Large deviations from a macroscopic scaling limit
for particle systems with Kac interaction and random potential. *
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Abstract We consider a lattice gas in a periodic d— dimensional lattice of width v !

, ¥ > 0, interacting
via a Kac’s type interaction, with range % and strength ¢, and under the influence of a random potential
given by independent, bounded, random variables with translational invariant distribution. The system
evolves through a conservative dynamics, i.e. particles jump to nearest neighbor empty sites, with rates
satisfying detailed balance with respect to the equilibrium measures. In [MOS] it has been shown that

! and time as y~2

rescaling space as vy~ , in the limit v — 0, for dimensions d > 3, the macroscopic density
profile p satisfies, a.s. with respect to the random field, a nonlinear integral partial differential equation,
having the diffusion matrix determined by the statistical properties of the external random field. Here we
show an almost sure (with respect to the random field) large deviations principle for the empirical measures
of such a process. The rate function, which depends on the statistical properties of the external random

field, is lower semicontinuous and has compact level sets.

1 Introduction

Models where a stochastic contribution is added to the energy of the system naturally arise in condensed
matter physics where the presence of the impurities causes the microscopic structure to vary from point to
point. An extensive literature has been dedicated to study the equilibrium statistical properties of (spin)
systems with external random field. The central question heatedly discussed in the 1980’s in the physics
community was whether the Random Field Ising model would show spontaneous magnetization at low
temperature and weak disorder in dimension 3, or not. The problem was solved by Bricmont and Kupianen,
[BK], who proved the existence of phase transition in d > 3 for small magnitude of the random field, and
Aizenman and Wehr, [AW], who proved that there is no phase transition in d = 2 for all temperatures. A
more physical oriented review about Random Field Ising model is [N].

The Kac’s potentials are two body interactions with range % and strength v, where v > 0 is a dimension-
less parameter which represents the ratio between microscopic and macroscopic lengths. When v — 0, i.e.
very long range compared with the interparticle spacing, the strength of the interaction becomes very weak,
but in such a way that the total interaction between one particle and all the others is kept finite. They were
introduced in [KUH], and then generalized in [LP], to present a rigorous derivation of the van der Waals
theory of a gas-liquid phase transition. In the last decade many authors studied the equilibrium statistical
properties of systems with Kac potential for v small but finite and the time evolution of the macroscopic
density profile in particle systems interacting via long range Kac potential either in the case of conservative
dynamics [LOP], [GL], [GLM], [MM], or in the case of non conservative dynamics [DOPT]. For a review of
various results concerning these models, see [GLP],[P], [Be]. Random Field Kac models, in d = 1 and for
v small and fixed, have been recently studied in [COP], [COPV]. The particle model studied in [MOS] is a
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dynamic version of lattice gases interacting via a two-body Kac interaction and subject to external random
field given by independent bounded random variables with translational invariant distribution. The formal
Hamiltonian we consider is given by

HE*(n) =—§ S L@ —yn@ne) - > o)) (1.1)

ERNY A =y A

where (3 is a positive parameter and 7n(z) € {0,1}, n(z) = 1 if there is a particle in z and n(z) = 0 means
that the site is empty. The {a(z) z € Z?} represent the external random field on the sites z. Given the
Hamiltonian (1.1) there is a standard way, see for example [Sp],[Li], to construct a dynamic which conserves
the number of particles and for which the invariant measures are given by the one parameter family of Gibbs
measures associated to (1.1). More precise statements will be given in Section 2. The relevant features of the
systems associated to (1.1) are the absence of translation invariance, for a given disorder configuration, and
the non validity of the so called gradient condition. To establish the hydrodynamic limit one needs to show
some version of Fick’s law, namely to replace the microscopic current (i.e. the difference between the rate at
which a particle jumps from site z to site y and the rate at which a particle jumps from site y to site x, z and
y being nearest neighbors) by the gradient of the density field multiplied by the diffusion coefficient. Roughly
speaking, the gradient condition says that the microscopic current is already the gradient of a function of the
density field. Performing a diffusive scaling limit, in [MOS], for almost all disorder, a law of large numbers
when d > 3 was established for the density field, starting from a sequence of measures associated to some
initial density profile pg, 0 < po < 1. The equation obtained for the density field is the following nonlocal,
non linear partial differential equation

%_1iv. (an) L p0,7) = polr) (12)

ot

where the energy functional G(p) is a suitable non linear integral functional, see (2.27) and 1o(p) is the
mobility, see (2.22), *, or conductivity, of the system with only short range interaction, i.e. corresponding
to 8 = 0in (1.1). Faggionato and Martinelli, [FM], proved for the process associated to (1.1) with 8 = 0,
in the diffusive scaling limit the almost sure existence of the hydrodynamical limit. The result in [MOS]
is obtained applying “ a perturbation argument” based on their result. Since the original particle model
cannot have more than one particle at a lattice site, 6(0) = (1) = 0 and the solution p of (1.2) is bounded
between 0 and 1. The control on the regularity of the mobility o(-) is harder, so far only continuity has been
proven, see [FM], even though from physical arguments one expects more regularity, see [KW], pag 179. In
the following we will assume, when needed, more regularity for o(p). The main interest in studying models
with Kac’s type of interaction and local interaction, relies on the fact that one can derive the macroscopic
equation for the conserved quantity even if the full system undergoes to phase transition, provide the local
interaction which in the case at handle is given by the one body random interaction (i.e obtaining setting
B =01in (1.2)), does not undergo to a phase transition. In this regime the equilibrium statistical properties
of the full hamiltonian do not matter. For more details on this issue we refer to [GLM].

We are interested in proving large deviations principles for the empirical random density of the process
just described. For v > 0 and for a realization of the random field let Q7}°"°? be the process corresponding
to the randomly evolving empirical density starting from some initial non equilibrium state. The law of the
large number derived in [MOS] tell us that for any reasonable nice set A of measure valued trajectories not

In the physical literature one writes the mobility as 01 (p) = %G(p). We assumed this convection in [MOS]. So the o (p)

in [MOS] does correspond to % of the quantity denoted here with the same symbol.
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containing p(t,r)dr, where p(t,-) is the solution of the nonlinear macroscopic equation (1.2), almost surely
with respect to the disorder, Q7°"*I[A] — 0 as v — 0. In this paper we can say how fast:

@Ay ~ e int Tr({eh) "

where Z7 is a suitable non negative functional depending on the all process up to the time 7 and on the
statistical properties of the random field. The ~ denotes logarithmic equivalence as v — 0. As it is well
know, the rate functional Zr(-) is determined by two distinct types of large deviations of the same order. The
first one corresponds to large deviations from the initial state and it is quite simple to obtain. The second one
derives from the stochastic character of the evolution. Suppose A = {7 (-,dr) ~ m(-,r)dr,t € [0,T]} where
7y (-, dr) is the local density, ~ denotes closeness in some norm and m is a profile different from the solution p
of the nonlinear macroscopic equation (1.2). We need to modify Q75°™* so that the event A becomes typical.
One possible choice is to drive the lattice gas by weak, slowly varying, space-time dependent external forces
in such a way that the path measure t € [0,T] — m(t,-) becomes typical. This is the standard choice in the
case of gradient systems. For non gradient systems the force must be configuration dependent (see [Sp], pag
248) to take in account that for these systems the response in the current to an external force field is partially
delayed. Since we have an external random field, it might be random depending as well. A priori is not
clear trough which mechanism the event under consideration should be made typical. Following Donsker and
Varadhan to prove the upper bound for (1.3), we construct a family of mean 1 positive Q75°"*1— martingales
that can be expressed as function of the empirical measures. The relevant positive martingales are obtained
as small markovian perturbations of the original process, i.e adding to the original process a slowly varying,
space-time dependent external forces depending on the configuration and on the randomness. The scheme of
our proof goes along the same pattern of [Q1], where large deviations for a non gradient version of Ginzburg-
Landau model were proved and [QRV] where large deviations for the symmetric simple exclusion process in
dimensions d > 3 have been shown.

The proof of the lower bound relies on proving a law of large numbers for the empirical measure evolving
according to a process obtained adding, as explained before, a weak driving force into the original system
which depends on local configuration and on the randomness. The choice done is suggested by the variational
formula for the diffusion matrix obtained in [FM]. The random part can be felt only at microscopic level
and it does not change the macroscopic limit. It is needed to reconstruct in the lower bound the microscopic
part needed in the variational form of the mobility. Then one shows that upper bound and lower bound
coincide. The final step is to prove that for an open set of paths A the inf,,. yc 4 Zr({u}) does not change if
the infimum is taken only over a convenient subset of A. One difficulty in showing upper and lower bound
is that the rate functional, see (2.32), might not be convex as function of u, so lower semicontinuity and
extension of the lower bound are far from trivial. Results in all dimensions for a process associated to the
Hamiltonian (1.1) with 8 = 0, were announced by Quastel in [Q]. In [AG] an exclusion process interacting
with ferromagnetic, (i.e J > 0), Kac potential was studied and as an intermediate result, large deviations for
the empirical measures of the process were shown. The proof relies strongly on the large deviations result
for the symmetric simple exclusion process, see [KOV].

Outline In Section 2 we state notations, model and results. In Section 3 we prove the lower semicontinuity
of the rate function and the compactness of its level sets. Since the methods to establish the upper and
lower bounds are fairly close to the ones providing law of large numbers we start recalling in Section 4 the
steps to prove the law of large numbers for a system where space-time dependent external forces depending
on the configuration and on the randomness have been added. This is in the same line of the law of large
numbers proven in [MOS] even though the interaction we consider here is slightly more general, for the
reasons explained before. In Section 5 we prove the upper bound. Then in Section 6 we show the lower
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bound, carrying out in Section 7 its extension. We recall some properties of non gradient systems, needed
along the way, in the Appendix.

Acknowledgements. The authors are grateful to Olivier Benois for useful discussions and to Abdellatif
Koukkous, who was present in the earlier part of the work. Mustapha Mourragui thanks Claudio Landim
for suggestions and the Department of Mathematics of the University of Roma TRE. Enza Orlandi thanks
Lorenzo Bertini for helpful discussions, Alessandra Faggionata for pointing out a reference and the De-
partment of Mathematics of Rouen University, where part of the work has been accomplished, for warm

hospitality.

5/may/2005; 10:06 4



2 The model and the main results

2.1. The model

Let the scaling parameter v € (0,1) be such that y~! € IN. We denote by A the d-dimensional torus of
diameter 1, by A, = ZZ%/y~' Z* the discrete torus of diameter ', and by |V| the cardinality of any finite
non empty subset V C Z%. For a fixed A > 0, let Qp = [—A, A% * be the set of disorder configurations
on Z% On Qp we define a product, translation invariant probability measure IP. We denote by IF the
expectation with respect to IP, and by a = {a(z), = € Z%}, a(z) € [-A, A], a disorder configuration in
Qp. A configuration o € Qp induces in a natural way a disorder configuration a, on A, by identifying
(471
notation whenever in the following we refer to a disorder configuration either on A, or on Z ¢ we denote it
by a. We denote by S, = {0,+1}* and S = {0,+1}Zd the configuration spaces, both equipped with the

a cube centered at the origin of side v~ odd and integer) with the torus A,. By a slight abuse of

product topology. We denote by n a configuration, either in S, or in S.
Given o € Qp and § a positive parameter, we consider the Hamiltonian (1.1) restricted to the torus A,

and write it as the sum of two terms

Hy,(n)=BHX(n) + Hi(n)  neS,, (2.1)

where H§' is the local, one body, random interaction,

H(n) =~ Y a(@)n(z) (2.2)

TEA,

and Hf is the long range Kac interaction,

Hf (n) = —% Y. L@ —ym@m) . (2.3)
(z,y)EAy XA,

The pair interaction J,(z — y), the so-called Kac potential, is such that J,(z — y) = v J(y(z — y)) for
J € C?(A,IR) with J(r) = J(—r) (symmetry). We denote by ,ug’“*)‘ the grand canonical random Gibbs

measure on S, associated to the Hamiltonian (2.1) with chemical potential A € IR

1
W) = —sosexp{=H,( + A }_n@)} nes, (24)
i TEA,

B,a,A

where Z5-* is the normalization factor, so that z2

is a probability measure on S,. When § = 0, ug**

becomes the random Bernoulli product measure

Moy ela@ )
erA‘y [e[a(z)-i-k] + 1]

psr () = py™A () = n€S,. (2.5)

