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Abstract

A one-dimensional quantum harmonic oscillator perturbed by a smooth compactly
supported potential is considered. For the corresponding eigenvalues A, a complete
asymptotic expansion for large n is obtained, and the coefficients of this expansion are
expressed in terms of the heat invariants. A sequence of trace formulas is obtained,
expressing regularised sums of integer powers of eigenvalues A, in terms of the heat
invariants.
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1 Introduction and main results

1. Local heat invariants. In order to state our main results, we need to recall the notion
of local heat invariants. Let v € C*°(R) be any real valued function such that v and all
derivatives of v are uniformly bounded on R. For the self-adjoint operator h = —% + v in
L*(R, dz), consider its heat kernel e=**(z,y), t > 0, z,y € R, i.e. the integral kernel of the
operator e~**. For any z € R, one has the asymptotic expansion
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where a;[v(x)] are polynomials in v and derivatives of v, known as the local heat invariants
of h. Explicit formula for a;[v(z)] is available:

e M (x,x) ~

thaj[v(a:)], t — +0, (1.1)

S (DTG : e
W@ = 2 g — g e Tl e (12)
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Formula (1.2) was derived in [7] on the basis of the results of [9, 10]; see also references in
[9] to earlier works on this subject. From (1.2) or otherwise, one obtains
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al(@)] =1, afp(@)]=—v(z), afp@)] =50 @) - z0"(2),
aslv(z)] = =20 4 tov” + S0 — %U(‘l),
asv(z)] = vt + v + %vv(‘l) + (V") - 8}101)(6) — " — L)%

2. Perturbed harmonic oscillator. Consider the self-adjoint operators

2 2
Hy, = —% + 2% and H = —% + 2%+ q(z) in L*(R,dx), where ¢ € C3°(R).
These operators can be defined as the closures of the symmetric operators, defined on
Cs°(R) by the same differential expressions. Denote by A = 2n — 1, n = 1,2,... the
eigenvalues of Hy and by A\ < Ay < --- the eigenvalues of H. The aims of this paper are
(i) to describe the asymptotic expansion of )\, as n — oo, including explicit formulas for
the coefficients of this expansion in terms of the local heat invariants; (ii) to derive a series
of identities (trace formulas) which relate regularized sums of the type > °7 Ay, > oo | A2

etc. to some explicit integrals involving heat invariants.

Our results are modelled on the Gel'fand-Levitan-Dikii trace formulae for the Sturm-
Liouville operator (see [5, 6, 2, 3] or [4]) and in part motivated by the recent advances in
calculation of the heat invariants [9, 10].

First, as a preliminary result, we establish the asymptotic expansion

Tr(e ™ — e7tHo) ~ Ztﬂ aj 2® + q(2)] — a;[2*]))dz, t— +0, (1.3)
\/E

where a; are the local heat invariants. In formula (1.3) (as elsewhere in this paper) ¢ €
C°(R) and thus all the integrals in the r.h.s. converge. On the formal level, (1.3) follows
by subtracting (1.1) with v(z) = z? from (1.1) with v(z) = 2? + ¢(z) and integrating over
x. A rigourous justification of this formal procedure is not difficult and will be given in
Section 3.

3. High energy asymptotics. Suppose that ¢ is given. Due to the explicit formula
(1.2), we can regard the integrals appearing in the r.h.s. of (1.3) as known quantities.
Below we describe the asymptotics of eigenvalues A, in terms of these integrals. Here is
our main result:

Theorem 1.1. (i) One has the asymptotic expansion

0 - Gj
Anw/\n+z}<)\2)j/2, n — 0o, (1.4)
]:

with some coefficients ¢; € R.



(i1) The coefficients c¢; in (1.4) can be calculated in the following way. Consider the
formal asymptotic expansion
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)\gw)\n—l—zo\ )]j—l’ n — oo, (1.5)
j=1 \An
with the coefficients

= (VAT — ) / (@22 + q(2)] — ;22 d. (L6)

Then inverting the formal asymptotic series (1.5) gives (1.4).

