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Abstract

Let H be a Schrödinger operator on a Hilbert space H, such that zero is a non-
degenerate threshold eigenvalue of H with eigenfunction Ψ0. Let W be a bounded
selfadjoint operator satisfying 〈Ψ0,WΨ0〉 > 0. Assume that the resolvent (H − z)−1

has an asymptotic expansion around z = 0 of the form typical for Schrödinger oper-
ators on odd-dimensional spaces. Let H(ε) = H + εW for ε > 0 and small. We show
under some additional assumptions that the eigenvalue at zero becomes a resonance
for H(ε), in the time-dependent sense introduced by A. Orth. No analytic continua-
tion is needed. We show that the imaginary part of the resonance has a dependence
on ε of the form ε2+(ν/2) with the integer ν ≥ −1 and odd. This shows how the
Fermi Golden Rule has to be modified in the case of perturbation of a threshold
eigenvalue. We give a number of explicit examples, where we compute the “location”
of the resonance to leading order in ε. We also give results, in the case where the
eigenvalue is embedded in the continuum, sharpening the existing ones.

1 Introduction

The main purpose of this paper is to study the following question. Consider a Schrödinger
operator

H = −∆ + V on L2(R3),

where for the moment we assume that V ∈ C∞
0 (R3). The essential spectrum of H is the

half line [0,∞), and it is well-known that this spectrum is purely absolutely continuous.
H may have a finite number of negative eigenvalues, and there may also be an eigenvalue
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at the threshold zero. Suppose that zero is a nondegenerate eigenvalue with normalized
eigenfunction Ψ0. Let W ∈ C∞

0 (R3), and assume that it is nonnegative. Consider for small
ε > 0 the family of Hamiltonians

H(ε) = H + εW.

Since the perturbation is nonnegative, the zero eigenvalue cannot become an isolated nega-
tive eigenvalue, and since it is well-known that H(ε) cannot have eigenvalues embedded in
(0,∞), only two possibilities remain. Zero can remain an eigenvalue, or it can disappear.
In the latter case one expects that it becomes a resonance. This is the kind of question
that we will study.

The existence of the resonance can be verified in several ways, depending upon the
“definition” of what a resonance is. One may look at this question in the spectral form.
Thus one looks at a meromorphic continuation of the resolvent in some sense, and expects
to find a pole close to zero in the complex energy plane. One can also study the question
from the time-dependent point of view. Here one looks at the behavior of 〈Ψ0, e

−itH(ε)Ψ0〉,
which describes the survival probability for e−itH(ε)Ψ0, i.e. the probability to remain in the
state Ψ0 at time t. The resonance will then manifest itself in the form of a behavior of the
type

〈Ψ0, e
−itH(ε)Ψ0〉 = e−itλ(ε) + δ(ε, t), t > 0, (1.1)

i.e. corresponding to a metastable state. Here λ(ε) = x0(ε) − iΓ(ε) with x0(ε) > 0 and
Γ(ε) > 0 and, as far as a resonance defined in the spectral sense exists, should coincide
with the resonance position. The error term in (1.1) should satisfy δ(ε, t) → 0 as ε→ 0.

Our main theorem gives conditions on H and W that lead to such results, with ex-
pressions for the leading terms in x0(ε) and Γ(ε), as ε → 0. In the case of an eigenvalue
embedded in the interior of the absolutely continuous spectrum, formulae for computing
the leading term in Γ(ε) are often referred to as the Fermi Golden Rule. Thus we find
versions of the Fermi Golden Rule in the case, where the eigenvalue is embedded at a
threshold.

Let us give an outline of the main results, referring to the theorems for precise as-
sumptions and conditions. The results are obtained in a semi-abstract framework. One
of the main tools needed is the asymptotic expansion of the resolvent R(z) = (H − z)−1

around zero. It is convenient to use the variable κ = −i√z, z ∈ C \ [0,∞). We assume an
expansion of the form

R(−κ2) =
1

κ2
P0 +

N∑

j=−1

κjGj + O(κN+1) (1.2)

as κ → 0. This type of expansion is known to hold for Schrödinger operators in odd
dimensions, with sufficiently rapidly decaying V . The expansion holds in the topology of
bounded operators between weighted L2-spaces. See [18, 17, 25, 19]. For the perturbation
W we assume that it decays sufficiently rapidly, and as a crucial condition, we require

b = 〈Ψ0,WΨ0〉 > 0. (1.3)

2



We do not assume that W is nonnegative. We assume that there exists an odd integer ν,
such that

gν = 〈Ψ0,WGνWΨ0〉 6= 0, Gj = 0, j = −1, 1, 3, . . . , ν − 2.

Our main abstract result then states that (1.1) holds. Furthermore, we have the estimate

|δ(ε, t)| ≤ Cεp(ν),

with p(ν) = min{2, (2 + ν)/2}. We have the expansions

Γ(ε) = −iν−1gνb
ν/2ε2+(ν/2)(1 + O(ε)),

x0(ε) = bε(1 + O(ε)),

as ε→ 0. The proof of these results is based on the representation

〈Ψ0, e
−itH(ε)Ψ0〉 = lim

η↘0

1

π

∫
e−itx Im〈Ψ0, (H(ε) − x− iη)−1Ψ0〉dx.

The idea is first to localize to an interval Iε ⊆ (1
2
bε, 3

2
bε), depending on ε and ν, and then,

by using the resolvent expansion, replace the term

Im〈Ψ0, (H(ε) − x− iη)−1Ψ0〉

in the integrand by a Lorentzian function

Γ(ε)

(x− x0(ε))2 + Γ(ε)2
.

To obtain this approximation we use the Schur-Livsic-Feshbach-Grushin (SLFG for short)
formula to localize the essential terms. During all steps one has to control the errors. The
detailed computations then lead to the result outlined above.

We apply these semi-abstract results to a number of cases involving Schrödinger oper-
ators in three and one dimensions, and on the half line. We consider both the one channel
and the two channel cases. As an example of the type of results obtained, assume as above
that H = −∆ + V on L2(R3) has zero as a nondegenerate eigenvalue (and no threshold
resonance), with Ψ0 a normalized real-valued eigenfunction. Let

Xj =

∫

R3

Ψ0(x)V (x)xjdx, j = 1, 2, 3.

Assume that at least one Xj 6= 0. Then ν = −1, and we have

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ).

There is a large literature concerned with establishing the spectral form of the Fermi
Golden Rule in a rigorous framework. In particular, using dilation-analyticity, it was
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established in [30], in a large number of cases, including atoms and molecules. See also
the discussion in [29]. The case of bound states embedded at a threshold is much less
studied. The coupling constant case has been studied by several authors, see for example
[28, 11, 12]. To compare with our results, one has to take W = −V , in order to satisfy
(1.3), since (−∆+V )Ψ0 = 0 implies 〈Ψ0, VΨ0〉 = 〈Ψ0,∆Ψ0〉 < 0. Then the explicit results
in [11] correspond to our case ν = −1, and the results agree. The spectral form of the
resonance problem has been studied near band edges for periodic Schrödinger operators in
the semi-classical limit, in [23]. A general framework for a unified treatment of resonances
and eigenvalues near thresholds has been given in [13], using meromorphic continuation of
resolvents. The first paper to rigorously establish the time-dependent form above, with a
remainder estimate, was the one by Skibsted [32].

The only work in the spectral form directly related to our study that we are aware of
(even at a nonrigorous level), is that of Baumgartner [4], where some simplified two-channel
models are considered. In these cases explicit computations can be performed, and one can
explain how the usual Fermi Golden Rule has to be modified to be applied in the threshold
case.

The time-dependent approach has been developed much later. Let us remark that
here there is no need of an analytic continuation. The time-dependent approach, without
analyticity, was initiated in [27] and continued in [21]. In [15] it was investigated how
to get a better error term by using the perturbation theory in the spirit of Simon [30]
in the dilation-analytic framework. In addition, again using the analytic continuation
of the resolvent, the Fermi Golden Rule has been rigorously established in some models
of quantum field theory and open systems (see [7, 16], and references therein). More
recently, a number of authors have developed a general time-dependent approach, without
analyticity, see for example [22, 34, 33, 24, 6, 35]. As far as we can determine, none of
these approaches can be applied directly to the threshold eigenvalue case. (See however the
remarks in [33, 6] concerning some examples of Schrödinger operators in high dimensions.)

It should be noted that all the time-dependent approaches (except [15]) use the SLFG
formula in some form, or something equivalent to it. As we already said, we also rely
heavily on the SLFG formula.

As in [4] one may describe the results stated above as explaining how the usual Fermi
Golden Rule has to be modified to be applied in the threshold case. In the case of a
resonance arising from the perturbation of an eigenvalue embedded in the continuum, one
finds that the imaginary part of the resonance behaves generically like ε2 as ε→ 0. We find
the behavior ε2+(ν/2), ν = −1, 1, . . ., which is quite different. In particular, for ν ≥ 1 the
resonance arising from the threshold eigenvalue has a larger lifetime than one arising from
an eigenvalue embedded in the continuum, i.e. one has an enhancement of the lifetime.
On the contrary, for ν = −1 the lifetime is smaller, i.e. one has an enhancement of the
decay. This is clearly seen in the two channel case, when a threshold resonance is present
in the open channel, and can be explained heuristically as the effect of the increase, due
to the threshold resonance, of the density of states near the threshold.

Let us briefly outline the contents of the paper. In Section 2 we give the SLFG formula,
and introduce the factorization method. In Section 3 we give our semi-abstract results,
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modelled on Schrödinger operators in odd dimensions. The main result is stated as Theo-
rem 3.7. In Section 4 we give some results on the case where the eigenvalue is embedded
in the continuum, sharpening (when no analytic continuation is available) the existing es-
timates on supt>0 |δ(ε, t)| . In the differentiable case, as far as the dependence upon ε is
concerned, our estimate on supt>0 |δ(ε, t)| is optimal. Let us note that these results are
applicable to Schrödinger operators in both even and odd dimensions.

Then in Section 5 we verify the assumptions in Section 3 in a number of cases: (i) A
Schrödinger operator on L2(R3), both in the one channel and the two channel cases. (ii)
A Schrödinger operator on L2(R). Here it only makes sense to consider the two channel
case, since for rapidly decaying potentials zero cannot be an eigenvalue. (iii) The operator
−d2/dr2 + `(` + 1)r−2 on L2(R+). The results in this subsection relate directly to [4,
Section V]. In all cases we determine the values of ν and compute gν explicitly. Finally,
for the reader’s convenience, in the Appendix we reobtain the results we need from [18], in
the framework given in [19].