If A =0, we simply write u5. We denote by p**(n) and when A\ = 0, u® the measure (2.5) on the infinite

product space S. Moreover, for a probability measure p and a bounded function f, both defined on S or
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Sy, we denote by E¥(f) the expectation of f with respect to u. As it is well known, the chemical potential
A is canonically conjugate to the density p in the sense that the average density with respect to ug*a’)‘ is
equal to p. So as in [FM] one can define the random empirical chemical potential and the annealed chemical
potential Ag(p). To our aim it is enough to consider A\g(p). For p € [0,1], the function A¢(p) is defined as

the unique A so that
ea(0)+k

B | [nod )| = | x| =0 (2.6)

The disordered Kawasaki dynamics is the Markov process on S, defined through its infinitesimal generator

L., acting on local functions f : S, — IR as

(L)) =D Y Cyl@,+ &) [(Vaare N (2.7)
e€E z€EA,
where £ = {e1,...,eq} is the canonical basis of IR* and e a generic element of £. We omit to write in the

notation the explicit dependence on the randomness «, unless there is an ambiguity. For z,y € A, n € S5,

(Ve £)n) = fn™) = f(n),

where n™¥ is the configuration obtained from 7 by interchanging the values at z and y:

n(z) if 2=y

n™Y(z) = { n(y) it 2=z (2.8)
n(z) otherwise.
The rate C, is given by
Cy(@,y3m) = @{(Vay Hy)(n)} - (2.9)

Here & € C%(IR, (0, 00)) satisfies ®(0) = 1 and the detailed balance condition
®(r) = exp(—r)®(—r) r € IR. (2.10)

Notice that C,(z,y;n) has the following properties:
a) detailed balance condition, see (2.10)

b) positivity and boundedness: there exists a > 0 such that
a”' < Cy(z,y5m) < a (2.11)
c) translation invariance
Co(z,ysm) = CF%(z — 2,y — 2;72m) = .05 (2 — 2,y — 25m) (2.12)

where for z in Z?, 7, denotes the space shift by z units on S x Qp defined for all n € S, a € Qp and
g:S8xQp — IR by

(2m) (@) = n(z + 2), (20)(2) = a(z + 2), (129)(, @) = g(72n, T2Q) . (2.13)
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For each A € IR, the generator £, is self-adjoint in Lz(ug*“”\) (cf. (2.4)). We could alternatively have

fixed the number of particles, and got a density p € [0, | A17| , .-, 1]. Then the generator £, is self-adjoint in

L2(1/f +,) for the canonical measure

= Zé”“ eXp{_Hw(U)}]I{EIEM n(z)=p|Ay |}’ nE Sy (2.14)

with Zg '® the corresponding normalization factor.

To prove the results stated next we need an ancillary process, the Markov process having as generator 52

associated to the Hamiltonian H, i.e. with 8 =0, see (2.2),

(L3N ) =Y C%,z+e;n) [(Varure M) (2.15)

ecE zEA,

where f is a local function on S, and

C%(z,y;m) = @ {(Va H) ()} - (2.16)

The rate C°(z, y;n) satisfies properties (2.10), (2.11) and (2.12). The process with generator £9 is the one
considered in [FM], its invariant measures are, for A € IR, the random product measures ,uf:”\ defined in

(2.5), or alternatively, for p € [0, 1], the canonical measures obtained setting § = 0 in (2.14),

a

A, ) =10 () mes,. (2.17)

Same way, the operator L9 is selfadjoint in L?(u*), or alternatively in L? (v A)-

2.2. The macroscopic equation

One of the first result of [FM] concerns the existence and regularity of the diffusion coefficient D(p) which
corresponds to the usual Green-Kubo matrix, see [Sp], Proposition 2.2, page 180. In our set up D(p) is the
diffusion of the integral parabolic equation. To define it, let *

G={g9:8xQp — IR; local and bounded } , (2.18)

and for g € G, T'y(n) = >_, cza (729) (n, @). The ['y(n) is a formal expression, but the difference Vg .I'y(n) =
T,(n%¢) — Ty(n) for e € & makes sense. For each p € (0,1), let D(p) = {D; ;(p), 1 < i,j < d} be the

symmetric matrix defined, for every a € IR?, by the variational formula

d

X ook 2T [Eua!w} (CO(O’G“”){WVO’%”(O) + (Vo,eirg)(n)}zﬂ (2.19)

(a-D(p)a) =

where A\g(p) is defined in (2.6), x(p) is the static compressibility given by

\(p) = B [ [ nor e ) - ( [ n@aiea0 (n>) ] , (2.20)

* A function g : S x Qp — IR is local if the support of g, Ag, i.e. the smallest subset of Zd such that g depends only

on {(n(x),a(r)) T € Ay}, is finite. The function g is bounded if sup,, sup, |g(n, a)| < oo
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. a2o(p)
for a,b € le, a - b is the scalar vector product of a and b and, recall, E# Ror

() is the expectation with
respect to u®*o(P) see (2.5), the random Bernoulli product measure with annealed chemical potential Ao (p).
In Theorem 2.1 of [FM] it has been proved, for d > 3 and for p € (0,1), the existence of the symmetric
diffusion matrix defined in (2.19). Further it has been proved that the coefficients D; ;(-) are nonlinear
continuous functions in the open interval (0,1) and there exists a constant C' > 1, depending on dimensions

and bound on the random field, such that

I

S<DE)<CT pe ) (2.21)
where 1 is the d x d identity matrix. One expects the matrix D to be extended continuously to the closed
interval [0,1] and actually to be a smooth function of p, [KW]. The diffusion matrix D(p) in a solid, in a

regime of linear response, is linked to the mobility $0(p), see [Sp], via the Einstein relation

D(p) = so(p)x(p)~" (2.22)

The x(p) is a smooth function of p in [0, 1] and it can be easily proven from (2.20) that for C > 1

%p(l —p) < x(p) < p(1 - p); %p(l —p)I<a(p) < Clp(1 - p). (2:23)

The bound on o(-) is a simple consequence of the bound on x(+), (2.22) and (2.21). Fix a positive time T'. For
a measure p, on S,, denote by P, the probability measure on the path space D([0,7],S,) corresponding
to the Markov process (n¢):c[o,7] With generator y~2L., starting from pu., and by E,, the expectation with

respect to P,_. For t € [0,T],n € S,, let the empirical measure 7} be defined by

() = a7 () = 4% Y m(@) 6. (r) T EA, (2.24)
TEA,

where d,(+) is the Dirac measure on A concentrated on u. Since n(z) € {0,1}, relation (2.24) induces from
P, a distribution Q. of {m](r); r € A; t € [0,T]} on the Skorohod space D([0,T], M1(A)), where My (A)
is the set of positive Borel measures on A with total mass bounded by 1, endowed with the weak topology.
Denote by MY(A) the subset of M;(A) of all absolutely continuous measures w.r.t. the Lebesgue measure
with density bounded by 1:

MOA) = {rm € My(A) : w(dr) = p(r)dr and 0<p(r)<1 ae. },

MQY(A) is a closed subset of M (A) endowed with the weak topology and D([0, 7], M{(A)) is a closed subset
of D([0,T], M1(A)) for the Skorohod topology. To state next theorem we need the following definition.

Definition  Given a Lebesgue absolutely continuous measure p(r)dr € MO(A), a sequence of probability
measures (fiy)y>0 on S, s said to correspond to the macroscopic profile p(-) if, under p., the random variable

7 € M1(A) converges in probability to p(r)dr as v — 0, i.e for any smooth function G and § > 0

hm L ‘/G Ydr (r /G r)dr >6} (2.25)
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We recall the Theorem proved in [MOS].

Theorem [MOS] Letd > 3, 8 > 0 and assume that D(p) can be continuously extended to the closed interval
[0,1]. Let p, be a sequence of probability measures on S, corresponding to the initial profile po. Then, IP
a.s. the sequence of probability measures (Qp.,)y>o is tight and all its limit points Q* are concentrated on

p(t,r)dr, whose densities are weak solutions of the equation

Bip = WZ;I 8k{Dk,m(p){0mp = Bx(p)(Om ] * p) }} ’ (2.26)

p0,) = po(-),

satisfying the energy estimate

/OTds(/A |Vp(s,r)|2dr) <00

Moreover if the o(-) is Lipschitz continuous for p € [0,1], then (Q,,) >0 converges weakly, as v — 0, to Q*.

This limit point is concentrated on the unique weak solution of equation (2.26) *

The equation (2.26) can be written as (1.2) where

6(0) = [ drgnlor)) 5 [ [ 36 = 1p(r) ', (2.7
go is the (strictly convex) free energy density

90(p) = Pho(p) = po(Mo () po(N) = IE [log (1 -+ @] (2.28)

By thermodynamic relations, one has that for p € [0,1], Ag(p) satisfies

Holp)a(0) L
] : () = M (). (2.29)

_ dpo _
p=—r((p) =IE [m

~dA

Through the text J, 8, ®, and A (the bound on a(x)) will be kept fixed. We therefore avoid to write
explicitly the dependence on these quantities. In order to keep the notation light, we will write the evolution
equation in strong form, even when it has to be interpreted in the weak sense. The weak form is obtained
by integrating against a function G € C*%([0,T] x A) and performing the formal integration by parts. We
denote by C™™([0,T] x A) the space of functions G : [0,7] x A — IR with n continuous derivative in time

and m continuous derivative in space, being n and m positive integers.
2.3. The main result

In the present article we are concerned with the large deviations from the scaling limit described above.

To state our result we still need more definitions.

* The existence and uniqueness of the weak solution of (2.26) when (2.21) holds, o (+) is Lipschitz continuous for p € [0, 1],

0(0)=0(1)=0and J € Cc? (A) can be done using standard analysis tools. It has been proven in [GL], second reference.
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For two functions f and g from A to IR, denote by < f, g > the usual inner product in LZ(A). Let ¢(-) on
A be a function taking values in symmetric positive semidefinite d x d matrices. For each integrable function

f: A — IR with mean zero define
1 sy =sup {2< 6.1 > = [ (V60)-awGm)ar} (2.30)

where the supremum is over C* functions from A to IR. For u(-,-) € D([0,T], M?(A)) with u(t,-) = p(t,r)dr,
Sy p(t,m)dr = [, p(0,7)dr for all 0 < ¢ < T, define the following functionals

To(u(.,.) = / / (Vp 8,7) ((g(( )))) Vp(s, r)) drds , (2.31)

and

Tqyn(p(--)) =% /T dtHatP -V (D(p){Vp = Bx(p)V(J *p) }) Hz_l,a(p(t,_))

_ 1/ dt“— -_V. (O(P(t))vg(f’(t)o H2—1,a'(p(t,~))

where a(p) = 2x(p)D(p), see (2.22). It is possible to obtain a more explicit representation of the functional

(2.32)

(2.32), see Lemma 3.1 in Section 3. One consequence of this Lemma, is that every path ¢ — u(t) with finite
rate function is continuous in the weak topology, u € C([0,T], M9(A)). We are now ready to define the large
deviations rate function. For each u(-,-) € D([0,T], M1(A)) let

IWC”:{%MWQﬁ+%m@@D if Zo(u(-)) < oo (2.33)
’ 0 otherwise ’

where Z; ;1 (p(0,-)) is the large deviation rate for the initial profile p(0,-) which depends on the choice of the

po(-)

initial measure. If we were to start with a Bernoulli product measure v4°*” with po(yz) as the probability

of a site z € A, being occupied then

Tinit (p /drh (0,7), po(r)) (2.34)
where
h(a,b) :alog%+( )log Z

For other suitable initial conditions one considers the correspondmg rate function for the initial profile. In
the following we assume for simplicity to start with a Bernoulli product measure, then Z;;; is the one given
in (2.34). The main result of this paper is that (QV$°)~,>0’ satisfies the large deviation principle with rate

function 7.
Theorem 2.1 Letd >3, 3> 0. Assume that D(-) € C1*([0,1]) * and the initial measure is the Bernoulli
product measure 1/”0() For each closed set C C D([0,T], M1(A)), a.s. with respect to o

limsupy?log(Q, 0 (C)) < — inf T(u(-,-)) (2.35)
7—0 v p(+,)€C

*  The Holder space C k.a ([0, 1]) is defined as the subspace of C' k ([0, 1]) consisting of functions whose k—th order derivative

is Holder continuous with exponent 0 < a < 1in (0,1).
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and for each open set O C D([0,T], M1(A)),a.s. with respect to a,

lim inf %1 0 >— inf Z(u(,- 2.
iminf 7" 10g(Queo () 2 —  nf T(u(-,")) (2.36)

where T is defined in (2.33). The rate function Z(u(-,-)) is lower semicontinuous and has compact level sets.