Remark 1.2. 1. Theorem 1.1 gives an algorithm of computing the ‘unknown’ coefficients
¢; in the expansion (1.4) in terms of the ‘known’ integrals (1.6). The algorithm is given in
the form of inverting an asymptotic series, which is a well defined algebraic procedure.

In order to compute a coefficient ¢;, one needs to know finitely many coefficients b;. For
example,
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C1 = —b17 Cy = 0, C3 = —bQ, Cqy = —Eb%7 Cy = —bg, Ceg — —2b1b2, Cr = gbi}) — b4.
2. The fact that only half-integer (and not whole integer) negative powers of A, are
present in the r.h.s. of (1.5) is equivalent to a series of identities for the coefficients ¢;. For

example, the first three identities of this type are
co =0, 0%4—204:0, cﬁ+c§—|—20103:0.

3. From Theorem 1.1(ii) we obtain, in particular,

1
01:—/q(x)dx, co=0, c3=— / 2dx+—/
T JRr

1 1 0
a=—5¢ &= 700(61 () + 3¢*(x)2® + 3q(z)a" + 2(61 (2))? + 2q(x))dz.

4. Trace formulas. As a by-product of our construction, we also obtain trace formulas
for the eigenvalues \,, and \?. This result is a direct analogue of the trace formulas for the
Sturm-Liouville problem due to [5, 2, 3, 6] and our proof follows the reasoning of [3]. Let
us introduce the Zeta functions

Z)\ Zo(s) = _(A)™*, Res> 1 (1.7)

n=1

If A, < 0 for some n, then \,* should be understood as |\,|~*e~™. If \,, = 0 for some n,
then the corresponding term in the sum >~ A, ® is omitted.

Due to the explicit formula A2 = 2n—1, we have Zy(s) = (1—27°)((s), where ((s) is the
Riemann Zeta function. By the properties of (, we conclude that Zy(s) has a meromorphic
continuation into the whole complex plane with the only pole at s = 1, and this pole is
simple. The real zeros of Z are at s = —2n, n=20,1,2,....
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Theorem 1.3. The function Z(s) admits meromorphic continuation into the whole complex

plane. Its poles are simple and located at s =1 and at s = —1, =3 —g, .... We have the
identities:

Z(—k)=Zy(—k), keN. (1.8)

Asin [2, 3], formula (1.8) can be combined with the asymptotic expansion (1.4) to obtain

regularised trace identities as follows. Exponentiating the asymptotics (1.4), we obtain for

any Res > 1:
~ Zd “UR o 0o, (1.9)

where d;(s) are explicit polynomlals in s and ¢;. For example,
do(s) =1, di(s) =dao(s) =0, ds(s)=—sci, dy(s)=—sco, ds5(s)= —scs,
1
S(S + )C%’
2
Using this notation, we have for any k € N:
2k+2 2k+2

:i{“ Zd () s<ﬂ/2}+2d ) Zo(s+ (j/2)), Res>1. (1.10)

dg(s) = —scq + d7(s) = —scs + s(s+ 1)cico.

Now both sides of (1.10) can be meromorphlcally continued into the half-plane Res >
—k — 1. By Theorem 1.3, the Lh.s. of (1.10) is analytic at s = —k. By (1.9), the same
applies to the first term in the r.h.s. of (1.10). Thus, the second term in the r.h.s. of (1.10)
is also analytic at s = —k. As Zy(s) has a pole at s = 1 (and no other poles), it follows

that dogy2(—k) = 0. Thus, we obtain

Z(—k) Z{Ak Zd 9/2}+Zd (=k+(5/2)).