We conclude the introduction with the remark that in the case of a threshold eigenvalue
embedded in the continuum, as can be seen in atoms and molecules, one can combine the
approaches in Sections 3 and 4, to obtain results, which we refrain from stating in detail.

2 The Schur-Livsic-Feshbach-Grushin (SLFG) formula

and the factorization method

Let H be a self-adjoint operator in a separable Hilbert space H and E0 a nondegenerate
eigenvalue of H,

HΨ0 = E0Ψ0, ‖Ψ0‖ = 1. (2.1)

We can without loss of generality in the sequel take E0 = 0. Suppose now that a pertur-
bation, described by the self-adjoint operator W , is added so the perturbed dynamics is
generated by

H(ε) = H + εW, ε > 0. (2.2)

Note that we only consider positive values of the parameter ε. For the sake of simplicity
we shall assume that W is bounded, but all the results below extend to the case, when W
is bounded with respect to H, with bound less than one.

At the heuristic level, it is argued that due to the perturbation, for ε small enough, 0
turns into a resonance having an (approximate) exponential decay law,

〈Ψ0, e
−iH(ε)tΨ0〉 = e−iλ(ε)t + δ(ε, t), (2.3)

with δ(ε, t) → 0, as ε→ 0, and

λ(ε) = E(ε) − iΓ(ε), E(ε) = 0 + ε〈Ψ0,WΨ0〉 + O(ε2). (2.4)

The goal is to compute λ(ε), and to obtain bounds on |δ(ε, t)|. Again at the heuristic
level, it is argued that the main contribution to the left-hand side of (2.3) is given by
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energies near to E(ε), so one first considers (see [15])

Agε(t) = 〈Ψ0, e
−iH(ε)tgε(H(ε))Ψ0〉, (2.5)

where gε is the (possibly smoothed) characteristic function of a closed interval Iε, containing
the relevant energies. Let us remark that usually (see e.g. [15, 6, 24, 35]) Iε is chosen to be
a neighborhood of E0, independent of ε. One of the key points of our approach is to make
an appropriate ε-dependent choice of Iε. Also, since we are interested in uniform (with
respect to t) estimates on δ(ε, t), we shall take gε to be the characteristic function of Iε.

From Stone’s formula (suppose that the end points of Iε are not eigenvalues of H(ε))
one gets

Agε(t) = lim
η↘0

1

π

∫

Iε

dx e−ixt Im〈Ψ0, (H(ε) − x− iη)−1Ψ0〉. (2.6)

As in [27], in order to compute the integrand in (2.6), we use the well-known Schur-
Livsic-Feshbach-Grushin formula. More precisely, if P0 is the orthogonal projection on
Ψ0, Q0 = 1 − P0, and R0,ε(z) is the resolvent of Q0H(ε)Q0 as an operator in Q0H, then
in operator matrix form on H = P0H ⊕ Q0H, we have for Rε(z) = (H(ε) − z)−1 the
representation

Rε(z) =

[
Reff(z) −εReff(z)P0WQ0R0,ε(z)

−εR0,ε(z)Q0WP0Reff(z) R22

]
, (2.7)

with

R22 = R0,ε(z) + ε2R0,ε(z)Q0WP0Reff(z)P0WQ0R0,ε(z),

and

Reff(z) =
(
P0H(ε)P0 − ε2P0WQ0R0,ε(z)Q0WP0 − zP0

)−1
,

where, with a slight abuse of notation, we write Reff(z) = (Heff(z)− z)−1, and furthermore
(remember that we assume RankP0 = 1)

P0(Heff(z) − z)P0 = F (z, ε)P0

=
(
ε〈Ψ0,WΨ0〉 − z − ε2〈Ψ0,WR0,ε(z)WΨ0〉

)
P0. (2.8)

Using (2.8), (2.7), and (2.6), one obtains

Agε(t) = lim
η↘0

1

2πi

∫

Iε

dx e−ixt
( 1

F (x+ iη, ε)
− 1

F (x− iη, ε)

)
. (2.9)

The whole problem is to have a “nice” formula for F (z, ε), so that the integral in (2.9) can
be estimated. For that purpose we need some information on R0,ε(z). Let

W = A∗DA (2.10)
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be a factorization of W with D a self-adjoint involution. An example of such a factorization
is the polar decomposition of W ,

W = |W |1/2D|W |1/2, (2.11)

where we take D to be unitary by defining it to be the identity on KerW .
Take Im z → ∞, and use regular perturbation theory to obtain

Q0R0,ε(z)Q0 = Q0(H − z)−1Q0

− εQ0(H − z)−1Q0WQ0(H − z)−1Q0 + · · ·
= Q0(H − z)−1Q0 − εQ0(H − z)−1Q0

× A∗[D + εAQ0(H − z)−1Q0A
∗]−1AQ0(H − z)−1Q0. (2.12)

With the notation
G(z) = AQ0(H − z)−1Q0A

∗, (2.13)

one has for Im z → ∞
F (z, ε) = ε〈Ψ0,WΨ0〉 − z

− ε2〈Ψ0, A
∗D{G(z) − εG(z)[D + εG(z)]−1G(z)}DAΨ0〉. (2.14)

Since F (z, ε) is analytic in z, the equality (2.14) holds true for all z, for which either the
right-hand side, or the left-hand side, exists. In particular, (2.14) holds true for Im z 6= 0.
The formulae (2.9) and (2.14) are the starting formulae of our approach. What is nedeed in
each particular case is the behaviour of G(z) in a neighbourhood of the energy of interest.

Remark 2.1. Let us comment briefly on our terminology. We call the formula (2.7) the
Schur-Livsic-Feshbach-Grushin formula. For matrices, it goes back at least to Schur in
a paper from 1917, and what we called the effective Hamiltonian, is known as the Schur
complement. It is widely used in matrix theory and related areas, see [8] and also [9] for
further references. In spectral theory related to quantum theories it is known as the Fesh-
bach or Livsic formula, and references can be traced from [14, 7]. In a slightly different
but equivalent form, the same formula appeared in the study of linear partial differential
operators, see [31] and references therein. We named it the SLFG formula to emphasize
the fact that all these scattered developments represent the same mathematical object: the
Schur complement.

3 Threshold eigenvalues in the case of odd dimensions

In this case the ingredient is the expansion of G(z) around z = 0. For the examples
considered here, the corresponding expansions are provided by the results or methods in
[18, 17, 25, 19]. In this section we shall use this expansion in a somewhat abstract setting,
having in mind Schrödinger and Dirac operators in odd dimensions. More precisely, we
assume H and W to satisfy the following conditions (A1)–(A5). Here ρ(H) denotes the
resolvent set, and σ(H) the spectrum, with standard notation for the components of the
spectrum.
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Assumption 3.1. (A1) There exists a > 0, such that (−a, 0) ⊂ ρ(H) and [0, a] ⊂ σess(H).

(A2) Assume that zero is a nondegenerate eigenvalue of H: HΨ0 = 0, with ‖Ψ0‖ = 1,
and there are no other eigenvalues in [0, a]. Let P0 = |Ψ0〉〈Ψ0| be the orthogonal
projection onto the one-dimensional eigenspace.

(A3) Assume
〈Ψ0,WΨ0〉 = b > 0. (3.1)

(A4) For Re κ ≥ 0 and z ∈ C \ [0,∞) we let

κ = −i
√
z, z = −κ2. (3.2)

There exist N ∈ N and δ0 > 0, such that for κ ∈ {κ ∈ C | 0 < |κ| < δ0,Reκ ≥ 0} we
have

A(H + κ2)−1A∗ =
1

κ2
P̃0 +

N∑

j=−1

G̃jκ
j + κN+1G̃N (κ), (3.3)

where

P̃0 = AP0A
∗, (3.4)

G̃j are bounded and self-adjoint, (3.5)

G̃−1 is of finite rank and self-adjoint, (3.6)

G̃N(κ) is uniformly bounded in κ. (3.7)

Taking into account that (remember that Q0 = 1 − P0)

(H + κ2)−1 =
1

κ2
P0 +Q0(H + κ2)−1Q0, (3.8)

one has from (3.3), (3.4), and (3.8) that

G(z) =
N∑

j=−1

G̃jκ
j + κN+1G̃N(κ). (3.9)

From (3.9) we get

〈Ψ0, A
∗DG(z)DAΨ0〉 =

N∑

j=−1

gjκ
j + κN+1gN(κ), (3.10)

where

gj = 〈Ψ0, A
∗DG̃jDAΨ0〉, (3.11)

gN(κ) = 〈Ψ0, A
∗DG̃N(κ)DAΨ0〉. (3.12)

Notice that due to (3.5) we have
gj = gj. (3.13)

Finally, we need one further assumption.
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Assumption 3.2. (A5) There exists an odd integer, −1 ≤ ν ≤ N , such that

gν 6= 0, G̃j = 0 for j = −1, 1, . . . , ν − 2. (3.14)

A few remarks about the above assumptions: (A1) is nothing but the fact that we
consider the perturbation of eigenvalues lying at a threshold, and that the threshold is not
embedded in the essential spectrum. Assumptions (A2) is a simplifying “nondegeneracy”
condition. There are many interesting cases from a physical point of view, where these two
assumptions do not hold. The assumption (A3) is essential. It assures that the perturbation
“pushes” the eigenvalue into the positive continuum at a rate of order ε, while (A5) implies
(see below) that the “width” Γ(ε) behaves as ε2+(ν/2), as ε → 0. If (A3) does not hold,
and the perturbation pushes the eigenvalue into the continuum at a rate as say ε2, then
an exponential decay law may not exist. Let us note that for every odd ν ≥ −1 there are
examples where (A5) holds with that choice of ν. See Section 5.3. We shall consider the
problem of relaxing these assumptions in subsequent work. Assumption (A4) is our main
tool. In particular, it implies that on (0, δ2

0] the spectrum of H is absolutely continuous.
We also notice that from (2.13), (3.10), and the first resolvent equation, it follows that

iν−1gν < 0. (3.15)