The requirement D(-) € C%([0,1]) is needed to complete the proof of lower bound, i.e its extension. If
one assume D(-) Lipschitz continuous for p € [0, 1] then (2.36) holds for the paths in D°, see Section 6.

We will show (2.35) in Section 5, (2.36) in Section 6 and 7, the properties of the rate function in Section
3. When 8 = 0, Theorem 2.1 states the large deviation principle for the the empirical measures of the
unperturbed process, i.e the one considered in [FM]. The corresponding rate function is the one obtained
setting 8 = 0 in (2.32).

Remark To have lighter notation we omit to write the explicit dependence on the random field a. This
should not cause any confusion but the reader should keep it in mind.

Further the notation O,(n) should be understood in the standard sense of O(n), but uniformly with
respect to the disorder a, configurations 7, and history of the process. Finally we denote by C a constant
that might depend on J, 8, dimensions and A, the bound on the randomness, which may change from one

occurence to the next.
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3. Properties of the rate function.

In this section we prove a representation result for Idyn= see Lemma 3.1, its lower semicontinuity, see
Theorem 3.4 and the compactness of its level sets. This last property is a consequence of the estimates
proven in Theorem 3.3. Note that if Zo(p(-,-)) < oo the functional Ziyn has, by duality, a variational
formula. Let p(-,-) so that Zo(p(:,)) < oo, define for G € C*2([0,T] x A), the linear functional

T
to(p( ) = /A G(T, ) p(T, r)dr — /A G(0,7)p(0, r)dr — / /A (8:G) (t, r)p(t, r)drdt

(3.1)
+ ' | (00{¥o-x(o)V )} - VG ) rdt
and
T
Ja(p) = ba(p) — % /0 /A (a(p)VG-VG)drdt.
Then, see (2.30)
Tagn(o( ) = sup {Ja(o(, )} » (3.2)

where the sup is over G € C1%([0,T] x A). From (3.2) arguing as in [KOV], one obtains an explicit
representation formula for Idyn(p(.,.)). Let u(-,-) € D([0,T], M$(A)) with p(t,r) = p(t,r)dr. Define in
CY2([0,T] x A) the inner product

<GB >,= 2 / " / dr (VG(t,r) - o(p(t, 1) VB(r, 1)) - (3.3)
0 A

2
Denote by AN (p) the kernel of this inner product and by H;(p) the Hilbert space obtained by completing
1,2
CH2([0,T] x A) |N(p)‘
Lemma 3.1 Assume that T dyn(p(-, -)) < co. There exists S € Hi(p) so that

1

T
T gynlo) = [ at [ dr (9500 oo(t.r) VS (1) (34)

and p satisfies in the weak sense the equation

ow =Y O { Dicon(P){ 0ern = BX(P) (9o T # p) = X(p) (22 S) } - (3.5)

k,m=1

The proof is similar to the one done in [KOV], see also [KL]. One shows first that £.(p(.,.)) is a linear
functional bounded in H;(p), then extend £.(p(.,.)) to Hi(p) and by Riesz’ representation theorem, there
exists S € Hi(p) so that for each G € Hi(p)

1

T
balo( ) = 5 / at /A dr (VG(t,7) - o (p(t, 1) VS(r, 1)) (3.6)
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Then one deduces (3.4) and (3.5).

There are two parts in the definition of the rate function Z, the static part, Zj ¢, corresponding to large
deviations from the initial measure and the dynamic part, Zdyn , due to the stochastic character of the
evolution. The static part is clearly convex and lower semicontinuous. To prove the lower semicontinuity of
the dynamic part we need the following result, stated in Lemma 4.2. of [QRV], which we recall:

Lemma 3.2 Let (pn) be a sequence of functions in L™ ([0,T] x A) such that uniformly on n,

T
/ /|Vpn|2drdt+/ ||8p"||21dt <C
0 A

for some positive constant C. Suppose that p € L°°([0,T] x A) and that p, — p weakly in L*([0,T] x A).
Then pp, — p strongly in L' ([0,T] x A).

The proof of this lemma use some relative compactness arguments in L2([0,T] x A). We refer for its proof

to [QRV], Lemma 4.2. Further we show the following estimates.

Theorem 3.3 There is a positive constant Cy so that Idyn(p(-, -)) satisfies the bounds

To(p) < C1 + 8Ty (p) + 26° / / V(T %) V(I % p))drt (3.7)

T T
[ 10yt < €1+ 12T+ 357 [ /A (c(DV(T xp)- V(T xp))drdt . (38)

Proof: When Idyn( p) = oo, the two inequalities are trivially verified. Suppose then that Idyn( p) < oo.
This implies that Zo(p) < oo, see (2.31), and that fo |8¢pl|? Lo(p(y @t < 00. Recall, see (2.28), that

go(p) is the bounded, strictly convex free energy density of the system with only short range interaction,
1 !/
90(p) = Ma(p), Xo(p) = X and J(p)VgO;p) = D(p)Vp. Since Ziyn (p) is bounded, adding and subtracting

the same quantity, taking in account (3.1), we have that

s Lty

-l / Vo= VT xp)} TR ara (39)

/ / 90 . )VgO( ))d dt .

Hence, since (3.2) and, by assumption, Zy(p) is finite, one concludes that

%/{)Tdt(gt/ (p(t,r))dr) < Tgyn(p) - ﬁ/ / PVp-V(J*p))drdt.  (3.10)

Since D(-) is a symmetric matrix, positive defined, and we have xy < %[a:z:2 + %yz] for any a > 0 we obtain

5/ / J*P))det < —Io / / V(J % p)- V(J*p))drdt.
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Choosing a = 2 and inserting this last inequality in (3.10), we obtain that

%/OTdt(gt/ ((t,r))dr)gzdyn(p) / / V(T %p) - V(T xp))drde. (3.11)

On the other hand, we have that

[Cat (5 [ atoternar) | =| [ stomenar = [ mio0mar| =ci

for some positive constant C]. Denoting Cy = 8C] we easily obtain from (3.11) the inequality (3.7). The
(3.8) is obtained from (3.7). Namely, from the definition of Idyn’ see (2.32), we have

5G
dtll || Lo(p(t,)) < 2 dtll— - —V (p(t, NV ==(p(t,)) ) 21 02,
/ ? /0 ( 5 op ) P (3.12)
w3 [ v (s 0V (00.)) s
Taking in account that
T
2/0 dt||V - (D(p(t, p(t; )V (s p(ts D) 11,0062, = Zo(p), (3.13)

we have

T
3 019 (ot NV 0D ) ey 2 [ I (DUt 80Tl ) 0
# [ 19 0ot 0D 500D

T
= To(p) + B2 / GV - (0 (ot NV (T 5 plts D) 21000
(3.14)
Then the inequality (3.12) becomes

/ At PP12 o) < Tagn(p) + Top) + 57 / G| - (oot p(t, MV (T % pls ot D) 21 0ottt -
Applying to Zp(p) the estimate (3.7) we obtain (3.8). O
Theorem 3.4 The functional Idyn(p(-, -)) is lower semicontinuous in D([0,T], M1(A)).

Proof: Let m, € D([0,T], M1(A)) be a sequence converging to « in D([0,T], M1(A)):

ILm /drf 7)1, (¢, dr) /drf w(t,dr) for any fec’n) (3.15)
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for almost all ¢t € [0,T]. We need to show that

llmlandyn( n( -))ZIdyn(w(-,-)). (3.16)

n— o0

We can always suppose that there exists a constant C' > 0 such that
Idyn(ﬂ'n(', ) <LC for any n. (3.17)

From (3.17) one deduces that 7, (-,-) € D([0,T], M(A)), then 7, (t,dr) = pn(t,7)dr for almost all ¢t € [0, T].
Since D([0,T], M?(A)) is a closed subset of D([0,T], M1(A)) then w(t,dr) = p(t,r)dr for almost all ¢ € [0, T].
Further, since (3.7),

Zo(pn(,) <C  forany  n;  Zo(p(-,) <C (3.18)

and from (3.8)
Opn 2
dt” || 1,0(pn (1)) S C for any n. (319)
Since (3.15) implies that p, — p weakly in L?([0,T] x A), (3.18) and (3.19) hold, then from Lemma 3.2 we

deduce that p,, converges strongly to p in L ([0,7] x A). From (3.2), to prove the lower semicontinuity of
Idyn(p), it is enough to show that for any function G € C*2([0,T] x A), we have

To(p) < liminf To(pn). (3.20)

Note that

/ / P)Vp- VG)drdt / / d; ; (p(t,r))92, Gt r)drdt (3.21)

1<4,5<d

where d; ; stands for the integral of D; ;:
d; j(m / D; j(m")dm', for m €][0,1].

Taking in account the different terms of Jg, (3.21) and using the continuity of functions m — d; ;(m),
m — o;;(m) and m — x(m), it is easy to see that in order to prove (3.20) we need only the strong

convergence of p,, to p in L'([0,T] x A), which we do have thanks to Lemma 3.2. O
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4 Macroscopic limit for system with weak random driving forces

For £ € IN, denote by n(z) the average density of 7 in a cube of width 2¢ + 1 centered in z

V@)= G X ) (@)

y:ly—=z| <L

For a function G on A and e € £ denote by 0JG the discrete derivative in the direction e and by V7G the

discrete gradient

(02G) (yx) =7 G (v(x + €)) — G(yx)],
(V16) (1) = (01,G) (1), ... (32,6) (o)) -

Further, let V'(-,-) € C*2([0,T]x A) and v(n, @) = v(n*(0),n,a) = (vi (n°(0),n,a),---,va(n*(0),n,)) € G*.

We assume that the v, kK = 1, ..d, have support in a cube of side £ centered at the origin and that they are

(4.2)

smooth functions with respect to the first variable °(0). To short notation we do not write explicitly the

dependence of vy, on the local empirical density n¢(0). Let

H ) == > [Vt va)n(@) +v (VV(Eyz) - 7o, a))]. (4.3)
TEA,

Define at time ¢, 0 <t < T, the following generator of a time inhomogeneous Markov process on S,

€ m=3"% Y@,z +en) [(Vowre )] (4.4)

e€€ z€A,

where the rate function C’X *? is defined through the rate C, and HX v by

1
CY¥ (@ + eim) = Cy(@,2 + em)exp (= 5 (Varc HY)(0)). (4.5)

Let w, be a sequence of probability measures on S, corresponding to a macroscopic profile pg, see (2.25).
Let PK;” be the law of the inhomogeneous Markov process (1) )¢ejo,7] on the path space D([0,T],S,) with
generator 7_25;/’” and initial distribution p.. Let (Ql‘f;”) be the measure of the process () );cjo,7] on the
state space D([0,T], M1(A)) induced from P}*.

Theorem 4.1 Let d > 3. Assume that D(p), defined in (2.19) can be continuously extended to the closed
interval [0,1] and that o(p) is Lipschitz continuous for p € [0,1]. Let V and v be as described above, then
IP a.s., the sequence of probability measures (Q}fjf”)vzo converges as v — 0, to QY. This limit point is

concentrated on the unique weak solution of the following equation

{ 0P = Ym0 {Dk,m(p){&emp = BX(P) (Oe.n T % p) = x(p)(%e,n V') }} , (4.6)

/OTds(/A|Vp(s,u)|2du)] < 00. 4.7)
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Remark One can write the equation (4.6) as

% = %v- (a(p)V {g -Vt )}) : (4.8)

where G is the functional defined in (2.27). Note that the macroscopic limit does not depend on the choice

of the local functions v.

