  (27)

The e¤ective masses ¤
 and ¤

 are determined by solving the self-consistency equa-

tions E¤
 = 0 and E¤

 = 0 simultaneously. From Eq. (26), we have





+
(0)

³
(1) (0) ¡ (0) (1)

´

( (0))3

µ



¶2 



+
(0)

³
(0) ¡(0)(1)

´

((0))
3

µ



¶2 


+ 

¡
 

¤
 +  

¤


¢ µ



¶2 


¡  ( + 2)
¡
 

¤
 ¡  ¤

¢ µ



¶2 


= 0 (28)





+
(0)

³
(1) (0) ¡ (0) (1)

´

((0))3

µ



¶2



¡
(0)

³
 (0)+ (0)(1)

´

( (0))
3

µ



¶2 


+  

¡
 

¤
  +  

¤


¢ µ



¶2 


+  (2+ )
¡
 

¤
 ¡  ¤

¢ µ



¶2 


= 0 (29)

where () is the scalar density of protons (neutrons). The quantities ,  and  are
de�ned by

(0) = ¤
¡
¤
 ¡ 1

¢
+ ¤ (

¤
 ¡ 1)  (30)

(0) = ¤
¡
¤
 ¡ 1

¢
¡ ¤ (¤

 ¡ 1)  (31)
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 (0) = ¤
¤
 + 

¤


¤
  (32)

(1) = (1¡  ) + 
¡
2¤

 ¡¤


¢
 (33)

 (1) = 
¤
  (34)

(1) = (1¡  ) + 
¡
2¤

 ¡¤


¢
 (35)

 (1) = 
¤
  (36)

with  ´ 2 . The values of ¤
 and ¤

 should satisfy the energy minimization
condition 2E¤2

  0 and
¡
2E¤2



¢
(2E¤2

 ) ¡
¡
2E¤


¤


¢2
 0.

Finally, the pressure  is given by

 =
1

4

¡
 ¤
  ¡¤

 
¢
+
1

4
( ¤
  ¡¤

 )

¡ 1

2
2


µ



¶2 µ
(0)

(0)

¶2

¡ 1

2
2


µ



¶2 µ
(0)

(0)

¶2

+
1

2

µ



¶2 ¡
 

¤
 +  

¤


¢2
2 +

1

2

µ



¶2 ¡
 

¤
 ¡  ¤

¢2
2 

(37)

where  ¤
() is the Fermi energy of protons (neutrons).

3 Numerical analyses

For calculations of asymmetric matter, we have to determine the free meson-nucleon

coupling constants. As seen in Eqs. (26), (28), (29) and (37), only the ratios to masses
()

2 etc. are necessary. The isoscalar coupling constants are determined to

reproduce the saturation properties of symmetric nuclear matter. (The saturation energy

of ¡1575MeV and the saturation density of 016 fm¡3 are assumed.) The calculation
has already been performed in Ref. [13] and ()

2 = 169 fm2 and ()
2 =

125 fm2 are obtained. The isovector coupling constants however cannot be determined

uniquely [9]. Here we �rst �x the  coupling constant by ()
2 = 10 fm2 (referred

as the model 1) or ()
2 = 25 fm2 (referred as the model 2) and then determine the

 coupling constant to reproduce the nuclear symmetry energy . Although there still

remains ambiguity in determining its value [15], we choose  = 300MeV. The result
is ()

2 = 1727 fm2 for the model 1 or ()
2 = 2855 fm2 for the model 2.

The model 1 and 2 exhibit relatively weak and strong e¤ect of the charge asymmetry

respectively.
Then we calculate the properties of asymmetric nuclear matter. Figures 1(a) and

1(b) show the binding energies per nucleon  ´ E ¡ in the models 1 and 2 as

functions of the total baryon density  for several values of the asymmetry parameter
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 ´ ( ¡ ) . For increasing asymmetry, the saturation density shifts to lower

values. Although there are little di¤erences between Figs. 1(a) and 1(b), the model 2
produces somewhat lower saturation energies than the model 1. Especially for  = 1,

the model 1 has no energy minimum whereas the model 2 exhibits a very shallow dip

at  ' 004 fm¡3. In general the model 1 gives larger energies than the model 2 below
the saturation density  = 016 fm¡3 of symmetric nuclear matter while the model 2

gives larger energies than the model 1 above the density. The di¤erence between the two

models becomes larger as the asymmetry parameter and the density increase.
The di¤erence between the models 1 and 2 is explicitly seen in the density dependence

of the symmetry energy. The binding energy per nucleon is a function of the total baryon

density and the asymmetry parameter, and so is expanded as

 (  ) =  ( 0) + 2 ( ) 
2 + 4 ( ) 

