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Abstract

We study a 4-fold symmetric kicked-oscillator map with sawtooth kick function.
For the values of the kick amplitude λ = 2 cos(2πp/q) with rational p/q, the dynamics
is known to be pseudochaotic, with no stochastic web of non-zero Lebesgue measure.
We show that this system can be represented as a piecewise affine map of the unit
square —the so-called local map— driving a lattice map. We develop a framework
for the study of long-time behaviour of the orbits, in the case in which the local
map features exact scaling. We apply this method to several quadratic irrational
values of λ, for which the local map possesses a full Legesgue measure of periodic
orbits; these are promoted to either periodic orbits or accelerator modes of the kicked-
oscillator map. By constrast, the aperiodic orbits of the local map can generate various
asymptotic behaviours. For some parameter values the orbits remain bounded, while
others have excursions which grow logarithmically or as a power of the time. In
the power-law case, we derive rigorous criteria for asymptotic scaling, governed by
the largest eigenvalue of a recursion matrix. We illustrate the various behaviours by
performing exact calculations with algebraic numbers; the hierarchical nature of the
symbolic dynamics allows us to sample extremely long orbits with high efficiency, i.e.,
uniformly on a logarithmic time scale.
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1 Introduction

The boundary between regular and chaotic motions in hamiltonian systems has been
studied for two decades [7,30]. In a generic system, which is neither integrable nor ergodic,
chaotic orbits are strongly unstable near the centre of the chaotic regions, and near-stable
in the vicinity of the boundary, with these two regimes alternating irregularly. It has
been known for a long time that the intricate structure of the islands of stability near the
boundary affects transport and correlation decay [7,23]. This phenomenon is particularly
prominent in a class of systems characterized by extended networks of thin chaotic layers,
where numerical simulations reveal orbits which have lengthy sojourns near islands of
stability —so-called sticky orbits— interspersed with rapid flights within a chaotic layer,
leading to strongly anomalous diffusion and fractional kinetics [37–39].

It is possible to construct deterministic models which feature only boundary-type dy-
namics; these models are necessarily non-generic (invariably they are discontinuous), and
include billiards as well as discontinuous kicked-oscillator models [29, 40, 41]. Their Lya-
punov exponents are zero, but, through a mechanism of branching without stretching
generated by the discontinuity, they do reproduce the skeleton of the complex phase-space
structures which one associates with the chaos border (see figure 1). This phenomenon

Figure 1: The phase space of a piecewise isometry of the torus. This plots shows the mosaic of
cells of the map K defined in equation (7), for the parameter λ =

√
2.

is known as pseudochaos1. We note that the chaos border has also been studied using
probabilistic models [2, 31,32].

One model of pseudochaos can be derived from the kicked oscillator systems, which are
the simplest and best studied maps for exploring the mechanism and transport properties
of sticky orbits. This is also known as the stochastic web map, due to the presence, for al-

1This term has also a somewhat different usage [8], while other authors call it weak chaos [15].
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most all not too large parameter values, of a web-like stochastic layer within which chaotic
orbits are typically unbounded [36]. Physically, the map describes a one-dimensional har-
monic oscillator with position x and momentum y which is given an instantaneous kick in
resonance with the natural oscillation frequency, with the amplitude of the kick equal to
a periodic function f(x). The map relating phase-space points preceding successive kicks
is given by

(
x
y

)
7→
(

cos θ sin θ
− sin θ cos θ

)
·
(

x
y + f(x)

)
θ = 2πr/s. (1)

In the literature the kick function f(x) is usually chosen to be λ sin(x) with |λ| < 2,
in which case numerical simulations reveal a stochastic web with apparent crystalline
symmetry for s = 3, 4, 6 and quasi-crystalline long-range order for s = 5, 7, 8, . . .. One
has studied how the displacement of a phase point increases with “time” t, the number of
iterations, and found asymptotic power-law behaviour tµ, where µ depends non-trivially
on the parameter λ. For special values of λ (found by numerical experiment), one finds
sticky orbits associated with self-similar island structures.

The focus of the present investigation is a limiting case of the s = 4 kicked-oscillator
map, in which the kick function is, up to possible rescaling and a shift of origin, a discon-
tinuous sawtooth function

f(x) = λ (x mod 1) λ = 2 cos(2πp/q). (2)

This model was introduced as an example of pseudochaos in [29].

With the choice r/s = 1/4 and a simple change of variables, the map (1) becomes

W (x, y) = (y, −x− f(y)) (3)

and the periodicity of f endows the map W with a discrete translation symmetry with
fundamental domain Ω = [0, 1)2. Indeed, defining the π/2 rotation

F =

(
0 1
−1 0

)
(4)

then, clearly, for all (m,n) ∈ Z2

W (x+m, y + n) = (y + n, −x−m− f(y)) = W (x, y) + F · (m, n) (5)

which implies at once that W 4 commutes with integer translations:

W 4 (x+m, y + n) = W 4 (x, y) + (m, n) .

The lattice translational symmetry gives us a decisive simplification as follows. Let us
denote by bαc and by {α} = α mod 1, respectively, the integer part (floor) and fractional
part of a real number α, so that α = {α}+ bαc. Then, from (3) and (5)

W (x, y) = W ({x}+ bxc, {y}+ byc)
= W ({x}, {y}) + F · (bxc, byc)
= K ({x}, {y}) + (0, b−{x} − f({y})c) + F · (bxc, byc) (6)
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where
K (a, b) = (b, {−a− λb)}) (a, b) ∈ Ω. (7)

The action of W on R2 is now decomposed into the action of K on Ω and a lattice isometry.
The former affects the latter but not vice-versa, and therefore we have a skew dynamical
system on Ω × Z2. This decomposition will allow us to take advantage of the existing
knowledge of the orbits of K in order to describe and classify those of W efficiently.

The piecewise affine map K has been studied extensively since the late 1980’s. Early
interest was in its role as a second-order nonlinear digital filter, with the sequence bvn +
f(un)c, n = 0, 1, . . . , describing the overflow oscillations. A number of papers on digital
filters [4, 9, 10, 12] explored the fractal structures generated by iteration of the map K.
The implications of the map for dynamical systems theory became apparent when Ashwin
showed [3] the equivalence of K to the sawtooth standard map

(x, y) 7→ (x+ f(x), y + x+ f(x)) ,

a linearized version of the standard map of Chirikov and Taylor, and obtained a number
of general results regarding the periodic and aperiodic orbits, the latter generating fractal
structures in the absence of true chaos (i.e., of non-zero Lyapunov exponent).

Perturbation of the sawtooth standard map by adding a small sinusoidal term to f(x)
has been shown by Dana [11] to produce a map which is conjugate to a kicked-oscillator
map with a pure sinusoidal kick function. He has found and explained the mechanism for
sticky orbits, within the stochastic web, which intermittently shadow accelerator modes
and in this way escape to infinity with superdiffusive power-laws.

An additional role for K was found in [25, 28]. For certain rational rotation numbers
p/q in equation (2), the restriction of K to a uniformly distributed, dense set of points of
the unit square is conjugate to a map on the integer lattice Z2 describing elliptic motion
on the plane, subject to round-off

K̃ : (x, y) 7→
(
bλ̃xc − y, x

)

where λ and λ̃ are conjugate roots of a quadratic polynomial with integer coefficients.
The dual mappings K and K̃ generate fractal structures in the square and corresponding
families of fractal “snowflake” orbits on the infinite lattice. In contrast to what we shall
find for the maps K and W , the fractal dimensions associated with the asymptotic long-
time behaviour of the orbits of K and K̃ are identical.

In recent years it has been recognized that the map K on a square, recast as a piecewise
rotation on a rhombus, provides a nice example of the general class of piecewise isome-
tries [1, 5, 6, 16–22, 24], generalizing to two dimensions the well studied notion of interval
exchange maps. The case of quadratic irrational parameter λ has been thoroughly studied,
and we shall make extensive use of these results in the current work. The central theme
of self-similarity in those models has been extended to a more general concept of recursive
tiling in some cubic examples as well, where it has made possible a systematic analysis of
periodic and aperiodic orbits [20, 26,27,33].
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As we have seen above, the sawtooth kicked-oscillator map W decomposes into a local
piecewise affine map K (conjugate to a rotation by 2πp/q = cos−1(λ/2)) and a global
lattice map (rotation by π/2 followed by a lattice translation). Technically, it is useful
to think of W as lifting the well studied dynamics of the local map K to the entire real
plane. At that level, a new set of questions arises, such as whether orbits of W lifted from
periodic orbits of K remain periodic, or become promoted to accelerator modes which
escape ballistically to infinity. Similarly, one can ask whether the aperiodic orbits of K,
confined to a fractal set of Lebesgue measure zero, are promoted to escape orbits, and if so,
how rapidly (sub-diffusively, diffusively, or super-diffusively) the orbits move to infinity.
After developing the necessary mathematical machinery, we shall answer these questions
in a variety of examples with quadratic irrational λ.