By the heuristics of naive perturbation theory, one expects that the perturbation turns
the zero eigenvalue into a “resonance”, whose real part, up to errors of order ε2, equals bε.
(Note that if (3.1) does not hold, then the eigenvalue may turn into an isolated eigenvalue
of H(ε).) This suggests to take the interval of “relevant energies” to be contained in
(1

2
bε, 3

2
bε):

Iε ⊂ (1
2
bε, 3

2
bε). (3.16)

Now the idea of the proof that Agε(t) has the form of the right-hand side of (2.3), is
very simple: On the interval Iε the function Im(F (x+ i0, ε)−1) can be approximated by a
Lorentzian function, whose parameters give λ(ε). There are two error terms to be taken
into account. The first one is coming from approximating Im(F (x + i0, ε)−1) on Iε by a
Lorentzian function, and the second one from the Lorentzian integral on R \ Iε. While the
first one is increasing with the length of Iε, the second one is decreasing. The length of Iε

will be chosen as to balance between the two.
In what follows for ε sufficiently small is a shorthand expression for there exists ε0 such

that for 0 < ε ≤ ε0 the given statement holds. All the constants appearing below are finite
and strictly positive. Consider

Dε = {z = x + iη | x ∈ ( 1
2
bε, 3

2
bε), 0 < |η| < (εb)2+ ν+1

2 }. (3.17)

Lemma 3.3. Let

p(ν) = min{2, 2 + ν

2
}. (3.18)

Then for ε sufficiently small, and for z ∈ Dε, we have

F (z, ε) = H(z, ε) + r(z, ε), (3.19)
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with
sup

0<ε<ε0

z∈Dε

ε−(2+p(ν)+ ν
2
)|r(z, ε)| <∞, (3.20)

and for ν = −1
H(z, ε) = εb− z − ε2g−1κ

−1, (3.21)

while for ν ≥ 1

H(z, ε) = εb− z − ε2
[
aν(ε)κ

ν + gν+2κ
ν+2 +

ν+3

2∑

j=0

fj(ε)κ
2j

]
. (3.22)

Here (see (3.11) for gj)

aν(ε) = gν − ε〈Ψ0, A
∗D(G̃νG̃0 + G̃0G̃ν)DAΨ0〉, (3.23)

the fj(ε) are polynomials with real coefficients of degree at most 2 + ν−1
2

, and

f0(ε) = g0 + O(ε). (3.24)

Proof. The crucial point is that (and this is one of the reasons for our conditions on Iε),
since Dε is “far” from the origin,

sup
z∈Dε

ε‖G(z)‖ ≤
{
Cε1/2 for ν = −1,

Cε for ν > −1.

Accordingly, for sufficiently small ε we have

sup
z∈Dε

‖(D + εG(z))−1‖ ≤ 2, (3.25)

and then from (2.14)

F (z, ε) = εb− z − ε2
〈
Ψ0, A

∗
( m∑

k=0

(−ε)k(DG(z)D)k+1
)
AΨ0

〉
+ qm(z, ε). (3.26)

By choosing m = 0 for ν = −1, m = 1 for ν = 1, and m = 1 + ν+3
2

for ν > 1, qm(z, ε)
satisfies (3.20), i.e.

sup
0<ε<ε0

z∈Dε

ε−(2+p(ν)+ ν
2
)|qm(z, ε)| <∞. (3.27)

Plug the expansion (3.10) into (3.26) with N = −1 for ν = −1, N = 3 for ν = 1, and
N = ν+5 for ν > 1, and then keep in H(z, ε) all the terms, which do not satisfy (3.27).

10



Consider now the function H(z, ε). From the definition of Dε, it follows that for z ∈ Dε

one has | Imκν | ≥ Cεν/2 and | Im κ2| ≤ Cε2+ ν+1

2 . Since all the coefficients appearing in the
definition of H(z, ε) are real, it follows that for sufficiently small ε we have

inf
z∈Dε

|ImH(z, ε)| ≥ Cε2+ ν
2 . (3.28)

Obviously, H(z, ε) has limits as η → 0,

H±(x, ε) = lim
η↘0

H(x± iη, ε). (3.29)

Now (2.8) implies that η ImF (x + iη, ε) < 0, and then from (3.28) and Lemma 3.3, it
follows that

η ImH(x + iη, ε) < 0. (3.30)

Notice also that
H+(x, ε) = H−(x, ε), (3.31)

and on Iε we have
|H±(x, ε)| ≥ |ImH±(x, ε)| ≥ Cε2+ ν

2 . (3.32)

Let R(x, ε) and I(x, ε) be the real and the imaginary parts of H+(x, ε), respectively,
such that

H±(x, ε) = R(x, ε) ± iI(x, ε). (3.33)

From (3.22) one has

R(x, ε) = εb− x− ε2

ν+3

2∑

j=0

(−x)jfj(ε) (3.34)

(for ν = −1 the sum in the right-hand side of (3.34) is zero, see (3.21)). For ε sufficiently
small we have R( εb

2
, ε) > 0 and R( 3εb

2
, ε) < 0, and for x ∈ [ εb

2
, 3εb

2
],

−3

2
<

d

dx
R(x, ε) < −1

2
. (3.35)

This implies that for sufficiently small ε the equation R(x, ε) = 0 has a unique solution
x0(ε), i.e.

R(x0(ε), ε) = 0. (3.36)

In addition,
x0(ε) = εb+ O(ε2). (3.37)

Let now (see (3.33))
Γ(ε) = −I(x0(ε), ε). (3.38)

Notice that for sufficiently small ε (see (3.30) and (3.15)) we have Γ(ε) > 0. At this
point we make the choice for Iε as follows (notice that for all ν and sufficiently small ε,
Iε ⊂ ( εb

2
, 3εb

2
)):
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Iε =

{
[x0(ε) − 1

4
bε, x0(ε) + 1

4
bε] for ν = −1, 1,

[x0(ε) − Γ(ε)
ε2 , x0(ε) + Γ(ε)

ε2 ] for ν > 1.
(3.39)

The next lemma estimates the error, when F (z, ε) is replaced with H(z, ε).

Lemma 3.4. For sufficiently small ε we have

∣∣∣Agε(t) −
1

2πi

∫

Iε

e−ixt

[
1

H+(x, ε)
− 1

H−(x, ε)

]
dx

∣∣∣ ≤ Cεp(ν). (3.40)

Proof. For sufficiently small ε, and z ∈ Dε, we have

|F (z, ε)| ≥ 1
2
|H(z, ε)|. (3.41)

Indeed, from Lemma 3.3 follows

|F (z, ε)| ≥ |H(z, ε)| − Cε2+p(ν)+ ν
2 ,

which together with (3.28), and the fact that p(ν) ≥ 1
2
, implies (3.41). Furthermore, from

Lemma 3.3 and (3.41) follows

∣∣∣ 1

2πi

∫

Iε

e−ixt

[
1

F (x+ iη, ε)
− 1

H(x+ iη, ε)

]
dx

∣∣∣ ≤ Cε2+p(ν)+ ν
2

∫

Iε

1

|H(x+ iη, ε)|2dx.

The estimate (3.28) implies that 1
|H(x+iη,ε)|2

is uniformly bounded for a fixed ε. Take the
limit η ↘ 0 to get

∣∣∣lim
η↘0

1

2πi

∫

Iε

e−ixt

[
1

F (x± iη, ε)
− 1

H(x± iη, ε)

]
dx

∣∣∣ ≤ Cε2+p(ν)+ ν
2

∫

Iε

1

|H±(x, ε)|2dx.
(3.42)

Now due to (3.32), (3.35), and (3.36) we have

|H±(x, ε)| ≥ C
√

(x− x0(ε))2 + ε4+ν , (3.43)

and then

ε2+p(ν)+ ν
2

∫

Iε

1

|H±(x, ε)|2dx ≤ εp(ν)

∫ ∞

−∞

ε
4+ν
2

(x− x0(ε))2 + ε4+ν
dx = εp(ν)

∫ ∞

−∞

1

x2 + 1
dx,

(3.44)
and the proof of the lemma is finished.

We want to replace H±(x, ε) with the following function

L±(x, ε) = −(x− x0(ε)) ± iI(x0(ε), ε). (3.45)

Inserted into (3.40), L±(x, ε) leads to a Lorentzian function. The next lemma estimates
the error, when H±(x, ε) is replaced by L±(x, ε).

12



Lemma 3.5. For sufficiently small ε we have

∣∣∣
∫

Iε

e−ixt

[
1

H±(x, ε)
− 1

L±(x, ε)

]
dx

∣∣∣ ≤ Cεp(ν). (3.46)

Proof. As in the proof of Lemma 3.3 we have to estimate H±(x, ε)−L±(x, ε). From (3.21),
(3.22), and (3.29) we have

sup
x∈Iε

{∣∣∣ d
2

dx2
R(x, ε)

∣∣∣ +
∣∣∣ d
dx
R(x, ε) + 1

∣∣∣
}

≤ Cε2 (3.47)

and

sup
x∈Iε

∣∣∣ d
dx
I(x, ε)

∣∣∣ ≤ Cε1+ ν
2 ; sup

x∈Iε

∣∣∣ d
2

dx2
I(x, ε)

∣∣∣ ≤ Cε
ν
2 . (3.48)

Then from the Taylor expansion (with remainder) we get (see (3.47) and (3.48))

|H±(x, ε) − L±(x, ε) − (1 + d
dx
H±(x0(ε), ε))(x− x0(ε))| ≤ Cεmin{2, ν

2
}|x− x0(ε)|2, (3.49)

|H±(x, ε) − L±(x, ε)| ≤ Cεp(ν)|x− x0(ε)|. (3.50)

Now

1

H±(x, ε)
− 1

L±(x, ε)
=
L±(x, ε) −H±(x, ε)

L±(x, ε)2
+

(L±(x, ε) −H±(x, ε))2

L±(x, ε)2H±(x, ε)
(3.51)

From (3.51), (3.49), (3.50), and the fact that (see (3.43) or (3.47))

|H±(x, ε)| ≥ |R(x, ε)| ≥ C|x− x0(ε)| (3.52)

we get:

∣∣∣
∫

Iε

e−ixt

[
1

H±(x, ε)
− 1

L±(x, ε)

]
dx

∣∣∣ ≤ |1 + d
dx
H±(x0(ε), ε)|

∣∣∣
∫

Iε

e−ixt (x0(ε) − x)