Combined with (1.8), this ylelds a series of formulas
241 2h+1

i{xﬁ— Zdj(— k=0/2y 4 Zd (—k+(j/2)=0, keN.  (1.11)

In particular, for k£ = 1,2, 3 we obtain (takmg into account that Zy(0) = 0)

o0

> (=M= )+ aZal =) = 0 (1.12)
n=0 n

= 2

SO = (A0)? 200 \/A0 — ) 426, Zy(— 1) + 265 Z0(3) = O; (1.13)

n=0 \/_n

D (= () = 3er (W)Y = Bes (A2 = 3(ea + ) = s (A) )
n=0
+3c1Zo(—32) + 3c3Z0(—3)+3c5Zo(3) = 0.

Formulas (1.12), (1.13) (in a slightly different form) were obtained earlier in [8].
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2 Proof of Theorem 1.1(ii

The proof of part (i) of Theorem 1.1 is fairly standard and is based on the asymptotic theory
of solutions to ODEs and on various explicit formulas for parabolic cylinder functions (which
give the solutions to the ODE corresponding to ¢ = 0). We give this proof in Sections 5-6.
The proof of part (ii) of Theorem 1.1 is the core of our construction and is presented in
this section. The proof is based on the following

Lemma 2.1. Let A2 =2n—1, n €N, and let \; < \y < --- be a sequence of real numbers
such that A\, = A2 + O(1) as n — oco. Suppose that an asymptotic expansion

)\2 ~ )\n + ij)\;aj + Z q])\;], n — oo, (21)
=1 =1
holds true, where 0 < a3 < ag < --- are some non-integer exponents and {p;} C R,

{g;} C R. Then one has the asymptotic expansion

_ 1 i 1 (—1)j .
tA J e k
S et o SOBR - a4 < logt g o+t 2.2

as t — 40, with some coefficients {ry} C R.

Proof of Theorem 1.1(ii). Given Lemma 2.1 and part (i) of Theorem 1.1, the proof of The-
orem 1.1(ii) is immediate. Indeed, inverting the asymptotic expansion (1.4) yields the
expansion of the form

LD +va J+be n — 0o

with some real coefficients {b;}, {gj} Now using Lemma 2.1 and the explicit formula
S e = (2sinht)~!, we obtain the asymptotic expansion

i(e“‘" - ’”‘O Z EJ s - logtz bj !tj + i Tit”
n=1 j=1 k=1

with some real coefficients {7, }. Comparing this to (1.3), we see that all coefficients b;
vanish and the coefficients b; are related to the heat invariants by formulas (1.6). This
completes the proof of Theorem 1.1(ii). B

In the rest of this section, we prove Lemma 2.1. Broadly speaking, this Lemma can be
regarded as a discrete analogue of the following version of Watson’s Lemma:



Lemma 2.2. Let ¢ : R — R be a locally bounded measurable function, such that ¥(\) =
for all X near —oo. Suppose that ¢ has the following asymptotic expansion

N =D pA Y AT+ 0 A — oo, (2.3)
J J

where {a;} CR\N, {5;} C N, {p;} CR, {¢;} C R are finite sets and M > max({a;} U
{B;}), M € (0,00) \ N. Then the following asymptotic formula for the Laplace transform
of ¥ holds true for t — +0:

/ e_t’\zﬁ( d\ ~ sz 1—ay) t"“ +(logt) Zq] — v t’Bﬂ_l—i- Z rktk—i-O(tM 1)

0<k<M—1
(2.4)

with some coefficients {ry}.

The proof can be performed, for example, by explicit computation, checking that each
term in the asymptotics (2.3) gives the desired contribution to (2.4).

Proof of Lemma 2.1. 1. Let
N =t{n| X <A, No(N) =t{n| A, <AL

The main idea of the proof is to approximate N(\) by No(#()\)), where # is a function with
the asymptotic expansion (2.1). We construct ¢ in terms of its inverse as follows.
The formal inversion of the expansion (2.1) has the form