Central to our analysis of the lifted map W is the fact that the orbits of W are governed
by exactly the same symbolic dynamics as the orbits of K. To trace out the local orbit in
Ω, one associates an appropriate rotation and translation vector with each symbolic step.
The accompanying lattice trajectory is obtained from the identical steps in symbol space,
inserting global rotations and translation vectors in place of the local ones.

The asymptotic scaling behaviour of the K and W -orbits is a consequence of the
scaling of the respective local and global translation vectors. If successively finer length
scales in Ω are assigned level numbers L = 0, 1, . . ., then the local translations scale as ωL,
ω < 1, whereas the corresponding iteration numbers scale as ωLT , ωT > 1. This gives rise
to a fractal geometry of the aperiodic orbits2 of dimension logωT / logω. As we shall see,
there is a recursion relation for the global translation vectors as well, characterized by a
matrix M . In some of the quadratic models, the recursion is trivial and the orbits remain
within a uniformly bounded distance from the starting point. In other models, there is a
unique largest eigenvalue of M , whose magnitude ωW > 1 introduces a third important
scale factor. In these models we have power-law growth, with asymptotic behaviour tµ,
µ = logωW / logωT . Whether the power-law is sub-diffusive, diffusive, super-diffusive, or
ballistic therefore depends on the relative sizes of ωW and ωT .

The remainder of the article will be organized as follows. We will begin, in section 2, by
stating and proving a number of general properties of 4-fold symmetric kicked-oscillator
maps and their corresponding piecewise affine maps. After reviewing, in section 3, the
conceptual and mathematical framework of recursive tiling in models with quadratic irra-
tional parameter, we develop in section 4 some general criteria for power-law asymptotics.
We then proceed to the details of the specific cases in section 5, where we demonstrate rig-
orously the existence of orbits with various asymptotic behaviour, by verifying the above
criteria using exact arithmetic of algebraic numbers. We conclude with a concise table of
results for all of the models with quadratic λ studied in [24].

2Unless stipulated otherwise, the term ‘aperiodic’ refers to the map K.
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2 Basic properties

We introduce the shorthand notation z = (x, y), {z} = ({x}, {y}), bzc = (bxc, byc), and
define the coding function ι as follows

ι(z) = b−{x} − λ{y}c = ι({z}).

The code (ι0, ι1, . . .) of the orbit of z is defined by the equation ιk = ι(W k(z)). (We shall
use the symbol ι for both coding function and code, as this will not lead to confusion.)
We now rewrite equation (6) as

W (z) = K({z}) + (0, ι({z})) + F · bzc. (8)

This equation can be iterated to give

Lemma 1 For all n > 0 we have

Wn(z) = Kn({z}) +
n∑

k=1

Fn−k · (0, ιk) + Fn · bzc. (9)

In particular, we have {W n(z)} = Kn({z}) and the escape rate is at most linear: ‖W n(z)‖ =
O(n) for n→∞.

Proof. We regard equation (8) as the base case for induction. Assuming the lemma to
be valid up to n, then

Wn+1(z) = W (Kn({z})) + F ·
(

n∑

k=1

Fn−k · (0, ιk) + Fn · bzc
)

as Kn({z}) is the only non-integer quantity in the right-hand side of the equation. Thanks
to (8), we have

Wn+1(z) = Kn+1({z}) + (0, ιn)

+
∑n

k=1 F
n+1−k · (0, ιk) + Fn+1 · bzc

= Kn+1({z}) +
∑n+1

k=1 F
n+1−k · (0, ιk) + Fn+1 · bzc

which completes the proof of equation (9). The statement ‖W n(z)‖ = O(n) follows from
the boundedness of the code, and the fact that the eigenvalues of F belong to the unit
circle. The validity of the equation {W n(z)} = Kn({z}) is evident. �

Thus a periodic orbit for W must give a periodic orbit for K and an aperiodic orbit
under K must remain aperiodic when lifted to the plane. As to the converse, we have

Proposition 2 If z ∈ R2 is such that {z} is periodic of period T for K, then
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(i) If gcd(T, 4) = 1, then z is periodic for W , and its period is one of T , 2T , 4T .

(ii) If gcd(T, 4) = 2, then z is periodic for W , and its period is one of T , 2T .

(iii) If gcd(T, 4) = 4, then W T acts as a translation

W kT (z) = z + kv

where v is an integer vector such that ||v|| ≤ T b1 + |λ|c.

Notice that v may be zero, and in this case z is a T -periodic point for W .

Proof. Let z be such that {z} is a periodic point of period T for K, and let (ι0, ι1, · · ·)
be its code. Assume that T is coprime to 4. Then, for any integer a, the integers a, a +
T, a + 2T, a + 3T are congruent modulo 4 to 0, 1, 2, 3, in some order. From equation (9),
and recalling that F 4 = Id, we obtain

W 4T (z) = K4T ({z}) +
4T∑

k=1

F 4T−k · (0, ιk) + F 4T · bzc

= {z}+ bzc+
T∑

k=1

(
F−k + F−k+T + F−k+2T + F−k+3T

)
· (0, ιk)

= z +
T∑

k=1

(
F 0 + F 1 + F 2 + F 3

)
· (0, ιk) = z.

If T ≡ 2 (mod 4), then 2T is a multiple of 4, and hence

W 2T (z) = {z}+ bzc+
T∑

k=1

(
F−k + F−k+T

)
· (0, ιk)

= z +
T∑

k=1

(
F−k + F−k+2

)
· (0, ιk)

= z +
T∑

k=1

(
F−k − F−k

)
· (0, ιk) = z.

Finally, if T ≡ 0 (mod 4), we have that

W T (z) = z +
T∑

k=1

F−k · (0, ιk) = z + (a, b)

where

a =

T/4−1∑

k=0

(ι4k+3 − ι4k+1) b =

T/4−1∑

k=0

(ι4k+4 − ι4k+2).

Thus
W jT z = z + jv
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Figure 2: Accelerator mode for kicked-oscillator map W with λ = −
√

3. The local rotation period
is T = 1182611492, and the displacement per period is v = (10496,−10496).

where

‖v‖ =

∥∥∥∥∥
T∑

k=1

F T−k · (0, ιk)
∥∥∥∥∥ ≤ T max |ιk| ≤ T b1 + |λ|c.

We see from proposition 2 that it is possible for some periodic orbits of K to be
lifted to accelerator modes, for which the orbits of W 4 move to infinity with constant
average velocities. Figure 2 shows a long-period accelerator mode for λ = −

√
3. When

both periodic and accelerator-mode orbits coexist in a model, there may also be hybrid
aperiodic orbits which spend part of the time shadowing periodic orbits and part shadowing
accelerator modes, the net effect being power-law asymptotic behaviour with a power
strictly less than unity. Similar sticky orbits were studied by Dana [11] in the context
of the sine kicked-oscillator map. In our models, all aperiodic orbits are sticky, and so
we might expect that in those cases where accelerator-mode and periodic orbits coexist,
typical aperiodic orbits will exhibit power-law long-time behaviour. We will present several
such examples in section 5.

3 Self-similarity in quadratic models

In this section we review the role of self-similarity in organizing the orbits of the map
K on the square Ω, and then extend the formalism to the map W on the plane. We
shall see that the same hierarchy of polygonal return-map domains, with its associated
symbolic representation, serves as the organizing principle for both cases. In order to make
immediate use of the results of [24], we will need to generalize slightly the definition of K,
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introducing an additional non-zero real parameter τ . The map is defined on the half-open
square Ω = [0, τ)2 for τ > 0 and (τ, 0]2 for τ < 0. Introducing τ -rescaled brackets

{x}τ def
= {x/τ}τ bxcτ def

= bx/τcτ,
we now define

f(x)
def
= λ{x}τ x ∈ R

K(u, v) = (v, {−u− f(v)}τ ) (u, v) ∈ Ω.

With the redefined function f , the defining relation (3) for W remains valid. It can
be verified that the statements and proofs of lemma 1 and proposition 2 remain valid
if all fractional parts and floors are replaced by their τ -rescaled counterparts. For the
sake of algebraic simplicity, we follow [24] and take τ to be the negative of λ̃−1, where λ
and λ̃ are conjugate solutions of the same quadratic equation. Specifically, τ = 1/λ for
λ = ±

√
2,±
√

3, and τ = λ for the other examples.