L±(x, ε)2
dx

∣∣∣

+ Cεmin{2, ν
2
}

∫

Iε

|x− x0(ε)|2
|L±(x, ε)|2 dx+ Cε2p(ν)

∫

Iε

|x− x0(ε)|
|L±(x, ε)|2 dx. (3.53)

With the notation l(ε) = 1
2
length Iε we get (we always have l(ε) � Γ(ε), see (3.39))

Cεmin{2, ν
2
}

∫

Iε

|x− x0(ε)|2
|L±(x, ε)|2 dx+ Cε2p(ν)

∫

Iε

|x− x0(ε)|2
|L±(x, ε)|3 dx

≤ Cεmin{2, ν
2
}l(ε) + Cε2p(ν) ln

l(ε)

Γ(ε)
≤ Cεp(ν). (3.54)

Furthermore, writing
(x0(ε) − x)

L±(x, ε)2
=

1

L±(x, ε)
± iΓ(ε)

L±(x, ε)2
,
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and using that 1
π

∫
R

Γ(ε)
x2+Γ(ε)2

dx = 1, one has

∣∣∣
∫

Iε

e−ixt (x0(ε) − x)

L±(x, ε)2
dx

∣∣∣ ≤
∣∣∣
∫

Iε

e−ixt 1

L±(x, ε)
dx

∣∣∣ + π. (3.55)

Finally, ∣∣∣
∫

Iε

e−ixt 1

L±(x, ε)
dx

∣∣∣ =
∣∣∣
∫ l(ε)/Γ(ε)

−l(ε)/Γ(ε)

e−itΓ(ε)y 1

y ∓ i
dy

∣∣∣ ≤ C, (3.56)

where the last inequality is obtained by estimating the last integral using the residue
theorem. From (3.47) and (3.48) follows that

|1 + d
dx
H±(x0(ε), ε)| ≤ Cεp(ν),

which together with (3.51), (3.54), (3.55), and (3.56) finishes the proof.

We can now evaluate Agε(t).

Lemma 3.6. For sufficiently small ε we have

|Agε(t) − e−it(x0(ε)−iΓ(ε))| ≤ Cεp(ν). (3.57)

Proof. By direct computation

1

2πi

∫

Iε

e−ixt

[
1

L+(x, ε)
− 1

L−(x, ε)

]
dx =

1

π

∫

Iε

e−ixt Γ(ε)

(x− x0(ε))2 + Γ(ε)2
dx. (3.58)

Due to (3.37), (3.23), and (2.2) we have

Γ(ε) = −iν−1gνb
ν
2 ε2+ ν

2 + O(ε3+ ν
2 ), (3.59)

which together with (3.39) implies

∣∣∣
(∫

R

−
∫

Iε

)
e−ixt Γ(ε)

(x− x0(ε))2 + Γ(ε)2
dx

∣∣∣ ≤ C

∫ ∞

l(ε)

Γ(ε)

x2 + Γ(ε)2
dx ≤ Cεp(ν). (3.60)

Since by the residue theorem

1

π

∫

R

e−ixt Γ(ε)

(x− x0(ε))2 + Γ(ε)2
dx = e−it(x0(ε)−iΓ(ε)), (3.61)

(3.57) follows from Lemmas 3.4, 3.5, and the results (3.58) and (3.60).

We are now in a position to formulate the main result.

Theorem 3.7. Suppose (A1)–(A5) hold true. Then for sufficiently small ε we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ Cεp(ν). (3.62)

Here p(ν) = min{2, (2 + ν)/2}, and

Γ(ε) = −iν−1gνb
ν/2ε2+ν/2(1 + O(ε)), (3.63)

x0(ε) = bε(1 + O(ε)). (3.64)
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Proof. The theorem follows from Lemma 3.6 by an argument due to Hunziker [15]. For
completeness we reproduce it. Taking t = 0 in (3.57) one gets

|〈Ψ0, gε(H(ε))Ψ0〉 − 1| ≤ Cεp(ν),

which gives (recall that 0 ≤ gε(x) ≤ 1)

‖(1 − gε(H(ε)))
1

2 Ψ0‖2 ≤ Cεp(ν). (3.65)

Now

|〈Ψ0, e
−itH(ε)Ψ0〉 − Agε(t)| = |〈(1 − gε(H(ε)))

1

2 Ψ0, e
−itH(ε)(1 − gε(H(ε)))

1

2 Ψ0〉|
≤ ‖(1 − gε(H(ε)))

1

2 Ψ0‖2,

which together with Lemma 3.6 and (3.65) finishes the proof.

4 Continuum eigenvalues

While the starting formulae are again (2.9) and (2.14), here we assume that G(z) is uni-
formly bounded and smooth (in the norm topology) in

Da = {z | |z| < a, Im z 6= 0} (4.1)

for some a > 0. We use the standard notation, Cn,θ, 0 ≤ θ ≤ 1, n = 0, 1, ... for the
class of functions whose nth derivative is uniformly Hölder continuous of order θ in Da. In
particular, C0,1 is the class of uniformly Lipschitz continuous functions in Da. Suppose
now that G(z) ∈ Cn,θ with n + θ > 0. Then for x ∈ (−a, a) and ε sufficiently small one
can define (recall (2.14))

F±(x, ε) = lim
η↘0

F (x± iη, ε) = R(x, ε) ± iI(x, ε). (4.2)

Since for sufficiently small ε, R(−a, ε) > 0, R(a, ε) < 0, and R(x, ε) is continuous, the
equation

R(x, ε) = 0 (4.3)

has at least one solution in (−a, a). Moreover, from the fact that (see (2.14))

R(x, ε) = εb− x− ε2S(x, ε), (4.4)

where (uniformly for ε sufficiently small) S(x, ε) ∈ Cn,θ, it is easy to see that any solution
equals εb+O(ε2). In addition, for n+θ < 1 (see also [6, Proposition 12]) any two solutions

x1
0(ε), x

2
0(ε) satisfy |x1

0(ε) − x2
0(ε)| ≤ Cε

2

1−θ , while for n+ θ ≥ 1 the solution is unique.
Let now x0(ε) be one of the solutions of (4.3) and, as before, define Γ(ε) by

Γ(ε) = −I(x0(ε), ε). (4.5)
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Notice that under our conditions

0 ≤ Γ(ε) ≤ Cε2. (4.6)

We are now in a position to formulate the analogue of the first part of Theorem 3.7 for
embedded eigenvalues.

Theorem 4.1. Assume that G(z) is in Cn,θ on Da. For sufficiently small ε we have the
following two results:

(i) Assume n = 0, 0 < θ < 1, and

Γ(ε) ≥ Cεγ with 2 ≤ γ <
2

1 − θ
. (4.7)

Then we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ C

1

1 − θ
εδ, (4.8)

where
δ = 2 − γ(1 − θ) > 0. (4.9)

(ii) For n+ θ ≥ 1 we have

|〈Ψ0, e
−itH(ε)Ψ0〉 − e−it(x0(ε)−iΓ(ε))| ≤ C

{
ε2|ln ε| for n = 0, θ = 1,

ε2 for n + θ > 1.
(4.10)

Proof. The proof is similar to the proof of Theorem 3.7, but somewhat simpler, since
now we assume smoothness in a whole neighborhood of zero, and not just an asymptotic
expansion around zero.

Part (i): Choose in this case (notice that for sufficiently small ε we have Iε ⊂ (−a, a))

Iε = [x0(ε) −
Γ(ε)

εδ
, x0(ε) +

Γ(ε)

εδ
], (4.11)

and take, as before,
L±(x, ε) = −(x− x0(ε)) ± iI(x0(ε), ε). (4.12)

Now we estimate directly |F±(x, ε) − L±(x, ε)| on Iε. Since we have F±(x0(ε), ε) =
L±(x0(ε), ε), from (4.4) and Hölder continuity one has on Iε that

|F±(x, ε) − L±(x, ε)| ≤ Cε2|x− x0(ε)|θ (4.13)

In particular, from (4.7), (4.9), and (4.11), for all x ∈ Iε we have

|F±(x, ε) − L±(x, ε)| ≤ Cε2

(
Γ(ε)

εδ

)θ
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≤ CΓ(ε)
ε2

Γ(ε)1−θεδθ
≤ CΓ(ε)ε2−(1−θ)γ−δθ = CΓ(ε)εδ(1−θ). (4.14)

Since 0 < δ < 2, 0 < θ < 1, and |L±(x, ε)| ≥ Γ(ε), from (4.14) one obtains that for all
x ∈ Iε and ε sufficiently small

|F±(x, ε)| ≥ 1
2
|L±(x, ε)|. (4.15)

Again we estimate the error when replacing F±(x, ε) with L±(x, ε). From (4.11), (4.13)
and (4.15):

∣∣∣
∫

Iε

e−ixt

[
1

F±(x, ε)
− 1

L±(x, ε)

]
dx

∣∣∣ ≤ Cε2

∫

Iε

|x− x0(ε)|θ
(x− x0(ε))2 + Γ(ε)2

dx

= Cε2

(
1

Γ(ε)

)1−θ ∫ 1

εδ

0

yθ

y2 + 1
dy ≤ C

ε2

1 − θ

(
1

Γ(ε)

)1−θ

(4.16)

which together with (4.7) and (4.9) gives

∣∣∣
∫

Iε

e−ixt

[
1

F±(x, ε)
− 1

L±(x, ε)

]
dx

∣∣∣ ≤ C
εδ

1 − θ
. (4.17)

On the other hand, as in the proof of Lemma 3.6, we have
∣∣∣
(∫

R

−
∫

Iε

)
e−ixt Γ(ε)

(x− x0(ε))2 + Γ(ε)2
dx

∣∣∣ ≤ Cεδ. (4.18)

From the Lorentzian integral (3.61), (4.17), and (3.60) one obtains

|Agε(t) − e−it(x0(ε)−iΓ(ε))| ≤ C
εδ

1 − θ
, (4.19)

which together with Hunziker’s argument (see the proof of Theorem 3.7) finishes the proof
of the first part of the theorem.