A~ A 4 Z s;(A) . n — oo, (2.5)
j=1
where 0 < 1 <12 < ... and {s;} C R. Fix some sufficiently large M € (0,00) \ N; we
have
M= X4 3D 5007 OO ™), oo, (26)
n;<M
Let ¢ € C*°(R) be such that
(i) ¢(A) = 0 for all A € R and ¢(A\) =0 for all A < 1
(i) ¢(A) is strictly increasing for A > 1;
(ili) @(A) = A+ > s;A7% for all sufficiently large A > 0.
n; <M
Let ¢» € C*(0,00) be such that ¢(1)(A)) = A VA > 0. Finally, for A > 0 let us write
No(A) = A + w(A), where w(]) is a 2-periodic function.
With this notation we have:

o0 0o 00

et = /_ . e NN\ =t / e AN (N)dA

n=1 -

4 /_ T V() = No((M)) d + %t /0 TN A+ /O (M) dA



Below we consider separately the integrals Fi(t), Fy(t) and Fs(t).
2. Consider Fy(t). By the construction of 1, we have the asymptotics

PA) =2+ D pA Y+ AT +0N) A - oo

Otj<M <M

with the same exponents and coefficients as in (2.1). By Lemma 2.2, we obtain:

) O<k<M

]_]
Fy(t) ~ +Z Bipa - a])t%+ (logt) qu )1 e > oM, t— +0.

(2.7)
3. Consider Fi(t). By the construction of ¢, we have A\, = ¢(\2) + O(n™), n — oo,

and so
0 o

Fi(t) = Z(e*”‘" — €*t¢(>\° Ze (] — n_M)>‘

n=1 n=1

It follows that Fj(t) has at least [M] — 1 continuous derivatives in ¢ on [0,00) and
therefore, by the Taylor formula,

Ft)y= Y FP0)F+o™h), - +o0. (2.8)

0<k<[M]—1

4. Let us prove that F3 has continuous derivatives in ¢ € [0, 00) of any order, and so
£y~ FP)E, ¢ — 0. (2.9)
k=0
Fix N € N. Integrating by parts IV times, we obtain

Fy(t) =t /O b e Pw(®(N))d\ =t /0 R & 0w (n)dy
:—/OOO( t¢(“) w(p)dp = (— 1)N+1 /Ooo(ew(u))(NH ~()d,

where wy is a periodic function. Using the property (iii) of ¢, we obtain

(e—tqb(,u))(N-i-l) _ €—t¢(u){(_t>N+l(¢/(M))N+1 + i th()\l_N_z_m)}.
=0

It follows that F3 has at least N — 1 continuous derivatives on [0,00). As N € N can be
taken arbitrary large, this proves the statement.

5. Combining (2.7) — (2.9), and using the fact that M can be taken arbitrary large, we
get the desired statement. B



3 Proof of the asymptotic expansion (1.3)

1. Asymptotic expansion (1.1). First let us prove that for any bounded from below
function v € C*(R), the asymptotic expansion (1.1), (1.2) holds true locally uniformly in
x € R. The expansion (1.1) as such is well known, but all treatments of this expansion in
the literature that we are aware of, assume boundedness of v, whereas here we have to deal
with potentials of the type z? + v(z). Below is a simple argument which shows that the
boundedness from above condition can be lifted. Let us fix any R > 0 and prove that (1.1)
holds true uniformly in = € [—R, R].

Let & € C5°(R) be such that o(z) = v(z) for all |z| < 4R, and let h = —L, + 5. The
heat kernel expansion for C§°-potentials is certainly well known (see e.g. [7] and references
to earlier work therein), and so we have

- 1 .
e Mz, x) ~ ta;lv(z)], t— 40, |z|<R,
(@.2) ~ =3 Palo(a) o

uniformly in = € [-R, R|. Thus, it suffices to prove the estimate

sup |e™? (x z) —e Mz, x)| =0, t—+0, c>0. (3.1)
|z|<R

Let xgr be the characteristic function of (=R, R) in R, and let gb € C§°(R) be such that
¢(z) =1 for |z| < 2R and ¢(z) = 0 for || = 3R. Denoting D = <L, we obtain

~ ¢
Xa(e™™ — e™)xp = xale ™" — g™ M) xp = — / ds xre™ " (he — gh)e"x
0
t . t .
_/ dSXRe(ts)h¢/I€ShXR+/ dSXRef(tfs)h(b/DefshX
0 0
t t
/ ds XRE™ (t—s h¢// —sh / ds XRE™ t_s)h¢,D€SD2
0
/ ds/ dsi xge g Dels—50)P _SthR

From here, using the explicit formula for the heat kernel e sz and the well known estimate

1 —y)2 .
le™ ™" (z,y)| < \/mexp(—(x4f) —tl%fi)), z,y € R, (3.2)

we obtain (3.1).