3.1 Recursion for local orbits

The map K partitions the square Ω into a small number of polygonal domains Ωj , on each
of which it acts as a linear transformation

C =

(
0 1
−1 −λ

)
|λ| < 2 (10)

followed by a j-dependent translation by an integer multiple of (0, τ). An example is
shown in figure 3.

Geometrical self-similarity takes the form of a nested sequence of similar triangles (see
figures 4) D(L), L = 0, 1, . . . converging to a point u∞, and related to one another by a
uniform scale transformation

D(L+ 1) = ωD(L) (11)

which is performed with respect to the point u∞, via the real scaling constant ω ∈ (0, 1).

Dynamical self-similarity requires that the level-(L + 1) first-return map ρ(L+ 1) is
just the rescaled version of ρ(L) (again in coordinates relative to u∞)

ρ(L+ 1) = ω ◦ ρ(L) ◦ ω−1.

0

1

2
0

1

2

K

0 0−τ

−τ −τ

−τ

Figure 3: The piecewise affine map K acting on the square Ω = (τ, 0]2, for λ = −
√

2 = 2τ .
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In addition, associated to the return map ρ(L) there exists a partition of D(L) into sub-

domains Dj(L), j ∈ IJ def
= {0, . . . , J − 1}, with the property that, for each j, there exists

an L-independent return path

p(j) = (p(j, 0), p(j, 1), . . . , p(j, νj − 1)) (12)

such that for any L ≥ 0,

ρj(L+ 1) = ρp(j, νj−1)(L) ◦ · · · ◦ ρp(j, 1)(L) ◦ ρp(j, 0)(L),

where ρj(L) is ρ(L) restricted to Dj(L). Thus the integer p(j, k) is the index of the
subdomain of D(L) that D(L+ 1) visits at the k-th iterate of the return map ρ(L). The
return orbits of Dj(1) in D(0) are illustrated in figure 5a.

The function p appearing in the above formulae is called the path function. It is
assumed that D(L + 1) ⊂ Dk(L) for some k, so that p(j, 0) = k for all j. The level-L
first-return time Tj(L) associated with ρj(L) is conveniently calculated with the aid of the
incidence matrix A defined by

Aji = # {k : p(j, k) = i} i, j ∈ IJ . (13)

Specifically,

Tj(L) =

νj−1∑

k=0

Tp(j,k)(L− 1) =
J−1∑

i=0

AjiTi(L− 1). (14)

With this linear recursion relation, it is easy to establish criteria for the ωLT scaling of
the level-L return times Tj(L).

Lemma 3 Let A be the incidence matrix (13) associated with the scaling sequence D(L),
L = 0, 1, . . .. Suppose that A has a largest eigenvalue ωT > 1 which is unique and isolated,
and that

∑
j πijTj(0) > 0, i ∈ IJ , where π is the projection matrix associated with this

eigenvalue. Then the quantities Tj(L)ω−LT tend to positive limits for L→∞.

Note that the assumptions of the lemma are verified if An is a positive matrix for
some n ∈ N, from Perron-Frobenius theorem. Also, the local spatial scale factor ω and
the temporal scale factor ωT together determine the Hausdorff dimension3 of the set of
aperiodic orbits [27].

Proof. In matrix notation, (14) becomes

T (L) = AL(π T (0) + (1− π)T (0)),

and the asymptotic estimate for Tj(L) follows, with Bj =
∑

j′ πjj′Tj′(0) > 0.

At the lowest level of the scaling hierarchy are the domains Dj(0), whose orbits return

to D(0) after ν0j
def
= Tj(0) iterations of K, along paths specified by a function p0(j, t)
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0

1

0

1
ρ

0−

−

τ

τ

2ω

ω

L

L

+

+

1

1

( (L L) )

Figure 4: Return map of scaling triangle D(L), for λ = −
√

2. Here the origin of coordinates has
been shifted to the scaling limit point u∞ at the lower right-hand vertex. The nested triangles
scale according to (11), with ω = 3− 2

√
2.

(see figure 5a)). The return times Tj(0) are essential to initiate the temporal recursion
relation (14), but the explicit return paths through Ω are of little interest, since they are
not repeated in higher levels. In contrast, the path function p(j, t) applies to every level-L
to level-(L+ 1) transition.

In reference [24] it was shown that for all of the cases with quadratic λ and domain4

Ω there are either one or (in the case λ = −
√

3) two scaling sequences of nested domains,
and that the periodic domains associated with such scaling sequences completely tile Ω,
up to a finite number of periodic domains which do not scale, and a set of Lebesgue
measure zero. A complementary tiling result was established in [27]: for any level L,
the orbits of the return-map sub-domains Dj(L) (for λ = −

√
3 this includes both scaling

sequences) tile Ω, up to a finite number of periodic domains and a set of measure zero.
For L→∞, the orbits of the Dj(L) form a sequence of successively finer covering sets for
the discontinuity-avoiding aperiodic orbits (residual set). The covering of the residual set
by a high-level return map is illustrated in figure 5c.

The recursive tiling property has been extended in [27] to include cases where λ is not
a quadratic irrational.

We define a tile of level L by

Dt
j(L)

def
= Kt0 ◦ ρt1(0) ◦ ρt2(1) ◦ · · · ◦ ρtL(L− 1)Dj(L)

where t = (t0, t1, . . . , tL) and ρt(L) is the t-th iterate of ρ(L). The level-L union of return-
map orbits of a particular scaling sequence is just the set {Dt

j(L) : j ∈ IJ , ti = 0, . . . , νi−1,
i = 0, . . . , L}.

To each tile we associate a symbolic representation encoding the recursive history of
its construction. Specifically, the tile Dt

j(L) will be coded by the finite sequence of integer

3Due to exact self-similarity, the Hausdorff dimension coincides with the box-counting dimension.
4These results refer to the specific cases with Ω = [0, τ)2 (positive λ) or Ω = (τ, 0]2 (negative λ);

changing fundamental domain changes the dynamics, in general.
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(a)
D(1)D(0)

D(0)

Ω Ω

D(1)

(b) ( )c

Figure 5: (a) Return orbits of D0(0) (red) and D1(0) (blue), for λ = −
√

2. After ν00 = 19
iterations of K, the orbit of D0(0) returns to D(0); after ν01 = 34 iterations of K, the orbit of
D1(0) also returns to D(0). The net effect is the return map of D(0) displayed in figure 4. (b)
Return orbits, within D(0), of D0(1) and D1(1). After ν0 = 7 (resp. ν1 = 13) iterations of ρ(0),
D0(1) (resp. D1(1)) returns to D(1). The net effect is the return map ρ(1), the rescaled version
of ρ(0). (c) Return orbits, within Ω, of D0(1) (red) and D1(1) (blue). Respective return times are
T0(1) = 163 and T1(1) = 322. These orbits tile a region complementary to the largest periodic
domains (octagons), and cover all the discontinuity-avoiding aperiodic orbits (residual set) of K.

pairs
((j0, t0), (j1, t1), . . . , (jL, tL)),

with jL = j and all other ji uniquely determined by the path functions

j0 = p0(j1, t1) ji = p(ji+1, ti+1), i > 0. (15)

The above equation shows that such a geometric code contains redundant information;
nonetheless, this coding turns out to be more convenient than the dynamical coding ι for
describing the scaling phenomena which are relevant here.

A point of the residual set (the complement of the discontinuity set in its closure) lies
in the intersection of a countable sequence of nested tiles, and can thus be specified by an
infinite symbol sequence

((j0, t0), (j1, t1), . . .). (16)

That the residual set is nonempty is guaranteed by certain sufficient conditions [27,33]. In
particular, one can prove that the Hausdorff dimension of the set is nontrivial, and that
the Hausdorff measure is positive (for background, see [14]).

The action of the map K is expressed symbolically as follows [26,33]: if i is the smallest
index k such that tk is less than its maximum possible value νjk − 1, then

((j0, t0), (j1, t1), . . . , (ji, ti), . . . ) 7→ ((j′0, 0), (j′1, 0), . . . , (j′i−1, 0), (ji, ti+1), (ji+1, ti+1), . . . ),

where the j′k are determined uniquely by the constraints (15). In the special case where all
tk are maximal, the successor sequence has all members (j ′k, 0) determined by (15) (recall
p(j, 0) and p0(j, 0) are independent of j); in particular, such sequence is unique. This is
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an instance of a Vershik map, which can be likened to the action of time on a calendar,
whereby a hierarchy of clocks with periodicities νi (hour, day, month, etc.) are increased
and periodically reset. Under certain conditions which are satisfied in the presence of
scaling domains, the Vershik map is uniquely ergodic on an appropriate graph [33].