Theorem 4.1 is slight more general of the result stated in [MOS] due to the term with the local functions
v in (4.3). Namely the system with only the weak driving force coming from }_ . A, V(t,vx)n(x) could
be treated as the term coming from Kac’s interaction in [MOS]. Here we must show that the perturbation
coming from adding local random functions is not felt at macroscopic level. Looking at the second term
in (4.3) since the presence of v one could think that this part of the perturbation is of higher order and
therefore it would simple disappear in the macroscopic limit. But from (4.13) one sees that the weak driving
force coming from the second term in (4.3) is of the same order of the weak driving force coming from the
first term in (4.3). To take this in account and since the methods to obtain the law of large numbers are
close to the methods to obtain estimates for upper and lower bounds of large deviations we outline the proof
of Theorem 4.1. Tightness of (Qx;v)’yzo and energy estimates can be obtained in the same way as in [MOS],
see Proposition 3.1 and Proposition 3.3. there. We will prove only the identification of the support of the

Q""? as weak solution of (4.6).
4.1. Some basic lemmas

In this section we prove some results needed either to identify the limit equation (4.6), either to prove
large deviation principle. It is well known that one of the main steps in the derivation of a large deviation
principle for the empirical density is a superexponential estimate which allows the replacement of local
functions by functionals of the empirical density in the large deviations regime. We recall in Lemma 4.3 the
superexponential estimate for the process generated by y~2£, proven in [MOS] and, as consequence of this,
we show in Lemma 4.4 that the superexponential estimate holds also for the process generated by 7_25,‘; v,

The following lemma shows that the exchange rates of £Y>* are a perturbation of the ones of £,. From

Lemma 3.4. in [MOS] they are also a perturbation of the exchange rates of the Cg process. Denote

n) =Y mu®,a), (4.9)

and the current of the DLG process, i.e the one generated by £9y, b,
J(z) zt+e — = J(z),z+e(n7 a) = CO(.'L',.’L' + 6; 77) [77(-77) - 77(-"5 + 6)] . (410)

Lemma 4.2 For everyx € Ay,e€ E,n €Sy, 0<t<T, forye€ (0,1), for all a € Qp

’YJO

CX’U(.’E,.’L' + 6777) = ny(.’lf,.’lf + 6777) z gH_e((V"’V)(tmw) : e)

(4.11)

d
+2C% @+ esm{ Y (02,V) (1:99) (Vawrelw) () } + 0u(r?)Ou(e?).
k=1

5/may/2005; 10:06 17



CY @,z +en) = COz,z + €;0) + 78 (Va,areHY) () [z + €) — n(2)] [B(8] T * 7y (v2)]
7‘]2 ,T+e ((V’YV) (t7 ’WE) : 6)

(4.12)
d
+ %Co(m; T + e;n) {Z (Q?k V) (t,vyz) (vw,z+ervk) (77)} + 0. (7*) 04 (1),
k=1
provided J as in (2.3), ® defined in (2.10), V, v as in (4.3).
Proof. We have
Vo . . _ . 1 HV,’U
C’y ((E,.’E + 6:77) - C,Y(.’L',.’L' + 6777) - C’Y("EJ"L’ + 6777){ exp ( - §(VZ',$+€ e )(77)) - 1}
and
VaureH = 9(0]V)(t o) (e +e) —n@)] =73 D (9V)(E72) (Vauwsersvx) (1,0)
k |z—z|<{
= '7(6;YV) (t7 ’YSL') [77('73 + e Z 87 V t '733 vZ,(EJrEF’Uk) (77) + Ou(ryz)ou(ed)
(4.13)
Taylor expanding the function e* — 1 gives
1
CY¥(z,x + e;n) — Cy(z,x + €5m) = CO(z, 7 + € n){ -3 (VoatreHYY) (77)} )

1
+ {07($,a: +e;m) — Co(m,m + 6577)}{ ) (Vm,x-i-eHX’v)(n)} + Ou('72)
and then (4.11) follows. Taylor expanding ® since V, ,1.H, is a perturbation of Vz,w“Hg gives
Cy(z, 2+ e5n) = COz, 2 + e51) =72 (Vaare Hy) (0)) [0(z + €) = 0(2)] [B(0] T % 7y (v2)] + Ou(v?) (4.15)

Inserting (4.15) and (4.13) in (4.14) gives (4.12). O

For any cylinder bounded function g : S x Qp — IR define g: [0,1] = IR by

i(p) = B B [g] (4.16)
and for any fixed b > 0 set
Bpy-1(n, ) = ﬁ Z [Tyg(a,n) - !7(77[1)7_1](0))] ‘ . (4.17)
ly|<by—?

We recall the superexponential estimate for the £, process, see Lemma 3.9 of [MOS], that we use in the

following form

Lemma 4.3 (Superexponential replacement Lemma for the £, process ) For any é >0 and any

initial probability measures u, IP a.s.

lim sup lim sup y%log P, l/ Z ToBpy-1 (15, )ds > 6] (4.18)

b—0 v—0 zeA,
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Lemma 4.4 (Superexponential replacement Lemma for the El;” process ) For any § > 0 and any

initial probability measures u, IP a.s.
(4.19)

hmsuphmsupvdlogPV" / Z TeBpy-1(1s, )ds > §| = —o0.
b—0 ¥—0 z€A,

Proof. Denote by A 1 the set Av b= { OT ~® ZzeA., ToBpy-1(ns, 0)ds > 5}. By Hoélder inequality, for all

dP"" e
()]

o>1

d —1
v%log PIY’” [Aﬂb] < % logP, [Af,b] +7dg—log gP-

From Lemma 4.3 it is enough to show that there exists g > 1 such that
dP}"\ 7%
© e <
()| <c

log EP»
"

li
lim

[KL] Appendix 1, Section 7, Proposition 7.3.) the Radon-Nikodym

for some constant C. (From (cf.

derivative is given by

dPV’U v 1 v ¢ 1 v 1 v
B _ exp{ ——HY?(n;) + =H""(n0) —/0 exp{iHX’ (ns)}(as + Lﬂ,) exp{ - §H"r/ (ns)}ds} (4.20)

%u2| S %|u3|e‘“|,

dp,
By Taylor expansion up to the second order and the elementary inequality |e* — 1 —u —
we obtain
dPV’v V v
£ =ZZ%exp {’y*dOV,v('y)} (4.21)
dP,

vV v
where Z2'2 is the exponential martingale obtained setting G = ¥ and g = % in (5.6). The Ovy,,(7) is a

constant bounded by C(V,v)y. Therefore,
dP ;"\ 41 vy
(F) 7 = @)™ e { g 0v)
I Ry b By Y £ g
=27 exp | (0_1)2< > exp { 77 v}

Observe that, from the expression of <M %’%>T, see (5.8), there exists a constant M = M (V,v,J,T) such

that 24 <M%5> < M~~?. Then
T

PV,’U ']

()| < gt [27

@2 ! log EP“

+ OV,v (7)

5/may/2005; 10:06



This concludes the proof of the lemma. O

4.2. Identification of the limit

The identification of the limit is done following the same steps as in [MOS]. For (,a) € S, x Qp, let

Irare =CY"(w,x + ;) [n(x) —n(z +€)],

(4.22)
Jz,w-‘re :C’y(ma T +e; 77) [77(37) - 77(33 + 6)]
be the currents associated to the generator 7_2£V” and, respectively, to y~2L,. Split Jw ote S
JZ;:)-f-e - Jz,w+e [J;/;}-i-e - Jz,w+e]- (4-23)
(From (4.11) one obtains
(372 = Jeare] = 3C° @2+ esm)[n(2) = n(@ +0)]*(@2V) (¢, 72)
7 d (4.24)
0 d
2']90 z+e {I; t 'Y'T Vw,w+ervk)(77)} + Ou(72)0u(ﬁ )
Set,fork=1,...,d,0<a<1l,0<c<landz €A,
Vz,c,a(S, z, 77) = J;/:c)—i-ek
+ z Do (177 @) { @07 7 [ (e em) = 117 N = em)| (4.25)

=X (177 1@)) (80er (T 5 7)) (1) + B0, V(5,72)) }

where D(-) and x(-) are defined in (2.19) and (2.20). Next theorem is the main step in the proof of Theorem
4.1.
Theorem 4.5 Letd > 3. For G in C1?([0,T] x A), t € [0,T] and § > 0, IP a.s.

hmsuphmsuphmsupPV” "yd 1/ Z Gs(yx)V 0% (s, 2,m5) ds‘ > 5} (4.26)
~¥—0

a—0 c—0 zEA,

fork=1,...,d.
By standard summation by parts, Theorem 4.5 allows to conclude the proof of Theorem 4.1. Details can
be found in section 7.1. of [KL] and [MOS].

Proof of Theorem 4.5. By standard stochastic calculus it can be proven that for any g = (g1,.-.,94) € @,
for 0 <k<dandte[0,T]

limsupEPW ‘/ ds a-1 z Gs(yx) TzEV 9r (ns, ))H =0, (4.27)

=0 TEA,
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for all real smooth, bounded functions Gs(u) = G(s,u) defined on IR, x A,. Namely

/ dS( N Ga(va) T LY gk (s, ))

TEA,

= 441 Z [G(v2) T2 gk (e, @) — Go(Y2) Tagi (10, )] + YMT (t) + ES (¢)
TEA,

(4.28)

where {M%(t)}o<i<r is a PL/;” martingale with respect to the natural filtration and has quadratic variation
of order O,(y?). The first term in the second line of (4.28) is of order + and the last term E$ (t) is the
error term coming from ignoring the action of the generator on the first variable of g;. One has that
SUPyc[o,7] |E$ (t)| tends to zero in probability and IP a.s as v — 0 and the diameter of the support of g to
00, see [KL], chapter VII. Then (4.27) follows. Taking in account (4.27), we prove (4.26) showing that for
t €10,T] and any 6 > 0

11msup11msup11msuphmsupE / -1 Z Gs(vz) [V1O%(s,2,m5) +Tw£V”gkN (ms, & | > 6 =0
N—oo a—0 c—0 y¥—0 zEA,

(4.29)
for all 1 < k < d where the sequence (gN =(91,Ns---»9d, N)) N>p 18 a convenient chosen sequence of local
functions. Since from [FM], Theorem 7.22,

€m
inf  limsup su V(J + 5 Dim(p) 22" 4 L0 ,a)zO, 4.30
(91,--,94) €G* n¢<>op0<p1<)1Z e mzl 0 ) 30

we take (g"V) so that for any integer N > 1

d e
7 1
li D AL 0 <—=. 4.31
mew i 321508 + 3 Drn 2 ) < (431
Next, for 0 < s <T and n € S, split
Vz,c,a(s7 Z, 77) + Tzﬁ"y/::gk,N(n7 Oé) = TzYk%C’a’N(na a) + Z]Z’c’a’N(Sa Zz,n, a) ) (432)
where
Vot N(n,0) = Jo.e, + LGN
d 1 1 1
+7 3 Dian { (n71@) @) [ Ney em) = 07 N (=ey M enm)]| |
m=1
1 -1
— Z D (117710) x (n*71(©)) 18 @.,, T %77 ()(0))} (4.33)

Z;:’C’a’N(s, z,m,Q ) (J;/;c)—i-ek Jm,m—f-ek) + T (ﬁ}y’w _ ﬁ,y)gk,]v

— Z Dim (0*771(@)) x (0®71(2)) {06 V(5,72)}
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To conclude the proof of the theorem, taking in account (4.29), it is enough to prove the following two

lemmas:

Lemma 4.6 For almost all a € Qp, for any function G € CY2([0,T] x A), for any § > 0

lim sup lim sup lim sup lim sup P v, ”
N—oo a—0 c—0 ¥—0

/ N ()Y (s, )ds‘ >5] (4.34)

zeA,
fork=1,...,d and any t € [0,T].

Proof. Since Lemma 4.4 it will be enough to show (4.34) with PL/;” replaced by P, . This has been shown
in Theorem 4.1 of [MOS].

Lemma 4.7 For G € C*2([0,T] x A), for § >0, IP a.s.

lim sup lim sup lim sup lim sup PV v
N—oo a—0 c—0 y¥—0

/ -1 ZG ya) Z7N (5, 2,15, )ds‘>5]

zEA,

fork=1,...,d and any t € [0,T].

Proof. We start analyzing the first addend of Z;"©°, the difference Jw’m+ek —Jzzte- Set
1 2
Ff (n,0) = 5C°(0,ex5m) (n(ex) —n(0))", (4.35)
m 1
Ry (0,0) = 5360, {(Vo.eTw) ()} (4.36)

for 1 < k,m < d. By (4.24) we obtain

YIS GOra) 37 e — Towter) = 7D G(42)0e, V (s, v2) 7. Ff (1, 0)
zEA, TEA,

d
+943° S G2) (8., V) (5, 70) T RE™ (0, @) + 0u(7)0u(E%) .

m=1gcAy

Denote for t € [0,7]

,fy({ns}o<s<t / ds 7d ! Z G 7$ J;/;:)—i-ek(ns) _JEJH-EIC(T)S)]}

zEA,

/ { Z ZG vz)(8e,. V) (s, 7$)((2ay }+1) Z Toty RE™ (15, ))}

m=1z€cA, ly|<ay—?