Part (ii): At first sight the proof of the second part seems a bit more delicate, since we
do not impose a lower bound as in (4.7) for Γ(ε). Since for all η > 0, ImF (x ± η, ε) 6= 0
the idea is to make all the estimates in (2.9) before taking the limit η ↘ 0. So, consider
F±(x, η, ε) = F (x ± iη, ε) and subsequently (see (4.2), (4.3), (4.5)) R(x, η, ε), I(x, η, ε),
x0(η, ε), Γ(η, ε), L±(x, η, ε). Consider first the Lipschitz case, i.e. n = 0, θ = 1. Fix ε
sufficiently small. By choosing η as small as to assure that

Iη,ε = [x0(η, ε) −
Γ(η, ε)

ε2|ln ε| , x0(η, ε) +
Γ(η, ε)

ε2|ln ε| ] ⊂ (−a
2
,
a

2
), (4.20)

one can mimic closely the estimates in the previous case. The only difference is that the

integral
∫ 1

εδ

0
yθ

y2+1
dy is replaced with

∫ 1

ε2|ln ε|

0
y

y2+1
dy ≤ C|ln ε| and that in (3.60) εδ is replaced

by ε2|ln ε|. One obtains that (uniformly as η ↘ 0)

∣∣ 1

2πi

∫

Iη,ε

dx e−ixt
( 1

F (x+ iη, ε)
− 1

F (x− iη, ε)

)
− e−it(x0(η,ε)−iΓ(η,ε))

∣∣ ≤ Cε2|ln ε|. (4.21)
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Taking η ↘ 0 in (4.21) and using limη↘0 x0(η, ε) = x0(ε) and limη↘0 Γ(η, ε) = Γ(ε), one
obtains

|Agε(t) − e−it(x0(ε)−iΓ(ε))| ≤ Cε2|ln ε|, (4.22)

and again Hunziker’s argument finishes the proof.
In the last case, namely n + θ > 1, a more careful estimate is nedeed in order to kill

the factor |ln ε|, and we follow the proof of Lemma 3.5 in estimating the error due to the
replace of F±(x, η, ε) with L±(x, η, ε). In this case we take (with a suitably small C)

Iη,ε = [x0(η, ε) − C
Γ(η, ε)

ε2
, x0(η, ε) + C

Γ(η, ε)

ε2
] ⊂ (−a

2
,
a

2
). (4.23)

In the proof of Lemma 3.5 one then makes the changes necessary to take into account that
here

sup
x∈Iη,ε

∣∣∣ d
dx
I(x, η, ε)

∣∣∣ ≤ Cε2; sup
x∈Iη,ε

∣∣∣ d
2

dx2
I(x, η, ε)

∣∣∣ ≤ Cε2,

|1 + d
dx
F±(x0(η, ε), η, ε)| ≤ Cε2,

to obtain that ∣∣∣
∫

Iη,ε

e−ixt

[
1

F±(x, η, ε)
− 1

L±(x, η, ε)

]
dx

∣∣∣ ≤ Cε2. (4.24)

The rest of the argument remains unchanged.

Remark 4.2. The regularity properties of G(z) assumed above can be obtained using the
Mourre method. See for example [27] and [2].

Remark 4.3. In the case n+ θ ≥ 1, if actually Γ(ε) = 0, then x0(ε) will be an embedded
eigenvalus, which can be seen as in [27] or [7].

Remark 4.4. Estimates uniform in time on the remainder term in the formula (1.1) for
the survival probability in the non-analytic case can also be obtained from the general
results in [6, 24, 33, 35]. Our estimates improve the previous ones; for example in the
differentiable case (i.e. n + θ > 1) we have an estimate of order ε2, while all the previous
results we are aware of have only an estimate of order ε. Actually in this case, as it can be
seen from the discussion in [15], our result is optimal in the sense that a better estimate
cannot hold, unless one replaces Ψ0 with a better adapted wave function.

Remark 4.5. Aside from the condition that uniformly on Da, ε‖G(z)‖ ≤ 1
2

one can replace
in all estimates leading to Theorem 4.1 ε by ε̃ = ε‖AΨ0‖. This might be important in the
cases when ‖AΨ0‖ is very small, see [24].

18



5 Examples

As examples we consider one and two channel Schrödinger operators in odd dimensions. We
shall restrict ourselves to the “physical” dimensions one and three. In the three dimensional
case we consider various cases for both one and two channel Schrödinger operators. In the
one dimensional case with local potentials we only consider the two channel case. We
obtain explicit examples with gν 6= 0 for ν arbitrarily large. In each case we find ν and gν,
which gives the leading term in ε of Γ(ε) (see (3.63)).

In the one channel case
H = −∆ + V (x), (5.1)

(Wf)(x) = W (x)f(x), (5.2)

in L2(Rm), m = 1, 3, with V,W satisfying

〈·〉βV ∈ L∞(Rm), (5.3)

〈·〉γW ∈ L∞(Rm), (5.4)

and β, γ are sufficiently large, in order to obtain the expansions below (see [19]), and
we suppose that the singularity of (H + κ2)−1 at κ = 0 is coming from the existence of
a nondegenerate eigenvalue at the threshold and/or a zero resonance. Note that we can
allow singularities in V and W , but we have decided to omit the technicalities involved in
dealing with such singularities.

In the two channel case we consider examples of a nondegenerate bound state of zero
energy in the “closed” channel decaying due to the interaction with an odd dimensional
Schrödinger operator in the open channel. Since only the bound state in the closed channel
is relevant in the forthcoming discussion, we shall take C as the Hilbert space representing
the closed channel, i.e. H = L2(Rm) ⊕ C. As the unperturbed Hamiltonian we take

H =

[
−∆ + V 0

0 0

]
, (5.5)

where V satisfies (5.3), and as the perturbation we take

W =

[
W11 |W12〉〈1|

|1〉〈W12| b

]
, (5.6)

which is a shorthand for

W

[
f(x)
ξ

]
=

[
W11(x)f(x) +W12(x)ξ

∫
W12(x)f(x) + bξ

]
. (5.7)

Here we assume
〈·〉γW11 ∈ L∞(Rm), 〈·〉γ/2W12 ∈ L∞(Rm), (5.8)

and furthermore that W11 is real-valued. In order to satisfy (3.1) we assume b > 0 in (5.6).
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We use the following factorization of W . To simplify the notation below we introduce
the weight function

ργ = 〈·〉−γ/2. (5.9)

In the one channel case we write
W = ργCργ , (5.10)

i.e., C is the bounded operator of multiplication with 〈x〉γW (x). Writing the polar decom-
position for C (with a self-adjoint D satisfying D2 = I) as

C = |C|1/2D|C|1/2, (5.11)

we have in this case
A = |C|1/2ργ . (5.12)

In the two channel case let

B =

[
ρ−γ 0
0 1

]
, (5.13)

and
C = BWB = |C|1/2D|C|1/2, (5.14)

where D is defined to be the identity on KerC, such that D is self-adjoint with D2 = I.
The operator C is bounded and self-adjoint, and we take

A = |C|1/2B−1, (5.15)

i.e.
W = B−1|C|1/2D|C|1/2B−1. (5.16)

Now, since |C|1/2 is bounded, it is clear from (3.3) and (5.15) that we need the expansion
of

B−1(H + κ2)−1B−1 =

[
ργ(−∆ + V + κ2)−1ργ 0

0
1

κ2

]
, (5.17)

which, together with the fact that in our case

P0 =

[
0 0
0 1

]
, (5.18)

reduces the problem of writing down (3.3) to the expansion of the resolvent in the scalar
case. Summing up, in all cases the needed expansion of (H+κ2)−1 follows at once from the
expansion of ργ(−∆ + V + κ2)−1ργ . The expansions of (−∆ + V + κ2)−1 near κ = 0 have
been written down in [18, 17, 25, 19]. For the first example, although one can take the
nedeed results from [18], for the reader’s convenience we rederive them in the Appendix
following the approach in [19] used in the rest of the paper . For the second example
we need to carry the computations further than was done in [19], in order to get explicit
expressions for the coefficients. The last example has not been treated previously, so we
give some details of the computations.
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5.1 Schrödinger operators in three dimensions

We first present the results in the case where the Schrödinger operator acts in three di-
mensions. The point zero is classified into four cases. It may be a regular point, in which
case there is no singularity in the resolvent expansion. In the other three cases there exists
at least one non-zero solution to (−∆ + V )Ψ = 0, in the space L2,−s(R3), 1/2 < s ≤ 3/2.
It turns out that Ψ ∈ L2(R3), if and only if 〈V,Ψ〉 = 0, see Lemma A.2. In case there
are solutions with 〈V,Ψ〉 6= 0, it is said that H has a resonance at the threshold. Among
these solutions, one can choose a distinguished one, Ψc, called the canonical zero resonance
function and all the others can be written as Ψ = αΨc + Ψ̃ with α 6= 0 and Ψ̃ ∈ L2(R3).
See the Appendix for further details.

Our first result concerns the one channel case. Note that we take Ψ0 to be real-valued.

Theorem 5.1 (One channel case). Assume that V and W satisfy (5.3) and (5.4) with
β > 9 and γ > 5, respectively. Assume that (A1-3) holds for H = −∆ + V . Let

Xj =

∫

R3

Ψ0(x)V (x)xjdx, j = 1, 2, 3. (5.19)

Assume either that Xj 6= 0 for at least one j, or that 〈Ψ0,WΨc〉 6= 0. Then ν = −1, and
we have

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ) + |〈Ψ0,WΨc〉|2. (5.20)

If H does not have a resonance at the threshold, but still Xj 6= 0 for at least one j, then
the second term in the right hand side of (5.20) should be omitted, i.e.

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ). (5.21)

Proof. Under our assumptions on V we have an asymptotic expansion (3.3) with N = −1,
see Theorem A.4, and furthermore

G−1 = P0V G
0
3V P0 + |Ψc〉〈Ψc|. (5.22)

Insert this expression into (3.11) and use the explicit kernel (A.3) together with the result
(see Lemma A.2) ∫

R3

Ψ0(x)V (x)dx = 0 (5.23)

to get (5.20).
If H does not have a resonance at the threshold, then (see Theorem A.4) the last term

in the right hand side of (5.22) should be omitted.