2. Asymptotic expansion (1.3). Now we are ready to prove the asymptotic expansion
(1.3). Let R > 0 be sufficiently large so that supp ¢ C (—R, R). Let x2r be the characteristic
function of (—2R,2R) and let yor = 1 — x2r. By the previous step of the proof, it suffices
to prove that

Tr(Yar(e ™ — e ™) ap) = O(e™"), t—+0, ¢>0. (3.3)
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By (3.2), we obtain

IX2re " xrlls, = O(e™"), t—+0, ¢>0;
Ixre " %2rlls, = O(e™"), t — +0, ¢>0.

From these estimates and the formula

—tH _ _—tHp

t
X2r(e e ") Xar = —/ Xore I\ g g xre %R ds
0

we get the required result (3.3).

4 Proof of Theorem 1.3

We follow the arguments of [3]. First let us assume that A, # 0 for all n. Fix &k € N and
consider formula (1.10). The second term in the r.h.s. is meromorphic in C with possible

poles at s = 1 — 2,7 = 0,1,2,...,2k + 2. The first term in the r.h.s. of (1.10) admits
analytic continuation into the half-plane Res > —k — % As k can be taken arbitrary large,
it follows that Z admits a meromorphic continuation into the whole complex plane, all
poles of Z are simple and located at the points s =1 — %, 7=0,1,2,....

Next, from the formula

1 Y4100
ot L / (t\)°T(s)ds, ~>0, (t\,)eR\ {0},
v

21 )y iso
we get
ot ey L e _ —s
g (e e ) = — (Z(s) — Zo(s))t°T'(s)ds, t>0, ~>0.
—~ 2T oy ioo

By a standard argument involving shifting the contour of integration to the left, the last
formula yields the following asymptotic expansion as ¢t — +0:

Z(e—t)\n _ €—t>\%> - SZEE(}]S-/Q)((Z(S> _ ZO(S>)t_SP(3))7 t — +0. (4.1)

First note that Z(s) — Zy(s) does not have poles at any of the points s = 0,—1,—2,....
Indeed, if Z(s) — Zy(s) did have a pole at s = —n say, then (Z(s) — Zy(s))['(s) would have
a double pole there and then the expansion (4.1) would involve a term Ct"logt. But by
(1.3), no logarithmic terms actually occur in the asymptotic expansion.

Next, by (1.3), there are no integer powers of ¢ in the asymptotic expansion, which by
the same argument leads to the conclusion that Z(—k) — Zo(—k) =0 for all k =0,1,2,....

Finally, consider the case when one of the eigenvalues of H vanishes: \,, = 0. Then the
preceding arguments should be repeated for the sequence {\,}, n € N\ {m}. This leads
to the same set of results, apart from the formula Z(0) = 0; this should be replaced by
Z(0)=-1.n



5 Proof of Theorem 1.1(i)

Let us define two solutions ¢% = ¢ (x, \) of the equation —” + x%) = \i) by

W) = U(=5,0V8), 0N = U(=5, ~2v3),

where U is the parabolic cylinder function (see [1, §19.3]). For any = € R, the solutions
Y9 (z, \) are entire functions of A\. For any A € C, the solutions ¢ (x, \) have the asymp-
totics

(2, \) = 00 (=2, \) = (2vV2) A2 2(1 1 0(1)), @ — 400,

and the Wronskian wo(A) = W (?,99) = (¢2),00 — 2 (¢9),, is given by

_ 2ﬁ _ 2 14+ TA
wo(N) = T - T cos(5), (5.1)

At the eigenvalues \? = 2n — 1, the Wronskian wg()) vanishes and we have
W92, A0) = (1) (2, ) = 27D 2e 2, (a), (5.2)

where H,, is the n’th Hermite polynomial.
Next, let 1+ = 1, (x,\) be the solutions of the equation —” + (2% + q(x)) = M,
normalised by

Yi(z,\) = ¢ (z,\), x> supsuppg,
Yo (2 N) =02(,3), = <infsuppg.