4 + 
¡
6

¢
 (38)

The nuclear symmetry energy  mentioned above is the value of 2 ( ) at the saturation

density of symmetric nuclear matter  = 016 fm¡3. Recently there are growing interests

on the high-density behavior of 2 ( ) in conjunction with the numerical simulations of
high-energy heavy-ion collisions [16-18]. Figure 2 shows 2 and 4 as functions of the

total baryon density. The solid and dotted curves are the results of the models 1 and

2. Usually,  (  ) can be well expressed by up to the second term of Eq. (38).
In fact 4 is negligible to 2. The symmetry energy 2 increases almost linearly with

density in both the models. The same feature is reproduced by the DBHF calculation

[19]. We can see that the model 2 predicts slightly lower 2 than the model 1 below
 = 016 fm¡3 whereas, above the density, the model 2 predicts larger 2 than the

model 1. The di¤erence becomes larger as the density increases

Next, we investigate the e¤ective mass¤
 of nucleons in asymmetric matter. Figure

3 shows ¤
 and ¤

 in the model 2 as functions of the density. The solid, dotted

and dashed curves are the results using  = 00, 05 and 10 respectively. ¤
 becomes

larger for increasing asymmetry parameter in the whole range of the density while ¤


becomes lower. This is due to the isovector scalar mean-�eld h3i in Eqs. (19) and (20).

The di¤erence between the results for  = 00 and  = 05 or between the results for

 = 05 and  = 10 in ¤
 are much smaller than the corresponding di¤erences in  ¤

 .
Furthermore Fig. 4 shows ¤

 (the solid curve) and ¤
 (the dashed curve) in the model

1 as functions of the asymmetry parameter at  = 04 fm¡3. ¤
 increases monotonically

whereas ¤
 has a minimum at  ¼ 07 Consequently, the di¤erence between the two

masses becomes larger as the asymmetry increases. The similar behavior can be found

in the DBHF calculation [7].

The di¤erence between the e¤ective masses by the models 1 and 2 is shown in Fig.
5. The solid curve is for symmetric matter ( = 00). The dotted and dashed curves

are the results by the models 1 and 2 for  = 075. The model 2 gives larger ¤
 and

9



lower ¤
 than the model 1 owing to stronger  and  coupling constants in the

model 2. Furthermore Fig. 6 shows the e¤ective masses as functions of the asymmetry
parameter for several values of the densities. The solid and dotted curves are the results

of the models 1 and 2. The di¤erences between the two models become larger as the

asymmetry increases.
In our model the renormalized coupling constants do not depend on whether the

meson is scalar or vector, but are di¤erent for protons and for neutrons as seen from Eqs.

(13) and (17). We then investigate the charge asymmetries of the e¤ective interactions
that are the essential di¤erence of our model from the other relativistic mean-�eld models.

Figures 7 and 8 show the density-dependences of the coupling constants in the model 2

for the isoscalar and isovector mesons, respectively. Part (a) is the result for protons and
part (b) is for neutrons. The dotted and dashed curves are the results for  = 05 and

 = 10. For a comparison we add the results of symmetric nuclear matter by the solid

curves in Fig. 7. In general the coupling constants decrease monotonically as the density
increases. The () coupling becomes stronger but the () coupling becomes

weaker for larger asymmetry parameter. The di¤erence between the results for  = 00

and  = 05 or between the results for  = 05 and  = 10 in Fig. 7(b) is much smaller
than the corresponding di¤erence in Fig. 7(a). On the contrary, the () coupling

becomes weaker but the () coupling becomes stronger for larger asymmetry. The

di¤erence between the results for  = 05 and  = 10 in Fig 8(b) is nearly the same as the
corresponding di¤erence in Fig. 8(a). These facts explicitly reveal the charge-asymmetric

features of the renormalized e¤ective coupling constants in our model.