3.2 Recursion for global orbits

We now represent the euclidean plane R2 as Ω× Z[ i ] where

Z[ i ] = {m1 +m2i : m1,2 ∈ Z, i =
√
−1}

is the ring of Gaussian integers. This is done in two stages. First, we let the map W act
on the pair [u,m] ∈ Ω× Z2 as

W [u, m] = [K(u), F ·m+ (0,∆(u))]

where F was defined in (4) and for (x, y) ∈ Ω,

∆(x, y) = b−τ−1(x+ λy)c.

Then we identify Z2 with Z[ i ] via

(m1, m2) ←→ ζ = m2 +m1i (17)

and one verifies that the action of F becomes multiplication by i. The action of W is thus

W [u, ζ] = [K(u), i ζ + ∆(u)] [u, ζ] ∈ Ω× Z[i].

To reach level 0 of the scaling hierarchy, we use lemma 1 to obtain

σ(0)[Dj(0), ζ]
def
= W Tj(0)[Dj(0), ζ] = [ρ(0)Dj(0), iTj(0) ζ + dj(0)] (18)

where

dj(0) =

Tj(0)−1∑

t=1

iTj(0)−t∆(KtDj(0)).

After Tj(0) iterations, the image of a point in [Dj(0), ζ] is not necessarily in the lattice
cell labeled by ζ; that is, we do not necessarily have a true return. What is true, however,
is that during the Tj(0) iterations, there is no branching: the mapped domain remains
intact, not intersecting any cell boundary (x or y an integer multiple of τ). This means
we can still use the lifts of the return orbits on Ω as building blocks for finite or infinite
orbits of W on the plane. An example of the W -orbits of [Dj(0), 0], j ∈ IJ is shown in
figure 6.

We obtain the level-L analogue of (18) by lifting the respective return paths of ρ(L).
We define, for any non-negative integer L and u ∈ Dj(L), ζ ∈ Z[i],

σ(L)[u, ζ]
def
= W Tj(L)[u, ζ],
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0

Figure 6: The W -orbits of [D0(0), 0] (red) and [D1(0), 0] (blue) for λ = −
√

2. The return times
and symbolic paths are the same as those of the K-orbits of D0(0) and D1(0) shown in figure 5(a).
Since the orbits terminate in domains (indicated by arrows) in cells labeled by Gaussian integers
−1 and −1 + i, we set d0(0) and d1(0) equal to those values. This method was applied repeatedly
in the examples of section 5.

where, by lemma 1, the right-hand side takes the form

[ρ(L)u, iTj(L)ζ + dj(L)]. (19)

The level-L displacement dj(L) can be evaluated as in (18), but it is more useful to apply
the recursion relation

σ(L+ 1) = σp(j,νj−1)(L) ◦ · · · ◦ σp(j,0)(L) (20)

to obtain a recursive formula.

Proposition 4 If Tj(L) ≡ Tj(0) (mod 4) for L = 1, 2, . . ., then we have the recursion
relation

dj(L+ 1) =
J∑

k=0

ck(p(j)) dk(L), (21)

where p(j) was defined in (12), and where for any sequence a = (a0, a1, . . . , aν−1) of
elements of IJ , we define

T (a) ≡
ν−1∑

s=0

Tas(0) (mod 4) cj(a) =

ν−1∑

s=0

δj,asi
T (as+1,...,aν−1),

with δj,k the Kronecker symbol.

We remark that T (a) is independent of L.
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Proof. Substituting (19) into (20), we have, for all u ∈ Dj(L+ 1), ζ ∈ Z[i],

σ(L+ 1)[u, ζ] = [ρ(L+ 1)u, iT (p(j))ζ + dj(L+ 1)],

where

dj(L+ 1) =

νj−1∑

t=0

iT (p(j|t+1))dp(j|t)(L),

with the notation p(j|t) representing the partial path starting at t,

p(j|t) = (p(j, t), p(j, t+ 1), . . . , p(j, νj − 1)) . (22)

The result follows by combining terms with the same value of p(j, t).

In matrix notation, we write dj(L) as the jth component of a of vector in Z[i]J , so
that the recursion relation of proposition 4 takes the concise form

d(L+ 1) = M · d(L),

with
Mjk = ck(p(j)), j, k ∈ IJ . (23)

The assumption concerning the L-independence, modulo 4, of Tj(L) is clearly indis-
pensable to having a useful global recursion scheme. While at first sight this assumption
may seem overly restrictive, it is in fact satisfied in all of the models we have studied (see
section 4 below).

As we shall soon see, the properties of the matrix M are of crucial importance for the
asymptotics of aperiodic orbits. Useful in this regard is the Jordan canonical decomposi-
tion

M = SMS−1,

where M is upper-triangular and S is invertible. In specific models, we find that in some
cases the diagonal elements Mj,j are all zeros and ones, while in the others there is a

unique largest diagonal element, say, MJ−1,J−1
def
= ωW > 1. In the former case, the

aperiodic orbits are either bounded or tend to infinity logarithmically in the asymptotic
long-time limit, while in the latter case the orbits are unbounded, with asymptotic power-
law behaviour. In such a model, the quantity ωW serves as a global geometric scale factor
which, together with the temporal factor ωT , determines the exponent µ of the power law.

In the next section, we shall prove some general results regarding power-law asymp-
totics in our models, assuming throughout that the global recursion matrix has a unique
largest eigenvalue ωW > 1. The uniqueness assumption is probably stronger than neces-
sary, but simplifies the treatment significantly and is sufficient to handle all of the known
examples. Asymptotically, for L→∞, we have for the Lth power of M ,

(ML)i,j = Si,J−1 ω
L
W S−1

J−1,j +O(ω′L),
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where ω′ < ωW . Thus, the array of displacements d(L) scales asymptotically as

d(L) = ML · d(0) = ωLW ξ +O(ω′L), (24)

where
ξj =

∑

i∈IJ
Sj,J−1 S

−1
J−1,i di(0).

This J-dimensional vector will play an important role in formulating sufficient conditions
for asymptotic ωLW scaling.

4 Asymptotic power-law behaviour

Power-law long-time behaviour of orbits is associated with global self-similarity in many
kicked-oscillator models. Thus far we have investigated only those sawtooth oscillator
models with a quadratic irrational parameter λ = 2 cos 2πp/q, p, q ∈ Z, but we see no
reason why the results of this section should not apply equally well to non-quadratic cases
where self-similarity is present (for example the cubic example of [27]). Self-similarity in
these models refers to a specific scaling sequence D = {D(L) : L = 0, 1, . . .}, and the aperi-
odic orbits which belong to D. Each point on such an orbit lies in a countable intersection
of nested tiles of D, encoded by a symbolic sequence of the form ((j0, t0), (j1, t1), . . .). For
such an orbit, the long-time behaviour will depend in large part on the properties of the
global recursion matrix M associated with D. The key property is what we will call global
expansivity.

Definition 1 A scaling sequence is called globally expansive if the corresponding return
times Tj(L) satisfy the hypothesis of proposition 4, and if the incidence matrix A (13) and
global recursion matrix M (23) have non-degenerate largest-magnitude eigenvalues ωT > 1
and ωW > 1, respectively.

In all quadratic models we have studied, the congruence relation on return times
required by proposition 4 was found always to hold, and so was the spectral condition
on the incidence matrix A. By constrast, the spectral condition on the global recursion
matrix M was found to hold in about one-half of the cases (see table 1).

We now turn to the question of under what circumstances and in what form the for-
ward orbit O+(z) = {W s z : s = 0, 1, . . .} of a point belonging to a globally expansive
scaling sequence will exhibit non-trivial long-time power-law behaviour. From numerical
explorations we do not expect a uniform expansion of the orbit, since there are numerous
examples of recurrence, i.e., the return of a long orbit, infinitely many times, to a neigh-
borhood of its starting point. Rather we expect the power law to characterize what we
shall call a rapid-ascent sub-orbit, defined as follows:

Definition 2 Let z be an aperiodic point belonging to a globally expansive scaling sequence
D. A rapid-ascent sub-orbit of the forward W -orbit O+(z), is a sub-orbit (z0, z1, . . .),
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zk = [uk, ζk], with uk ∈ D(Lk), where L0, L1, . . . are monotonically increasing non-negative
integers.

We now state our first main result, using the notation of section 3.