_/Ot ds{fyd Z Gs(yx)(aekV)(s,wx)(m Z Tw+yF1k(ns,a))} .

TEA, ly|<ay—?

By the smoothness of G, J and V' it can be immediately obtained that, for ¢t € [0,7] and o € Qp

lim limsup sup |Aay({ns}o<s<t)| =0 (4.37)
a0 4—0  {n.}apo
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Recalling (4.16), denote
(o) = ZE[E ueo®) (Fl)] and By " (p) :E[E““’“’(” (R’f’m)] : (4.38)

andfor 0 < s <T,ue€Aand (n,a) €S, xQp
BM(s,u,m,a) = (J(‘)/:,c Joen) — {(aekV)(s,u) ( [ay™ 1](0))

d
+ 3 @ V)R () -

The (4.37) together with Lemma 4.4 applied to the local functions FF and Rf’m, implies that for ¢ € [0,T]
and § > 0, IP a.s.

lim lim PV”
a—0v—0 Py

Z / (yx) T2 By (8,72, M5 )ds‘ > 6] =0. (4.39)

TEA,

Next we consider the second term of Z,Z’C’”’N, the difference (ﬁly/’” — L) gk,n, and repeat the same steps

used for the first term. By Lemma 4.2 we have

(€0~ £ =72 3 T By (0ea V) 599 Tyt in]

m=1yeA,

d d
+ 7% Z Z Co(yay +em;n) {Z (66_7' V) (37’73/)vy,y+em (ij (77))} [vy,y-i-emgk,N] + 0u(72_d)0u(€d)-

m=1yeA, j=1
Denote

k,m,N

Fy Z I yten [Voaten9en] (4.40)
yeA
k,J, ,N
Ry Z CO Y,y + em;n) (Vy,y+emrv,- (77)) [Vy,y+emgk,N:| . (4.41)
yEA

We obtain that

d
YN Gy (LYY = L)) gen () =91 > D Go(v2) (8., V) (5, 72) 1 Fy ™ (n, )
m=1z€A,

zEA, 1
. (4.42)
+7? Z Z Gs(yz) Z (s,72)1, RSN (1 @) 4+ 04 (7) Ou (£7).
m=1z€A j=1
Denoting
kN 77: ZR ]mNU, ’ (4-43)
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we write (4.42) as
d

YYD Galva)ma (CY° = Ly)grn(n,0) =97 Y D Galy2) (9, V) (5,72) 7 By ™™ (0, )

TEA, m=1z€A,

d
+7¢ Z Z Gs(yz) (aem V) (8,72)Ta Riin (n, @) + Ou(7)0,(£9) .

m=1z€A,

Next, we exploit that g,y and v; are local and bounded functions. For sake of simplicity, we suppose that
gk,~ has support in the cube centered at the origin of side £ and denote for u € A, (n,a) € S, x Qp and
s€10,T]

BS,G’N(S:uanaa) = 7_1(‘6";/7’0 _‘cw)gk,N

d
=3 @) {B (0 7©) + REN (1 N0) } -

1

By using Lemma 4.3 we obtain that, for any fixed N > 1, for any § > 0 and ¢ € [0, 7], for almost all « € Qp

¢
. . Vo d k,a,N —
(PL% ’111}% P, [ v Z /0 G(yx)T: By (s,'yw,ns,a)ds‘ > (5] =0. (4.44)
TEA,
We conclude the proof by collecting the estimates (4.39), (4.44) and using Lemma 4.8 below. O

Lemma 4.8 For 1 <k,m <d,

N

—~k —~k,m
lim sup [GemFr (0)+Fo (p) = x(p) Dam(p)] = 0 (4.45)
N—>°°0§p§1
. —~k —~k,m,N —~k,m ~m
lim sup |Gt () +Fs (p)+B1 " (p) + Rin(p) = X(p)Dem(p)| =0 (446)

N—o0 0<p<1

Proof. We start proving (4.46). From (4.36), reversibility (2.10) and (8.7) we obtain for p € [0, 1]

k,m

R (p)

SIE[B (8(8(Vo.e. HY)) (1(0) — 1(e8) {Voses (o 0)})]
BEX (8(0(Vo, H)) (n(er) = 1(0)) (T, (1) )]

— ZIE[EHQ‘!)\O(P) (Jg,eszUm(n’a)) ]

- —(Jg,ek,vm)p =V (30 L0m)

where (.,.),,0 is defined in (8.6) and I',,, in (4.9). ;From (4.41) we obtain again by reversibility that
—~k,j,m,N a,xg(p)
Ry (p)=- Z IE[EM o [(}(H(Vy,yﬂmHg))vy,yﬂm (ij (77)) gk,N]] :
yEA,
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Since (4.43) and (4.9)
ﬁi,N(P) — Z E[Eu“’*o(ﬂ [r. ([’%j)gk’N]]
€A, (4.47)
=- (Eovjagk,N)p’O =V, (['Ovjaﬁogk,N)-

On the other hand, from (8.7), (8.8) and reversibility, the same computations done for (4.38) and (4.47)
yield, for p € [0,1]
Tk 0 0
5k,mF1 (p) = Vp (JO,ek’JO,em) (4.48)

and

—~k,m,N

B (0) = Vo (30,0, L0, )- (4.49)
Taking in account property (P) defined in the Appendix, after the formula (8.4), applying (8.8) we obtain
by Remark 7.20 in [FM], that

—~k —~k,m,N —~k,m ~
sup (G B3 (0) + B () + B (0) + Ry () = x(2) D (0)
RS
p . (4.50)
=limsup sup ‘Vp (Jg,em + L%, , .18,6,c + ZDk,z(P) nn [,ng,N)‘ .
ntoo 0<p<1 —1 n

By Schwartz inequality, the right hand side of the last equality is bounded by

1 1 d €e
timsup sup {VE (30, + L0 ) VA (30, + 30 Dicl) 222 + £, )
ntoo 0<p<1 ' B "

which is bounded, see Theorem 7.22 of [FM] *, by % for some positive constant C. To conclude the proof

of the lemma it remains to let N 1 oco. Similar considerations apply to (4.45) obtaining

Sup |8k, (p) + B3 (p) = X{p) Do),
0<p<1

d

. Yr

= limsup sup |Vp (Jgiem , J0 e + ZDM(P)M + ﬁogk,N)‘ .
ntoo 0<p<1 = n

We conclude the proof applying, as for (4.50), Schwartz inequality, Theorem 7.22 of [FM] and letting N 1 co.
O

*  Since we are assuming that D(p) can be continuously extended in [0, 1], the p in the Sup can vary in [0, 1]
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5 Upper bound

Recall from Section 2 that for pg : A — (0, 1), the measure v£° stands for the Bernoulli product measure
on S, with vf°{n(z) = 1} = po(yz). Further P o (resp. Qvf}o) denotes the law of the process (7;) (resp.
(m¢)) starting from v£0. Following the usual method, to exhibit an upper bound, we need to find a family of
Pyso -mean-one positive martingales that can be expressed as function of the empirical density. For almost
all disorder a, when ~ | 0, these martingales will then produce a family (ﬁ’fc’m)0<a<c<1, (defined next in
(5.2)), of functionals on the space D([0,T], M1(A)). For a > 0, denote by ¢, the approximation of the

identity defined by
1
La(u) = W]I{ [_a’a]}(u). (51)

Let G(-,-) € C12([0,T]) x A), m : A — (0,1) continuous and p € D([0,T], M1(A)). For 0 < a < ¢ < 1,

define the following functional

T
ESM(u(-,)) = £ (o) + (G, ) — (Go, o) — / (0,Go, 13 )ds

+ Z /OTds/Adr(aest)(r){Dk,j ((ps * ta) ()

1<k,j<d (5 2)

X {(20)_1 [(,us * 1) (1 + cej) — (s * ta) (r — ce]-)] = Bx ((1s % 1a) (r)) (8e; T * ps(r)) }}

T
%19,15,1/0 dS/AdT(aest)(’f')Uk,j ((Ns*La)(r)) (aest)('I“),

where G4(r) = G(s,r) and fJ*(po) is given by

The proof of the upper bound for the compact sets follows from the next three lemmas .

Lemma 5.1 For G(-,-) € CY2([0,T] x A) and m : A — (0,1) continuous, IP a.s. we have

lim lim sup lim sup % logEQ”fr0 [exp {’y*dﬁfém(u(-, )}] <0.

=0 40 ¥—0

The proof is given in subsection 5.1.
Lemma 5.2 For all p € D([0,T], M1(A)), of Zo(u(:,-)) < 400, see (2.81), then IP a.s.

Z(u(-,-) < limlimsup ~sup sup ™ (u(, ).

0 450" @eCH2([0,T]xA) mecO(a)
o<m<1

The proof of this lemma is similar to the one given in Lemma 2.2. of [Q1]. We will outline the proof at the

end of subsection 5.2.

5/may/2005; 10:06 26



Lemma 5.3 If Zy(u(-,-)) = oo on a compact set K of D([0,T], M1(A)) then IP a.s.

limsupy?¢log Q,, po (K) = —o0.
¥—0

The Lemma 5.3 is proved in subsection 5.2. ;From these lemmas and the lower semicontinuity of the
functional

sup sup  F™(u(-5-))
GeCL:2([0,T]xA) moe<c'0<<A1)

we obtain by standard argumentd (see [Q1] and [KL]) the upper bound for the compact sets. To extend the
upper bound to an arbitrary closed set, it is enough to prove the exponential tightness (cf [KL]): there exists
a sequence of compact sets {K,,} € D([0,T], M1(A)) such that, IP a.s.

limsupy?log Q,, 2o (Ky,) < —n. (5.3)

v—0
This property is proved in subsection 5.2.
5.1. Proof of Lemma 5.1

We first introduce the exponential martingales from which the functionals ﬁ’fém follow. For 1 < k < d,
let g¢ be a local and bounded function, smooth in the first variable gf : [0,1] x S x Qp — IR? with
gt(n*(0),-,-) € G. The function g} depends only on the particles in a box of size £ centered at the origin. To
keep notation light we denote it shortly by g5 (n, @) and we denote by g the vector g = (gf,...,g4). Define

£(t) = d“Z(VVGt)(vz) m9(n,)) = Zsk
(5.4)

‘“lz )(v2) gk (n, ), 1<k <d,

where for u,v € IR, (u - v) stands for the canonical product scalar of v and v in IR4.
For any a € (1p and a probability measure ., in S,, consider the P, martingales with respect to the
natural filtration associated with {n;}¢>0, MY = M 977 and NE = N&95% > 0, defined by

M& = ( <Gy > +£7(t)) _ ( < Go, 1] > +§7(0)) _ /Ot (8s + v 2L,) ( <Gyl > +§7(s)) ds ,

2
NtG’g = (MtG’g) - < MG"q >t,
(5.5)

where 7] is the empirical measure at time s, see (2.24), and the quadratic variation of M9 is given by
t 2
< MO 5y 2 / {cv( <17,Gy > +€7(s)) —2( <77,Gy > +€(9)) L4 ( <77,Gy > +E7(5)) } ds.
0

By simple computation the expectation of < M%9 >, vanishes as v | 0. We are now ready to define the

family of the mean one exponential martingale (ZtG 9 for all G and g,

)iz0
—2d
Z59 = exp {V_thG’g - 7—2 <M >t} . (5.6)

5/may/2005; 10:06 27



A summation by parts permits to rewrite the martingale v_thG Y as
t

FTIME I =~ < Gy, 1] > =4 < Go, 1y > —w_d/ < 0,Gs, ) > ds
0

/ {Z Z (97G 7.1" ( zz+e,-+,C,yngf(ns,a))}ds

i=1 z€A,
(5.7)
+72 > {(02.G0) ()7t s @) = (92,Go) (v2)ag (0, ) }
i=1 z€A,
o [{S S o cmmeton s,
i=1 z€A,

where J; 4, is the current defined in (4.22). On the other hand, a summation by parts and Taylor expansion

permit to rewrite the quadratic part %Zd < M%9 >, in the exponential martingale ZtG Y as

%Zd <MD >y= 0, (7~ H1)
(5.8)
+z Z/ Z (e Gs () (8e; G5 (7)) ZC (z,z + ei;n)TzAi,k(nmgﬁ)TmAi,j(ns;gf)}dsa
JIEA
where for 1 <1,k <d,
Aik(n,95) = [~V 0(0)8;x + VO Tg;] (5.9)

and 9, 1, is the Kronecker delta. This time, however, it is not the density fields that appears in the exponential
of ZtG "9 but other local functions of the configurations  and a . The main step in proving Lemma 5.1 is
to replace these local functions by functions of the density fields in order to recover the functionals ch’m.