The di¤erences between the coupling constants by the models 1 and 2 are shown in
Figs. 9 and 10. The solid curve is for symmetric matter ( = 00). The dotted and

dashed curves are the results by the models 1 and 2 for  = 075. The model 2 gives

stronger () coupling and weaker () coupling than the model 1. On the contrary,
the model 1 gives stronger () coupling and weaker () coupling than the model

2. Furthermore Figs. 11(a) and (b) show () and () coupling constants at

 = 04 fm¡3 as functions of the asymmetry parameter. The thick (thin) solid and
dotted curves are the results for protons and neutrons in the model 1 (2). We can clearly

see the charge asymmetry of the e¤ective coupling constants and the di¤erences between

the models 1 and 2.
Finally, we apply our model to the cold neutrino-free non-rotating dense neutron star

matter containing only nucleons as baryons and electrons and muons as leptons. In this

case, the asymmetry parameter  or proton fraction  = (1¡ )2 is determined by
-equilibrium condition under the charge neutrality [19],

  =
1

32

h
3 +  ( ¡)

¡
2 ¡2



¢32i
 (39)

where  is muon mass and  is the chemical potential of electrons given by the sym-
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metry energies in Eq. (38);

 = 4
¡
2 + 24 

2
¢
 (40)

Equations (28), (29) and (39) should be solved self-consistently. The resulting proton
fraction  is shown in Fig. 12. The solid and dashed curves are the results of the

models 1 and 2. Below the nuclear matter saturation density  = 016 fm¡3, the model

2 predicts slightly smaller  than the model 1 whereas the model 2 becomes larger than
the model 1 as the density increases above the saturation. This behavior of the di¤erence

between the two models just re�ects the density-dependence of the symmetry energy 2
in Fig. 2. In addition we calculate 4 ´ (  ) ¡ (  0) in Fig. 13. The model 2
predicts larger 2, as seen in Fig. 2, but lower 4 than the model 1 at higher densities.

This is due to the larger proton fraction  or the lower asymmetry parameter  of the

model 2 in Fig. 12. At higher densities, the e¤ect of 2 overcomes the e¤ect of 2.
The properties of the neutron stars are calculated by integrating the so-called Tolman-

Oppenheimer-Volkov (TOV) equation [20]. For this purpose, we need the equation of

state (EOS). We assume that the EOS of our model describes the core region¡
 ¸ 008 fm¡3¢ of neutron stars. For the outer region

¡
  008 fm¡3¢, we use the EOS

by Feynman-Metropolis-Teller, Baym-Pethick-Sutherland and Negele-Vautherin (NV)

from Ref. [21]. Figure 14 shows the EOS by the model 1. It is found that our EOS

is similar to the DBHF calculation [22].
Figures 15 and 16 show the gravitational mass of a neutron star in units of the solar

mass as functions of the central energy density E and radius . The solid and dotted

curves are the results of the models 1 and 2. They exhibit the general feature of the sti¤
EOS [23] that predicts both a large maximum mass and a large radius. The maximum

mass by the model 1 is  = 219¯ at E = 208£ 1015gcm3 and  = 118 km while

the model 2 predicts  = 221¯ at E = 201£ 1015gcm3 and  = 120 km. So as to
understand the di¤erences between the results of the two models, Fig. 17 shows the EOS

again in the di¤erent units and scale from Fig. 14. The triangle-solid and cross-dotted

curves are the results by the model 1 and 2 respectively. The circle-dashed curve is the
EOS by NV. The EOS by the model 2 becomes softer than the EOS by the model 1 below

the intersection
¡
 = 008 fm¡3¢ with the NV EOS, while the former becomes slightly

sti¤er than the latter above the intersection. Therefore the model 2 in Figs. 15 and 16
exhibit the feature of sti¤er EOS than the model 1.

4 Summary and conclusions

The fully consistent theory of asymmetric nuclear matter should satisfy the charge-

asymmetry of the densities, e¤ective masses and e¤ective interactions of protons and

neutrons simultaneously. The DBHF theory satis�es such a full consistency whereas
there have been no corresponding relativistic mean-�eld theories even now. The present
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work is a resolution of this problem.