Proposition 5 Let z = [u, ζ] be an aperiodic point belonging to a globally expansive scaling
sequence D with symbolic representation ((j0, t0), (j1, t1), . . .). Suppose that for every L > 0
such that tL is not maximal,

ξ · c((p(jL|tL + 1) 6= 0. (25)

Then O+(z) contains a rapid-ascent sub-orbit (z0, z1, . . .), zk = [uk, ζk], with uk ∈ D(Lk),
satisfying the following properties:

(i) Temporal scaling. Define the kth iteration number sk by zk = W skz. There exist
positive constants β±such that for all positive k,

β−ω
Lk−1

T < sk < β+ω
Lk−1

T .

(ii) Local power law. For all k, we have

||uk − u∞|| ≤ |D(0)|ωLk .
Moreover, there exists a positive η such that

||uk − u∞|| ≤ ηs−νk , ν =

∣∣∣∣
logω

logωT

∣∣∣∣ .

(iii) Global power law. We have

0 < limk→∞
|ζk|
ω
Lk−1

W

<∞.

Moreover, there exists a positive µ such that

0 < limk→∞
|ζk|
sµk ,

<∞, µ =
logωW
logωT

The proof of proposition 5 is presented in Appendix A.

The condition (25) is not difficult to check in particular examples, since there are only
a few distinct partial return paths p(j| t) in the range 1 ≤ t ≤ νj − 1. (Note that t = 0 is
excluded by the recursion relation for zL: if the (L+1)st symbol is of the form (j ′L+1, 0), so
that uL ∈ D(L+ 1), the recursion rule sets zL+1 = zL.) If we can verify the non-vanishing
of c(p(j|t)) · ξ for all of them, we are done. This strategy will be extremely useful in the
examples of the next section.

All of the specific examples of aperiodic points we shall discuss in section 5 have
eventually periodic symbolic sequences. In such cases we can obtain a rather detailed
description of the asymptotic behaviour: with rare exceptions, each point of the forward
σ(0) orbit of an aperiodic point in the scaling domain [D(0), ζ], from some point onward,
initiates a rapid-ascent sub-orbit with local and global power-law behaviour.
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Proposition 6 Let z = [u, ζ], with u ∈ D(0) an aperiodic point belonging to a globally
expansive scaling sequence D. Let ((j0, 0), (j1, t1), . . .) be the symbolic representation of
z, and suppose that (jL, tL) = (jL+P , tL+P ) for some positive P and all sufficiently large
L. Then there exists s ≥ 0 such that every z0 = W s0 z ∈ D(0), s0 ≥ s, initiates a
rapid-ascent sub-orbit (z0, z1, . . .), zk = [uk, ζk] = W sk z, with uk ∈ D(kP ) such that the
following quantities have finite k →∞ limits:

sk

ωkPT

u− u∞
ωkP

u− u∞
s−νk

with ν as in proposition 5. If b is the σ(0) iteration path from z0 to z1, and ξ · c(b) 6= 0,
then the quantities,

|ζk|
ωkPW

,
|ζk|
sµk

also have finite limits, with µ as in proposition 5. For each of the above limits, the
fractional remainder vanishes as the kth power of a quantity of magnitude less than unity.

The proof of proposition 6 is presented in Appendix B.

5 Examples

In this final section, we examine a number of examples of kicked oscillator models with
quadratic irrational parameters, covering the full range of asymptotic long-time behaviours
of the aperiodic orbits. All of our numerical calculations were done using only integer
arithmetic and exact algebraic operations on quadratic irrationals. The Mathematica
notebooks of the electronic supplement to [24] provided a convenient starting point for the
investigations. The interested reader will find details of our calculations in the electronic
supplement to this article [13].

In each of our selected examples we calculate explicitly the level-L displacements dj(L).
In one of the cases we find that the dj(L) are independent of L, corresponding to uniformly
bounded aperiodic orbits. In the remaining examples, we calculate the global recursion
matrix M , reduce it to Jordan canonical form, and verify the hypotheses of the corollary
to proposition 5, thus establishing the characteristic asymptotic power-law behaviour of
those models. In each case, we then select a specific aperiodic point with low-period
symbol sequence and verify the hypotheses of proposition 6 to establish the asymptotic
self-similarity of those orbits.

In addition to the examples presented in this section, we have investigated in a similar
manner the remaining models of [24]. A summary of our results is displayed in table 1.
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5.1 Example: λ = −
√

2, corner origin

As our first example, we consider one of the four quadratic cases with corner origin (λ =
±
√

2, (1±
√

5)/2) for which the lifted aperiodic orbits of the residual set are bounded. The
case λ = −

√
2 has a particularly simple recursive structure, and the plane decomposes

into W -invariant quartets of connected polygonal regions (“supertiles”). The placement
of the origin at a corner of the fundamental cell Ω is crucial; below we will also consider
the case of a centrally placed origin, for which the aperiodic orbits are unbounded.

From [24] we learn that the scaling domain of the λ = −
√

2 model is a triangle with
two polygonal return-map sub-domains, labeled by j = 0, 1. The corresponding level-L to
level-(L+ 1) return paths are

p(0) = (1, 0, 0, 0, 0, 1, 0) p(1) = (1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0).

The level-L return times are

T0(L) = 2 · 9L+1 + 1 ≡ 3 (mod 4) T1(L) = 4 · 9L+1 − 2 ≡ 2 (mod 4).

The respective K and W -orbits of sub-domain D0(0) are shown in figures 5 and 6. We see
that the level-0 lattice displacement vector d0(0) is (0,−1) (recall that a factor τ = −

√
2/2

has been factored out to obtain integer lattice coordinates). A similar calculation gives
d1(0) = (1,−1). Knowing the return paths and return times, we can now calculate d(L)
for arbitrary L from (21)

d(L) = (−1, −1 + i),

where we have used the complex representation (17). The L-independence of the lattice
displacements corresponds to the uniform boundedness of all W -orbits originating in the
fundamental cell Ω. Consider the return-map orbits of not only D0(0) and D1(0), but
also their translates by (0,−τ), (τ,−τ) and (τ, 0). The orbits are entirely contained in
the fundamental cell (labeled 0)) and its 3 neighbouring cells labeled −1, −1 + i and
i. Moreover, a single application of the return map σ(0) maps [D0(0), 0], [D1(0), 0] and
their translates onto the scaling domains of [D(0), ζ], ζ = 0,−1,−1 + i, i, apart from
discontinuity lines. Thus further iteration of the return map will never leave the region
already covered by the lowest-level return orbits. Combining these orbits with a finite
number of W -periodic octagonal domains produces what we have called a supertile, shown
in figure 7. It is easy to show that, apart from discontinuity lines, the entire plane is
partitioned into invariant quartets of supertiles (in addition to the single invariant one
containing Ω).

The case λ = (1 −
√

5)/2 is similar to the present one. The cases λ =
√

2 and
λ = (1 +

√
5)/2 are similar, except for the fact that the invariant sets are not connected.

5.2 Example: λ = −(1 +
√

5)/2

The preceding example exhibits the ultimate in stickiness: no orbit can wander very far
from its initial point. Now let us consider the opposite extreme, where typical aperiodic
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Figure 7: W -invariant “supertile” for λ = −
√

2.

orbits in the residual set escape to infinity with displacement asymptotically proportional
to the time (µ = 1).

According to [24], the scaling domain for λ = −(1+
√

5)/2 has 3 polygonal sub-domains,
which we label j = 0, 1, 2. The return paths and level-L return times are

p(0) = (1, 0) p(1) = (1, 0, 2, 0) p(2) = (1, 0, 2, 0, 2, 0, 2, 0)

T0(L) =
2

3
(4 + 5× 4L) ≡ 0 (mod 4), T1(L) = 10× 4L ≡ 0 (mod 4)

T2(L) =
2

3
(−8 + 35× 4L) ≡ 0 (mod 4).

Direct calculation of the level-0 orbits of W gives

d(0) = (−2 + i, −3 + i, −5 + i).

The Jordan decomposition of the global recursion matrix M = SMS−1 gives

S =



−1 −1 1
1 0 3
1 2 7


 M =




0 0 0
0 1 0
0 0 4


 S−1 =

1

12



−6 9 −3
−4 −8 4
2 1 1


 ,

hence

ξ = (−1 +
i

3
) (1, 3, 7).

Explicit calculation of ξ · c(p(j|i)) for all partial iteration paths verifies the hypothesis of
corollary 5, thus establishing the ωLW growth of all aperiodic orbits.