Denote
T
FLS((n])) = < Grywlh > — < Go,mg > —/ < 8,Gy,7Y > ds
0

+2/ ds~y? Z BekG (¥2) Ty Dy (77 % 14(0))

TzEA,

X T {(2c)*1 [ﬂ *ta(cy  em) — 7 *La(—cv’lem)] } (5.10)

4 8
— [t T (VGu0) - Goln (@) T (2 w2 0) ).

0 zEA,

F29((x7),) = / dsy' 3 (WG (02) - 2o x1a(a ))vasm)).

zEA,

Since 7l*7l(z) = (7 % 1,) (yz), these two quantities are functions of the empirical density. Since y~¢ <

M9 >, is bounded by some constant M, independent on v and ¢, using Holder inequality, we have for
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o>1

l0g B [exp {1 (s + £16 - £2) )]

o fo o 457~ ) o #{ (e (L0).22) - (L))

1 P ... -
<—logB 5 Jexp {0y (FLE (@ (n)) = F2((w7 )0) } (284) ]
0
0—1 Pm() Gyl M 47 4
+—Q logE [Z" ]+—2 Q_1+’y o(v)

P .. _ —d
= ~1ogB 5 [exp {0 (FLE (T () = PO )0) } (25%) ] + 5 2 + 97 o),

where ZtﬁG’g is the mean one exponential martingale defined in (5.6) with ;%3G € C**([0,T] x A). In the

second inequality we used the fact that exp {'y*d fo ™ (mo (n))} is the density of dv£° with respect to dv}' ©

e m()(1 = p() 0
1—po m(-
A 1 1 L
) = (g (3= oho) + (108 (1 03) o)
and L, stands for the discrete approximation of the Lebesgue measure, L, = v 3" A, Oye

We conclude the proof of Lemma 5.1, by applying Hélder inequality to the first term of the right hand
side of the last inequality, taking into account (5.10), (5.6) and showing the following lemma.

Lemma 5.4 There exist o positive constant A; and a sequence (gn)n>0 = ((91,8,---,94,N))N>0 C ¢?
defined as in (5.4) such that for any continuous profile m : A — (0,1) and G € C*2([0,T] x A)

: : : : d Pu’"(-) —d Gy~ _ 7l,G
lim sup lim sup lim sup lim supy*log E  *~ expi oy *( My Fare <A, (5.11)
N—o0 c—0 a—0 ¥—0
P .
lim sup lim sup lim supy? log E 7" [exp {mf’d((q/*d/Z) <MY >p —Ff’G) }] < A (5.12)
N—o0 a—0 y¥—0
for any o € IR.

Proof. The (5.11) is similar to the proof of Lemma 4.5 and is therefore omitted (see also Lemma 4.2. and
Lemma 4.3. of [MOS]). We prove now (5.12). Let (gn)n>1 C G be the sequence, introduced in Section
4, satisfying (4.31). Consider the quadratic variation < M9~ >, of the martingale Mf 9N given by (5.8).
From (4.15)
sup sup sup |Cy(z,z +€;n) — C%(z,z + ;)| <~AC (5.13)
€€ zeh, neS,

—2d
for some constant C = C(8, J, ®, A). We may thus rewrite % < MPIN > ag

77 < MG >, = Z Z BekG (72)) (Be; G (v2)) 7 W (15)ds + O (v~1), (5.14)
:cEA k,j
where
d
Z (0, e5m)Ai i (1, 98)Aij(m,95) 1<k, j<d. (5.15)

=1
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The superexponential replacement lemma fot the £, process, see Lemma 4.3, implies that IP a.s

lim sup limsup*log " {ew (e /t G (12)[rag(ne, @) = Gl (@) |ds) } < 45,
0

a—0 v—0 zeA,

where g is defined in (4.16) and A} a suitable positive constant. Then by Schwartz inequality it is enough

to prove that there exists a positive constant Aj such that, IP a.s. for p € IR

P .. t
lim sup lim sup lim sup Y% log B *~ (){exp (g Z Z/o (06, Gs(7)) (8e,Gs(v))

N—ooo a—0 ¥—0 zEA, k,j (516)

(W0 0l ™1@) = o o) ]ds) } < 4,

We now compute W’Zl\; Using a change of variables, detailed balance condition (2.10) and properties (8.6),

(8.7), we have for all density 0 < p < 1

1~9g~n 1

§Wk,j (p) = 51E [EMQ’AO(F) (CO(ank;ﬁ) (Vo,em(o))Q)] Ok, j

+V, (Jg,e,c ) ﬁogj,N) +V, (Jg,e]. , Eogk,N) +V, (ﬁogj,N, Eogk,N) (5.17)
=V, (Jg,ej + £Ogj,N , ngc + Eogk,N).

Therefore, in order to conclude the proof it is enough to show that for 1 < k,j < d,

. 1
lim sup ‘Vp (Jg e; Lo9;n, Io., + Cogk,N) - —ak’j(p)‘ =0. (5.18)
N—o0g<p<1 ’ ’ 2

Property (P) of the ()cce given in the Appendix and (8.8) permit to rewrite the quantity —3oy, ;(p) as

d
1
= 500(0) = Vo (I o, + L9 » Y Declp)bes(9)), (5.19)
=1
so that the expression in (5.18) is equal to
1 d
\Z (Jg,ej + LN, 3., + ﬁogk,N) — 0k (p) =V, (Jg,e,- +L%; N, 30, + Lok N + ZDk,z(P)wu (P))-
=1

On the other hand, Schwartz inequality and Remark 7.20 in [FM] allow us to introduce the terms

d em
Z Dyi.m(p) :l" (p) in the right hand side of the last quantity when n 1 oo uniformly in 0 < p < 1. To
m=1

complete the proof it remains to apply Schwartz inequality and to recall that (gn) satisfies (4.31). For more

details, see the end of the proof of Lemma 4.8 where similar arguments are used. O
5.2. Exponential tightness and proof of Lemmas 5.2 and 5.3.

Standard arguments (cf. section 10.4 of [KL]) permit us to construct a sequence of compacts satisfying

(5.3) from the following lemma.
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Lemma 5.5 For each 6 > 0 and smooth function G : A — IR, IP a.s.,

lim limsupydlogQ,,po{ sup | <G,m>—<G,ms> ‘ > 5} = —00. (5.20)
e=0 40 v |s—t|<e
0<s,t<T
For a € Qp and 0 < t < T denote
t d
B = B(G) = 41! / ds{ 3 3 (02,6) (10 Tare, (ns,a)}. (5.21)
0 i=1 zeA,

The proof of Lemma 5.5 goes along the same lines of the proof of exponential tightness for non gradient

systems given in [KL] and [VY]. It relies on the following Lemma, of which we postpone the proof.

Lemma 5.6 For each § > 0 and smooth function G : A — IR, IP a.s.,

lim lim sup 7% log P Po{ sup |h{"* — h]| > (5} = —o0. (5.22)
00 i

Proof of Lemma 5.5. For v small enough, we have (see [KL] page 271)

[T="1]
{ s |<em>-<amn>|>6fc J{ sw |<Gm>-<Gm.>|>0/4],
ot oo | ke<t<(k+1)e

where for a € IR, [a] stands for the integer part of a. Denote by (S});>o the semigroup associated to the
generator v 2L,. For every t > 0 denote by f;(n) the Radon-Nikodym derivative of the measure v£°S;
with respect to v£°. Using the fact that there is at most one particle per site, it is easy to prove that there

exists some positive constant C' such that for all n € S, and ¢t > 0, £/ () < exp(Cy~ %) and we have

QV_!;O{ sup |<G,7rt>—<G,7rS > | >5}
0Lensr

[Te~"]

Z E [fks { sup | < G,m(n) > — < G,mo(n) > | >6/4}]

0<t<e

< [Te_l]exp(C'fy_d)P,,po{ sup | < G,m(n) > — < G,mo(n) > | > 6/4}.
7 Lo<i<e

Therefore, in order to prove the lemma, it is enough to show that

lim lim sup v¢ log P Po{ sup | <G, m(n) > — < G,mo(n) > | > 5/4} = —00. (5.23)
e=0 450 0<t<e

On the other hand, from Lemma 5.6 and

lim sup v*log(a,, + b,) < max {hm sup v log a.;lim sup v* log b } (5.24)
v—0 ¥—0 v—0
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it is easy to see that the limit (5.23) is equivalent to

lim lim sup ¢ logP,,po{ sup | < G,m(n) > — < G,mo(n) > —h¥| > 5} = —00 (5.25)
20 40 7 Lo<t<e

that for any § > 0 and a € Qp. Next observe that
< G,my(n) > = < G,mo(n) > —h]™ = M,

where MtG’0 is the martingale in (5.7) with ¢ = 0. Then by exponential Chebyshev inequality the limit
(5.25) is bounded by

lim lim sup ~? logP,,go{ sup | < G,m(n) > — < G,mo(n) > —h"*| > (5}
0<t<e

e—0 ~—0

P,
< —ad + lim lim sup 7’1 logE 50 { sup exp (’Y_d|MgG’O )}
e—0 ~—0 0<t<e

for all @ > 0. Since ¢l < e® + =% and M;G’O = —M?’O then from (5.24), it is enough to prove

P
lim lim supy¢log E™ *%° { sup exp (fy_dM?G’O)} < Cy (5.26)
e=0 50 0<t<e
for some Cj € IR independent of a.
We now express the exponential of the martingale MfG’O through the quadratic variation of M?G’O and
the exponential martingale Z7“° defined in (5.6) with g = 0. For a > 0 and 0 < t < &, we have
—2d

exp ('y’dM;’G’O) = ZfG’O X exp (7—2 < MeG0 >t) (5.27)

< exp(Ca?y~ %) z00

with some constant C; = C1(G) such that y~¢ < M*%? >, is bounded by a?C;t. Finally, we just have to
apply the maximal martingale inequality and (5.27) to get

P
lim lim supy%log B~ *%° { sup exp (77dM?G’0)} =0.
e=0 0 0<t<e

This concludes the proof of the lemma. O O

Proof of Lemma 5.6. We follow some arguments used in section 7.6 of [KL]. For € > 0 small enough let

A = W, by exponential Chebyshev inequality

,,50{ sup |h* — A > 5} <

(5.28)
—6A. +~%log EP”f/O { exp (W_dAE sup |ht7’°‘ - h;”a|) }

ls—t|<e
0<s<t<T
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Therefore to conclude the proof of the Lemma, it is enough to show that

P

limsupy?logE **¥° { exp (’Y_dAe sup |hZ’“ - hZ’aD} <C
e—0 ls—tl<e
0<s<t<T

for some constant C' = C(G, T, 3). The proof of this lemma is essentially the same as the one of Corollary
7.6.3 in [KL]. The proof of [KL] uses the Garcia-Rodemich-Rumsey inequality and it relies on the following

lemma.

Lemma 5.7 There exist two positive constants C; and Cy such that for each 0 < s <t <T

EP”5° { exp (fy*d|t - s|71/2|hZ’a - hz"‘|)}

(5.29)
< 2exp (Clz Z ’Y.’L’ +Cz(|t—8|+].)’7_d).
i=1 x€A,
Proof. Denote
d
VG =YD (04.G)(v2)Iepre(n, @) - (5.30)
=1 €A,

Fix a constant profile 0 < p < 1, for s € [0,7] denote by f the Radon-Nikodym derivative of the measure
vhe Sy with respect to the Gibbs measure ;ﬁ**‘)(" ), where (S7) is the semigroup associated to the generator
y~2L.,. Then the left hand side of (5.29) can be rewritten as

EP a,Xg(p) [

fs(no)xeXp( Lt —s|” 1/2‘/ Va(G, nu)dum .