We have extended the ZM model to asymmetric matter based on the constituent
quark picture of nucleons. The e¤ects of scalar mean-�elds on all the three constituent

quarks in medium have been taken into account. They produce the medium corrections

to the meson-nucleon coupling constants or the renormalized e¤ective interactions. Since
the renormalizations depend on the e¤ective masses of nucleons, both the e¤ective masses

and coupling constants have to be determined self-consistently. Including the isovector

scalar mean-�eld by [0(980)] meson, the masses of protons and neutrons are di¤erent
from each other. Therefore the renormalized coupling constants for protons are di¤erent

from those for neutrons. Consequently, we have fully consistent relativistic mean-�eld

model of asymmetric matter containing charge-asymmetric e¤ective interactions as the
DBHF theory.

We have numerically investigated our model in detail and explicitly revealed its charge-

asymmetric nature. Then the model is applied to the cold -stable neutron star matter.
The results exhibit the general features of a sti¤ EOS. In several aspects of these calcu-

lations, the similar results to the DBHF calculations have been found. In this respect we

want to emphasize that our model is not a simpli�ed e¤ective version of the complicated
DBHF theory as the works in Refs. [5,6], but is an independent theory.

The reliability and applicability of our model has to be investigated further. For

an example the surface region or the neutron skin of largely neutron-rich nuclei may
be a candidate of highly charge-asymmetric medium. It is however not appropriate to

our purpose since the relevant density is rather low. So as to clear the e¤ects of the

charge-asymmetric interactions, both the high density and high asymmetry are necessary.
Therefore the neutron star is a good subject of our investigation. The present study is

however insu¢cient because of the important roles of hyperons in neutron stars [23].

In our picture the e¤ective interactions between two hyperons and between nucleons and
hyperons will be also charge-asymmetric. We will investigate their e¤ects in future works.
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Figure 1: The binding energies per nucleon calculated by (a) the modesl 1 and (b) the
model 2 as functions of the total baryon density. The solid, dotted, dashed and dotted-
dashed curves are the results using the asymmetry parameter  = 00, 05, 075 and 10
respectively.
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Figure 2: The symmetry energies de�ned in Eq. (38) as functions of the total baryon
density. The solid and dotted curves are the results by the models 1 and 2.

16



M
p*  (M

eV
)

Density (fm-3)

model 2
asymmetry=0.0
0.5
1.0

(a)  proton

0 0.1 0.2 0.3 0.4 0.5200

400

600

800

1000

M
n*  (M

eV
)

Density (fm-3)

model 2
asymmetry=0.0
0.5
1.0

(b)  neutron

0 0.1 0.2 0.3 0.4 0.5200

400

600

800

1000

Figure 3: The relativistic e¤ective masses of (a) protons and (b) neutrons calculated by
the model 2 as functions of the total baryon density. The solid, dotted and dashed curves
are the results using the asymmetry parameter  = 00 (symmetric nuclear matter), 05
and 10 (pure neutron matter).
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the model 2 as functions of the total baryon density. The dotted and dashed curves are
the results using the asymmetry parameter  = 05 and 10 (pure neutron matter).
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Figure 9: The renormalized (a) () and (b) () coupling constants calculated as
functions of the total baryon density. The solid curve is the result for the symmetric
matter. The dotted and dashed curves are the results for the asymmetry parameter
 = 075 calculated using the models 1 and 2.
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Figure 10: The renormalized (a) () and (b) () coupling constants calculated as
functions of the total baryon density. The dotted and dashed curves are the results for
the asymmetry parameter  = 075 calculated using the models 1 and 2.
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Figure 11: The renormalized (a) () and (b) () coupling constants at the
total baryon density 0.4fm¡3 as functions of the asymmetry parameter. The solid and
dotted curves are for protons and neutrons respectively. The thick and thin curves are
calculated by using the models 1 and 2.
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Figure 12: The proton fractions as functions of the total baryon density under -
equilibrium. The solid and dotted curves are calculated by using the models 1 and
2.
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Figure 13: The di¤erences between the energy density of asymmetric matter under -
equilibrium and that of symmetric matter, as functions of the total baryon density. The
solid and dashed curves are calculated by using the models 1and 2.
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Figure 14: The equation-of-state calculated using the model 1.
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Figure 15: The neutron star masses in units of the solar mass as functions of the central
energy density. The solid and dotted curves are the results of the models 1 and 2
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Figure 16: The neutron star masses in units of the solar mass versus the neutron star
radius. The solid and dotted curves are the results of the models 1 and 2.
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Figure 17: The equation-of-state by the model 1 (the solid curve) and by the model 2
(the dotted curve). The dashed curve is due to Negele-Vautherin.
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