For the initial point of a sample aperiodic orbit in Ω, we take

z0 =
1

22
(−13 + 5

√
5, 7−

√
5) ←→ (2, 2)∞.
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Figure 8: In the model with λ = −(1 +
√

5)/2, the vertical lattice coordinate n = Re(ζk) is
plotted versus iteration number k for the σ(0) orbit starting at the aperiodic point z0 = [u0, 0].
Only the points n = 10k, k = 0, 1, . . . have been plotted. As the W -orbit spirals outward, the
plotted sub-orbit moves downward with its horizontal coordinate never departing more than one
unit from zero. The asymptotic linear increase of the distance from the origin is apparent.

Defining the symbolic substitution σ : j 7→ p(j), we obtain that the forward ρ(0)-orbit of
z0 follows the path

(2) ^ a ^ σ(a) ^ σ2(a) ^ · · ·^ σL(a) · · · ,

where a is the symbol sequence p(2|3) = (0, 2, 0, 2, 0). This gives for the vector c

c(a) = (3, 0, 2),

so that

ξ · c(a) = 17 (−1 +
i

3
) 6= 0.

From proposition 6, we have that there is a countable sequence of points zL on the orbit
of z0 such that zL scales as 4L for L → ∞. Since the temporal and global geometrical
scale factors are equal, the exponent of the power-law is unity (ballistic motion for W 4).
The orbit is displayed in figure 8.

5.3 Example: λ = −
√

3 (A)

Of all the quadratic examples treated in [24], the only one with disjoint sequences of scaling
domains is that with λ = −

√
3. The two scaling sequences, labeled A and B, correspond

to distinct limit points and temporal scale factors, as well as sets of aperiodic orbits with
distinct fractal dimensions. Both are needed for a complete recursive tiling of Ω. As we
shall see below, the lifted aperiodic orbits of both scaling families are typically unbounded,
with asymptotic power-laws having different exponents µA and µB, with µA = 1

2 (diffusive)
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and 0 < µB < 1
2 (sub-diffusive). In the current example we deal with an A-orbit with a

simple periodic symbol sequence.

Scaling sequence A has limit point (−
√

3/3,−
√

3/3), local geometrical scale factor
ωK = 2 −

√
3, and temporal scale factor ωT = 4. The return map partition consists of

12 polygonal sub-domains and 11 boundary line segments. For simplicity we will limit
ourselves here to an aperiodic orbit which visits only 4 of the polygonal sub-domains and
their higher-level partners. The sub-domains labeled 7, 10, 21, and 22 in [24] will here be
designated 0,1,2,3. Their return paths and return times are

p(0) = (3, 1, 0) p(1) = (3, 1, 1, 2, 0) p(2) = (3, 1, 2, 2, 0) p(3) = (3, 2, 0)

T0(L) = T3(L) = 26880× 4L + 53 ≡ 1 (mod 4)
T1(L) = T2(L) = 53760× 4L − 53 ≡ 3 (mod 4).

The lowest-level lattice displacement vector is

d(0) = (22 + 310i, 18− 8i, 18 + 22i,−8 + 310i),

and the global recursion matrix has Jordan canonical form

M =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 .

Explicit calculation of ξ · c(p(j|i)), with

ξ = 328i (1, 0, 0, 1),

for all partial iteration paths, verifies the hypothesis of the corollary, thus establishing the
ωLW growth of all rapid-ascent orbits.

Our specific choice of aperiodic orbit starts at the point z0 = 1
39(−1422+821

√
3, 7770−

4486
√

3) with a period-1 symbol sequence (1, 1)∞. Defining the symbolic substitution
σ : j 7→ p(j), we obtain that the forward ρ(0)-orbit of z0 follows the path

(1) ^ a ^ σ(a) ^ σ2(a) ^ · · ·^ σL(a) · · · ,

where a is the symbol sequence (1, 2, 0). This gives for the vector c

c(a) = (1, 1, i, 0),

so that
ξ · c(a) = 328i 6= 0.

We conclude from proposition 6 that the W -orbit starting at z0 has a countable sequence
of points with lattice coordinates ζL which scale as 2L, so that

ζL ∼ tµL µ =
log 2

log 4
=

1

2
.

The σ(0)-orbit of z0 is shown in figure 9. To verify the diffusive power-law predicted by
proposition 6, we plot ln |ζ| vs the logarithm of the iteration number in figure 10.
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Figure 9: The first 25000 iterates of σ(0) applied to the point z0, for λ = −
√

3, (A).
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Figure 10: Log-log plot of |ζ|2 vs iteration number for the orbit of figure 9. The slope of the
comparison line is 1.

5.4 Example: λ = −
√

3 (B)

Scaling sequence B has limit point (41− 24
√

3, 41− 24
√

3), local geometrical scale factor
ωK = 2 −

√
3, and temporal scale factor ωT = 5. The return map partition contains 6

polygonal sub-domains. The sub-domains labeled 0,3,5,6,8, and 10 in [24] will here be
designated 0,1,2,3,4,5. Their return paths and return times (modulo 4) are

p(0) = (3) p(1) = (3, 1, 4, 1, 2) p(2) = (3, 1, 4, 5, 4, 1, 2)
p(3) = (3, 1, 4, 0, 4, 4, 1, 2) p(4) = (3, 2) p(5) = (3, 2, 2)

T0(L) ≡ 3 (mod 4) T1(L) ≡ 0 (mod 4) T2(L) ≡ 3 (mod 4)
T3(L) ≡ 3 (mod 4) T4(L) ≡ 2 (mod 4) T5(L) ≡ 1 (mod 4).

The array of level-zero displacements is

d(0) = (15 + 25i, −164 + 164i, −15 + 323i, 15 + 323i, 10 + 10i, −5 + 15i),
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and the global recursion matrix has Jordan canonical form

M =




−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 2



,

with the complex vector ξ given by

ξ = 164 (2i,−1 + i, 4i, 4i, 2 + 2i, 2).

Explicit calculation of ξ · c(p(j|i)) for all partial iteration paths verifies the hypothesis of
the corollary, thus establishing the ωLW growth of all aperiodic orbits.

Our specific choice of aperiodic orbit starts at the point z0 with a symbol sequence
((1, 2), (1, 1)∞) having a period-1 tail. Defining the symbolic substitution σ : j 7→ p(j),
we obtain that the forward ρ(0)-orbit of z0 follows the path

b ^ σ(b) ^ σ2(b) · · ·σL(b) ^ · · · ,

where b is the symbol sequence (4, 1, 2). This gives for the vector c

c(b) = (0, −i, 1, 0, −i, 0),

so that
ξ · c(b) = 492 (1 + i) 6= 0.

We conclude from proposition 5 that the W -orbit starting at z0 has a countable sequence
of points with lattice coordinates ζL which scale as 2L, so that

ζL ∼ tµL µ =
log 2

log 5
<

1

2
.

The σ(0)-orbit of z0 is shown in figure 11, with an accompanying log-log plot of distance-
squared versus time in figure 12.

We note that although the orbit is unbounded, with the predicted scaling |ζL| ∼
tµ, µ = log 2/ log 5, it is also recurrent, apparently returning infinitely many times to
the fundamental cell. The rapid-ascent method can be exploited [13] to explore these
recurrences on time scales of grandiose proportions. A histogram of the results is shown
in figure 13.

5.5 Example: λ = −
√

2, centred origin, residual set (A)

Shifting the origin to the centre of the fundamental cell Ω can have a dramatic effect on the
phase portrait of the corresponding lifted map. For λ = −

√
2, the corner-origin version has

only bounded orbits (except possibly on the discontinuity set), whereas in the centre-origin
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Figure 11: The first 30000 iterates of σ(0) applied to the point z0, for λ = −
√

3, (B).

version the aperiodic orbits in the residual set are unbounded, with sub-sequences of orbit
points tending to infinity logarithmically in time. An interesting feature of this model is
the remarkable distinction between orbits off and on the discontinuity set [1, 24]. In the
current example we will restrict ourselves to discontinuity-avoiding orbits, returning at
the end of the section to consider the more complicated case of orbits on the discontinuity
set.

Following the treatment of [24], we define the local map on the square Ω = (τ,−τ ]2,
where τ = λ/2 = −

√
2/2. The scaling sequence consists of triangles tending to the limit

point (−1 − τ, τ). At each level, the scaling domain has a return-map partition with 3
polygonal sub-domains, labeled by j = 0, 1, 2 (numbered 0, 6, 8, respectively, in [24]). The
corresponding return paths and level-L return times are

p(0) = (2, 0) p(1) = (2, 0, 1, 0, (1, 04)2, (1, 0)2) p(2) = (2, 0, 1, 0, (1, 04)5, (1, 0)2)

T0(L) = 3×9L ≡ 3 (mod 4) T1(L) = 15×9L ≡ 3 (mod 4) T2(L) = 24×9L ≡ 0 (mod 4).