Using the fact that there is at most one particle per site, it is easy to prove that there exists some positive

constant C such that for all n € S,, f7(n) < exp(Cy~%). Since e®l < e? + e it is enough to estimate

PN e _ _ s
exp(Cy HE #3777 [exp ('y Lt — s 1/2/ V,Y"‘(G,nu)du) ] (5.31)
0
By Lemma 3.6. of [MOS] (with M = 1), we have that (5.31) is bounded by

exp(Or ) exp (|t — 5| (\4(6) + 504

with positive constant Cj given in Lemma 3.6 of [MOS] and A\3*(G) is given by the variational formula

21(G) = sup {y~te=al= [ VRGP + 5y SV g} 632

@o(p)

where the supremum is carried over all probability densities f with respect to u We now split the

current as
Joote = Jg,z—f—e + [Jz,w-i-e - J(q):,z+e] (5.33)
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where J° is defined in (4.10). ;From (4.15), see also Lemma (3.4) in [MOS], one easily obtains that

T, z+e

Joire =30 are = =679 (0(VooseH) (0)) (n(a) = (o + ) (((027) %) (2))

(5.34)
+ Oy (72)5

where the function ® is defined in (2.10). Then inserting (5.34) in (5.30), we obtain from (5.32)

AHG) <o {ft- 523 Y [ [ @26) 00038 1, 1.0) + 1(02,6) 1) G5 ] ) P )

i=1 z€A,
+ %7‘2@3\/1_”, \/f>“:,xo(,,)} :

where CY is a constant. Next we use the integration by parts formula for the current Jo for each x € A,

z,z+e’

3 sz O ) = [ O+ esmnte + O[(Vawse ) WldENO ). (539
By the elementary inequality 2uv < Au? + A~1v?, we obtain for fixed z € A,
It — SI’1/2{7’1(52G) (y) /Jg,m(n,a)f(n)ui"“(”) (dn) + |(0G) (vw)|Cé}
25 [ Oaa ) [V — T 1500 )

[(0:6) ()]
()

wm

(C5)" + Cs

for all A > 0, for some finite constant C3. To conclude the proof of the lemma it remains to take the sum

over z € A, e € £ and to choose A small enough. O

Proof of Lemma 5.2. Let u € D([0,T], M1(A)) such that Zo(u(-,)) < 400, then for all ¢ € [0,T], u(t,-)
is absolutely continuous with respect to the Lebesgue measure, denote by u(t,r) = p(t,7)dr. We have that
(p*ta)(-,-) converges to pu(-,-) in L*([0,T] x A). This implies that there exists a subsequence (ax)ren such
that (u* ta,)(:,) converges when k — +00 to p(-,-) a.e. for the Lebesgue measure in [0,7] x A. We first
not that,

Tinit (p(0,)) = sup (fg"(p(0,4)),

mecO(A)
o0<m<1

m(r)(1 — po(r)) / 1—m(r)
7(p(0, - :/ ———)p(0,r)dr + [ log ( ———— )dr.
560, = | Gy mm) 7@+ ], 108 (=)
Let M be a positive constant and suppose that Idyn(/"('a -)) > M. Then from (3.2), there exist £ > 0 and
G € C12([0,T] x A) such that

where

M —e < Ja(p()-

To prove the lemma, we only need to show that, there exist kg € IN and 0 < ¢9 < 1, such that for all
k>koand 0 < ¢ < ¢,
M —2e < B (u(-,)) = f3(no) + R(c, ar, G), (5.36)
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where R(c, ai, G) is such that lim._,o limy_, o, R(c,ar, G) = 0. The proof of (5.36) follows from the continuity
of D(.) and bounded convergence theorem (for details, see [Q1] pages 735 and 736 where the same inequality
is proved). O

Proof of Lemma 5.3. Since (2.23) we have for u(t,.) = p(¢t,7)dr

1 T T )
To(u(.)) < 5sgp{zc | [pwveve- [ [ oa-pive }

It is therefore enough to prove the lemma with the functional
T T
T (u(.,.)) = sup {20 | [ poweve- [ [ pa- p)WGP} ,
G o Ja 0o JA

Denote by R the function R(p) = p(1 — p). For a > 0, denote by ¢, the approximation of the identity
defined by (5.1). For smooth function G(-,-) € C12([0,T]x A) 0 < a,c < 1 consider the family of functionals
given by

instead of Z;.

RN =20 S [ [ (0,6 1D (s 1))
0 A

1<k,j<d

x (2¢)7" [(/,Ls * 1) (1 + cej) — (s * ta) (r — cej)]

_y /O " s /A dr (06, Ga)* (M) R (11 % 1) (1))

1<k<d
(5.37)
so that for each p(.,.),

lim lim sup sup F7 (u(-, ) = Zg (u(-, "))

=0 450 @

in the sense that if the right hand side is infinite then the left hand side is infinite as well. Let

T
FS.(u() =20y / d57% 3" (8, Gs) (12)72 Do (17 % 1(0))
k,m

TEA,

X Ty {(20)*l [777 *ta(ey tey) =77 % La(—cvflem)] } (5.38)

d T
- Z/o dsy? Z (kG5 (72))? R(1Y % 14(2)).
k=1

zEA,

To prove the lemma is therefore enough to show that there exists some positive constant Ay such that, for
any fixed G P
lim lim sup lim supy?log E~ *3° [exp (v_dﬁ’c )] < A . (5.39)

a,c
c=0 40 ~y—0 &Y

This last limit can be proved by using the same arguments to obtain the energy estimate (cf. [KL], [QRV],
[V]- O
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6 Lower Bound

In this section we establish the large deviations lower bound.

Definition of D° Denote by D° the class of trajectories p € D([0,T], M(A)) such that for t € [0,T],
u(t,dr) = p(t,r)dr and there exists V. € C*2([0,T] x A) and a function m : A — (0,1) so that the profile
given by the density p(-,-) is the weak solution of equation (4.6) with initial condition p(0,-) = m(-).

The strategy of the proof of the lower bound consists of two steps. We first prove that for each u € D° and
each neighborhood N, of y in D([0,T], M1(A)), for almost all disorder a € Qp

liminf 7*log @y {Nu} > ~Z(u-, ))- (6.1)

The proof of the lower bound is then accomplished by showing, see Section 7, that for any u(-,-) €
D([0,T], M1(A)) with Z(u) < oo we can find a sequence of p¥ € D° such that limjp_,oo p* = p in
D([0,T], M1(A)) and limg_eo Z(p*(-,-))) = Z(u). The lower bound (6.1) depends on establishing laws
of large numbers, in hydrodynamic scaling, for weak random perturbations of the original process, the one
having generator (2.7), and controlling by the Girsanov formula the relative entropies of the processes that
go with these perturbations. Let V € C12([0,T] x A) and v = (vy,...,vq) € @< be a vector of local random
function defined at the beginning of Section 4. Let P,‘,/;’f be the probability measure on the path space
D([0,T),S,) corresponding to the Markov process (1;)¢>0 with generator vy 2LY?, see (4.4), starting from
the Bernoulli product measure v, 0 < m(yz) < 1, for z € A,. Recall from Sections 2 that we denoted by
PV$0 the law of y~2L, process with initial condition 1/5,’0('), being po : A — [0, 1] the initial fixed profile. Let
H (P,‘,/:;m”|P”:o) be the entropy of the law P,‘,/:;J’ of the perturbed process with respect to P,ro. We will prove
in Lemma 6.1 that v*H (P,YiﬂP,,so) as 7 — 0 converges IP almost surely to the sum of the initial entropy
and the dynamical contribution Z¥ depending on the local function v € G? and V. Then in Lemma 6.3, we
will show that the lower bound defined as the infimum over v of Z% coincides with the upper bound rate for
€ DO.

. dP:,,;:: dv® %,% d
Since, see (4.21), dPu:o = ﬁ(no) x Z£'% exp {7 ?Ov,,(7)} we have
el
Vo dyfr"’ m P"? .y —d
H(PUIP,0) = [ log (2 (n)) dvi(n) + By [log (27°%)] + 70w (1) (6.2)
v

For k,j € {1,...,d}, consider the local function W}, ;(n) defined replacing g with v in (5.15),

d
b =Y C%0,es5m) Ak (n,vi) A (n,v;)

i=1
d
= C%0,ei3m) [~V n(0)dik + VO Tug] x [-VOn(0)d;; + V> T;] .
i=1
For p € [0,1], see (4.16), denote
Wioi(p) = B[B"7 (Wy,)] (6.3)
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and by Wv(p) the associate matrix. Define the (non random) rate functional

T —~v
= é/o dt/A ((FV)(tr) - W (olt,))(V)(Er))dr kg€ fl,....d} (6.4)

where u(t,dr) = p(t,r)dr, t € [0,T]. Moreover, for each continuous m : A — (0,1), denote by p™V(.,.)
the weak solution of (4.6) with initial condition p™V (0,-) = m(-). The u™V"(-,-) stands for the path on D°
having density p™V (-,-). We have:

Lemma 6.1 For any V(-,-) € CY2([0,T] x A) and v € G¢, for any continuous function m : A — (0,1), we
have IP a.s.

tim, o H(PUPygo) = Tiggy (™Y (0,) + 5 (™Y (). (6.5)

Proof: The strategy to show (6.5) is the same as in Lemma 5.4. of [KL]. The contribution to (6.5) at time

m(-)

t = 0 is easy to compute since vy’ is a Bernoulli product measure with m(yz) as the probability of the site

z being occupied. We obtain

m(r)

ti * [ tog ( d:: o) = [ 10g ( : mie)ar-+ [1og (=5 05) (- me)ar (6.:6)
=7 init(ﬂm’v(oa ))-

Applying similar arguments as in Section 4 one obtains

dpP"? S5\ _ gz m V.
lim By [log (27 7%)] = 75 iV (-.).
([l
For p € D° with associate profile p(-,-), denote
Lower(B(7) = = lIgd/ dt/ VV (t,r) - Wv(p(t,r))(VV) (t,r))dr. (6.7)
vG
Lemma 6.2 For each pu € D° with density profile p(-,-), we have
Tgwer (K / dt / vv (t,r) - olp(t,r))(VV) (t,r))dr. (6.8)
Proof: Since $oy,;(p) = x(p)Dr,;(p), it is enough to show that
1
sup | > inf W, ;(p) = x(p)Dij(p)| =0. (6.9)

pefo,1] 2 vea

5/may/2005; 10:06 37



We have from (5.17) and (5.19)

d
1—~v
SWii () =X (0D () =V, (3., + £, 3y, + L0 + Y Dielp)ibe, )
=1
d d
—v, ( L0+ Die(p)e, o IO, + Lo0k + ZDk,g(p)zbw) (6.10)
=1 =1
d d
V(32 Do, Ty, + L%+ 3 Dicalo)ie, ) -
=1 =1

;From Theorem 7.22 of [FM], we can find a sequence (vy) € @ so that (4.31) holds with gy replaced by
vny. By Remark 7.20. of [FM],

inf sup Wv- - D,'p‘
e S |5 ki (P) — x(p) Dk, (p)

ep /(pel
< lim sup ‘V (Jg e T LOviN + ZD], :L’n 30 e + Lo N + ZDk elp n’n)‘

S 6.11
o0 pef0,1] =1 =1 (6.11)

£ d
v :
+ lim sup |V, (Yo Dielp) ™", If ., + Lovn + Y Drelp) ") -
=1

n—oo pe 0 1] —1
By Schwartz inequality the right hand side of (6.11) is bounded by

€¢

€¢
limsup sup {Vp ( 0c; +£OUJ,N+ZD,, ¢n’")Vp ( 0,61 +£kaN+ZDH nn)}

n
nfoo  0<p<l =1 =1

€¢

d
+ C limsup sup V2 (JO en + L0 N + ZDH(/’) "")
ntoo 0<p<1 —1 n

which is bounded by { ~ + cC-L } for some positive constant C. Letting N 1 oo the lemma is proved. [
It is immediate to show the following.

Lemma 6.3 Let u(-,-) € D° with associate profile p(-,-), then

Tower (7)) = Zayn (u(-))- (6.12)

Proof: We have that
- /0 " /A (W)t - olp(tr) (VV) (1)) dr

T
- sgp{; e [ ((F7)en - ottt (V) ) ar (6.13)

—% /OT dt /A ((W) (t,7) - o(p(t, 7)) (V) (t,r)dr}
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where the supremum is taken over ¢ € C12([0,7] x A). Since p(-,-) is a weak solution of (4.6), for all
¢ € CH2([0,T] x A) we have

% /OT dt /A ((VV)(t:1) - olp(t,r) (Vo) t,7) ) dr =
/OT/Aatp(t,rw(t,r)drdt+/0T/A ((v¢)(t,r) . D(p(tar))(vp)(t,r))drdt

T
-4 | [ (@0 - olottrn(@0 o))t

Inserting this last identity in (6.13) we obtain the result. O
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7 Extension of the Lower Bound

To complete the proof of the lower bound it remains to show that for any u(t,dr) € D([0,T], M{(A)),
with Idyn(p(-, -)) finite we can find a sequence of pu¢(-,-) € D° such that u(-,-) = u(-,-) in D([0,T], M1(A))
and lim,_,o Idyn(/f(-, ) = Idyn(/‘('v -)). We define the class of profiles £.