The eigenvalues A, coincide with the zeros of the Wronskian w(A) = W(¢_,¢;). In
Section 6 we prove the following Lemma, which describes the asymptotics of w(\) as
Re A — +o00. Let €2 be the half-strip

Q={AeC|ReA>0,|Im)| <1},
for A € Q let us denote by v/ the principal branch of the square root, so that Re v/A > 0.

Lemma 5.1. The Wronskian w(\) is analytic in X\ € Q. The following asymptotic expan-
siton holds true:

w Ni L) | cog (T2 N ol sin(%2 N b
() fr<2>< <2>J§;M)j+ <2>;M)j>, (53)

as |A\| — oo, A € Q. Here Q;, P; € C are some coefficients, Qo =1, Py = 0.

Given Lemma 5.1, we can prove Theorem 1.1(i) as follows. Fix any sufficiently small
e > 0, denote B, = {z | |z — \Y| < ¢}, and let T,,. be the contour B, . oriented anti-
clockwise. By Rouche’s Theorem combined with a simple continuity argument, we obtain
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_ Jaw()

R Y]

that A\, € B, for all sufficiently large n. Next, the zeros of w in the half-strip €2 coincide

with the zeros of
(5.4)

It follows that for all sufficiently large n we have
—~/
1 L\ 9 (\) I\

" o TI0Y

By analyticity of w, the asymptotic expansion (5.3) can be differentiated. Thus, we obtain
the following asymptotic expansion for A € I'), ., n — oo:
1 A — m
(\) tan 5 + Z(tan 7) (

A 1
+——go(\) + ——
gO( ) A\/Xgl

w' () T,
= ——tan —
2 2 V)
where the functions g,,(A) are analytic in A € © and have the asymptotic expansions
(5.6)

Im(A) ~ Zcmk<\/x)ik, A =00, AeEQ
k=0

Substituting the expansions (5.5) and (5.6) into (5.4) and computing the integrals of the

type frw (tan Z2)™Md\, we arrive at the expansion (1.4). i

6 Proof of Lemma 5.1
(6.1)

Let x > sup supp ¢; then
(¥ (2, )08 (2, A) — ¥ (2, \) (¥ (2, N) )

w(A) =
We will use this formula and construct ¥ _ in a standard way as a solution to the integral
(6.2)

" G y)aly) (g, Ny,

equation
vl ) =20 + [
where the integral kernel G (z,y) is given by
1
Ca(@,y) = =y (W3 (@ Mol (5, 2) = 9 (@ Ml (u, 1) (6.3)
The kernel Gy(x,y) is an entire function of A due to the analyticity of % (x, \) and the

relation (5.2).
Ly, :C(A) — C(A) be the Volterra type integral operator from (6.2),

Ly: fla) / ZR G, )a(y) f (v)dy

11

Let R > 0 be sufficiently large so that suppgq C (=R, R). Denote A = [-2R,2R]; let



Then the solution of the integral equation (6.2) can be written as

[e.9]

vo= L,

n=0
and so for the Wronskian (6.1) we have the series representation
w(d) =Y WL, ¥Y)(z), € (R 2R).
n=0

Lemma 6.1. For any n € N and any = € (R,2R), the Wronskian W (L3¢, 99)(x) is
analytic in X € Q) and one has the estimate

2

(WL, ¥5)(@)] < —5=IPEHL - C) = O(AT), A= o0, de (64)

The asymptotic expansion

o om s p)
Wi o) ~ 1) ()Y T v ) e

j=n
with some coefficients Qg-n), Pj(n) holds true as |\| — oo, A € Q.