For the lifted map, the array of level-L displacements is

d(L) = (−1− (2L+ 1) i, −(2L+ 2) i, 2),

corresponding to a complex recursion matrix

M =




1 0 −i
0 1 −i
0 0 1


 .

We note that the matrix is already in Jordan canonical form, with all diagonal elements
equal to unity. The off-diagonal entries are responsible for the linear growth of dj(L) with
increasing L, a property which leads to the existence of aperiodic orbits with logarithmi-
cally growing displacement from the origin.
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Figure 12: Log-log plot of |ζ|2 vs iteration number for the orbit of figure 11. The slope of the
comparison line is 2× log 2

log 5 .
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Figure 13: Histogram of recurrence times (W iterations between successive visits to the funda-
mental cell) for the orbit of figure 11. The abscissa is the natural logarithm of the recurrence time,
and the bin size is 0.05. The sample includes all recurrences up to time 4.73 × 1022. For large
recurrence times t, the frequency falls off approximately as t−0.34.

As a specific example of an aperiodic point in the residual set, we choose the point

z0 =
1

17
(−36 + 23

√
2, −4− 5

√
2),

whose symbolic sequence, with period-1 tail, is

((1, 3), (1, 2)∞).

The forward ρ(0)-orbit follows the path

a ^ σ(a) ^ σ2(a) ^ · · · ,

where σ : j 7→ p(j) and a is the sequence 0(1, 04)2(1, 0)2, with corresponding coefficient
vector

c = (−1, 1− i, 0).

Defining ζL as the lattice point attained after application of σL−1(a) in the above sequence,
we have the recursion relation

ζL+1 = iζL − 2L− 1− i.
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Asymptotically, we have for the corresponding time (number of W iterations) tL ∼ 9L,
and so

ζL ∼ −(1 + i)L ∼ log tL(−1− i).
In figure 14, we show the W -orbit of z0, as well as a plot of ζL for a huge range of levels.
Sampling the orbit on a logarithmic time scale greatly enhances our ability to see the true
asymptotic behaviour.

Figure 14: (a) The first 10000 iterates of W applied to the point z0, for λ = −
√

2, (A). (b) Plot
of ζL, L = 0, 1, . . . 1000, for the same orbit.

5.6 Example: λ = −
√

2, centred origin, discontinuity set (B)

In this final example, we consider an aperiodic orbit on the discontinuity set. The de-
tailed recursive structure of the latter was presented in reference [24], where it was shown
that within the discontinuity set there is a Cantor set of aperiodic orbits of dimension
− log 5/ log(3 − 2

√
2). Thanks to a peculiar property of the global recursion matrix M ,

the lifted versions of these orbits are typically unbounded, with a super-diffusive power-
law.

From [24], we start with the level-0 return-map partition. The nine sub-domains
include the 3 polygonal ones used in the preceding example, as well as 4 open line segments
and 2 points on the discontinuity set. According to the level scheme of [24], with local
geometric scale factor ωK = 3− 2

√
2, two distinct partitions apply to even and odd levels,

respectively. True scaling on the discontinuity set applies separately to the even and odd
level sequences, with scale factor ω2

K . For details, see the electronic supplement [13].

Direct calculation of the level-0 orbits of the global map W gives us the level-0 dis-
placements,

d(0) = (−1− i, 1− 5i, 4− 9i, −7i, −3− 2i, −2− 5i, −2i, 5 + i, 2).

From the return paths listed in [24], one obtains a temporal level-to-level scale factor
ωT = 9 and a 2-level global recursion matrix M whose Jordan canonical form has a

27



unique largest diagonal entry 25, and vector ξ given by

ξ =
1

120
(0, −108−220i, −395−318i, −162−330i, 54+110i, 330−162i, 0, −108−220i, 0)

For any orbit satisfying the hypotheses of proposition 6, the asymptotic long-time be-
haviour is governed by a power-law with a super-diffusive exponent µ = log 5/ log 9 ≈
0.7325.

Our sample orbit starts at the point

z0 = (−3 +
9

4

√
2,

3

2
−
√

2) ∈
∞⋂

L=0

D(32,2)L

7

and so has a period-2 symbol sequence ((7, 32), (7, 2))∞. As in previous examples, the
ρ(0)-orbit of z0 is generated by a substitution rule σ : j 7→ p(j), where p(j) is the return
path for Dj(L) with respect to iterations of ρ(L−1). In the present case, we have distinct
substitutions σe and σo for even and odd levels. Using the Vershik symbolic dynamics, we
find the following sequence of ρj maps for the orbit starting at z0:

(7) ^ a ^ σo(b) ^ σo(σe(a)) ^ σo(σe(σo(b))) ^ · · ·
^ (σo ◦ σe)

L(a) ^ (σo ◦ σe)
L ◦ σo(b) ^ · · ·

where

a = (0) b = (0, 0, 0, 0, 5, 0, 6, 0, 6, 0, 1, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 6, 0).

Let ζ2L be the lattice point attained after the subsequence (σo ◦ σe)
L−1 ◦ σo(b). Because

of the repetition of the symbol sequence in alternating levels, we have a recursion relation
of the form

ζ2L+2 = iνm2L +
∑

j

cjdj(2L).

By explicit calculation for L = 1 we find

ν = 0 c = (−10 + 6i, 6i, 0, 2i, 0, 6i, 4− 4i, 2, 3i).

Since

c · ξ =
1

15
(342 + 71i) 6= 0,

we know from proposition 6 that ζ2L scales asymptotically as 52L. Since the time t2L
(number of W -iterations) scales as 92L, we have

ζ2L ∼ tµ2L µ =
log 5

log 9
.

The σ(0)-orbit of z0 is shown in figure 15. The intermittent character of the orbit, with an
alternation of rapid “flights” and long periods of localized motion, is evident in the figure
and the accompanying log-log graph of distance versus iteration number. Since the orbit
is located on the discontinuity set, the calculations are exceedingly sensitive to any sort
of round-off error, which is quite capable of producing spurious flights. The use of exact
arithmetic of algebraic numbers avoids this problem.
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Figure 15: Top: the first 20000 iterates of W applied to the point z0, for λ = −
√

2; Bottom:
detail.

5.7 Summary of results for quadratic cases

Table 1 summarizes the parameters and derived scale factors and dimensions of the 9
kicked-oscillator models lifted from the class of piecewise affine maps studied systematically
in reference [24]. The local quantities are taken from that source, with the global scale
factor ωW and expansion exponent µ calculated as in the current section.

Appendix A: proof of proposition 5

To construct the rapid-ascent sub-orbit systematically, we employ the calendrical rules of
symbolic updating (Vershik map). We start with the symbolic representation ((j0, t0), (j1, t1), . . .)
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Figure 16: Log-log plot of distance-squared vs iteration number for the same orbit as in figure 15,
for 1.2 million iterations.

λ ω ωT ωW µ behaviour√
2

−
√

2

(1 +
√

5)/2

(1−
√

5)/2

(−1 +
√

5)/2

(−1−
√

5)√
3

−
√

3 (A)

−
√

3 (B)

−
√

2 (A)

−
√

2 (B)

3− 2
√

2

3− 2
√

2

(3−
√

5)/2

(3−
√

5)/2

(3−
√

5)/2

(3−
√

5)/2

7− 4
√

3

2−
√

3

2−
√

3

3− 2
√

2

3− 2
√

2

9
9
4
4
4
4
25
4
5
9
9

1
1
1
1
4
4
4
2
2
1
5

0
0
0
0
1
1

.430677
.5

.4306770
0

.732487

bounded
bounded
bounded
bounded
ballistic
ballistic

sub-diffusive
diffusive

sub-diffusive
logarithmic

super-diffusive

Table 1: Summary of local and global scaling parameters for the quadratic kicked-oscillator
models.

of the initial point z and apply the Vershik map repeatedly. We exclude, for the time be-
ing, the possibility that the code for z has a maximal tail, i.e., that z is a preimage, under
iteration of W , of a scaling limit point. After ν0 − t0 − 1 iterations, t0 has reached its
maximum, ν0 − 1. One additional iteration brings us to

z0 = W ν0−t0u ←→
((j′0, 0), . . . , (j′L0−1, 0), (j′L0

, 0), (jL0+1, tL0+1 + 1), (jL0+2, tL0+2), . . .)

where L0 is a non-negative integer and j ′0, . . . , j
′
L0

are determined by the path conditions.
Since p(j, 0) is independent of j, we have

j′0 = j′1 = · · · = j′L0−1.