Remark 5.2. Let us explain through an example the significance of the conditions in the
theorem. Take

V (x) =

{
−V0, if |x| ≤ 1,

0, if |x| > 1.
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Here V0 > 0 is a parameter. By adjusting this parameter, one can get a radial solution to
(−∆+V )ψ = 0 for any angular momentum ` = 0, 1, . . ., which decays as |x|−`, as |x| → ∞.
Thus for ` = 0 we get a zero resonance. For ` = 1 we get zero eigenvalues, such that at
least one Xj 6= 0, see (5.19). For ` ≥ 2 all Xj = 0. For ` ≥ 1 the eigenvalue at zero is
not simple. Examples with a simple zero eigenvalue can be obtained using only the radial
part, see Remark 5.11. Note that in order to get 〈Ψ0,WΨc〉 6= 0 one will have to take a
non-radial perturbation W .

Concerning the two channel case we have the following result.

Theorem 5.3 (Two channel case). Assume that V and W satisfy (5.3) and (5.4) with
β > 9 and γ > 5, respectively.

(i) Assume that −∆ + V has neither a threshold resonance nor a threshold eigenvalue.
Then ν ≥ 1, and we have

g1 =
−1

4π
|〈W12, (I +G0

0V )−11〉|2. (5.24)

(ii) Assume that −∆ + V has a threshold resonance, and no threshold eigenvalue. Let
Ψc denote the canonical zero resonance function. Assume that 〈W12,Ψc〉 6= 0. Then
ν = −1, and

g−1 = |〈W12,Ψc〉|2. (5.25)

Proof. In the two channel case we have Ψ0 = [ 0
1 ]. We start with part (i). We get the re-

quired resolvent expansion (3.3) from Theorem A.3. Under the assumption on the potential
V (3.3) holds for N = 1 and

G1 =

[
−1
4π
|(I +G0

0V )−11〉〈(I +G0
0V )−11| 0

0 0

]
,

Now the proof consists in combining this expression with the definition (3.11) and the
matrix W . This leads to the result stated in part (i). Concerning part (ii), then we use
Theorem A.4 (see (A.19)) and perform the same computations as for part (i).

Remark 5.4. Note that the function ψ = (I + G0
0V )−11 satisfies (−∆ + V )ψ = 0 in the

sense of distributions. Thus it is a generalized zero energy eigenfunction. Compare with
the discussion in [4].

5.2 Schrödinger operators in one dimension

Since in the case dimension m = 1 and local short range potentials there is no bound state
at the threshold, we can only consider the two channel case. For m = 1 the expansion of
ργ(−∆ + V + κ2)−1ργ is much more complicated, due to the 1/κ singularity in the free
resolvent. The result needed is obtained from [19]. Since it was not written down explicitly
in [19], we reproduce some results needed to complete the computation.
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The kernel of the free resolvent has the expansion

(−∆ + κ2)−1(x,y) =
1

2κ
e−κ|x−y|

=
1

2κ
− |x− y|

2
+ κ

|x− y|2
4

+ O(κ2)

=
1

κ
G0

−1(x,y) +G0
0(x,y) + κG0

1(x,y) + O(κ), (5.26)

where we also introduced the notation used here. Note that the G0
j here are different from

those defined in (A.3). We also use the notation v(x) = |V (x)|1/2, U(x) = 1, if V (x) ≥ 0,
U(x) = −1, if V (x) < 0, such that the factorization used is V = vUv. We write w = vU .

The expansion results are obtained by studying the operator

M(κ) = U + v(−∆ + κ2)−1v,

and its inverse, see [19, (4.3)]. We have

M(κ) = 1
2
αPκ−1 +M0 +M1κ+ κ2r(κ), (5.27)

where
P = α−1|v〉〈v|, α = ‖v‖2, (5.28)

and M0 − U and M1 are the integral operators given by the kernels

(M0 − U)(x, y) = − 1
2
v(x)|x− y|v(y), (5.29)

M1(x, y) = 1
4
v(x)|x− y|2v(y), (5.30)

and, for β > 7, the remainder r(κ) is uniformly bounded in norm. Let Q = 1 − P , and
let S : QL2(R) → QL2(R) be the orthogonal projection onto KerQM0Q. Then (see [19,
Theorem 5.2 and (5.18)]) RankS ≤ 1, and the formula for M(κ)−1 is as follows.

M(κ)−1 =
2κ

α
(1 + κM̃(κ))−1

+
2

α
(1 + κM̃(κ))−1Q(m0 + S + κm1(κ))

−1Q(1 + κM̃(κ))−1

+ κ−1 2

α
(1 + κM̃(κ))−1Q(m0 + S + κm1(κ))

−1Sq(κ)−1S

× (m0 + S + κm1(κ))
−1Q(1 + κM̃(κ))−1, (5.31)

where we use the notation

M̃(κ) =
2

α
(M0 + κM1) + O(κ2),

m(κ) =
2

α
QM0Q− 2

α
κQ(

2

α
M2

0 −M1)Q+ O(κ2)
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≡ m0 + κ(m1 + κm2(κ))

≡ m0 + κm1(κ), (5.32)

and

q(κ) = q0 + O(κ) (5.33)

as an operator in SL2(R), with

q(0) ≡ q0 = Sm1S. (5.34)

In the formula (5.31), if QM0Q is invertible as an operator in QL2(R), i.e. S = 0, the last
term vanishes. If S 6= 0, we have the following result (see [19, Theorem 5.2]).

Proposition 5.5. Assume S 6= 0. Let Φ ∈ SL2(R), ‖Φ‖ = 1. If Ψ is defined by

Ψ(x) =
1

α
〈v,M0Φ〉 +

1

2

∫

R

|x− y|v(y)Φ(y)dy, (5.35)

then
wΨ = Φ, (5.36)

Ψ /∈ L2(R), Ψ ∈ L∞(R), and in the distribution sense

HΨ = 0. (5.37)

Conversely, if there exists Ψ ∈ L∞(R) satisfying (5.37) in the distribution sense, then

Φ = wΨ ∈ SL2(R). (5.38)

In addition,

q(0) = − 2

α
c̃2S, (5.39)

with

c̃2 =
2

α2
|〈v,M0Φ〉|2 +

1

2
|〈v,XΦ〉|2 > 0, (5.40)

where X is the operator of multiplication with x. The function (unique up to a factor of
modulus one)

Ψc =
1

c̃
Ψ (5.41)

is called the canonical resonance function.

We are prepared to state the main result of this subsection.

Theorem 5.6 (Two channel case). Assume V satisfies (5.3) with β > 7, and W satisfies
(5.8) with γ > 5. Then we have the following results.
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(i) If in the open channel there is no threshold resonance (i.e. S = 0), then ν ≥ 1.

(ii) If there is a threshold resonance in the open channel (i.e. S 6= 0), and 〈W12,Ψc〉 6= 0,
where Ψc is the canonical resonance function, then ν = −1, and

g−1 = |〈W12,Ψc〉|2. (5.42)

Proof. We have to insert the expansion (5.31) into

ργ(−∆ + V + κ2)−1ργ = ργ(−∆ + κ2)−1ργ

− ργ(−∆ + κ2)−1vM(κ)−1v(−∆ + κ2)−1ργ , (5.43)

and compute the 1
κ

term. The main observation is that most of the singular terms vanish
or cancel each other. Observe that

Q(1 + κM̃(κ))−1v(−∆ + κ2)−1ργ

=
1

κ
Q|v〉〈ργ| −

2

α
QM0vG

0
−1ργ −QvG0

0ργ + O(κ)

= − 2

α
QM0vG

0
−1ργ −QvG0

0ργ + O(κ), (5.44)

since by definition Pv = v and QP = 0. Insertion of the expansion (5.31) into (5.43) gives
four terms to be considered. From (5.44) follows that the third one is O(1). Computing
the 1

κ
contribution from the first two terms, one obtains (see (5.28))

1

2
|ργ〉〈ργ| −

1

2α
〈v2, 1〉|ργ〉〈ργ | = 0. (5.45)

Since in the regular case (i.e. S = 0) the fourth term does not exist, the first part of the
theorem follows from (5.44) and (5.45). Moreover, in the case S 6= 0, one has to consider
only the fourth term. The computation of the 1

κ
coefficient leads to (observe that SQ = S,

and see also (5.26), (5.33), (5.39), (5.34), (5.35), and (5.40)),

ργ(−∆ + V + κ2)−1ργ =
1

c̃2κ
|ργΨ〉〈ργΨ| + O(1), (5.46)

which gives (5.42), and the proof is finished.

5.3 Schrödinger operators on the half line with ` ≥ 1

In this subsection we consider the operator

H0,` = − d2

dr2
+
`(`+ 1)

r2
, ` = 1, 2, . . . , (5.47)

on the space H = L2(R+). It will provide us with examples of resolvent expansions, where
we can verify Assumption (A5) with ν ≥ 3 odd and arbitrarily large. Note that the cases
ν = −1 and ν = 1 were covered in the preceding sections.
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It is well-known that the operator H0,` is essentially selfadjoint on C∞
0 ((0,∞)). We now

give the integral kernel of the resolvent (H0,` + κ2)−1. To this end we need some results
on special functions. We denote by j`(z) the spherical Bessel functions of the first kind,

and by h
(1)
` (z) the spherical Bessel functions of the third kind. We follow the notation and

normalizations given in [1, Section 10.1]. We then define

u`(z) = zj`(z), w`(z) = izh
(1)
` (z).

We need the expansions of these two functions around zero. Using [1, (9.1.10),(10.1.1)],
we get after some simplifications,

u`(z) = z`+12`
∞∑

k=0

(−1)k(k + `)!

k!(2(k + `) + 1)!
z2k (5.48)

For the function w`(z) we change the variable to get a simplified expression. Using [1,
(10.1.16)], we get, computing as in [17],

w`(iζ) = i−`ζ−`
∞∑

n=0

dnζ
n, (5.49)

dn = (−1)n−1
∑̀

k=0
k≥`−n

(`+ k)!(−2)−k

k!(`− k)!

1

(n− `+ k)!
. (5.50)

We recall from [17] the following result on the expansion coefficients of h
(1)
1 . Note that we

have not made the `-dependence in dn explicit, in order to avoid a complicated notation.

Lemma 5.7. The coefficients (5.50) have the following property

dn = 0 for n = 1, 3, . . . , 2`− 1. (5.51)

We now recall (see any standard text, for example [3, 26]) that the kernel of the resolvent
is given as

(H0,` + κ2)−1(r, r′) = − i

κ
u`(iκr<)w`(iκr>). (5.52)

Here we have introduced the standard notation

r> = max{r, r′}, r< = min{r, r′}. (5.53)

The expansion results for u` and w` then lead to asymptotic expansions for the resol-
vents. We keep the same notation as in the previous subsection, so we introduce the weight
function ργ(r) = 〈r〉−γ/2, now for r ∈ R+.