Definition of & We denote by & C D([0,T], M(A)) the class of profiles p(-,-) having Idyn(/‘('v -)) finite.

Definition of & We denote by & C D([0,T], M9(A)) the class of evolving profiles p(-,-) that are weak

solutions of 5 . 5
p — - —_ -
%39 (v {E -ven}) (71)

with some initial profile 0 < p(0) = pg < 1, for some V € C1:2([0,T] x A). Further they have the following
properties:

inf p(t,7) >0 for t € [0,T7],

reA

irelﬁ(l —p(t,r)) >0  for te0,T].

Remark that & C D°, see the beginning of Section 6 for the definition of D°. We have the following result.

Theorem 7.1 The & is properly dense in €. That is, for any profile p € & there exists a sequence (p.) C &,
so that

liII(l) Pe=0p in the topology of D([0,T], M1(A)) (7.2)
e—
and

151(1)Idyn(pe(a )) = Idyn (p(7 )) (73)

Proof: Denote R(s) for s € [0,1] the solution of

R(O, ) = p(T, )

For each s € [0,1] we extend the definition of p to [T,T + 1] setting p(T + s,7) = R(s,r) where R(-,")
is the solution of (7.4). For s € [0,1] denote by 8sp the time translation of p, (8sp)(t,r) = p(t + s,r) for
(t,r) € [0,T] x A. Since R solves (7.4)

Idyn((esp)('a )) < Zdyn(p('a ))7 s € [07 1] (75)

Let ®5(-) be the heat kernel on A with periodic boundary conditions at time #, which we use as mollifier.
Define

Ph (ta ) = p(ta ) * (I)h() te [Oa T] (76)
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Since the the properties of the heat kernel pp(t,-) > 0, 1 — pp(¢,-) > 0 for ¢t € [0,T]. For €g = 27" consider
the C*°(IR) mollifier ¥, (s) for s € IR, having support on [0, €], [ ¥,,(s)ds = 1. Further set € = (¢, h) and
define

(1) / s, (s) ((Bsp)), (6s7)ds ¢t €[0,T), €A (7.7)

In the formula (7.7) we first take p, then we extend it and consider for any s € [0, 1] the family of translated.
We apply to each of them the smoothing in space @, then we convolve with the convolution in time ¥,
We denote the result of these operations shortly by p.(t,r), for (¢,r) € [0,T] x A, and € — 0 means h — oo
and €g = 0. Clearly pc(-,-) € &, pe € C([0,T] x A), pe(t,-) > 0, 1 — p(t,-) > 0 and we can find for
each € an unique V. € CY?([0,T] x A) solution of the equation (7.1) with initial condition (po).. Namely

considering ¢ as a parameter we can solve for each fixed t € (0,7') and for each e

V- ol )Y it = 57 (o7 {27 o }) - T 79

The (7.8) is an uniformly elliptic equation in A, having o(p.(t,-)) strictly positive and since by assumption
D(-) € C**([0,1]) the solution V (¢,-) € C%(A), t € (0,T), see [LU]. We define by continuity V,(t,-) in 0 and
T. Note that

6pE / s, (s ( S(Z) ))h (t,r) for te(0,7), r €A. (7.9)

By construction lim,_, o, pe = p in D([0, T], M1(A)). Since Idyn(p(-, -)) is lower semicontinuous it is enough
to show that
lim Supzdyn(pe('a )) < Idyn(p('a )) (710)
k—o0

The proof of (7.10) is handled in the same way as Lemma 6.8 of [QRV]. The finiteness of Ziyn (p(-,-)) implies
in particular that, see (3.8) and [QV], there exists a vector P(t,-) so that dyp = V - P and

T T
/0 18I 1 oyt = / /A (P(t,7) - [o(p(t,7)]* P(t,r))drdt < C. (7.11)

(From the definition

Tayn (0 / / (t,r) t, 7))L P(t,r))dtdr + iIg(p)
——/ / (t.1) - x(p(r, )"V p(r, £))dtdr + = / / (£,7) - V(] % p)(r, £))dltdr

1
- 5,6/ / D(p(r, )V p(r,2) - V(] % p)(r, t)dtdr + —/ / V(T % p) (1) - V(] % p)(r, t)dtdr.
0 A
(7.12)
Applying the inequality ab < 1[Ca® + b?] for C > 0 we obtain pointwise
(P-x(p)*Vp) = (P-a(p) a(p)x(p) ' Vp)

%(X(p)‘lw ~o(p)x(p) V).

(7.13)
C(P-a(p)~'P) +

MI»—A
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Take C' = 2 in (7.13), recall that D = and we obtain that

/ / (P(t,7) - x(p(r,8)) "2V p(r, £))drdt < / / (P(t,7) - 0 (p(r, £)) "L P(t, r))drdt + %IO(P).
0 A 0 A
Similarly we obtain that

(P-V(I%0)) < (P-0(p)"P) + 1(0V (7 %) (% ).

Then since (7.11) and by assumption Zy(p) is finite, each single term of (7.12) is finite on its own. Therefore

to obtain (7.10) it is sufficient to show that (7.11) implies the uniform integrability of

/T/(Pe(t, ) - o(pe(r,t)) "L P.(t,r))drdt (7.14)
o Ja

and to show that

Namely all the remaining terms in Idyn(pf(" -)) converge to the respective terms in (7.12), since the conti-
nuity assumptions on D(-), o(-). The (7.15) is proved in Proposition 7.2, stated below. Next we show the
uniform integrability of (7.14). Since (2.23) we have that pointwise

|P? -1 |P?
—— < (P-o PY<C 7.16
Cp(l—p)_( (b)7P) < p(1—p) (7.16)
where |P|> = 3¢ | |P;|?. Then we obtain
(P.-a(pe) 'P.) < C&. (7.17)
= p(l=pe)

Further for a function f(¢,x)
(fult,2))* = ( [ dsayp, (e - nO0) y))

_ Y/ (] (0] (e DI AT ) (7.18)
(fmd WOV =) T G Y

1, ~ N
< (mf ) (t,2) (p(1 - p)), (1, ).

1-—

By convexity
(p(L=p)). (t,2) < pe(t, x)(1 — pe(t, ). (7.19)
Then taking in account (7.17), (7.18) and (7.19) we obtain pointwise that

Lils
p(1—p)

(Poootp) Py <€ (o) <e (-l P, (7.20)
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The last term is uniformly integrable, which implies the uniformly integrability of (P - o(pe) "1 P.). O

Proposition 7.2 Suppose Io(p(-,-)) finite and set

pelt,r) = /A sy B ()Bu(r = 1) Oup)(:9)

then
tim Zo(pe( ) = Zo(p(-,))- (7.21)

Proof: By the boundedness of the diffusion coefficient and (2.23) we have that

C/ /Ap |thr|2 oyt < To(e( / /(thr (//:(( ))))Vp(t r))dtdr

2
c/ / |V” (¢, | dtdr.
APt t,r))

X.(t,r) = (Vpe(t,r) : %vmgm)

(7.22)

Denote

and

_ D(p(t,r))
X(t,r) = (Vp(t, r) - mVp(t,r)> .

As in the previous theorem, to show (7.21) it will be enough to prove that in measure with respect to the
Lebesgue measure in [0, 7] x A, lim,_,o X, = X and that X, is uniformly integrable in [0,7] x A. These two

properties imply (7.21). One can show, as in the previous theorem, that

Vet )P Vo s (0, DO (0
X < Oy el <0 (G2 5) 60 < (Vo S5 v) @

Then X, is uniformly integrable. O
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8 Appendix: Non gradient tools

We recall some tools used in the non-gradient methods. We refer mainly to [FM], see also [KL], section

VIL. Given a € Qp, denote by £° the pregenerator of the DLG process in infinite volume (cf. (2.15)),

=3,z + &) [(Varere )] (8.1)

e€€ gz

where f is a local function on S. We refer to [Li] for the construction of the process in the infinite volume
setting, and we recall that for every A € IR, £° can be extended to a self-adjoint operator on L?(u**). For
a finite non empty subset V of Z%, p € [0,|V|™1,...,1] and a € Qp, the canonical measure vey is defined
as in (2.17), with A, replaced by V. We denote by M*(V) the set of all canonical measures as p varies in
[0,]V]™1,...,1], and by v* a generic element of M*(V). Let G C @, see (2.18), be the space of bounded
cylinder functions h for which there exists a finite non empty set V C Z% such that the support of h(-, ) is

contained in V and, for any given disorder configuration o € Q2p, all canonical expectations on V are null:
G= {h € @ ;support of {h(-,@)} CV and Va € Qp, Vv* e M*(V), E” [h(-,a)] = 0}. (8.2)

Given a positive density 0 < p < 1, f and g in G, define

Eua,mp)( S owh, (-7 Y ng)], (8.3)

o<t o<t~

Vy(h,9) = Jim (26) I

where L9 is obtained from £° by restricting jumps to Ag ¢, the cube centered at the origin of side £ and X (p)
is the annealed chemical potential corresponding to the particle density p, see (2.6). In the extreme densities
cases p =0 or p =1, i.e. when the measure is concentrated on configurations n = 0 or n = 1 in Ag ¢, for any
t e Z, set V,(h,g) = 0. It has been shown in [FM], Theorem 7.2, that the above limit exists and is finite.
Moreover V,(-,-) defines a semi-inner product on G. When h = g we write V,(h) in place of V,(h, h).

Given s = 2+ 1 with £ € IN and e € &, let Af ; and A§ ; be a couple of adjacent cubes of diameter s,

l,e

centered respectively at —(¢ + 1)e and at fe. For any given configuration 7, denote by ml:¢, m? and m¢

the densities respectively in A{ ;, AS ;, and A5 ;U A{ ;. Given an integer s’ with s < s/, set

55 = =E* [m>¢ —mpeimé] and of, =m2° —m)® — ¢ . (8.4)
Note that IE[¢; ] = 0. The main step to obtain a generalized Fick’s law, see [FM], Theorem 7.18, is to

show the followmg property:
(P) For d > 3 and for any e € &, ((¥5.,)/1), 50

semi-inner product V,, and its limit points (1¢)cce form a basis of the subspace (L°G)*

is a Cauchy sequence in the space G endowed with the

An important step to show this property, see [FM] section 7.2, is the introduction of the following auxiliary
functions. For the integer s =20+ 1,/ € IN and e € &, let

Wz:ﬁ 2 {|A15| > “Ea)

Ll zens , yeAS ,

where
we, = (1 + e—(a(z‘)—a(y))(n(w)—n(y))) (77(31) — ﬂ($))
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and Af ; and A§ ; are the cubes defined before (8.4). When x and y are nearest neighbors, wy , is the current

associated to a particular choice of the rate C°(z,y;n) corresponding to ®(E) = 1+ e~ ¥ in (2.16). It has

the important property to have mean zero with respect to any measure v* in M*(V), V C /A being any

bounded set containing z and y. Furthermore it yields a simple integration by parts formula
/ wg yf(mdv®(n) = / [n(z) — n()](Va,y f)(m)dv™(n) .

It is proved in [FM], Theorem 7.11, that for any e € £ and 0 < p < 1,

%_WZ):O'

lim V, (2p(1 — p)\'
Jim p( p(1—p)XNo(p) ;s p

Moreover, if for g € G and h € G we define

(h9),0= . BB (hrg)],

zeZ?

we obtain by the definition of V,(.,.) the following properties (cf. Lemma 7.1 of [FM]):
Vo(h: L) = =(h:9), 0

0,ex°Y0,em

Skom asrote
Vo (3860 38,) = HRIB B (000, e4im) (Vorun(0)*)]

Wen
V, (Jg,ek; Tn> = _6k,m2p(1 - P):

(8.6)

(8.7)

where 0y, is the Kroenecker delta and J 8,% is defined in (4.10). Thanks to (8.5) and to the last identity in

(8.7) one obtains, cf. 7.16 of [FM], that

€m

i Vo (30 25 =1, (0 000) = Sk
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