Clearly, Lemma 5.1 follows from Lemma 6.1.
Proof of Lemma 6.1: 1. It is convenient to introduce two linear combinations e, and
e_ of of the solutions ¥

7T2(17)\)/4 —iT i
€+(SL’, )\) — \/_ (6 ()\+1)/4w9r(x’ )\) +e (A+1)/4w9(x’ )\)) 7

cos(’%)lj(%)

e_(z,\) = er(—x,A). The solutions ei(z,\) are analytic in A € Q (with removeable
singularities at \Y — see (5.2)). These solutions are chosen so that they satisfy the following
asymptotic expansions:

(ex(x,\))., ~ eV (izﬁx + i ?j;?}) ., A—o00, A€, (6.7)

where R;-t, ﬁ;t are polynomials in z. The expansion (6.6) follows directly from the formulae
19.9.4, 19.9.5, 19.4.2 of [1], and (6.7) is obtained by application of the recurrence formulas
1, §19.6].
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2. Let us first prove the bound (6.4). We have

W(LR? W5 (@) = (L2 (2, A))p (2, A) — LRw2 (2, A) (9 (2, A) ) (6.8)

let us obtain appropriate bounds for each term in the r.h.s. of (6.8). Expressing ¢} in
terms of ey,

1 ’l/TI'
¢3[(5’57 )\> — 2_\/%120\ UMF(%) ( (’\H)/‘Leﬂx,)\) ir(A+1)/4 (x )\)) (6.9)
and using (6.6), (6.7), we obtain
12 Mlle@) = OV T(E2))), [\l =00, A€, (6.10)
1(2.(, ))xllcm) = (IAW?A/“F(%)D, Al =00, A€ (6.11)

Next, expressing the kernel G (x,y) in terms of e,

1 T(H2)

Gi(z,y) = EW;/\)(&F(L Ne_(y, A) —e_(xz,Ney(y, \)), (6.12)

and using the asymptotics (6.6), we obtain

sup sup |Gx(z,y)| = O(]A|7?), || =00, A€
|| <R |yI<R

Using this estimate and the fact that L, is a Volterra type operator, we obtain

n c)” -
1L lea)—c@) < Eu) . O =0(A), A =00, AeQ. (6.13)

Finally, in order to estimate the term (L}4%)’, let us introduce the operator L} : C(A) —

C(A) by 56 (
- / YLD ) )y

Then (Lyy° (2, \)), = LALY '9° (2, A). Using the asymptotics (6.6), (6.7), we obtain
||L/>\||C(A)HC(A) = O(l), |)\| — 00, A€ (614)

Combining (6.8), (6.10)—(6.14), we obtain (6.4).
3. Let us prove the asymptotic expansion (6.5). Using (6.9), we obtain

1
W(LRE, vh) = 20 VPR (W (e e4) = W(Lge o)
e TN (Lo o)) 4+ TN (LR, e )
Denote I (z,\)
n Yet(w,
A\ 6.15
gn (ZL‘, ) ei(x’ )\) ) ( )



by (6.6), the denominator does not vanish for all sufficiently large A. Using this notation,
we obtain

W (L0, 09) = i/ (552) (0 28— emim)r2g )

n

+ (g0 (2, )2 O(T )] + (g5 (2, A)); 0T ().
It suffices to show that g have the asymptotic expansions

> SE(x
g,ﬂ;(x,A)NZ (]J;)j’ Al =00, AeEQ (6.16)

for some coefficients S;- € C(R), and that for any = € (R,2R),
(g (2. 0); = O(A™), [\ =00, AeQ (6.17)

By the definition of g, we have

Gria (@A) = /; ngi/)) In(y, Nex(y, Na(y)dy. (6.18)

Using this formula, the expression (6.12) for G, (z,y) and the asymptotics (6.6), the expan-
sion (6.16) can be easily proven by induction. The asymptotics (6.17) follows by differen-
tiation of (6.18).
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