Proposition 5.8. Assume that γ > 2p+ 3. We then have an expansion

ργ(H0,` + κ2)−1ργ =

p−1∑

j=0

κjG̃j + κprp(κ). (5.54)
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Here the expansion coefficients are bounded operators on H, and the error term rp(κ) is
uniformly bounded for κ small. We have

G̃j = 0, j = 1, 3, . . . , 2`− 1. (5.55)

We have the following integral kernel expressions (assuming γ > 2`+ 5)

G̃0(r, r
′) = ργ(r)

(r<)`+1(r>)−`

2`+ 1
ργ(r

′), (5.56)

G̃2(r, r
′) = ργ(r)

(r<)`+1(r>)−`

2`+ 1

[
−1

2
(r<)2 +

`

2`− 1
(r>)2

]
ργ(r

′), (5.57)

G̃2`+1(r, r
′) = 2` `!d2`+1

(2`+ 1)!
ργ(r)(−r · r′)`+1ργ(r

′). (5.58)

Proof. The results (5.48), (5.49), and (5.52) yield, after some computations, the existence
of an asymptotic expansion of the form given in (5.54). The result (5.55) is a consequence
of Lemma 5.7, since the expansion of z−`−1u`(z) only contains even powers of z. The kernel
expressions follow after some tedious computations, which we omit. In the expression for
(5.58) we used the relation r< · r> = r · r′.

We can now describe our results. We consider the two channel set-up, where we now
take the Hilbert space H = L2(R+) ⊕ C, and replace (5.5) by

H =

[
H0,` 0
0 0

]
. (5.59)

Theorem 5.9 (Two channel case). Consider the two channel case with H given by
(5.59). Assume that W given by (5.6) satisfies (5.8) with γ > 2`+ 5. Assume that

〈W12, r
`+1〉 6= 0.

Then we have ν = 2`+ 1 and

gν = (−1)`+1

[ √
π

2`+1Γ(`+ 3
2
)

]2

|〈W12, r
`+1〉|2, (5.60)

where Γ denotes the usual Gamma function.

Proof. We insert the expansion coefficients into (3.11), and after some simple computations,
the result follows. A computer algebra computation using (5.50) yields the closed form of
the coefficient, given in the theorem.

Remark 5.10. The above result should be compared with the results in [4]. Here the same
Hamiltonian is investigated using analytic continuation of the resolvent. The expression in
(5.60) agrees with the one in [4].
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Remark 5.11. One can also consider the operator

H = − d2

dr2
+
`(`+ 1)

r2
+ V (r), (5.61)

where V decays sufficiently rapidly at infinity. The analysis of the threshold can be carried
out along the same lines as above. In this case one can get a simple eigenvalue at the
threshold for suitable V . The detailed analysis shows that also in the one channel case one
can get examples, where (A5) is satisfied with ν arbitrarily large.

Remark 5.12. The results obtained here are similar to those in [17] for −∆ + V on
L2(Rm), m ≥ 5 and odd. The free Schrödinger operator has an asymptotic expansion with
coefficients having the same properties as above. The link between the two cases is given
by m = 2` + 3. One could use the results in [17] to get one channel examples similar to
those mentioned in the previous remark.

6 Further results

In this short section we list a few possible generalizations of the results obtained above.

(i) More examples, e.g., the one channel case in one dimension with nonlocal interactions,
higher dimensions etc. The only problem is that the computations are more tedious.

(ii) Degenerate case, i.e. the case when 0 is a m-fold degenerate eigenvalue, m < ∞. If
all the eigenvalues b1 < b2 < · · · < bm of P0WP0 on P0H are strictly positive and
nondegenerate, one can apply the method in Section 3 to each of them by replacing
Iε (see (3.16)) with Ij,ε ⊂ (ε(bj − a), ε(bj + a)), where

a =
1

2
min
j 6=k

{b1, |bj − bk|}.

(iii) Even dimensions. In extending the theory developed in Section 3 one has to cope
with the more complex asymptotic expansions for the resolvents [17, 19].
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A Resolvent Expansions in Three Dimensions

In this Appendix we show how to use the technique from [19] to derive the results on the
asymptotic expansion of the resolvent of a Schrödinger operator in three dimensions and
in particular to compute G−1 in (1.2).

This Appendix is included for the convenience of the reader. The results are also
obtainable from the paper [18]. Moreover the expansion of the resolvent of a Schrödinger
operator in three dimensions following the approach in [19] has been obtained in [10];
however the computation were not pushed far enough as to have an explicit formula forG−1.
We also refer to the survey paper [5] and the references therein. We start by introducing
the setup. We refer to [18, 19] for several results, but provide an outline of the arguments
needed to obtain the resolvent expansions. Let H = −∆+V be a Schrödinger operator on
H = L2(R3). We assume that V (x) is real-valued, and that for some suitably large β > 0
we have

〈·〉βV ∈ L∞(R3). (A.1)

Let R0
0(z) = (−∆ − z)−1 be the resolvent of the free operator. Let Hs = L2,s(R3), s ∈ R,

denote the weighted space. The expansion of R0
0(z) follows from the Taylor expansion

of the well known kernel 1
4π|x−y|

e−κ|x−y| (see e.g. [18] for the mapping properties of the

coefficients):

Proposition A.1. Let p ≥ 1 be an integer. Let s > p + 3
2
. Then we have the expansion

R0
0(−κ2) =

p∑

j=0

κjG0
j + O(κp+1) (A.2)

as κ→ 0, Re κ ≥ 0, valid in the norm topology of B(Hs,H−s). The expansion coefficients
are given by the integral kernels

G0
j(x,y) =

(−1)j

4πj!
|x − y|j−1, j = 0, 1, 2, . . . . (A.3)

We have

G0
0 ∈ B(Hs1 ,H−s2), s1, s2 >

1
2
, s1 + s2 ≥ 2, (A.4)

G0
j ∈ B(Hs1 ,H−s2), s1, s2 > j + 1

2
, j = 1, 2 . . . . (A.5)

Following [19] we write the resolvent formula in the symmetric form

R(−κ2) = (H + κ2)−1 = R0
0(−κ2) −R0

0(−κ2)vM(κ)−1vR0
0(−κ2), (A.6)

where
M(κ) = U + vR0

0(−κ2)v = M0 + κM1 + κ2M2 + κ3M3 + O(κ4), (A.7)

M0 = U + vG0
0v, Mj = vGj

0v; j = 1, 2, ... (A.8)
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with V = vUv,

v(x) = |V (x)|1/2; U(x) =

{
+1 for V (x) ≥ 0,

−1 for V (x) < 0,
(A.9)

and provided β > 9. Notice that U 2 = I. The analysis of the invertibility of M(κ) starts
with an analysis of KerM0 (see also [18, 10]) .

Lemma A.2. (i) Assume that Φ ∈ KerM0. Let Ψ = −G0
0vΦ. Then Ψ ∈ H−s for any

s > 1
2
, and HΨ = 0 in the sense of distributions. We have Ψ ∈ H, if and only if 〈v1,Φ〉 = 0

(or equivalently 〈V 1,Ψ〉 = 0).
(ii) Assume Ψ ∈ H−s for some s, 1

2
< s ≤ 3

2
, and HΨ = 0 in the sense of distributions.

Let Φ = UvΨ. Then Φ ∈ KerM0.

Proof. Part (i): Let Φ ∈ KerM0 and Ψ = −G0
0vΦ. Thus (U + vG0

0v)Φ = 0, and we have
−∆Ψ = −vΦ in the sense of distributions. Now vΨ = −vG0

0vΦ = UΦ, such that Φ = UvΨ.
We conclude that HΨ = 0 in the sense of distributions. The mapping properties of G0

0

imply together with the decay of v that Ψ ∈ H−s for any s > 1
2
.

Use the definitions to write

Ψ(x) = − 1

4π

∫
1

|x − y|(vΦ)(y)dy

= − 1

4π

1

|x|

∫
(vΦ)(y)dy − 1

4π

∫ ( 1

|x − y| −
1

|x|
)
(vΦ)(y)dy.

Now the estimate ∣∣∣ 1

|x − y| −
1

|x|
∣∣∣ ≤ |y|

|x − y||x|
implies the last claim in Part (i).

Concerning Part (ii), then let Ψ satisfy the assumptions, and define Φ = UvΨ. We

have −∆Ψ = −VΨ = −vΦ. Define Ψ̃ = −G0
0vΦ. Then −∆Ψ̃ = −vΦ. We conclude that

−∆(Ψ − Ψ̃) = 0. Since Ψ − Ψ̃ ∈ H−s for some s, 1
2
< s ≤ 3

2
, it follows that Ψ − Ψ̃ = 0,

since the only harmonic function in H−s for these values of s is the zero function. We have
shown that Ψ = −G0

0vΦ. Thus Φ = UvΨ = −UvG0
0vΦ. Since U2 = I, it follows that

Φ ∈ KerM0.

This lemma leads to the classification of the point zero in the spectrum of H. Notice
first that since M0 = U + vG0

0v = U +compact, KerM0 is finite dimensional. Let S be the
orthogonal projection on KerM0 and S1 be the orthogonal projection on KerSM1S (as an
operator in L2(R3)) . Now (see (A.8) and (A.3) )

SM1S = − 1

4π
|Sv1〉〈Sv1| (A.10)

which imply that dimS1 ≥ dim S− 1 and Φ ∈ KerSM1S, if and only if 〈Φ, v1〉 = 0. There
are four cases to be considered.
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(0) dimS = 0. This is the regular case and M(κ)−1 can be computed by Neumann
expansion (see Theorem A.3).

(1) dimS = 1 and S1 = 0. In this case there are no bound states, but there is a threshold
resonance described by the function Ψ = −G0

0vΦ. We say that zero is an exceptional point
of the first kind.

(2) dimS = dimS1 ≥ 1. Then zero is an eigenvalue of H of multiplicity dimS. In this
case we say that zero is an exceptional point of the second kind.