Geometrically, (ν0 − t0)-fold iteration of W has brought our orbit to a point whose
local coordinate u0 lies in the level-L0 scaling domain D(L0). Continued W -iteration leads
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eventually to a symbol sequence whose ti are maximal up to and including i = L0 + 1, so
that one more iteration takes the orbit to

z1 = [u1, ζ1] = σ(L0)
νjL0

−tL0
−1
z0 ←→

((j′0, 0), . . . , (j′0, 0), (p(jL1+1, tL1+1 + 1), 0), (jL1+1, tL1+1 + 1), (jL1+2, tL1+2), . . .),

where L1 > L0 and u1 ∈ D(L1). We note that the partial return path for the iterated
application of σ(L0) is just p(jL0 |tL0+1), defined in (22).

Repetition of the above procedure generates an infinite sequence of points (z0, z1, . . .),
with zk = [uk, ζk], uk ∈ D(Lk), Lk+1 > Lk. This is the rapid ascent orbit of the proposi-
tion.

If it turns out that z is a preimage of a point with symbolic representation (j, 0)∞, we
take instead the rapid ascent sub-orbit of the scaling limit point itself, since that point’s
code has a non-maximal tail and we can proceed with the Vershik updating as described
above.

We now proceed to verify the properties (i–v).

Temporal scaling. From lemma 3 we have that Tj(L)ω−LT is bounded above and below,
uniformly in L and j. Moreover, we have the following recursion relation for times on a
rapid-ascent orbit:

sk+1 = sk +

νjLk+1
−1∑

t=tLk+1+1

Tp(jLk+1,t)(Lk)

where the sum, divided by ω
Lk−1

T , is uniformly bounded above and below by positive
constants γ±. Thus

β−
def
= γ− < skω

−Lk−1

T < γ+ ω
−Lk−1

T (ωL0
T + ωL1

T + · · ·+ ω
Lk−1

T ) < γ+

∞∑

k=0

ω−kT
def
= β+,

with β± independent of k.

Local power law. The local scaling limit u∞ belongs to the closure of all D(Lk), and hence

||uk − u∞|| ≤ |D(Lk)| = ωLk |D(0)| < |D(0)|ωLk−1 .

Combining this with the inequalities

sk
β+

< ω
Lk−1

T <
sk
β−

gives us the local asymptotic power law.

Global power law. The successive lattice points satisfy the recursion relation

ζk+1 = imkζk + c(p(jLk |tLk)) · d(L), (26)

31



where
mk = T (p(jLk |tLk)).

The partial paths p(j|t) were defined in equation (22), and, from (24),

|c(p(jL|tL)) · d(L)| = |c(p(jL|tL)) · ξ| ωLW
(
1 +O(δL)

)
, (27)

for some δ < 1. Because there are only finitely many distinct partial paths, there exist
positive α± such that for all L with non-vanishing c(p(jL|tL)) · ξ,

α− ≤ |(c(p(jL|tL)) · ξ)| ≤ α+.

Thus

|ζk|
ω
Lk−1

W

≤ α+

k−1∑

j=0

ω
Lj−Lk−1

W (1 +O(δLj )).

On the right hand side the summation can be extended to infinity to obtain a k-independent

upper bound for |ζk|/ωLk−1

W , and so we get

limL→∞
|ζL|
ωLW

<∞.

Finally we must show that the lim is non-zero. To see this, choose an arbitrary positive
κ less than α−

2ωW
. We claim that

lim
|ζk|
ω
Lk−1

W

>
α−

2ωW
− κ. (28)

Suppose the contrary. In that case, there are infinitely many k for which |ζLk/ωLkW | ≤
α−/(2ωW )− κ. But then the next level lattice displacement, ζk+1, would have to satisfy

|ζk+1|
ωLkW

≥ α−
ωW

(1 +O(δLk))−
(
α−

2ωW
− κ
)

=
α−

2ωW
+ κ+

α−
ωW

O(δLk).

For sufficiently large k, these quantities exceed the hypothetical lim, and, since there
are infinitely many of them, we have a contradiction. We conclude that lim |ζk|

ω
Lk−1
W

is strictly

positive.

Inserting the temporal scaling inequality, we obtain the global asymptotic power law.

Appendix B: proof of proposition 6

The eventual self-similarity of the forward σ(0) orbit of any aperiodic point z ∈ D(0) is
essentially a consequence of the structure of the iteration path, i.e., the sequence of j ∈ IJ
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corresponding to the domains Dj(0) visited by the orbit. From the discussion of the
Vershik updating in Appendix A, it is clear that the full path g can be written, assuming
that the symbolic representation of z does not have a maximal tail, as a concatenation
(denoted by the symbol ^) of segments of the form

g1 = p(j1|t1), gL =

{
0 if tL = νjL − 1,
SL−1 p(jL|tL + 1) otherwise,

where S is the substitution

S (i1, i2, . . . , iN ) = p(i1) ^ p(i2) ^ · · ·^ p(iN ),

with p(j) and p(j|t) the path functions defined by (12) and (22). Thus, if the symbolic
representation of the starting point z is P -periodic from level L′ onward, then we have

g = a ^ b ^ SP b ^ S2P b ^ · · · , (29)

where
a = g1 ^ g2 ^ · · ·^ gL′−1, b = gL′ ^ · · ·^ gL′+P−1.

But this is only the simplest decomposition of the path consistent with eventual self-
similarity. More generally, we can choose an arbitrary initial segment h of gL′ , including
h = ∅. Then (29) remains valid with

a = g1 ^ g2 ^ · · ·^ gL′−1 ^ h, b = (gL′ \ h) ^ · · ·^ gL′+P−1 ^ SP h. (30)

In the above we assumed that z does not have a maximal tail. Otherwise we know that the
forward orbit contains a point z′ with symbolic representation (j, 0)∞, with j = p(j, 0).
Unless this point is its own successor (forbidden by our assumption that z is an aperiodic
point), the code does not have a maximal tail and we can apply the decomposition (29) to z ′

instead of z. The non-maximality assumption guarantees that the path segment b in (30) is
non-empty, since either h 6= ∅, hence SPh 6= ∅, or at least one of the gL, L

′ < L < L′+P−1
is non-empty.

We now are in a position to construct the rapid-ascent sub-orbits of the proposition.
Given z, we define, for k = 0, 1, . . .,

zk = W skz0, s0 = s(a), sk = s(a ^ b ^ Sb ^ · · ·^ S(k−1)P b), k > 0,

where, for any path segment f , the timekeeping function s(f) is defined as

s(f) =
J−1∑

j=0

nj(f)Tj(0),

with nj(f) denoting the number of elements of f equal to j. Thus, for any non-negative
integer L,

s(SL f) =
J−1∑

j=0

nj(f)Tj(L).

We now verify the claimed properties of the sequence (z0, z1, . . .).
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Temporal scaling. From the bounds on Tj(L) in lemma 3 we get that there exist positive
constants B(b) and C(b) such that, for any non-negative integer n,

∣∣s(Sn b)−B(b)ωnPT
∣∣ < C(b)ω′nP .

Summing up, we get that there exist positive constants B and C, as well as ω ′ < ωT such
that for all k, ∣∣∣sk −B ωkPT

∣∣∣ < Cω′kP . (31)

The finiteness of lim sk/ω
kP
t follows immediately.

Local scaling. We note that u0 ∈ D(0). After completing the part of the orbit with path
a, the orbit point is still in D(0). We cannot say more than that: even though the orbit
achieved level L′− 1 along the way, the arbitrariness of h means that the level may fall to
zero by the end of the segment. By the same token, the ultimate level of uk, governed by
the final segment SkP h, will be at least kP . The scaling relation

|D(kP )| = |D(0)|ωkP ,

together with the fact that both uk and u∞ are in the closure of D(kP ), gives us the
finiteness of limk→∞ ||uk − u∞||/ωkP . Inserting (31) gives us the power law for local
convergence.

Global scaling. From the path decomposition (29), we have the lattice recursion relation
for the sub-orbit (z0, z1, . . .), zk = [uk, ζk],

ζk+1 = isk+1−skζk + c(b) · d(kP ).

Applying (24), the recursion formula becomes

ζk+1 = is1−s0ζk + c(b) · ξωkPW +O(ω′kP ),

with ω′ < ωW . Thus

ζk

ωkPW
= c(b)ω−P

(
1 + is1−s0ω−PW + i2(s1−s0)ω−2P

W + · · ·+ i(k−1)(s1−s0)ω
−(k−1)P
W

)
+ r(k),

where r(k) vanishes as O(ω′/ωW ) if ω′ > 1, and O(1) otherwise. Given the non-vanishing
of c(b), the existence of a finite, non-zero limit follows. Inserting (31) gives us the power
law for global convergence.
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