(3) dimS ≥ 2 and dimS1 = dimS − 1. In this case zero is an eigenvalue of H of
multiplicity dimS − 1, and in addition there is a threshold resonance. In this case we say
that zero is an exceptional point of the third kind. There is an ambiguity in writing the
resonance function, since for all 〈Φ, v1〉 6= 0, Ψ = −G0

0vΦ /∈ L2(R3) and is a candidate for a
resonance function. However there is a distinguised one Ψc = −G0

0vΦc named the canonical
resonance function. It is defined by the condition that the resonance contribution to the
singular part of R(−κ2) takes the form 1

κ
|Ψc〉〈Ψc|. The proof of Theorem A.4 gives the

following formula for Ψc:

Ψc =

√
4π

‖Sv1‖2
(G0

0v|Sv1〉 − P0V G
0
2v|Sv1〉). (A.11)

All the other resonance functions can be written as Ψ = αΨc + Ψ̃ with α 6= 0 and Ψ̃ ∈
L2(R3), satisfying HΨ̃ = 0 in the sense of distributions. In the rest of this appendix we
write down the expansions in the cases of interest .

Theorem A.3. Assume that zero is a regular point for H. Assume β > 5 in (A.1).
Assume s1, s2 > 5/2. Then we have

R(−κ2) = G0 + κG1 + O(κ2) (A.12)

in the topology of B(Hs1,H−s2). We have

G0 = G0
0(I + V G0

0)
−1, (A.13)

G1 = − 1

4π
|(I +G0

0V )−11〉〈(I +G0
0V )−11|. (A.14)

Proof. We only outline the main steps. Assume zero is a regular point for H. Thus we
assume that KerM0 = {0}. Since U has spectrum contained in {−1,+1} and vG0

0v is
compact, it follows that M0 is invertible. We want to compute explicitly the first two
expansion coefficients in R(−κ2). If we assume β > 5, then we have, using the Neumann
series,

M(κ) = M0 + κM1 + O(κ2), (A.15)

M(κ)−1 = M−1
0 − κM−1

0 M1M
−1
0 + O(κ2). (A.16)

Now we insert this last expansion into (A.6) and compute to find that we have an expansion

R(−κ2) = G0 + κG1 + O(κ2),
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with
G0 = G0

0 −G0
0vM

−1
0 vG0

0

and
G1 = G0

0 −G0
0vM

−1
0 M1M

−1
0 vG0

0 −G0
1vM

−1
0 vG0

0 −G0
0vM

−1
0 vG0

1.

These coefficients can be rewritten in various ways. We show how to rewrite G0. We have

G0 = G0
0 −G0

0v(U + vG0
0v)

−1vG0
0

= G0
0 −G0

0v(I + UvG0
0v)

−1UvG0
0

= G0
0 −G0

0(I + vUvG0
0)

−1vUvG0
0

= G0
0 −G0

0(I + V G0
0)

−1V G0
0

= G0
0(I + V G0

0)
−1,

by straightforward arguments. The coefficient is a bounded operator in B(Hs,H−s) for
s > 1. An analogous, but somewhat longer computation, gives the expression (A.14)

We also look at the case, when zero is an exceptional point of H. In this case we only
carry the computations far enough to identify the coefficients of the singular terms in the
expansion.

Theorem A.4. Assume that zero is an exceptional point for H. Assume that β > 9 in
(A.1). Assume s1, s2 > 9/2. Then we have an asymptotic expansion

R(−κ2) =
1

κ2
G−2 +

1

κ
G−1 + O(1) (A.17)

for κ small, in the topology of B(Hs1 ,H−s2), where

G−2 = 0, (A.18)

G−1 = |Ψc〉〈Ψc|, (A.19)

for an exceptional point of the first kind,

G−2 = P0, (A.20)

G−1 = P0V G
0
3V P0, (A.21)

for an exceptional point of the second kind, and

G−2 = P0, (A.22)

G−1 = P0V G
0
3V P0 + |Ψc〉〈Ψc|, (A.23)

for an exceptional point of the third kind. Here P0 is the orthogonal projection onto the
zero eigenspace, and Ψc is the canonical zero resonance function defined in (A.11). The
operator G0

3 is defined in (A.3).
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Proof. We give the proof in the case of an exceptional point of third kind; the other two
cases are particular cases when S = S1 and S1 = 0, respectively. The essential ingredient
is [19, Corollary 2.2] (see also [20]). Rewrite (A.7) as

M(κ) = M0 + κM1(κ). (A.24)

Then by [19, Corollary 2.2] M(κ) is invertible for small κ, if and only if the operator

m(κ) =
∞∑

j=0

(−1)jκjS
[
M1(κ)(M0 + S)−1

]j+1
S (A.25)

is invertible in SH. In the affirmative case we have

M(κ)−1 = (M(κ) + S)−1 +
1

κ
(M(κ) + S)−1Sm(κ)−1S(M(κ) + S)−1. (A.26)

Now rewrite the expression for m(κ) by inserting the expansion (A.7) and retaining terms
up to order κ2. The result is

m(κ) = m0 + κm1 + κ2m2 + O(κ3), (A.27)

where

m0 = SM1S, (A.28)

m1 = SM2S − SM1(M0 + S)−1M1S, (A.29)

m2 = SM3S − SM1(M0 + S)−1M2S − SM2(M0 + S)−1M1S

+ SM1(M0 + S)−1M1(M0 + S)−1M1S. (A.30)

We iterate the procedure (the “telescoping principle”) by applying [19, Corollary 2.2] to
m(κ). Notice that due to (A.28) and (A.10) the orthogonal projection on Kerm0 equals
S1 (see the discussion following Lemma A.2 ) . The result is

m(κ)−1 = (m(κ) + S1)
−1 +

1

κ
(m(κ) + S1)

−1S1q(κ)
−1S1(m(κ) + S1)

−1. (A.31)

with

q(κ) = q0 + κq1 + O(κ2)

= S1m1S1 + κ[S1m2S1 − S1m1(m0 + S1)
−1m1S1] + O(κ2). (A.32)

Now q0 is invertible, othervise one continues the procedure leading to stronger singularities
than 1

κ2 for M(κ)−1 and then for R(−κ2). Accordingly

q(κ)−1 = q−1
0 − κq−1

0 q1q
−1
0 + O(κ2), (A.33)

It is a matter of computation to extract G−2 and G−1 from (A.6), (A.26), (A.31), and
(A.33). Using
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M1S1 = S1M1 = 0, (M0 + S)−1S = S(M0 + S)−1 = S,

(m0 + S1)
−1S1 = S1(m0 + S1)

−1 = S1, (A.34)

and SS1 = S1S = S1, a straightforward but somewhat tedious computation leads to:

G−2 = −G0
0vS1q

−1
0 S1vG

0
0, (A.35)

G−1 = G0
0vS1q

−1
0 S1m2S1q

−1
0 S1vG

0
0

−G0
0v(S − S1q

−1
0 S1m1)(m0 + S1)

−1(S −m1S1q
−1
0 S1)vG

0
0. (A.36)

The last step is to check that (A.35) and (A.36) equal (A.22) and (A.23) respectively.
As always in perturbation theory, there are a lot of identities originating in the resolvent
equation which can be used to put the expansion coefficients in a simpler form. The one
relevant here is given in Lemma A.5 below. We also include the proof from [18, Lemma
2.6].

Lemma A.5. Assume that f, g ∈ L2,s(R3) for some s > 5/3, and that 〈f, 1〉 = 0, 〈g, 1〉 =
0. Then we have

〈f,G0
2g〉 = −〈G0

0f,G
0
0g〉. (A.37)

Proof. Since f, g ∈ L2,s(R3), it follows from (A.5) that 〈f,G0
2g〉 is well defined. Note also

that the argument in the first part of the proof of Lemma A.2 shows that G0
0f ∈ L2(R3).

Furthermore, G0
1f = 0. Thus it follows from the resolvent expansion (A.2) that

〈f,G0
2g〉 = lim

κ→0

1

κ2
〈f, (R0(−κ2) −G0

0)g〉 (A.38)

= lim
κ→0

1

κ2

∫
f̂(ξ)[(ξ2 + κ2)−1 − (ξ2)−1]ĝ(ξ)dξ (A.39)

= − lim
κ→0

∫
(ξ2 + κ2)−1(ξ2)−1f̂(ξ)ĝ(ξ)dξ (A.40)

= −
∫

(ξ2)−2f̂(ξ)ĝ(ξ)dξ = −〈G0
0f,G

0
0g〉. (A.41)

Above we have assumed κ > 0.

We start the simplification process by rephrasing the results in Lemma A.2. Let

T = −G0
0vS1 and T̃ = UvP0. (A.42)

The operator T is a priori only bounded from H to H−s for s > 1/2, but Lemma A.2 shows

that it is actually bounded on H, with RanT = P0H. We also have that T̃ is bounded on
H with Ran T̃ = S1H. Now Lemma A.2 implies that

T T̃ = P0 and T̃ T = S1 (A.43)

as operators on H. The adjoint T ∗ is the closure of the operator −S1vG
0
0. Combining these

observations with Lemma A.5 one has the result that q0 is invertible in S1H with

S1q
−1
0 S1 = −T̃ T̃ ∗. (A.44)
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Now insert into (A.35) to get

G−2 = T T̃ T̃ ∗T ∗ = P0.

Similarly, using also (A.30), (A.34) and (A.8):

G0
0vS1q

−1
0 S1m2S1q

−1
0 S1vG

0
0 = T̃ ∗S1m2S1T̃ = P0V G

0
3V P0. (A.45)

As for the last term in (A.36), from (A.10) and (A.32) it follows that

(m0 + S1)
−1 = S1 −

4π

‖Sv1‖4
|Sv1〉〈Sv1|, (A.46)

(S − S1q
−1
0 S1m1)S1 = 0. (A.47)

Using these results, (A.43), and (A.45), one obtains that (A.36) has the form (A.23) with

Ψc =

√
4π

‖Sv1‖2
(G0

0v|Sv1〉 − P0V G
0
2v|Sv1〉). (A.48)

This concludes the proof of the theorm.

Remark A.6. It is clear that if V decays sufficiently rapidly, then we can expand to any
finite order, and in principle compute the coefficients explicitly in terms of the operators
related to the zero resonance, zero eigenprojection, V , G0

j , and operators constructed from
these components. The computations rapidly get very complicated, and the many identities
between the various expressions complicate matters further.
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